1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_s_f_p_p(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__s_f_p_p)8 int ostei_s_f_p_p(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__s_f_p_p)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__s_f_p_p);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int ibra;
26 
27     // partition workspace
28     double * const INT__s_f_p_s = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__s_f_d_s = work + (SIMINT_NSHELL_SIMD * 30);
30     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*90);
31     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
32     SIMINT_DBLTYPE * const restrict PRIM_INT__s_p_s_s = primwork + 6;
33     SIMINT_DBLTYPE * const restrict PRIM_INT__s_d_s_s = primwork + 21;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__s_d_p_s = primwork + 45;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__s_f_s_s = primwork + 81;
36     SIMINT_DBLTYPE * const restrict PRIM_INT__s_f_p_s = primwork + 111;
37     SIMINT_DBLTYPE * const restrict PRIM_INT__s_f_d_s = primwork + 171;
38     double * const hrrwork = (double *)(primwork + 231);
39 
40 
41     // Create constants
42     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
43     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
44     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
45     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
46 
47 
48     ////////////////////////////////////////
49     // Loop over shells and primitives
50     ////////////////////////////////////////
51 
52     real_abcd = 0;
53     istart = 0;
54     for(ab = 0; ab < P.nshell12_clip; ++ab)
55     {
56         const int iend = istart + P.nprim12[ab];
57 
58         cd = 0;
59         jstart = 0;
60 
61         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
62         {
63             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
64             int jend = jstart;
65             for(i = 0; i < nshellbatch; i++)
66                 jend += Q.nprim12[cd+i];
67 
68             // Clear the beginning of the workspace (where we are accumulating integrals)
69             memset(work, 0, SIMINT_NSHELL_SIMD * 90 * sizeof(double));
70             abcd = 0;
71 
72 
73             for(i = istart; i < iend; ++i)
74             {
75                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
76 
77                 if(check_screen)
78                 {
79                     // Skip this whole thing if always insignificant
80                     if((P.screen[i] * Q.screen_max) < screen_tol)
81                         continue;
82                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
83                 }
84 
85                 icd = 0;
86                 iprimcd = 0;
87                 nprim_icd = Q.nprim12[cd];
88                 double * restrict PRIM_PTR_INT__s_f_p_s = INT__s_f_p_s + abcd * 30;
89                 double * restrict PRIM_PTR_INT__s_f_d_s = INT__s_f_d_s + abcd * 60;
90 
91 
92 
93                 // Load these one per loop over i
94                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
95                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
96                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
97 
98                 const SIMINT_DBLTYPE P_PB[3] = { SIMINT_DBLSET1(P.PB_x[i]), SIMINT_DBLSET1(P.PB_y[i]), SIMINT_DBLSET1(P.PB_z[i]) };
99 
100                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
101                 {
102                     // calculate the shell offsets
103                     // these are the offset from the shell pointed to by cd
104                     // for each element
105                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
106                     int lastoffset = 0;
107                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
108 
109                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
110                     {
111                         // Handle if the first element of the vector is a new shell
112                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
113                         {
114                             nprim_icd += Q.nprim12[cd + (++icd)];
115                             PRIM_PTR_INT__s_f_p_s += 30;
116                             PRIM_PTR_INT__s_f_d_s += 60;
117                         }
118                         iprimcd++;
119                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
120                         {
121                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
122                             {
123                                 shelloffsets[n] = shelloffsets[n-1] + 1;
124                                 lastoffset++;
125                                 nprim_icd += Q.nprim12[cd + (++icd)];
126                             }
127                             else
128                                 shelloffsets[n] = shelloffsets[n-1];
129                             iprimcd++;
130                         }
131                     }
132                     else
133                         iprimcd += SIMINT_SIMD_LEN;
134 
135                     // Do we have to compute this vector (or has it been screened out)?
