1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_g_f_d_s(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__g_f_d_s)8 int ostei_g_f_d_s(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__g_f_d_s)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__g_f_d_s);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int iket;
26 
27     // partition workspace
28     double * const INT__g_s_d_s = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__h_s_d_s = work + (SIMINT_NSHELL_SIMD * 90);
30     double * const INT__i_s_d_s = work + (SIMINT_NSHELL_SIMD * 216);
31     double * const INT__k_s_d_s = work + (SIMINT_NSHELL_SIMD * 384);
32     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*600);
33     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_s_s = primwork + 10;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__d_s_s_s = primwork + 37;
36     SIMINT_DBLTYPE * const restrict PRIM_INT__f_s_s_s = primwork + 85;
37     SIMINT_DBLTYPE * const restrict PRIM_INT__f_s_p_s = primwork + 155;
38     SIMINT_DBLTYPE * const restrict PRIM_INT__g_s_s_s = primwork + 215;
39     SIMINT_DBLTYPE * const restrict PRIM_INT__g_s_p_s = primwork + 305;
40     SIMINT_DBLTYPE * const restrict PRIM_INT__g_s_d_s = primwork + 395;
41     SIMINT_DBLTYPE * const restrict PRIM_INT__h_s_s_s = primwork + 485;
42     SIMINT_DBLTYPE * const restrict PRIM_INT__h_s_p_s = primwork + 590;
43     SIMINT_DBLTYPE * const restrict PRIM_INT__h_s_d_s = primwork + 716;
44     SIMINT_DBLTYPE * const restrict PRIM_INT__i_s_s_s = primwork + 842;
45     SIMINT_DBLTYPE * const restrict PRIM_INT__i_s_p_s = primwork + 954;
46     SIMINT_DBLTYPE * const restrict PRIM_INT__i_s_d_s = primwork + 1122;
47     SIMINT_DBLTYPE * const restrict PRIM_INT__k_s_s_s = primwork + 1290;
48     SIMINT_DBLTYPE * const restrict PRIM_INT__k_s_p_s = primwork + 1398;
49     SIMINT_DBLTYPE * const restrict PRIM_INT__k_s_d_s = primwork + 1614;
50     double * const hrrwork = (double *)(primwork + 1830);
51     double * const HRR_INT__g_p_d_s = hrrwork + 0;
52     double * const HRR_INT__g_d_d_s = hrrwork + 270;
53     double * const HRR_INT__h_p_d_s = hrrwork + 810;
54     double * const HRR_INT__h_d_d_s = hrrwork + 1188;
55     double * const HRR_INT__i_p_d_s = hrrwork + 1944;
56 
57 
58     // Create constants
59     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
60     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
61     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
62     const SIMINT_DBLTYPE const_4 = SIMINT_DBLSET1(4);
63     const SIMINT_DBLTYPE const_5 = SIMINT_DBLSET1(5);
64     const SIMINT_DBLTYPE const_6 = SIMINT_DBLSET1(6);
65     const SIMINT_DBLTYPE const_7 = SIMINT_DBLSET1(7);
66     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
67 
68 
69     ////////////////////////////////////////
70     // Loop over shells and primitives
71     ////////////////////////////////////////
72 
73     real_abcd = 0;
74     istart = 0;
75     for(ab = 0; ab < P.nshell12_clip; ++ab)
76     {
77         const int iend = istart + P.nprim12[ab];
78 
79         cd = 0;
80         jstart = 0;
81 
82         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
83         {
84             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
85             int jend = jstart;
86             for(i = 0; i < nshellbatch; i++)
87                 jend += Q.nprim12[cd+i];
88 
89             // Clear the beginning of the workspace (where we are accumulating integrals)
90             memset(work, 0, SIMINT_NSHELL_SIMD * 600 * sizeof(double));
91             abcd = 0;
92 
93 
94             for(i = istart; i < iend; ++i)
95             {
96                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
97 
98                 if(check_screen)
99                 {
100                     // Skip this whole thing if always insignificant
101                     if((P.screen[i] * Q.screen_max) < screen_tol)
102                         continue;
103                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
104                 }
105 
106                 icd = 0;
107                 iprimcd = 0;
108                 nprim_icd = Q.nprim12[cd];
109                 double * restrict PRIM_PTR_INT__g_s_d_s = INT__g_s_d_s + abcd * 90;
110                 double * restrict PRIM_PTR_INT__h_s_d_s = INT__h_s_d_s + abcd * 126;
111                 double * restrict PRIM_PTR_INT__i_s_d_s = INT__i_s_d_s + abcd * 168;
112                 double * restrict PRIM_PTR_INT__k_s_d_s = INT__k_s_d_s + abcd * 216;
113 
114 
115 
