1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_s_d_s_p(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__s_d_s_p)8 int ostei_s_d_s_p(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__s_d_s_p)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__s_d_s_p);
17     memset(INT__s_d_s_p, 0, P.nshell12_clip * Q.nshell12_clip * 18 * sizeof(double));
18 
19     int ab, cd, abcd;
20     int istart, jstart;
21     int iprimcd, nprim_icd, icd;
22     const int check_screen = (screen_tol > 0.0);
23     int i, j;
24     int n;
25     int not_screened;
26 
27     // partition workspace
28     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*0);
29     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
30     SIMINT_DBLTYPE * const restrict PRIM_INT__s_p_s_s = primwork + 4;
31     SIMINT_DBLTYPE * const restrict PRIM_INT__s_d_s_s = primwork + 13;
32     SIMINT_DBLTYPE * const restrict PRIM_INT__s_d_s_p = primwork + 25;
33     double * const hrrwork = (double *)(primwork + 43);
34 
35 
36     // Create constants
37     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
38     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
39     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
40 
41 
42     ////////////////////////////////////////
43     // Loop over shells and primitives
44     ////////////////////////////////////////
45 
46     abcd = 0;
47     istart = 0;
48     for(ab = 0; ab < P.nshell12_clip; ++ab)
49     {
50         const int iend = istart + P.nprim12[ab];
51 
52         cd = 0;
53         jstart = 0;
54 
55         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
56         {
57             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
58             int jend = jstart;
59             for(i = 0; i < nshellbatch; i++)
60                 jend += Q.nprim12[cd+i];
61 
62 
63             for(i = istart; i < iend; ++i)
64             {
65                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
66 
67                 if(check_screen)
68                 {
69                     // Skip this whole thing if always insignificant
70                     if((P.screen[i] * Q.screen_max) < screen_tol)
71                         continue;
72                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
73                 }
74 
75                 icd = 0;
76                 iprimcd = 0;
77                 nprim_icd = Q.nprim12[cd];
78                 double * restrict PRIM_PTR_INT__s_d_s_p = INT__s_d_s_p + abcd * 18;
79 
80 
81 
82                 // Load these one per loop over i
83                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
84                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
85                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
86 
87                 const SIMINT_DBLTYPE P_PB[3] = { SIMINT_DBLSET1(P.PB_x[i]), SIMINT_DBLSET1(P.PB_y[i]), SIMINT_DBLSET1(P.PB_z[i]) };
88 
89                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
90                 {
91                     // calculate the shell offsets
92                     // these are the offset from the shell pointed to by cd
93                     // for each element
94                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
95                     int lastoffset = 0;
96                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
97 
98                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
99                     {
100                         // Handle if the first element of the vector is a new shell
101                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
102                         {
103                             nprim_icd += Q.nprim12[cd + (++icd)];
104                             PRIM_PTR_INT__s_d_s_p += 18;
105                         }
106                         iprimcd++;
107                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
108                         {
109                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
110                             {
111                                 shelloffsets[n] = shelloffsets[n-1] + 1;
112                                 lastoffset++;
113                                 nprim_icd += Q.nprim12[cd + (++icd)];
114                             }
115                             else
116                                 shelloffsets[n] = shelloffsets[n-1];
117                             iprimcd++;
118                         }
119                     }
120                     else
121                         iprimcd += SIMINT_SIMD_LEN;
122 
123                     // Do we have to compute this vector (or has it been screened out)?
124                     // (not_screened != 0 means we have to do this vector)
125                     if(check_screen)
126                     {
127                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
128                         if(vmax < screen_tol)
129                         {
130                             PRIM_PTR_INT__s_d_s_p += lastoffset*18;
131                             continue;
132                         }
133                     }
134 
135                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
136                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
137                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
138                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
139 
140 
141                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
142                     SIMINT_DBLTYPE PQ[3];
143                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
144                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
145                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
146                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
147                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
148                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
149 
150                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
151                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
152                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
153                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
154                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
155                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
156                     const SIMINT_DBLTYPE Q_PB[3] = { SIMINT_DBLLOAD(Q.PB_x, j), SIMINT_DBLLOAD(Q.PB_y, j), SIMINT_DBLLOAD(Q.PB_z, j) };
157 
158                     // NOTE: Minus sign!
