1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_s_s_i_p(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__s_s_i_p)8 int ostei_s_s_i_p(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__s_s_i_p)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__s_s_i_p);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int ibra;
26 
27     // partition workspace
28     double * const INT__s_s_i_s = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__s_s_k_s = work + (SIMINT_NSHELL_SIMD * 28);
30     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*64);
31     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
32     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_p_s = primwork + 8;
33     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_d_s = primwork + 29;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_f_s = primwork + 65;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_g_s = primwork + 115;
36     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_h_s = primwork + 175;
37     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_i_s = primwork + 238;
38     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_k_s = primwork + 294;
39     double * const hrrwork = (double *)(primwork + 330);
40 
41 
42     // Create constants
43     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
44     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
45     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
46     const SIMINT_DBLTYPE const_4 = SIMINT_DBLSET1(4);
47     const SIMINT_DBLTYPE const_5 = SIMINT_DBLSET1(5);
48     const SIMINT_DBLTYPE const_6 = SIMINT_DBLSET1(6);
49     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
50 
51 
52     ////////////////////////////////////////
53     // Loop over shells and primitives
54     ////////////////////////////////////////
55 
56     real_abcd = 0;
57     istart = 0;
58     for(ab = 0; ab < P.nshell12_clip; ++ab)
59     {
60         const int iend = istart + P.nprim12[ab];
61 
62         cd = 0;
63         jstart = 0;
64 
65         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
66         {
67             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
68             int jend = jstart;
69             for(i = 0; i < nshellbatch; i++)
70                 jend += Q.nprim12[cd+i];
71 
72             // Clear the beginning of the workspace (where we are accumulating integrals)
73             memset(work, 0, SIMINT_NSHELL_SIMD * 64 * sizeof(double));
74             abcd = 0;
75 
76 
77             for(i = istart; i < iend; ++i)
78             {
79                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
80 
81                 if(check_screen)
82                 {
83                     // Skip this whole thing if always insignificant
84                     if((P.screen[i] * Q.screen_max) < screen_tol)
85                         continue;
86                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
87                 }
88 
89                 icd = 0;
90                 iprimcd = 0;
91                 nprim_icd = Q.nprim12[cd];
92                 double * restrict PRIM_PTR_INT__s_s_i_s = INT__s_s_i_s + abcd * 28;
93                 double * restrict PRIM_PTR_INT__s_s_k_s = INT__s_s_k_s + abcd * 36;
94 
95 
96 
97                 // Load these one per loop over i
98                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
99                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
100                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
101 
102 
103                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
104                 {
105                     // calculate the shell offsets
106                     // these are the offset from the shell pointed to by cd
107                     // for each element
108                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
109                     int lastoffset = 0;
110                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
111 
112                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
113                     {
114                         // Handle if the first element of the vector is a new shell
115                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
116                         {
117                             nprim_icd += Q.nprim12[cd + (++icd)];
118                             PRIM_PTR_INT__s_s_i_s += 28;
119                             PRIM_PTR_INT__s_s_k_s += 36;
120                         }
121                         iprimcd++;
122                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
123                         {
124                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
125                             {
126                                 shelloffsets[n] = shelloffsets[n-1] + 1;
127                                 lastoffset++;
128                                 nprim_icd += Q.nprim12[cd + (++icd)];
129                             }
130                             else
131                                 shelloffsets[n] = shelloffsets[n-1];
132                             iprimcd++;
133                         }
134                     }
135                     else
136                         iprimcd += SIMINT_SIMD_LEN;
137 
138                     // Do we have to compute this vector (or has it been screened out)?
