1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_p_f_s_s(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__p_f_s_s)8 int ostei_p_f_s_s(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__p_f_s_s)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__p_f_s_s);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int iket;
26 
27     // partition workspace
28     double * const INT__s_f_s_s = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__s_g_s_s = work + (SIMINT_NSHELL_SIMD * 10);
30     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*25);
31     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
32     SIMINT_DBLTYPE * const restrict PRIM_INT__s_p_s_s = primwork + 5;
33     SIMINT_DBLTYPE * const restrict PRIM_INT__s_d_s_s = primwork + 17;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__s_f_s_s = primwork + 35;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__s_g_s_s = primwork + 55;
36     double * const hrrwork = (double *)(primwork + 70);
37 
38 
39     // Create constants
40     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
41     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
42     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
43     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
44 
45 
46     ////////////////////////////////////////
47     // Loop over shells and primitives
48     ////////////////////////////////////////
49 
50     real_abcd = 0;
51     istart = 0;
52     for(ab = 0; ab < P.nshell12_clip; ++ab)
53     {
54         const int iend = istart + P.nprim12[ab];
55 
56         cd = 0;
57         jstart = 0;
58 
59         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
60         {
61             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
62             int jend = jstart;
63             for(i = 0; i < nshellbatch; i++)
64                 jend += Q.nprim12[cd+i];
65 
66             // Clear the beginning of the workspace (where we are accumulating integrals)
67             memset(work, 0, SIMINT_NSHELL_SIMD * 25 * sizeof(double));
68             abcd = 0;
69 
70 
71             for(i = istart; i < iend; ++i)
72             {
73                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
74 
75                 if(check_screen)
76                 {
77                     // Skip this whole thing if always insignificant
78                     if((P.screen[i] * Q.screen_max) < screen_tol)
79                         continue;
80                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
81                 }
82 
83                 icd = 0;
84                 iprimcd = 0;
85                 nprim_icd = Q.nprim12[cd];
86                 double * restrict PRIM_PTR_INT__s_f_s_s = INT__s_f_s_s + abcd * 10;
87                 double * restrict PRIM_PTR_INT__s_g_s_s = INT__s_g_s_s + abcd * 15;
88 
89 
90 
91                 // Load these one per loop over i
92                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
93                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
94                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
95 
96                 const SIMINT_DBLTYPE P_PB[3] = { SIMINT_DBLSET1(P.PB_x[i]), SIMINT_DBLSET1(P.PB_y[i]), SIMINT_DBLSET1(P.PB_z[i]) };
97 
98                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
99                 {
100                     // calculate the shell offsets
101                     // these are the offset from the shell pointed to by cd
102                     // for each element
103                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
104                     int lastoffset = 0;
105                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
106 
107                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
108                     {
109                         // Handle if the first element of the vector is a new shell
110                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
111                         {
112                             nprim_icd += Q.nprim12[cd + (++icd)];
113                             PRIM_PTR_INT__s_f_s_s += 10;
114                             PRIM_PTR_INT__s_g_s_s += 15;
115                         }
116                         iprimcd++;
117                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
118                         {
119                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
120                             {
121                                 shelloffsets[n] = shelloffsets[n-1] + 1;
122                                 lastoffset++;
123                                 nprim_icd += Q.nprim12[cd + (++icd)];
124                             }
125                             else
126                                 shelloffsets[n] = shelloffsets[n-1];
127                             iprimcd++;
128                         }
129                     }
130                     else
131                         iprimcd += SIMINT_SIMD_LEN;
132 
133                     // Do we have to compute this vector (or has it been screened out)?
134                     // (not_screened != 0 means we have to do this vector)
135                     if(check_screen)
136                     {
137                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
138                         if(vmax < screen_tol)
139                         {
140                             PRIM_PTR_INT__s_f_s_s += lastoffset*10;
141                             PRIM_PTR_INT__s_g_s_s += lastoffset*15;
142                             continue;
143                         }
144                     }
145 
146                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
147                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
148                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
149                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
150 
151 
152                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
153                     SIMINT_DBLTYPE PQ[3];
154                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
155                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
156                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
157                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
158                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
159                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
160 
161                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
162                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
163                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
164                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
165                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
166                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
167 
168                     // NOTE: Minus sign!