159                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
160                     SIMINT_DBLTYPE aop_PQ[3];
161                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
162                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
163                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
164 
165                     SIMINT_DBLTYPE a_over_q = SIMINT_MUL(alpha, one_over_q);
166                     SIMINT_DBLTYPE aoq_PQ[3];
167                     aoq_PQ[0] = SIMINT_MUL(a_over_q, PQ[0]);
168                     aoq_PQ[1] = SIMINT_MUL(a_over_q, PQ[1]);
169                     aoq_PQ[2] = SIMINT_MUL(a_over_q, PQ[2]);
170                     // Put a minus sign here so we don't have to in RR routines
171                     a_over_q = SIMINT_NEG(a_over_q);
172 
173 
174                     //////////////////////////////////////////////
175                     // Fjt function section
176                     // Maximum v value: 3
177                     //////////////////////////////////////////////
178                     // The parameter to the Fjt function
179                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
180 
181 
182                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
183 
184 
185                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 3);
186                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
187                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
188                     for(n = 0; n <= 3; n++)
189                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
190 
191                     //////////////////////////////////////////////
192                     // Primitive integrals: Vertical recurrance
193                     //////////////////////////////////////////////
194 
195                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
196                     const SIMINT_DBLTYPE vrr_const_1_over_2pq = one_over_2pq;
197                     const SIMINT_DBLTYPE vrr_const_2_over_2pq = SIMINT_MUL(const_2, one_over_2pq);
198 
199 
200 
201                     // Forming PRIM_INT__s_p_s_s[3 * 3];
202                     for(n = 0; n < 3; ++n)  // loop over orders of auxiliary function
203                     {
204 
205                         PRIM_INT__s_p_s_s[n * 3 + 0] = SIMINT_MUL(P_PB[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
206                         PRIM_INT__s_p_s_s[n * 3 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 0]);
207 
208                         PRIM_INT__s_p_s_s[n * 3 + 1] = SIMINT_MUL(P_PB[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
209                         PRIM_INT__s_p_s_s[n * 3 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 1]);
210 
211                         PRIM_INT__s_p_s_s[n * 3 + 2] = SIMINT_MUL(P_PB[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
212                         PRIM_INT__s_p_s_s[n * 3 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 2]);
213 
214                     }
215 
216 
217 
218                     // Forming PRIM_INT__s_d_s_s[2 * 6];
219                     for(n = 0; n < 2; ++n)  // loop over orders of auxiliary function
220                     {
221 
222                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_MUL(P_PB[0], PRIM_INT__s_p_s_s[n * 3 + 0]);
223                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_s[n * 6 + 0]);
224                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 0]);
225 
226                         PRIM_INT__s_d_s_s[n * 6 + 1] = SIMINT_MUL(P_PB[1], PRIM_INT__s_p_s_s[n * 3 + 0]);
227                         PRIM_INT__s_d_s_s[n * 6 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_s[n * 6 + 1]);
228 
229                         PRIM_INT__s_d_s_s[n * 6 + 2] = SIMINT_MUL(P_PB[2], PRIM_INT__s_p_s_s[n * 3 + 0]);
230                         PRIM_INT__s_d_s_s[n * 6 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_s[n * 6 + 2]);
231 
232                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_MUL(P_PB[1], PRIM_INT__s_p_s_s[n * 3 + 1]);
233                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_s_s[n * 6 + 3]);
234                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 3]);
235 
236                         PRIM_INT__s_d_s_s[n * 6 + 4] = SIMINT_MUL(P_PB[2], PRIM_INT__s_p_s_s[n * 3 + 1]);
237                         PRIM_INT__s_d_s_s[n * 6 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_s_s[n * 6 + 4]);
238 
239                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_MUL(P_PB[2], PRIM_INT__s_p_s_s[n * 3 + 2]);
240                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_s_s[n * 6 + 5]);
241                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 5]);
242 
243                     }
244 
245 
246 
247                     // Forming PRIM_INT__s_d_s_p[1 * 18];
248                     for(n = 0; n < 1; ++n)  // loop over orders of auxiliary function
249                     {
250 
251                         PRIM_INT__s_d_s_p[n * 18 + 0] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_d_s_s[n * 6 + 0]);
252                         PRIM_INT__s_d_s_p[n * 18 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_d_s_p[n * 18 + 0]);
253                         PRIM_INT__s_d_s_p[n * 18 + 0] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_p[n * 18 + 0]);
254 
255                         PRIM_INT__s_d_s_p[n * 18 + 1] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_d_s_s[n * 6 + 0]);
256                         PRIM_INT__s_d_s_p[n * 18 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_d_s_p[n * 18 + 1]);
257 
258                         PRIM_INT__s_d_s_p[n * 18 + 2] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_d_s_s[n * 6 + 0]);
259                         PRIM_INT__s_d_s_p[n * 18 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_d_s_p[n * 18 + 2]);
260 
261                         PRIM_INT__s_d_s_p[n * 18 + 3] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_d_s_s[n * 6 + 1]);