139                     // (not_screened != 0 means we have to do this vector)
140                     if(check_screen)
141                     {
142                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
143                         if(vmax < screen_tol)
144                         {
145                             PRIM_PTR_INT__s_s_i_s += lastoffset*28;
146                             PRIM_PTR_INT__s_s_k_s += lastoffset*36;
147                             continue;
148                         }
149                     }
150 
151                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
152                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
153                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
154                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
155 
156 
157                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
158                     SIMINT_DBLTYPE PQ[3];
159                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
160                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
161                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
162                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
163                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
164                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
165 
166                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
167                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
168                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
169                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
170                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
171                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
172                     const SIMINT_DBLTYPE Q_PA[3] = { SIMINT_DBLLOAD(Q.PA_x, j), SIMINT_DBLLOAD(Q.PA_y, j), SIMINT_DBLLOAD(Q.PA_z, j) };
173 
174                     SIMINT_DBLTYPE a_over_q = SIMINT_MUL(alpha, one_over_q);
175                     SIMINT_DBLTYPE aoq_PQ[3];
176                     aoq_PQ[0] = SIMINT_MUL(a_over_q, PQ[0]);
177                     aoq_PQ[1] = SIMINT_MUL(a_over_q, PQ[1]);
178                     aoq_PQ[2] = SIMINT_MUL(a_over_q, PQ[2]);
179                     // Put a minus sign here so we don't have to in RR routines
180                     a_over_q = SIMINT_NEG(a_over_q);
181 
182 
183                     //////////////////////////////////////////////
184                     // Fjt function section
185                     // Maximum v value: 7
186                     //////////////////////////////////////////////
187                     // The parameter to the Fjt function
188                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
189 
190 
191                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
192 
193 
194                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 7);
195                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
196                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
197                     for(n = 0; n <= 7; n++)
198                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
199 
200                     //////////////////////////////////////////////
201                     // Primitive integrals: Vertical recurrance
202                     //////////////////////////////////////////////
203 
204                     const SIMINT_DBLTYPE vrr_const_1_over_2q = one_over_2q;
205                     const SIMINT_DBLTYPE vrr_const_2_over_2q = SIMINT_MUL(const_2, one_over_2q);
206                     const SIMINT_DBLTYPE vrr_const_3_over_2q = SIMINT_MUL(const_3, one_over_2q);
207                     const SIMINT_DBLTYPE vrr_const_4_over_2q = SIMINT_MUL(const_4, one_over_2q);
208                     const SIMINT_DBLTYPE vrr_const_5_over_2q = SIMINT_MUL(const_5, one_over_2q);
209                     const SIMINT_DBLTYPE vrr_const_6_over_2q = SIMINT_MUL(const_6, one_over_2q);
210 
211 
212 
213                     // Forming PRIM_INT__s_s_p_s[7 * 3];
214                     for(n = 0; n < 7; ++n)  // loop over orders of auxiliary function
215                     {
216 
217                         PRIM_INT__s_s_p_s[n * 3 + 0] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