136                     // (not_screened != 0 means we have to do this vector)
137                     if(check_screen)
138                     {
139                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
140                         if(vmax < screen_tol)
141                         {
142                             PRIM_PTR_INT__s_f_p_s += lastoffset*30;
143                             PRIM_PTR_INT__s_f_d_s += lastoffset*60;
144                             continue;
145                         }
146                     }
147 
148                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
149                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
150                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
151                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
152 
153 
154                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
155                     SIMINT_DBLTYPE PQ[3];
156                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
157                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
158                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
159                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
160                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
161                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
162 
163                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
164                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
165                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
166                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
167                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
168                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
169                     const SIMINT_DBLTYPE Q_PA[3] = { SIMINT_DBLLOAD(Q.PA_x, j), SIMINT_DBLLOAD(Q.PA_y, j), SIMINT_DBLLOAD(Q.PA_z, j) };
170 
171                     // NOTE: Minus sign!
172                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
173                     SIMINT_DBLTYPE aop_PQ[3];
174                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
175                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
176                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
177 
178                     SIMINT_DBLTYPE a_over_q = SIMINT_MUL(alpha, one_over_q);
179                     SIMINT_DBLTYPE aoq_PQ[3];
180                     aoq_PQ[0] = SIMINT_MUL(a_over_q, PQ[0]);
181                     aoq_PQ[1] = SIMINT_MUL(a_over_q, PQ[1]);
182                     aoq_PQ[2] = SIMINT_MUL(a_over_q, PQ[2]);
183                     // Put a minus sign here so we don't have to in RR routines
184                     a_over_q = SIMINT_NEG(a_over_q);
185 
186 
187                     //////////////////////////////////////////////
188                     // Fjt function section
189                     // Maximum v value: 5
190                     //////////////////////////////////////////////
191                     // The parameter to the Fjt function
192                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
193 
194 
195                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
196 
197 
198                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 5);
199                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
200                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
201                     for(n = 0; n <= 5; n++)
202                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
203 
204                     //////////////////////////////////////////////
205                     // Primitive integrals: Vertical recurrance
206                     //////////////////////////////////////////////
207 
208                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
209                     const SIMINT_DBLTYPE vrr_const_2_over_2p = SIMINT_MUL(const_2, one_over_2p);
210                     const SIMINT_DBLTYPE vrr_const_1_over_2q = one_over_2q;
211                     const SIMINT_DBLTYPE vrr_const_1_over_2pq = one_over_2pq;