116                 // Load these one per loop over i
117                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
118                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
119                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
120 
121                 const SIMINT_DBLTYPE P_PA[3] = { SIMINT_DBLSET1(P.PA_x[i]), SIMINT_DBLSET1(P.PA_y[i]), SIMINT_DBLSET1(P.PA_z[i]) };
122 
123                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
124                 {
125                     // calculate the shell offsets
126                     // these are the offset from the shell pointed to by cd
127                     // for each element
128                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
129                     int lastoffset = 0;
130                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
131 
132                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
133                     {
134                         // Handle if the first element of the vector is a new shell
135                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
136                         {
137                             nprim_icd += Q.nprim12[cd + (++icd)];
138                             PRIM_PTR_INT__g_s_d_s += 90;
139                             PRIM_PTR_INT__h_s_d_s += 126;
140                             PRIM_PTR_INT__i_s_d_s += 168;
141                             PRIM_PTR_INT__k_s_d_s += 216;
142                         }
143                         iprimcd++;
144                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
145                         {
146                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
147                             {
148                                 shelloffsets[n] = shelloffsets[n-1] + 1;
149                                 lastoffset++;
150                                 nprim_icd += Q.nprim12[cd + (++icd)];
151                             }
152                             else
153                                 shelloffsets[n] = shelloffsets[n-1];
154                             iprimcd++;
155                         }
156                     }
157                     else
158                         iprimcd += SIMINT_SIMD_LEN;
159 
160                     // Do we have to compute this vector (or has it been screened out)?
161                     // (not_screened != 0 means we have to do this vector)
162                     if(check_screen)
163                     {
164                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
165                         if(vmax < screen_tol)
166                         {
167                             PRIM_PTR_INT__g_s_d_s += lastoffset*90;
168                             PRIM_PTR_INT__h_s_d_s += lastoffset*126;
169                             PRIM_PTR_INT__i_s_d_s += lastoffset*168;
170                             PRIM_PTR_INT__k_s_d_s += lastoffset*216;
171                             continue;
172                         }
173                     }
174 
175                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
176                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
177                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
178                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
179 
180 
181                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
182                     SIMINT_DBLTYPE PQ[3];
183                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
184                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
185                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
186                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
187                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
188                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
189 
190                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
191                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
192                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
193                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
194                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
195                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
196                     const SIMINT_DBLTYPE Q_PA[3] = { SIMINT_DBLLOAD(Q.PA_x, j), SIMINT_DBLLOAD(Q.PA_y, j), SIMINT_DBLLOAD(Q.PA_z, j) };
197 
198                     // NOTE: Minus sign!