169                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
170                     SIMINT_DBLTYPE aop_PQ[3];
171                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
172                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
173                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
174 
175 
176                     //////////////////////////////////////////////
177                     // Fjt function section
178                     // Maximum v value: 4
179                     //////////////////////////////////////////////
180                     // The parameter to the Fjt function
181                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
182 
183 
184                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
185 
186 
187                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 4);
188                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
189                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
190                     for(n = 0; n <= 4; n++)
191                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
192 
193                     //////////////////////////////////////////////
194                     // Primitive integrals: Vertical recurrance
195                     //////////////////////////////////////////////
196 
197                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
198                     const SIMINT_DBLTYPE vrr_const_2_over_2p = SIMINT_MUL(const_2, one_over_2p);
199                     const SIMINT_DBLTYPE vrr_const_3_over_2p = SIMINT_MUL(const_3, one_over_2p);
200 
201 
202 
203                     // Forming PRIM_INT__s_p_s_s[4 * 3];
204                     for(n = 0; n < 4; ++n)  // loop over orders of auxiliary function
205                     {
206 
207                         PRIM_INT__s_p_s_s[n * 3 + 0] = SIMINT_MUL(P_PB[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
208                         PRIM_INT__s_p_s_s[n * 3 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 0]);
209 
210                         PRIM_INT__s_p_s_s[n * 3 + 1] = SIMINT_MUL(P_PB[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
211                         PRIM_INT__s_p_s_s[n * 3 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 1]);
212 
213                         PRIM_INT__s_p_s_s[n * 3 + 2] = SIMINT_MUL(P_PB[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
214                         PRIM_INT__s_p_s_s[n * 3 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 2]);
215 
216                     }
217 
218 
219 
220                     // Forming PRIM_INT__s_d_s_s[3 * 6];
221                     for(n = 0; n < 3; ++n)  // loop over orders of auxiliary function
222                     {
223 
224                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_MUL(P_PB[0], PRIM_INT__s_p_s_s[n * 3 + 0]);
225                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_s[n * 6 + 0]);
226                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 0]);
227 
228                         PRIM_INT__s_d_s_s[n * 6 + 1] = SIMINT_MUL(P_PB[1], PRIM_INT__s_p_s_s[n * 3 + 0]);
229                         PRIM_INT__s_d_s_s[n * 6 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_s[n * 6 + 1]);
230 
231                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_MUL(P_PB[1], PRIM_INT__s_p_s_s[n * 3 + 1]);
232                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_s_s[n * 6 + 3]);
233                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 3]);
234 
235                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_MUL(P_PB[2], PRIM_INT__s_p_s_s[n * 3 + 2]);
236                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_s_s[n * 6 + 5]);
237                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 5]);
238 
239                     }
240 
241 
242 
243                     // Forming PRIM_INT__s_f_s_s[2 * 10];
244                     for(n = 0; n < 2; ++n)  // loop over orders of auxiliary function
245                     {
246 
247                         PRIM_INT__s_f_s_s[n * 10 + 0] = SIMINT_MUL(P_PB[0], PRIM_INT__s_d_s_s[n * 6 + 0]);
248                         PRIM_INT__s_f_s_s[n * 10 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_f_s_s[n * 10 + 0]);
249                         PRIM_INT__s_f_s_s[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_p_s_s[n * 3 + 0]), PRIM_INT__s_f_s_s[n * 10 + 0]);
250 
251                         PRIM_INT__s_f_s_s[n * 10 + 1] = SIMINT_MUL(P_PB[1], PRIM_INT__s_d_s_s[n * 6 + 0]);
252                         PRIM_INT__s_f_s_s[n * 10 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_f_s_s[n * 10 + 1]);
253 
254                         PRIM_INT__s_f_s_s[n * 10 + 2] = SIMINT_MUL(P_PB[2], PRIM_INT__s_d_s_s[n * 6 + 0]);