212                     const SIMINT_DBLTYPE vrr_const_2_over_2pq = SIMINT_MUL(const_2, one_over_2pq);
213                     const SIMINT_DBLTYPE vrr_const_3_over_2pq = SIMINT_MUL(const_3, one_over_2pq);
214 
215 
216 
217                     // Forming PRIM_INT__s_p_s_s[5 * 3];
218                     for(n = 0; n < 5; ++n)  // loop over orders of auxiliary function
219                     {
220 
221                         PRIM_INT__s_p_s_s[n * 3 + 0] = SIMINT_MUL(P_PB[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
222                         PRIM_INT__s_p_s_s[n * 3 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 0]);
223 
224                         PRIM_INT__s_p_s_s[n * 3 + 1] = SIMINT_MUL(P_PB[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
225                         PRIM_INT__s_p_s_s[n * 3 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 1]);
226 
227                         PRIM_INT__s_p_s_s[n * 3 + 2] = SIMINT_MUL(P_PB[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
228                         PRIM_INT__s_p_s_s[n * 3 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_p_s_s[n * 3 + 2]);
229 
230                     }
231 
232 
233 
234                     // Forming PRIM_INT__s_d_s_s[4 * 6];
235                     for(n = 0; n < 4; ++n)  // loop over orders of auxiliary function
236                     {
237 
238                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_MUL(P_PB[0], PRIM_INT__s_p_s_s[n * 3 + 0]);
239                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_s[n * 6 + 0]);
240                         PRIM_INT__s_d_s_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 0]);
241 
242                         PRIM_INT__s_d_s_s[n * 6 + 1] = SIMINT_MUL(P_PB[1], PRIM_INT__s_p_s_s[n * 3 + 0]);
243                         PRIM_INT__s_d_s_s[n * 6 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_s[n * 6 + 1]);
244 
245                         PRIM_INT__s_d_s_s[n * 6 + 2] = SIMINT_MUL(P_PB[2], PRIM_INT__s_p_s_s[n * 3 + 0]);
246                         PRIM_INT__s_d_s_s[n * 6 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_s_s[n * 6 + 2]);
247 
248                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_MUL(P_PB[1], PRIM_INT__s_p_s_s[n * 3 + 1]);
249                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_s_s[n * 6 + 3]);
250                         PRIM_INT__s_d_s_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 3]);
251 
252                         PRIM_INT__s_d_s_s[n * 6 + 4] = SIMINT_MUL(P_PB[2], PRIM_INT__s_p_s_s[n * 3 + 1]);
253                         PRIM_INT__s_d_s_s[n * 6 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_s_s[n * 6 + 4]);
254 
255                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_MUL(P_PB[2], PRIM_INT__s_p_s_s[n * 3 + 2]);
256                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_s_s[n * 6 + 5]);
257                         PRIM_INT__s_d_s_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_d_s_s[n * 6 + 5]);
258 
259                     }
260 
261 
262 
263                     // Forming PRIM_INT__s_f_s_s[3 * 10];
264                     for(n = 0; n < 3; ++n)  // loop over orders of auxiliary function
265                     {
266 
267                         PRIM_INT__s_f_s_s[n * 10 + 0] = SIMINT_MUL(P_PB[0], PRIM_INT__s_d_s_s[n * 6 + 0]);
268                         PRIM_INT__s_f_s_s[n * 10 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_f_s_s[n * 10 + 0]);
269                         PRIM_INT__s_f_s_s[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_p_s_s[n * 3 + 0]), PRIM_INT__s_f_s_s[n * 10 + 0]);
270 
271                         PRIM_INT__s_f_s_s[n * 10 + 1] = SIMINT_MUL(P_PB[1], PRIM_INT__s_d_s_s[n * 6 + 0]);
272                         PRIM_INT__s_f_s_s[n * 10 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_f_s_s[n * 10 + 1]);
273 
274                         PRIM_INT__s_f_s_s[n * 10 + 2] = SIMINT_MUL(P_PB[2], PRIM_INT__s_d_s_s[n * 6 + 0]);
275                         PRIM_INT__s_f_s_s[n * 10 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_f_s_s[n * 10 + 2]);
276 
277                         PRIM_INT__s_f_s_s[n * 10 + 3] = SIMINT_MUL(P_PB[0], PRIM_INT__s_d_s_s[n * 6 + 3]);