199                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
200                     SIMINT_DBLTYPE aop_PQ[3];
201                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
202                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
203                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
204 
205                     SIMINT_DBLTYPE a_over_q = SIMINT_MUL(alpha, one_over_q);
206                     SIMINT_DBLTYPE aoq_PQ[3];
207                     aoq_PQ[0] = SIMINT_MUL(a_over_q, PQ[0]);
208                     aoq_PQ[1] = SIMINT_MUL(a_over_q, PQ[1]);
209                     aoq_PQ[2] = SIMINT_MUL(a_over_q, PQ[2]);
210                     // Put a minus sign here so we don't have to in RR routines
211                     a_over_q = SIMINT_NEG(a_over_q);
212 
213 
214                     //////////////////////////////////////////////
215                     // Fjt function section
216                     // Maximum v value: 9
217                     //////////////////////////////////////////////
218                     // The parameter to the Fjt function
219                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
220 
221 
222                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
223 
224 
225                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 9);
226                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
227                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
228                     for(n = 0; n <= 9; n++)
229                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
230 
231                     //////////////////////////////////////////////
232                     // Primitive integrals: Vertical recurrance
233                     //////////////////////////////////////////////
234 
235                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
236                     const SIMINT_DBLTYPE vrr_const_2_over_2p = SIMINT_MUL(const_2, one_over_2p);
237                     const SIMINT_DBLTYPE vrr_const_3_over_2p = SIMINT_MUL(const_3, one_over_2p);
238                     const SIMINT_DBLTYPE vrr_const_4_over_2p = SIMINT_MUL(const_4, one_over_2p);
239                     const SIMINT_DBLTYPE vrr_const_5_over_2p = SIMINT_MUL(const_5, one_over_2p);
240                     const SIMINT_DBLTYPE vrr_const_6_over_2p = SIMINT_MUL(const_6, one_over_2p);
241                     const SIMINT_DBLTYPE vrr_const_1_over_2q = one_over_2q;
242                     const SIMINT_DBLTYPE vrr_const_1_over_2pq = one_over_2pq;
243                     const SIMINT_DBLTYPE vrr_const_2_over_2pq = SIMINT_MUL(const_2, one_over_2pq);
244                     const SIMINT_DBLTYPE vrr_const_3_over_2pq = SIMINT_MUL(const_3, one_over_2pq);
245                     const SIMINT_DBLTYPE vrr_const_4_over_2pq = SIMINT_MUL(const_4, one_over_2pq);
246                     const SIMINT_DBLTYPE vrr_const_5_over_2pq = SIMINT_MUL(const_5, one_over_2pq);
247                     const SIMINT_DBLTYPE vrr_const_6_over_2pq = SIMINT_MUL(const_6, one_over_2pq);
248                     const SIMINT_DBLTYPE vrr_const_7_over_2pq = SIMINT_MUL(const_7, one_over_2pq);
249 
250 
251 
252                     // Forming PRIM_INT__p_s_s_s[9 * 3];
253                     for(n = 0; n < 9; ++n)  // loop over orders of auxiliary function
254                     {
255 
256                         PRIM_INT__p_s_s_s[n * 3 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
257                         PRIM_INT__p_s_s_s[n * 3 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 0]);
258 
259                         PRIM_INT__p_s_s_s[n * 3 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
260                         PRIM_INT__p_s_s_s[n * 3 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 1]);
261 
262                         PRIM_INT__p_s_s_s[n * 3 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
263                         PRIM_INT__p_s_s_s[n * 3 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 2]);
264 
265                     }
266 
267 
268 
269                     // Forming PRIM_INT__d_s_s_s[8 * 6];