262                         PRIM_INT__s_d_s_p[n * 18 + 3] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 1], PRIM_INT__s_d_s_p[n * 18 + 3]);
263                         PRIM_INT__s_d_s_p[n * 18 + 3] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_s_p[n * 18 + 3]);
264 
265                         PRIM_INT__s_d_s_p[n * 18 + 4] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_d_s_s[n * 6 + 1]);
266                         PRIM_INT__s_d_s_p[n * 18 + 4] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 1], PRIM_INT__s_d_s_p[n * 18 + 4]);
267                         PRIM_INT__s_d_s_p[n * 18 + 4] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_p[n * 18 + 4]);
268 
269                         PRIM_INT__s_d_s_p[n * 18 + 5] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_d_s_s[n * 6 + 1]);
270                         PRIM_INT__s_d_s_p[n * 18 + 5] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 1], PRIM_INT__s_d_s_p[n * 18 + 5]);
271 
272                         PRIM_INT__s_d_s_p[n * 18 + 6] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_d_s_s[n * 6 + 2]);
273                         PRIM_INT__s_d_s_p[n * 18 + 6] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 2], PRIM_INT__s_d_s_p[n * 18 + 6]);
274                         PRIM_INT__s_d_s_p[n * 18 + 6] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_s_p[n * 18 + 6]);
275 
276                         PRIM_INT__s_d_s_p[n * 18 + 7] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_d_s_s[n * 6 + 2]);
277                         PRIM_INT__s_d_s_p[n * 18 + 7] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 2], PRIM_INT__s_d_s_p[n * 18 + 7]);
278 
279                         PRIM_INT__s_d_s_p[n * 18 + 8] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_d_s_s[n * 6 + 2]);
280                         PRIM_INT__s_d_s_p[n * 18 + 8] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 2], PRIM_INT__s_d_s_p[n * 18 + 8]);
281                         PRIM_INT__s_d_s_p[n * 18 + 8] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_p[n * 18 + 8]);
282 
283                         PRIM_INT__s_d_s_p[n * 18 + 9] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_d_s_s[n * 6 + 3]);
284                         PRIM_INT__s_d_s_p[n * 18 + 9] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_d_s_p[n * 18 + 9]);
285 
286                         PRIM_INT__s_d_s_p[n * 18 + 10] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_d_s_s[n * 6 + 3]);
287                         PRIM_INT__s_d_s_p[n * 18 + 10] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_d_s_p[n * 18 + 10]);
288                         PRIM_INT__s_d_s_p[n * 18 + 10] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_s_p[n * 18 + 10]);
289 
290                         PRIM_INT__s_d_s_p[n * 18 + 11] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_d_s_s[n * 6 + 3]);
291                         PRIM_INT__s_d_s_p[n * 18 + 11] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_d_s_p[n * 18 + 11]);
292 
293                         PRIM_INT__s_d_s_p[n * 18 + 12] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_d_s_s[n * 6 + 4]);
294                         PRIM_INT__s_d_s_p[n * 18 + 12] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 4], PRIM_INT__s_d_s_p[n * 18 + 12]);
295 
296                         PRIM_INT__s_d_s_p[n * 18 + 13] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_d_s_s[n * 6 + 4]);
297                         PRIM_INT__s_d_s_p[n * 18 + 13] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 4], PRIM_INT__s_d_s_p[n * 18 + 13]);
298                         PRIM_INT__s_d_s_p[n * 18 + 13] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_s_p[n * 18 + 13]);
299 
300                         PRIM_INT__s_d_s_p[n * 18 + 14] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_d_s_s[n * 6 + 4]);
301                         PRIM_INT__s_d_s_p[n * 18 + 14] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 4], PRIM_INT__s_d_s_p[n * 18 + 14]);
302                         PRIM_INT__s_d_s_p[n * 18 + 14] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_s_p[n * 18 + 14]);
303 
304                         PRIM_INT__s_d_s_p[n * 18 + 15] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_d_s_s[n * 6 + 5]);
305                         PRIM_INT__s_d_s_p[n * 18 + 15] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_d_s_p[n * 18 + 15]);
306 
307                         PRIM_INT__s_d_s_p[n * 18 + 16] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_d_s_s[n * 6 + 5]);
308                         PRIM_INT__s_d_s_p[n * 18 + 16] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_d_s_p[n * 18 + 16]);
309 
310                         PRIM_INT__s_d_s_p[n * 18 + 17] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_d_s_s[n * 6 + 5]);
311                         PRIM_INT__s_d_s_p[n * 18 + 17] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_d_s_p[n * 18 + 17]);
312                         PRIM_INT__s_d_s_p[n * 18 + 17] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_s_p[n * 18 + 17]);
313 
314                     }
315 
316 
317 
318 
319                     ////////////////////////////////////
320                     // Accumulate contracted integrals
321                     ////////////////////////////////////
322                     if(lastoffset == 0)
323                     {
324                         contract_all(18, PRIM_INT__s_d_s_p, PRIM_PTR_INT__s_d_s_p);
325                     }
326                     else
327                     {
328                         contract(18, shelloffsets, PRIM_INT__s_d_s_p, PRIM_PTR_INT__s_d_s_p);
329                         PRIM_PTR_INT__s_d_s_p += lastoffset*18;
330                     }
331 
332                 }  // close loop over j
333             }  // close loop over i
334 
335             //Advance to the next batch
336             jstart = SIMINT_SIMD_ROUND(jend);
337             abcd += nshellbatch;
338 
339         }   // close loop cdbatch
340 
341         istart = iend;
342     }  // close loop over ab
343 
344     return P.nshell12_clip * Q.nshell12_clip;
345 }
346 
347