278                         PRIM_INT__s_f_s_s[n * 10 + 3] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_f_s_s[n * 10 + 3]);
279 
280                         PRIM_INT__s_f_s_s[n * 10 + 4] = SIMINT_MUL(P_PB[2], PRIM_INT__s_d_s_s[n * 6 + 1]);
281                         PRIM_INT__s_f_s_s[n * 10 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 1], PRIM_INT__s_f_s_s[n * 10 + 4]);
282 
283                         PRIM_INT__s_f_s_s[n * 10 + 5] = SIMINT_MUL(P_PB[0], PRIM_INT__s_d_s_s[n * 6 + 5]);
284                         PRIM_INT__s_f_s_s[n * 10 + 5] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_f_s_s[n * 10 + 5]);
285 
286                         PRIM_INT__s_f_s_s[n * 10 + 6] = SIMINT_MUL(P_PB[1], PRIM_INT__s_d_s_s[n * 6 + 3]);
287                         PRIM_INT__s_f_s_s[n * 10 + 6] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_f_s_s[n * 10 + 6]);
288                         PRIM_INT__s_f_s_s[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_p_s_s[n * 3 + 1]), PRIM_INT__s_f_s_s[n * 10 + 6]);
289 
290                         PRIM_INT__s_f_s_s[n * 10 + 7] = SIMINT_MUL(P_PB[2], PRIM_INT__s_d_s_s[n * 6 + 3]);
291                         PRIM_INT__s_f_s_s[n * 10 + 7] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_f_s_s[n * 10 + 7]);
292 
293                         PRIM_INT__s_f_s_s[n * 10 + 8] = SIMINT_MUL(P_PB[1], PRIM_INT__s_d_s_s[n * 6 + 5]);
294                         PRIM_INT__s_f_s_s[n * 10 + 8] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_f_s_s[n * 10 + 8]);
295 
296                         PRIM_INT__s_f_s_s[n * 10 + 9] = SIMINT_MUL(P_PB[2], PRIM_INT__s_d_s_s[n * 6 + 5]);
297                         PRIM_INT__s_f_s_s[n * 10 + 9] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_f_s_s[n * 10 + 9]);
298                         PRIM_INT__s_f_s_s[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_p_s_s[n * 3 + 2]), PRIM_INT__s_f_s_s[n * 10 + 9]);
299 
300                     }
301 
302 
303                     VRR_K_s_f_p_s(
304                             PRIM_INT__s_f_p_s,
305                             PRIM_INT__s_f_s_s,
306                             PRIM_INT__s_d_s_s,
307                             Q_PA,
308                             aoq_PQ,
309                             one_over_2pq,
310                             2);
311 
312 
313 
314                     // Forming PRIM_INT__s_d_p_s[2 * 18];
315                     for(n = 0; n < 2; ++n)  // loop over orders of auxiliary function
316                     {
317 
318                         PRIM_INT__s_d_p_s[n * 18 + 0] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_d_s_s[n * 6 + 0]);
319                         PRIM_INT__s_d_p_s[n * 18 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_d_p_s[n * 18 + 0]);
320                         PRIM_INT__s_d_p_s[n * 18 + 0] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_p_s[n * 18 + 0]);
321 
322                         PRIM_INT__s_d_p_s[n * 18 + 1] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_d_s_s[n * 6 + 0]);
323                         PRIM_INT__s_d_p_s[n * 18 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_d_p_s[n * 18 + 1]);
324 
325                         PRIM_INT__s_d_p_s[n * 18 + 2] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_d_s_s[n * 6 + 0]);
326                         PRIM_INT__s_d_p_s[n * 18 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 0], PRIM_INT__s_d_p_s[n * 18 + 2]);
327 
328                         PRIM_INT__s_d_p_s[n * 18 + 3] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_d_s_s[n * 6 + 1]);
329                         PRIM_INT__s_d_p_s[n * 18 + 3] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 1], PRIM_INT__s_d_p_s[n * 18 + 3]);
330                         PRIM_INT__s_d_p_s[n * 18 + 3] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_p_s[n * 18 + 3]);
331 
332                         PRIM_INT__s_d_p_s[n * 18 + 4] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_d_s_s[n * 6 + 1]);
333                         PRIM_INT__s_d_p_s[n * 18 + 4] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 1], PRIM_INT__s_d_p_s[n * 18 + 4]);
334                         PRIM_INT__s_d_p_s[n * 18 + 4] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_p_s[n * 18 + 4]);