270                     for(n = 0; n < 8; ++n)  // loop over orders of auxiliary function
271                     {
272 
273                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__p_s_s_s[n * 3 + 0]);
274                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 0]);
275                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 0]);
276 
277                         PRIM_INT__d_s_s_s[n * 6 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__p_s_s_s[n * 3 + 0]);
278                         PRIM_INT__d_s_s_s[n * 6 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 1]);
279 
280                         PRIM_INT__d_s_s_s[n * 6 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 0]);
281                         PRIM_INT__d_s_s_s[n * 6 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 2]);
282 
283                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_MUL(P_PA[1], PRIM_INT__p_s_s_s[n * 3 + 1]);
284                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__d_s_s_s[n * 6 + 3]);
285                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 3]);
286 
287                         PRIM_INT__d_s_s_s[n * 6 + 4] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 1]);
288                         PRIM_INT__d_s_s_s[n * 6 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__d_s_s_s[n * 6 + 4]);
289 
290                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 2]);
291                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 2], PRIM_INT__d_s_s_s[n * 6 + 5]);
292                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 5]);
293 
294                     }
295 
296 
297 
298                     // Forming PRIM_INT__f_s_s_s[7 * 10];
299                     for(n = 0; n < 7; ++n)  // loop over orders of auxiliary function
300                     {
301 
302                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 0]);
303                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 0]);
304                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__p_s_s_s[n * 3 + 0]), PRIM_INT__f_s_s_s[n * 10 + 0]);
305 
306                         PRIM_INT__f_s_s_s[n * 10 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 0]);
307                         PRIM_INT__f_s_s_s[n * 10 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 1]);
308 
309                         PRIM_INT__f_s_s_s[n * 10 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 0]);
310                         PRIM_INT__f_s_s_s[n * 10 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 2]);
311 
312                         PRIM_INT__f_s_s_s[n * 10 + 3] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 3]);
313                         PRIM_INT__f_s_s_s[n * 10 + 3] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 3]);
314 
315                         PRIM_INT__f_s_s_s[n * 10 + 4] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 1]);
316                         PRIM_INT__f_s_s_s[n * 10 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 1], PRIM_INT__f_s_s_s[n * 10 + 4]);
317 
318                         PRIM_INT__f_s_s_s[n * 10 + 5] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 5]);
319                         PRIM_INT__f_s_s_s[n * 10 + 5] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 5]);
320 
321                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 3]);
322                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 6]);
323                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__p_s_s_s[n * 3 + 1]), PRIM_INT__f_s_s_s[n * 10 + 6]);
324 
325                         PRIM_INT__f_s_s_s[n * 10 + 7] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 3]);
326                         PRIM_INT__f_s_s_s[n * 10 + 7] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 7]);
327 
328                         PRIM_INT__f_s_s_s[n * 10 + 8] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 5]);
329                         PRIM_INT__f_s_s_s[n * 10 + 8] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 8]);
330 
331                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 5]);
