1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_s_s_p_f(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__s_s_p_f)8 int ostei_s_s_p_f(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__s_s_p_f)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__s_s_p_f);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int ibra;
26 
27     // partition workspace
28     double * const INT__s_s_s_f = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__s_s_s_g = work + (SIMINT_NSHELL_SIMD * 10);
30     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*25);
31     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
32     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_p = primwork + 5;
33     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_d = primwork + 17;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_f = primwork + 35;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_g = primwork + 55;
36     double * const hrrwork = (double *)(primwork + 70);
37 
38 
39     // Create constants
40     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
41     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
42     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
43     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
44 
45 
46     ////////////////////////////////////////
47     // Loop over shells and primitives
48     ////////////////////////////////////////
49 
50     real_abcd = 0;
51     istart = 0;
52     for(ab = 0; ab < P.nshell12_clip; ++ab)
53     {
54         const int iend = istart + P.nprim12[ab];
55 
56         cd = 0;
57         jstart = 0;
58 
59         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
60         {
61             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
62             int jend = jstart;
63             for(i = 0; i < nshellbatch; i++)
64                 jend += Q.nprim12[cd+i];
65 
66             // Clear the beginning of the workspace (where we are accumulating integrals)
67             memset(work, 0, SIMINT_NSHELL_SIMD * 25 * sizeof(double));
68             abcd = 0;
69 
70 
71             for(i = istart; i < iend; ++i)
72             {
73                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
74 
75                 if(check_screen)
76                 {
77                     // Skip this whole thing if always insignificant
78                     if((P.screen[i] * Q.screen_max) < screen_tol)
79                         continue;
80                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
81                 }
82 
83                 icd = 0;
84                 iprimcd = 0;
85                 nprim_icd = Q.nprim12[cd];
86                 double * restrict PRIM_PTR_INT__s_s_s_f = INT__s_s_s_f + abcd * 10;
87                 double * restrict PRIM_PTR_INT__s_s_s_g = INT__s_s_s_g + abcd * 15;
88 
89 
90 
91                 // Load these one per loop over i
92                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
93                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
94                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
95 
96 
97                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
98                 {
99                     // calculate the shell offsets
100                     // these are the offset from the shell pointed to by cd
101                     // for each element
102                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
103                     int lastoffset = 0;
104                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
105 
106                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
107                     {
108                         // Handle if the first element of the vector is a new shell
109                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
110                         {
111                             nprim_icd += Q.nprim12[cd + (++icd)];
112                             PRIM_PTR_INT__s_s_s_f += 10;
113                             PRIM_PTR_INT__s_s_s_g += 15;
114                         }
115                         iprimcd++;
116                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
117                         {
118                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
119                             {
120                                 shelloffsets[n] = shelloffsets[n-1] + 1;
121                                 lastoffset++;
122                                 nprim_icd += Q.nprim12[cd + (++icd)];
123                             }
124                             else
125                                 shelloffsets[n] = shelloffsets[n-1];
126                             iprimcd++;
127                         }
128                     }
129                     else
130                         iprimcd += SIMINT_SIMD_LEN;
131 
132                     // Do we have to compute this vector (or has it been screened out)?