218                         PRIM_INT__s_s_p_s[n * 3 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_p_s[n * 3 + 0]);
219 
220                         PRIM_INT__s_s_p_s[n * 3 + 1] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
221                         PRIM_INT__s_s_p_s[n * 3 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_p_s[n * 3 + 1]);
222 
223                         PRIM_INT__s_s_p_s[n * 3 + 2] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
224                         PRIM_INT__s_s_p_s[n * 3 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_p_s[n * 3 + 2]);
225 
226                     }
227 
228 
229 
230                     // Forming PRIM_INT__s_s_d_s[6 * 6];
231                     for(n = 0; n < 6; ++n)  // loop over orders of auxiliary function
232                     {
233 
234                         PRIM_INT__s_s_d_s[n * 6 + 0] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_s_p_s[n * 3 + 0]);
235                         PRIM_INT__s_s_d_s[n * 6 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_p_s[(n+1) * 3 + 0], PRIM_INT__s_s_d_s[n * 6 + 0]);
236                         PRIM_INT__s_s_d_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_d_s[n * 6 + 0]);
237 
238                         PRIM_INT__s_s_d_s[n * 6 + 3] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_s_p_s[n * 3 + 1]);
239                         PRIM_INT__s_s_d_s[n * 6 + 3] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_p_s[(n+1) * 3 + 1], PRIM_INT__s_s_d_s[n * 6 + 3]);
240                         PRIM_INT__s_s_d_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_d_s[n * 6 + 3]);
241 
242                         PRIM_INT__s_s_d_s[n * 6 + 5] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_s_p_s[n * 3 + 2]);
243                         PRIM_INT__s_s_d_s[n * 6 + 5] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_p_s[(n+1) * 3 + 2], PRIM_INT__s_s_d_s[n * 6 + 5]);
244                         PRIM_INT__s_s_d_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_d_s[n * 6 + 5]);
245 
246                     }
247 
248 
249 
250                     // Forming PRIM_INT__s_s_f_s[5 * 10];
251                     for(n = 0; n < 5; ++n)  // loop over orders of auxiliary function
252                     {
253 
254                         PRIM_INT__s_s_f_s[n * 10 + 0] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_s_d_s[n * 6 + 0]);
255                         PRIM_INT__s_s_f_s[n * 10 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_d_s[(n+1) * 6 + 0], PRIM_INT__s_s_f_s[n * 10 + 0]);
256                         PRIM_INT__s_s_f_s[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_p_s[(n+1) * 3 + 0], PRIM_INT__s_s_p_s[n * 3 + 0]), PRIM_INT__s_s_f_s[n * 10 + 0]);
257 
258                         PRIM_INT__s_s_f_s[n * 10 + 1] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_s_d_s[n * 6 + 0]);
259                         PRIM_INT__s_s_f_s[n * 10 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_d_s[(n+1) * 6 + 0], PRIM_INT__s_s_f_s[n * 10 + 1]);
260 
261                         PRIM_INT__s_s_f_s[n * 10 + 6] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_s_d_s[n * 6 + 3]);
262                         PRIM_INT__s_s_f_s[n * 10 + 6] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_d_s[(n+1) * 6 + 3], PRIM_INT__s_s_f_s[n * 10 + 6]);
263                         PRIM_INT__s_s_f_s[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_p_s[(n+1) * 3 + 1], PRIM_INT__s_s_p_s[n * 3 + 1]), PRIM_INT__s_s_f_s[n * 10 + 6]);
264 
265                         PRIM_INT__s_s_f_s[n * 10 + 9] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_s_d_s[n * 6 + 5]);
266                         PRIM_INT__s_s_f_s[n * 10 + 9] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_d_s[(n+1) * 6 + 5], PRIM_INT__s_s_f_s[n * 10 + 9]);
267                         PRIM_INT__s_s_f_s[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_p_s[(n+1) * 3 + 2], PRIM_INT__s_s_p_s[n * 3 + 2]), PRIM_INT__s_s_f_s[n * 10 + 9]);
268 
269                     }
270 
271 
272                     VRR_K_s_s_g_s(
273                             PRIM_INT__s_s_g_s,
274                             PRIM_INT__s_s_f_s,
275                             PRIM_INT__s_s_d_s,
276                             Q_PA,
277                             a_over_q,
278                             aoq_PQ,
279                             one_over_2q,
280                             4);
281 
282 