332                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 9]);
333                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 2], PRIM_INT__p_s_s_s[n * 3 + 2]), PRIM_INT__f_s_s_s[n * 10 + 9]);
334 
335                     }
336 
337 
338                     VRR_I_g_s_s_s(
339                             PRIM_INT__g_s_s_s,
340                             PRIM_INT__f_s_s_s,
341                             PRIM_INT__d_s_s_s,
342                             P_PA,
343                             a_over_p,
344                             aop_PQ,
345                             one_over_2p,
346                             6);
347 
348 
349                     VRR_K_g_s_p_s(
350                             PRIM_INT__g_s_p_s,
351                             PRIM_INT__g_s_s_s,
352                             PRIM_INT__f_s_s_s,
353                             Q_PA,
354                             aoq_PQ,
355                             one_over_2pq,
356                             2);
357 
358 
359                     VRR_K_f_s_p_s(
360                             PRIM_INT__f_s_p_s,
361                             PRIM_INT__f_s_s_s,
362                             PRIM_INT__d_s_s_s,
363                             Q_PA,
364                             aoq_PQ,
365                             one_over_2pq,
366                             2);
367 
368 
369                     ostei_general_vrr_K(4, 0, 2, 0, 1,
370                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
371                             PRIM_INT__g_s_p_s, PRIM_INT__g_s_s_s, NULL, PRIM_INT__f_s_p_s, NULL, PRIM_INT__g_s_d_s);
372 
373 
374                     VRR_I_h_s_s_s(
375                             PRIM_INT__h_s_s_s,
376                             PRIM_INT__g_s_s_s,
377                             PRIM_INT__f_s_s_s,
378                             P_PA,
379                             a_over_p,
380                             aop_PQ,
381                             one_over_2p,
382                             5);
383 
384 
385                     ostei_general_vrr_K(5, 0, 1, 0, 2,
386                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
387                             PRIM_INT__h_s_s_s, NULL, NULL, PRIM_INT__g_s_s_s, NULL, PRIM_INT__h_s_p_s);
388 
389 
390                     ostei_general_vrr_K(5, 0, 2, 0, 1,
391                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
392                             PRIM_INT__h_s_p_s, PRIM_INT__h_s_s_s, NULL, PRIM_INT__g_s_p_s, NULL, PRIM_INT__h_s_d_s);
393 
394 
395                     ostei_general_vrr1_I(6, 4,
396                             one_over_2p, a_over_p, aop_PQ, P_PA,
397                             PRIM_INT__h_s_s_s, PRIM_INT__g_s_s_s, PRIM_INT__i_s_s_s);
398 
399 
400                     ostei_general_vrr_K(6, 0, 1, 0, 2,
401                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
402                             PRIM_INT__i_s_s_s, NULL, NULL, PRIM_INT__h_s_s_s, NULL, PRIM_INT__i_s_p_s);
403 
404 
405                     ostei_general_vrr_K(6, 0, 2, 0, 1,
406                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
407                             PRIM_INT__i_s_p_s, PRIM_INT__i_s_s_s, NULL, PRIM_INT__h_s_p_s, NULL, PRIM_INT__i_s_d_s);
408 
409 
410                     ostei_general_vrr1_I(7, 3,
411                             one_over_2p, a_over_p, aop_PQ, P_PA,
412                             PRIM_INT__i_s_s_s, PRIM_INT__h_s_s_s, PRIM_INT__k_s_s_s);
413 
414 
415                     ostei_general_vrr_K(7, 0, 1, 0, 2,
416                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
417                             PRIM_INT__k_s_s_s, NULL, NULL, PRIM_INT__i_s_s_s, NULL, PRIM_INT__k_s_p_s);
418 
419 
420                     ostei_general_vrr_K(7, 0, 2, 0, 1,
421                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
422                             PRIM_INT__k_s_p_s, PRIM_INT__k_s_s_s, NULL, PRIM_INT__i_s_p_s, NULL, PRIM_INT__k_s_d_s);
423 
424 
425 
426 
427                     ////////////////////////////////////
428                     // Accumulate contracted integrals
429                     ////////////////////////////////////