133                     // (not_screened != 0 means we have to do this vector)
134                     if(check_screen)
135                     {
136                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
137                         if(vmax < screen_tol)
138                         {
139                             PRIM_PTR_INT__s_s_s_f += lastoffset*10;
140                             PRIM_PTR_INT__s_s_s_g += lastoffset*15;
141                             continue;
142                         }
143                     }
144 
145                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
146                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
147                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
148                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
149 
150 
151                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
152                     SIMINT_DBLTYPE PQ[3];
153                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
154                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
155                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
156                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
157                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
158                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
159 
160                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
161                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
162                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
163                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
164                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
165                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
166                     const SIMINT_DBLTYPE Q_PB[3] = { SIMINT_DBLLOAD(Q.PB_x, j), SIMINT_DBLLOAD(Q.PB_y, j), SIMINT_DBLLOAD(Q.PB_z, j) };
167 
168                     SIMINT_DBLTYPE a_over_q = SIMINT_MUL(alpha, one_over_q);
169                     SIMINT_DBLTYPE aoq_PQ[3];
170                     aoq_PQ[0] = SIMINT_MUL(a_over_q, PQ[0]);
171                     aoq_PQ[1] = SIMINT_MUL(a_over_q, PQ[1]);
172                     aoq_PQ[2] = SIMINT_MUL(a_over_q, PQ[2]);
173                     // Put a minus sign here so we don't have to in RR routines
174                     a_over_q = SIMINT_NEG(a_over_q);
175 
176 
177                     //////////////////////////////////////////////
178                     // Fjt function section
179                     // Maximum v value: 4
180                     //////////////////////////////////////////////
181                     // The parameter to the Fjt function
182                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
183 
184 
185                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
186 
187 
188                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 4);
189                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
190                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
191                     for(n = 0; n <= 4; n++)
192                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
193 
194                     //////////////////////////////////////////////
195                     // Primitive integrals: Vertical recurrance
196                     //////////////////////////////////////////////
197 
198                     const SIMINT_DBLTYPE vrr_const_1_over_2q = one_over_2q;
199                     const SIMINT_DBLTYPE vrr_const_2_over_2q = SIMINT_MUL(const_2, one_over_2q);
200                     const SIMINT_DBLTYPE vrr_const_3_over_2q = SIMINT_MUL(const_3, one_over_2q);
201 
202 
203 
204                     // Forming PRIM_INT__s_s_s_p[4 * 3];
205                     for(n = 0; n < 4; ++n)  // loop over orders of auxiliary function
206                     {
207 
208                         PRIM_INT__s_s_s_p[n * 3 + 0] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
209                         PRIM_INT__s_s_s_p[n * 3 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_p[n * 3 + 0]);
210 
211                         PRIM_INT__s_s_s_p[n * 3 + 1] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
212                         PRIM_INT__s_s_s_p[n * 3 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_p[n * 3 + 1]);
213 
214                         PRIM_INT__s_s_s_p[n * 3 + 2] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
215                         PRIM_INT__s_s_s_p[n * 3 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_p[n * 3 + 2]);
216 
217                     }
218 
219 
220 
221                     // Forming PRIM_INT__s_s_s_d[3 * 6];
222                     for(n = 0; n < 3; ++n)  // loop over orders of auxiliary function
223                     {
224 
225                         PRIM_INT__s_s_s_d[n * 6 + 0] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_p[n * 3 + 0]);
226                         PRIM_INT__s_s_s_d[n * 6 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__s_s_s_d[n * 6 + 0]);
227                         PRIM_INT__s_s_s_d[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_s_d[n * 6 + 0]);
228 
229                         PRIM_INT__s_s_s_d[n * 6 + 1] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_p[n * 3 + 0]);
230                         PRIM_INT__s_s_s_d[n * 6 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__s_s_s_d[n * 6 + 1]);
231 
232                         PRIM_INT__s_s_s_d[n * 6 + 3] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_p[n * 3 + 1]);
233                         PRIM_INT__s_s_s_d[n * 6 + 3] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__s_s_s_d[n * 6 + 3]);
234                         PRIM_INT__s_s_s_d[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_s_d[n * 6 + 3]);
235 
236                         PRIM_INT__s_s_s_d[n * 6 + 5] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_p[n * 3 + 2]);
237                         PRIM_INT__s_s_s_d[n * 6 + 5] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__s_s_s_d[n * 6 + 5]);