255                         PRIM_INT__s_f_s_s[n * 10 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_f_s_s[n * 10 + 2]);
256 
257                         PRIM_INT__s_f_s_s[n * 10 + 3] = SIMINT_MUL(P_PB[0], PRIM_INT__s_d_s_s[n * 6 + 3]);
258                         PRIM_INT__s_f_s_s[n * 10 + 3] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_f_s_s[n * 10 + 3]);
259 
260                         PRIM_INT__s_f_s_s[n * 10 + 4] = SIMINT_MUL(P_PB[2], PRIM_INT__s_d_s_s[n * 6 + 1]);
261                         PRIM_INT__s_f_s_s[n * 10 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 1], PRIM_INT__s_f_s_s[n * 10 + 4]);
262 
263                         PRIM_INT__s_f_s_s[n * 10 + 5] = SIMINT_MUL(P_PB[0], PRIM_INT__s_d_s_s[n * 6 + 5]);
264                         PRIM_INT__s_f_s_s[n * 10 + 5] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_f_s_s[n * 10 + 5]);
265 
266                         PRIM_INT__s_f_s_s[n * 10 + 6] = SIMINT_MUL(P_PB[1], PRIM_INT__s_d_s_s[n * 6 + 3]);
267                         PRIM_INT__s_f_s_s[n * 10 + 6] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_f_s_s[n * 10 + 6]);
268                         PRIM_INT__s_f_s_s[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_p_s_s[n * 3 + 1]), PRIM_INT__s_f_s_s[n * 10 + 6]);
269 
270                         PRIM_INT__s_f_s_s[n * 10 + 7] = SIMINT_MUL(P_PB[2], PRIM_INT__s_d_s_s[n * 6 + 3]);
271                         PRIM_INT__s_f_s_s[n * 10 + 7] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_f_s_s[n * 10 + 7]);
272 
273                         PRIM_INT__s_f_s_s[n * 10 + 8] = SIMINT_MUL(P_PB[1], PRIM_INT__s_d_s_s[n * 6 + 5]);
274                         PRIM_INT__s_f_s_s[n * 10 + 8] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_f_s_s[n * 10 + 8]);
275 
276                         PRIM_INT__s_f_s_s[n * 10 + 9] = SIMINT_MUL(P_PB[2], PRIM_INT__s_d_s_s[n * 6 + 5]);
277                         PRIM_INT__s_f_s_s[n * 10 + 9] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_f_s_s[n * 10 + 9]);
278                         PRIM_INT__s_f_s_s[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_p_s_s[n * 3 + 2]), PRIM_INT__s_f_s_s[n * 10 + 9]);
279 
280                     }
281 
282 
283                     VRR_J_s_g_s_s(
284                             PRIM_INT__s_g_s_s,
285                             PRIM_INT__s_f_s_s,
286                             PRIM_INT__s_d_s_s,
287                             P_PB,
288                             a_over_p,
289                             aop_PQ,
290                             one_over_2p,
291                             1);
292 
293 
294 
295 
296                     ////////////////////////////////////
297                     // Accumulate contracted integrals
298                     ////////////////////////////////////
299                     if(lastoffset == 0)
300                     {
301                         contract_all(10, PRIM_INT__s_f_s_s, PRIM_PTR_INT__s_f_s_s);
302                         contract_all(15, PRIM_INT__s_g_s_s, PRIM_PTR_INT__s_g_s_s);
303                     }
304                     else
305                     {
306                         contract(10, shelloffsets, PRIM_INT__s_f_s_s, PRIM_PTR_INT__s_f_s_s);
307                         contract(15, shelloffsets, PRIM_INT__s_g_s_s, PRIM_PTR_INT__s_g_s_s);
308                         PRIM_PTR_INT__s_f_s_s += lastoffset*10;
309                         PRIM_PTR_INT__s_g_s_s += lastoffset*15;
310                     }
311 
312                 }  // close loop over j
313             }  // close loop over i
314 
315             //Advance to the next batch
316             jstart = SIMINT_SIMD_ROUND(jend);
317 
318             //////////////////////////////////////////////
319             // Contracted integrals: Horizontal recurrance
320             //////////////////////////////////////////////
321 
322 
323             const double hAB[3] = { P.AB_x[ab], P.AB_y[ab], P.AB_z[ab] };
324 
325 
326             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
327             {
328 
329                 // set up HRR pointers
330                 double const * restrict HRR_INT__s_f_s_s = INT__s_f_s_s + abcd * 10;
331                 double const * restrict HRR_INT__s_g_s_s = INT__s_g_s_s + abcd * 15;
332                 double * restrict HRR_INT__p_f_s_s = INT__p_f_s_s + real_abcd * 30;
333 
334                 // form INT__p_f_s_s
335                 HRR_I_p_f(
336                     HRR_INT__p_f_s_s,
337                     HRR_INT__s_f_s_s,
338                     HRR_INT__s_g_s_s,
339                     hAB, 1);
340 
341 
342             }  // close HRR loop
343 
344 
345         }   // close loop cdbatch
346 
347         istart = iend;
348     }  // close loop over ab
349 
350     return P.nshell12_clip * Q.nshell12_clip;
351 }
352 
353