430                     if(lastoffset == 0)
431                     {
432                         contract_all(90, PRIM_INT__g_s_d_s, PRIM_PTR_INT__g_s_d_s);
433                         contract_all(126, PRIM_INT__h_s_d_s, PRIM_PTR_INT__h_s_d_s);
434                         contract_all(168, PRIM_INT__i_s_d_s, PRIM_PTR_INT__i_s_d_s);
435                         contract_all(216, PRIM_INT__k_s_d_s, PRIM_PTR_INT__k_s_d_s);
436                     }
437                     else
438                     {
439                         contract(90, shelloffsets, PRIM_INT__g_s_d_s, PRIM_PTR_INT__g_s_d_s);
440                         contract(126, shelloffsets, PRIM_INT__h_s_d_s, PRIM_PTR_INT__h_s_d_s);
441                         contract(168, shelloffsets, PRIM_INT__i_s_d_s, PRIM_PTR_INT__i_s_d_s);
442                         contract(216, shelloffsets, PRIM_INT__k_s_d_s, PRIM_PTR_INT__k_s_d_s);
443                         PRIM_PTR_INT__g_s_d_s += lastoffset*90;
444                         PRIM_PTR_INT__h_s_d_s += lastoffset*126;
445                         PRIM_PTR_INT__i_s_d_s += lastoffset*168;
446                         PRIM_PTR_INT__k_s_d_s += lastoffset*216;
447                     }
448 
449                 }  // close loop over j
450             }  // close loop over i
451 
452             //Advance to the next batch
453             jstart = SIMINT_SIMD_ROUND(jend);
454 
455             //////////////////////////////////////////////
456             // Contracted integrals: Horizontal recurrance
457             //////////////////////////////////////////////
458 
459 
460             const double hAB[3] = { P.AB_x[ab], P.AB_y[ab], P.AB_z[ab] };
461 
462 
463             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
464             {
465 
466                 // set up HRR pointers
467                 double const * restrict HRR_INT__g_s_d_s = INT__g_s_d_s + abcd * 90;
468                 double const * restrict HRR_INT__h_s_d_s = INT__h_s_d_s + abcd * 126;
469                 double const * restrict HRR_INT__i_s_d_s = INT__i_s_d_s + abcd * 168;
470                 double const * restrict HRR_INT__k_s_d_s = INT__k_s_d_s + abcd * 216;
471                 double * restrict HRR_INT__g_f_d_s = INT__g_f_d_s + real_abcd * 900;
472 
473                 // form INT__g_p_d_s
474                 HRR_J_g_p(
475                     HRR_INT__g_p_d_s,
476                     HRR_INT__g_s_d_s,
477                     HRR_INT__h_s_d_s,
478                     hAB, 6);
479 
480                 // form INT__h_p_d_s
481                 ostei_general_hrr_J(5, 1, 2, 0, hAB, HRR_INT__i_s_d_s, HRR_INT__h_s_d_s, HRR_INT__h_p_d_s);
482 
483                 // form INT__i_p_d_s
484                 ostei_general_hrr_J(6, 1, 2, 0, hAB, HRR_INT__k_s_d_s, HRR_INT__i_s_d_s, HRR_INT__i_p_d_s);
485 
486                 // form INT__g_d_d_s
487                 ostei_general_hrr_J(4, 2, 2, 0, hAB, HRR_INT__h_p_d_s, HRR_INT__g_p_d_s, HRR_INT__g_d_d_s);
488 
489                 // form INT__h_d_d_s
490                 ostei_general_hrr_J(5, 2, 2, 0, hAB, HRR_INT__i_p_d_s, HRR_INT__h_p_d_s, HRR_INT__h_d_d_s);
491 
492                 // form INT__g_f_d_s
493                 ostei_general_hrr_J(4, 3, 2, 0, hAB, HRR_INT__h_d_d_s, HRR_INT__g_d_d_s, HRR_INT__g_f_d_s);
494 
495 
496             }  // close HRR loop
497 
498 
499         }   // close loop cdbatch
500 
501         istart = iend;
502     }  // close loop over ab
503 
504     return P.nshell12_clip * Q.nshell12_clip;
505 }
506 
ostei_f_g_d_s(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__f_g_d_s)507 int ostei_f_g_d_s(struct simint_multi_shellpair const P,
508                   struct simint_multi_shellpair const Q,
509                   double screen_tol,
510                   double * const restrict work,
511                   double * const restrict INT__f_g_d_s)
512 {
513     double P_AB[3*P.nshell12];
514     struct simint_multi_shellpair P_tmp = P;
515     P_tmp.PA_x = P.PB_x;  P_tmp.PA_y = P.PB_y;  P_tmp.PA_z = P.PB_z;
516     P_tmp.PB_x = P.PA_x;  P_tmp.PB_y = P.PA_y;  P_tmp.PB_z = P.PA_z;
517     P_tmp.AB_x = P_AB;
518     P_tmp.AB_y = P_AB + P.nshell12;