238                         PRIM_INT__s_s_s_d[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_s_d[n * 6 + 5]);
239 
240                     }
241 
242 
243 
244                     // Forming PRIM_INT__s_s_s_f[2 * 10];
245                     for(n = 0; n < 2; ++n)  // loop over orders of auxiliary function
246                     {
247 
248                         PRIM_INT__s_s_s_f[n * 10 + 0] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_d[n * 6 + 0]);
249                         PRIM_INT__s_s_s_f[n * 10 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__s_s_s_f[n * 10 + 0]);
250                         PRIM_INT__s_s_s_f[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__s_s_s_p[n * 3 + 0]), PRIM_INT__s_s_s_f[n * 10 + 0]);
251 
252                         PRIM_INT__s_s_s_f[n * 10 + 1] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_d[n * 6 + 0]);
253                         PRIM_INT__s_s_s_f[n * 10 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__s_s_s_f[n * 10 + 1]);
254 
255                         PRIM_INT__s_s_s_f[n * 10 + 2] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_d[n * 6 + 0]);
256                         PRIM_INT__s_s_s_f[n * 10 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__s_s_s_f[n * 10 + 2]);
257 
258                         PRIM_INT__s_s_s_f[n * 10 + 3] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_d[n * 6 + 3]);
259                         PRIM_INT__s_s_s_f[n * 10 + 3] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__s_s_s_f[n * 10 + 3]);
260 
261                         PRIM_INT__s_s_s_f[n * 10 + 4] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_d[n * 6 + 1]);
262                         PRIM_INT__s_s_s_f[n * 10 + 4] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 1], PRIM_INT__s_s_s_f[n * 10 + 4]);
263 
264                         PRIM_INT__s_s_s_f[n * 10 + 5] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_d[n * 6 + 5]);
265                         PRIM_INT__s_s_s_f[n * 10 + 5] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__s_s_s_f[n * 10 + 5]);
266 
267                         PRIM_INT__s_s_s_f[n * 10 + 6] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_d[n * 6 + 3]);
268                         PRIM_INT__s_s_s_f[n * 10 + 6] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__s_s_s_f[n * 10 + 6]);
269                         PRIM_INT__s_s_s_f[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__s_s_s_p[n * 3 + 1]), PRIM_INT__s_s_s_f[n * 10 + 6]);
270 
271                         PRIM_INT__s_s_s_f[n * 10 + 7] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_d[n * 6 + 3]);
272                         PRIM_INT__s_s_s_f[n * 10 + 7] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__s_s_s_f[n * 10 + 7]);
273 
274                         PRIM_INT__s_s_s_f[n * 10 + 8] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_d[n * 6 + 5]);
275                         PRIM_INT__s_s_s_f[n * 10 + 8] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__s_s_s_f[n * 10 + 8]);
276 
277                         PRIM_INT__s_s_s_f[n * 10 + 9] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_d[n * 6 + 5]);
278                         PRIM_INT__s_s_s_f[n * 10 + 9] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__s_s_s_f[n * 10 + 9]);
279                         PRIM_INT__s_s_s_f[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__s_s_s_p[n * 3 + 2]), PRIM_INT__s_s_s_f[n * 10 + 9]);
280 
281                     }
282 
283 
284                     VRR_L_s_s_s_g(
285                             PRIM_INT__s_s_s_g,
286                             PRIM_INT__s_s_s_f,
287                             PRIM_INT__s_s_s_d,
288                             Q_PB,
289                             a_over_q,
290                             aoq_PQ,
291                             one_over_2q,
292                             1);
293 
294 
295 
296 
297                     ////////////////////////////////////
298                     // Accumulate contracted integrals
299                     ////////////////////////////////////
300                     if(lastoffset == 0)
301                     {
302                         contract_all(10, PRIM_INT__s_s_s_f, PRIM_PTR_INT__s_s_s_f);
303                         contract_all(15, PRIM_INT__s_s_s_g, PRIM_PTR_INT__s_s_s_g);
304                     }
305                     else
306                     {
307                         contract(10, shelloffsets, PRIM_INT__s_s_s_f, PRIM_PTR_INT__s_s_s_f);
308                         contract(15, shelloffsets, PRIM_INT__s_s_s_g, PRIM_PTR_INT__s_s_s_g);
309                         PRIM_PTR_INT__s_s_s_f += lastoffset*10;
310                         PRIM_PTR_INT__s_s_s_g += lastoffset*15;
311                     }
312 
313                 }  // close loop over j
314             }  // close loop over i
315 
316             //Advance to the next batch
317             jstart = SIMINT_SIMD_ROUND(jend);
318 
319             //////////////////////////////////////////////
320             // Contracted integrals: Horizontal recurrance
321             //////////////////////////////////////////////
322 
323 
324 
325 
326             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
327             {
328                 const double hCD[3] = { Q.AB_x[cd+abcd], Q.AB_y[cd+abcd], Q.AB_z[cd+abcd] };
329 
330                 // set up HRR pointers
331                 double const * restrict HRR_INT__s_s_s_f = INT__s_s_s_f + abcd * 10;
332                 double const * restrict HRR_INT__s_s_s_g = INT__s_s_s_g + abcd * 15;
333                 double * restrict HRR_INT__s_s_p_f = INT__s_s_p_f + real_abcd * 30;
334 
335                 // form INT__s_s_p_f
336                 HRR_K_p_f(
337                     HRR_INT__s_s_p_f,
338                     HRR_INT__s_s_s_f,
339                     HRR_INT__s_s_s_g,
340                     hCD, 1);
341 
342 
343             }  // close HRR loop
344 
345 
346         }   // close loop cdbatch
347 
348         istart = iend;
349     }  // close loop over ab
350 
351     return P.nshell12_clip * Q.nshell12_clip;
352 }
353 
354