335 
336                         PRIM_INT__s_d_p_s[n * 18 + 5] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_d_s_s[n * 6 + 1]);
337                         PRIM_INT__s_d_p_s[n * 18 + 5] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 1], PRIM_INT__s_d_p_s[n * 18 + 5]);
338 
339                         PRIM_INT__s_d_p_s[n * 18 + 6] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_d_s_s[n * 6 + 2]);
340                         PRIM_INT__s_d_p_s[n * 18 + 6] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 2], PRIM_INT__s_d_p_s[n * 18 + 6]);
341                         PRIM_INT__s_d_p_s[n * 18 + 6] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_p_s[n * 18 + 6]);
342 
343                         PRIM_INT__s_d_p_s[n * 18 + 7] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_d_s_s[n * 6 + 2]);
344                         PRIM_INT__s_d_p_s[n * 18 + 7] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 2], PRIM_INT__s_d_p_s[n * 18 + 7]);
345 
346                         PRIM_INT__s_d_p_s[n * 18 + 8] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_d_s_s[n * 6 + 2]);
347                         PRIM_INT__s_d_p_s[n * 18 + 8] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 2], PRIM_INT__s_d_p_s[n * 18 + 8]);
348                         PRIM_INT__s_d_p_s[n * 18 + 8] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 0], PRIM_INT__s_d_p_s[n * 18 + 8]);
349 
350                         PRIM_INT__s_d_p_s[n * 18 + 9] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_d_s_s[n * 6 + 3]);
351                         PRIM_INT__s_d_p_s[n * 18 + 9] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_d_p_s[n * 18 + 9]);
352 
353                         PRIM_INT__s_d_p_s[n * 18 + 10] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_d_s_s[n * 6 + 3]);
354                         PRIM_INT__s_d_p_s[n * 18 + 10] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_d_p_s[n * 18 + 10]);
355                         PRIM_INT__s_d_p_s[n * 18 + 10] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_p_s[n * 18 + 10]);
356 
357                         PRIM_INT__s_d_p_s[n * 18 + 11] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_d_s_s[n * 6 + 3]);
358                         PRIM_INT__s_d_p_s[n * 18 + 11] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 3], PRIM_INT__s_d_p_s[n * 18 + 11]);
359 
360                         PRIM_INT__s_d_p_s[n * 18 + 12] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_d_s_s[n * 6 + 4]);
361                         PRIM_INT__s_d_p_s[n * 18 + 12] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 4], PRIM_INT__s_d_p_s[n * 18 + 12]);
362 
363                         PRIM_INT__s_d_p_s[n * 18 + 13] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_d_s_s[n * 6 + 4]);
364                         PRIM_INT__s_d_p_s[n * 18 + 13] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 4], PRIM_INT__s_d_p_s[n * 18 + 13]);
365                         PRIM_INT__s_d_p_s[n * 18 + 13] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_p_s[n * 18 + 13]);
366 
367                         PRIM_INT__s_d_p_s[n * 18 + 14] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_d_s_s[n * 6 + 4]);
368                         PRIM_INT__s_d_p_s[n * 18 + 14] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 4], PRIM_INT__s_d_p_s[n * 18 + 14]);
369                         PRIM_INT__s_d_p_s[n * 18 + 14] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 1], PRIM_INT__s_d_p_s[n * 18 + 14]);
370 
371                         PRIM_INT__s_d_p_s[n * 18 + 15] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_d_s_s[n * 6 + 5]);
372                         PRIM_INT__s_d_p_s[n * 18 + 15] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_d_p_s[n * 18 + 15]);
373 
374                         PRIM_INT__s_d_p_s[n * 18 + 16] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_d_s_s[n * 6 + 5]);
375                         PRIM_INT__s_d_p_s[n * 18 + 16] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_d_p_s[n * 18 + 16]);
376 
377                         PRIM_INT__s_d_p_s[n * 18 + 17] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_d_s_s[n * 6 + 5]);