283                     VRR_K_s_s_h_s(
284                             PRIM_INT__s_s_h_s,
285                             PRIM_INT__s_s_g_s,
286                             PRIM_INT__s_s_f_s,
287                             Q_PA,
288                             a_over_q,
289                             aoq_PQ,
290                             one_over_2q,
291                             3);
292 
293 
294                     ostei_general_vrr1_K(6, 2,
295                             one_over_2q, a_over_q, aoq_PQ, Q_PA,
296                             PRIM_INT__s_s_h_s, PRIM_INT__s_s_g_s, PRIM_INT__s_s_i_s);
297 
298 
299                     ostei_general_vrr1_K(7, 1,
300                             one_over_2q, a_over_q, aoq_PQ, Q_PA,
301                             PRIM_INT__s_s_i_s, PRIM_INT__s_s_h_s, PRIM_INT__s_s_k_s);
302 
303 
304 
305 
306                     ////////////////////////////////////
307                     // Accumulate contracted integrals
308                     ////////////////////////////////////
309                     if(lastoffset == 0)
310                     {
311                         contract_all(28, PRIM_INT__s_s_i_s, PRIM_PTR_INT__s_s_i_s);
312                         contract_all(36, PRIM_INT__s_s_k_s, PRIM_PTR_INT__s_s_k_s);
313                     }
314                     else
315                     {
316                         contract(28, shelloffsets, PRIM_INT__s_s_i_s, PRIM_PTR_INT__s_s_i_s);
317                         contract(36, shelloffsets, PRIM_INT__s_s_k_s, PRIM_PTR_INT__s_s_k_s);
318                         PRIM_PTR_INT__s_s_i_s += lastoffset*28;
319                         PRIM_PTR_INT__s_s_k_s += lastoffset*36;
320                     }
321 
322                 }  // close loop over j
323             }  // close loop over i
324 
325             //Advance to the next batch
326             jstart = SIMINT_SIMD_ROUND(jend);
327 
328             //////////////////////////////////////////////
329             // Contracted integrals: Horizontal recurrance
330             //////////////////////////////////////////////
331 
332 
333 
334 
335             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
336             {
337                 const double hCD[3] = { Q.AB_x[cd+abcd], Q.AB_y[cd+abcd], Q.AB_z[cd+abcd] };
338 
339                 // set up HRR pointers
340                 double const * restrict HRR_INT__s_s_i_s = INT__s_s_i_s + abcd * 28;
341                 double const * restrict HRR_INT__s_s_k_s = INT__s_s_k_s + abcd * 36;
342                 double * restrict HRR_INT__s_s_i_p = INT__s_s_i_p + real_abcd * 84;
343 
344                 // form INT__s_s_i_p
345                 ostei_general_hrr_L(0, 0, 6, 1, hCD, HRR_INT__s_s_k_s, HRR_INT__s_s_i_s, HRR_INT__s_s_i_p);
346 
347 
348             }  // close HRR loop
349 
350 
351         }   // close loop cdbatch
352 
353         istart = iend;
354     }  // close loop over ab
355 
356     return P.nshell12_clip * Q.nshell12_clip;
357 }
358 
ostei_s_s_p_i(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__s_s_p_i)359 int ostei_s_s_p_i(struct simint_multi_shellpair const P,
360                   struct simint_multi_shellpair const Q,
361                   double screen_tol,
362                   double * const restrict work,
363                   double * const restrict INT__s_s_p_i)
364 {
365     double Q_AB[3*Q.nshell12];
366     struct simint_multi_shellpair Q_tmp = Q;
367     Q_tmp.PA_x = Q.PB_x;  Q_tmp.PA_y = Q.PB_y;  Q_tmp.PA_z = Q.PB_z;
368     Q_tmp.PB_x = Q.PA_x;  Q_tmp.PB_y = Q.PA_y;  Q_tmp.PB_z = Q.PA_z;
369     Q_tmp.AB_x = Q_AB;
370     Q_tmp.AB_y = Q_AB + Q.nshell12;
371     Q_tmp.AB_z = Q_AB + 2*Q.nshell12;
372 
373     for(int i = 0; i < Q.nshell12; i++)
374     {
375         Q_tmp.AB_x[i] = -Q.AB_x[i];
376         Q_tmp.AB_y[i] = -Q.AB_y[i];
377         Q_tmp.AB_z[i] = -Q.AB_z[i];
378     }
379 
380     int ret = ostei_s_s_i_p(P, Q_tmp, screen_tol, work, INT__s_s_p_i);
381     double buffer[84] SIMINT_ALIGN_ARRAY_DBL;
382 
383     for(int q = 0; q < ret; q++)
384     {
385         int idx = 0;
386         for(int a = 0; a < 1; ++a)
387         for(int b = 0; b < 1; ++b)
388         for(int c = 0; c < 3; ++c)
389         for(int d = 0; d < 28; ++d)
390             buffer[idx++] = INT__s_s_p_i[q*84+a*84+b*84+d*3+c];
391 
392         memcpy(INT__s_s_p_i+q*84, buffer, 84*sizeof(double));
393     }
394 
395     return ret;
396 }
397 
398