519     P_tmp.AB_z = P_AB + 2*P.nshell12;
520 
521     for(int i = 0; i < P.nshell12; i++)
522     {
523         P_tmp.AB_x[i] = -P.AB_x[i];
524         P_tmp.AB_y[i] = -P.AB_y[i];
525         P_tmp.AB_z[i] = -P.AB_z[i];
526     }
527 
528     int ret = ostei_g_f_d_s(P_tmp, Q, screen_tol, work, INT__f_g_d_s);
529     double buffer[900] SIMINT_ALIGN_ARRAY_DBL;
530 
531     for(int q = 0; q < ret; q++)
532     {
533         int idx = 0;
534         for(int a = 0; a < 10; ++a)
535         for(int b = 0; b < 15; ++b)
536         for(int c = 0; c < 6; ++c)
537         for(int d = 0; d < 1; ++d)
538             buffer[idx++] = INT__f_g_d_s[q*900+b*60+a*6+c*1+d];
539 
540         memcpy(INT__f_g_d_s+q*900, buffer, 900*sizeof(double));
541     }
542 
543     return ret;
544 }
545 
ostei_g_f_s_d(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__g_f_s_d)546 int ostei_g_f_s_d(struct simint_multi_shellpair const P,
547                   struct simint_multi_shellpair const Q,
548                   double screen_tol,
549                   double * const restrict work,
550                   double * const restrict INT__g_f_s_d)
551 {
552     double Q_AB[3*Q.nshell12];
553     struct simint_multi_shellpair Q_tmp = Q;
554     Q_tmp.PA_x = Q.PB_x;  Q_tmp.PA_y = Q.PB_y;  Q_tmp.PA_z = Q.PB_z;
555     Q_tmp.PB_x = Q.PA_x;  Q_tmp.PB_y = Q.PA_y;  Q_tmp.PB_z = Q.PA_z;
556     Q_tmp.AB_x = Q_AB;
557     Q_tmp.AB_y = Q_AB + Q.nshell12;
558     Q_tmp.AB_z = Q_AB + 2*Q.nshell12;
559 
560     for(int i = 0; i < Q.nshell12; i++)
561     {
562         Q_tmp.AB_x[i] = -Q.AB_x[i];
563         Q_tmp.AB_y[i] = -Q.AB_y[i];
564         Q_tmp.AB_z[i] = -Q.AB_z[i];
565     }
566 
567     int ret = ostei_g_f_d_s(P, Q_tmp, screen_tol, work, INT__g_f_s_d);
568     double buffer[900] SIMINT_ALIGN_ARRAY_DBL;
569 
570     for(int q = 0; q < ret; q++)
571     {
572         int idx = 0;
573         for(int a = 0; a < 15; ++a)
574         for(int b = 0; b < 10; ++b)
575         for(int c = 0; c < 1; ++c)
576         for(int d = 0; d < 6; ++d)
577             buffer[idx++] = INT__g_f_s_d[q*900+a*60+b*6+d*1+c];
578 
579         memcpy(INT__g_f_s_d+q*900, buffer, 900*sizeof(double));
580     }
581 
582     return ret;
583 }
584 
ostei_f_g_s_d(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__f_g_s_d)585 int ostei_f_g_s_d(struct simint_multi_shellpair const P,
586                   struct simint_multi_shellpair const Q,
587                   double screen_tol,
588                   double * const restrict work,
589                   double * const restrict INT__f_g_s_d)
590 {
591     double P_AB[3*P.nshell12];
592     struct simint_multi_shellpair P_tmp = P;
593     P_tmp.PA_x = P.PB_x;  P_tmp.PA_y = P.PB_y;  P_tmp.PA_z = P.PB_z;
594     P_tmp.PB_x = P.PA_x;  P_tmp.PB_y = P.PA_y;  P_tmp.PB_z = P.PA_z;
595     P_tmp.AB_x = P_AB;
596     P_tmp.AB_y = P_AB + P.nshell12;
597     P_tmp.AB_z = P_AB + 2*P.nshell12;
598 
599     for(int i = 0; i < P.nshell12; i++)
600     {
601         P_tmp.AB_x[i] = -P.AB_x[i];
602         P_tmp.AB_y[i] = -P.AB_y[i];
603         P_tmp.AB_z[i] = -P.AB_z[i];
604     }
605 
606     double Q_AB[3*Q.nshell12];
607     struct simint_multi_shellpair Q_tmp = Q;
608     Q_tmp.PA_x = Q.PB_x;  Q_tmp.PA_y = Q.PB_y;  Q_tmp.PA_z = Q.PB_z;
609     Q_tmp.PB_x = Q.PA_x;  Q_tmp.PB_y = Q.PA_y;  Q_tmp.PB_z = Q.PA_z;
610     Q_tmp.AB_x = Q_AB;
611     Q_tmp.AB_y = Q_AB + Q.nshell12;
612     Q_tmp.AB_z = Q_AB + 2*Q.nshell12;
613 
614     for(int i = 0; i < Q.nshell12; i++)
615     {
616         Q_tmp.AB_x[i] = -Q.AB_x[i];
617         Q_tmp.AB_y[i] = -Q.AB_y[i];
618         Q_tmp.AB_z[i] = -Q.AB_z[i];
619     }
620 
621     int ret = ostei_g_f_d_s(P_tmp, Q_tmp, screen_tol, work, INT__f_g_s_d);
622     double buffer[900] SIMINT_ALIGN_ARRAY_DBL;
623 
624     for(int q = 0; q < ret; q++)
625     {
626         int idx = 0;
627         for(int a = 0; a < 10; ++a)
628         for(int b = 0; b < 15; ++b)
629         for(int c = 0; c < 1; ++c)
630         for(int d = 0; d < 6; ++d)
631             buffer[idx++] = INT__f_g_s_d[q*900+b*60+a*6+d*1+c];
632 
633         memcpy(INT__f_g_s_d+q*900, buffer, 900*sizeof(double));
634     }
635 
636     return ret;
637 }
638 
639