378                         PRIM_INT__s_d_p_s[n * 18 + 17] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_d_s_s[(n+1) * 6 + 5], PRIM_INT__s_d_p_s[n * 18 + 17]);
379                         PRIM_INT__s_d_p_s[n * 18 + 17] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_p_s_s[(n+1) * 3 + 2], PRIM_INT__s_d_p_s[n * 18 + 17]);
380 
381                     }
382 
383 
384                     VRR_K_s_f_d_s(
385                             PRIM_INT__s_f_d_s,
386                             PRIM_INT__s_f_p_s,
387                             PRIM_INT__s_f_s_s,
388                             PRIM_INT__s_d_p_s,
389                             Q_PA,
390                             a_over_q,
391                             aoq_PQ,
392                             one_over_2pq,
393                             one_over_2q,
394                             1);
395 
396 
397 
398 
399                     ////////////////////////////////////
400                     // Accumulate contracted integrals
401                     ////////////////////////////////////
402                     if(lastoffset == 0)
403                     {
404                         contract_all(30, PRIM_INT__s_f_p_s, PRIM_PTR_INT__s_f_p_s);
405                         contract_all(60, PRIM_INT__s_f_d_s, PRIM_PTR_INT__s_f_d_s);
406                     }
407                     else
408                     {
409                         contract(30, shelloffsets, PRIM_INT__s_f_p_s, PRIM_PTR_INT__s_f_p_s);
410                         contract(60, shelloffsets, PRIM_INT__s_f_d_s, PRIM_PTR_INT__s_f_d_s);
411                         PRIM_PTR_INT__s_f_p_s += lastoffset*30;
412                         PRIM_PTR_INT__s_f_d_s += lastoffset*60;
413                     }
414 
415                 }  // close loop over j
416             }  // close loop over i
417 
418             //Advance to the next batch
419             jstart = SIMINT_SIMD_ROUND(jend);
420 
421             //////////////////////////////////////////////
422             // Contracted integrals: Horizontal recurrance
423             //////////////////////////////////////////////
424 
425 
426 
427 
428             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
429             {
430                 const double hCD[3] = { Q.AB_x[cd+abcd], Q.AB_y[cd+abcd], Q.AB_z[cd+abcd] };
431 
432                 // set up HRR pointers
433                 double const * restrict HRR_INT__s_f_p_s = INT__s_f_p_s + abcd * 30;
434                 double const * restrict HRR_INT__s_f_d_s = INT__s_f_d_s + abcd * 60;
435                 double * restrict HRR_INT__s_f_p_p = INT__s_f_p_p + real_abcd * 90;
436 
437                 // form INT__s_f_p_p
438                 for(ibra = 0; ibra < 10; ++ibra)
439                 {
440                     HRR_INT__s_f_p_p[ibra * 9 + 0] = HRR_INT__s_f_d_s[ibra * 6 + 0] + ( hCD[0] * HRR_INT__s_f_p_s[ibra * 3 + 0] );
441 
442                     HRR_INT__s_f_p_p[ibra * 9 + 1] = HRR_INT__s_f_d_s[ibra * 6 + 1] + ( hCD[1] * HRR_INT__s_f_p_s[ibra * 3 + 0] );
443 
444                     HRR_INT__s_f_p_p[ibra * 9 + 2] = HRR_INT__s_f_d_s[ibra * 6 + 2] + ( hCD[2] * HRR_INT__s_f_p_s[ibra * 3 + 0] );
445 
446                     HRR_INT__s_f_p_p[ibra * 9 + 3] = HRR_INT__s_f_d_s[ibra * 6 + 1] + ( hCD[0] * HRR_INT__s_f_p_s[ibra * 3 + 1] );
447 
448                     HRR_INT__s_f_p_p[ibra * 9 + 4] = HRR_INT__s_f_d_s[ibra * 6 + 3] + ( hCD[1] * HRR_INT__s_f_p_s[ibra * 3 + 1] );
449 
450                     HRR_INT__s_f_p_p[ibra * 9 + 5] = HRR_INT__s_f_d_s[ibra * 6 + 4] + ( hCD[2] * HRR_INT__s_f_p_s[ibra * 3 + 1] );
451 
452                     HRR_INT__s_f_p_p[ibra * 9 + 6] = HRR_INT__s_f_d_s[ibra * 6 + 2] + ( hCD[0] * HRR_INT__s_f_p_s[ibra * 3 + 2] );
453 
454                     HRR_INT__s_f_p_p[ibra * 9 + 7] = HRR_INT__s_f_d_s[ibra * 6 + 4] + ( hCD[1] * HRR_INT__s_f_p_s[ibra * 3 + 2] );
455 
456                     HRR_INT__s_f_p_p[ibra * 9 + 8] = HRR_INT__s_f_d_s[ibra * 6 + 5] + ( hCD[2] * HRR_INT__s_f_p_s[ibra * 3 + 2] );
457 
458                 }
459 
460 
461             }  // close HRR loop
462 
463 
464         }   // close loop cdbatch
465 
466         istart = iend;
467     }  // close loop over ab
468 
469     return P.nshell12_clip * Q.nshell12_clip;
470 }
471 
472