1 //===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the data structures and types used in C++
10 // overload resolution.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_SEMA_OVERLOAD_H
15 #define LLVM_CLANG_SEMA_OVERLOAD_H
16 
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclAccessPair.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Basic/LLVM.h"
25 #include "clang/Basic/SourceLocation.h"
26 #include "clang/Sema/SemaFixItUtils.h"
27 #include "clang/Sema/TemplateDeduction.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/AlignOf.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41 
42 namespace clang {
43 
44 class APValue;
45 class ASTContext;
46 class Sema;
47 
48   /// OverloadingResult - Capture the result of performing overload
49   /// resolution.
50   enum OverloadingResult {
51     /// Overload resolution succeeded.
52     OR_Success,
53 
54     /// No viable function found.
55     OR_No_Viable_Function,
56 
57     /// Ambiguous candidates found.
58     OR_Ambiguous,
59 
60     /// Succeeded, but refers to a deleted function.
61     OR_Deleted
62   };
63 
64   enum OverloadCandidateDisplayKind {
65     /// Requests that all candidates be shown.  Viable candidates will
66     /// be printed first.
67     OCD_AllCandidates,
68 
69     /// Requests that only viable candidates be shown.
70     OCD_ViableCandidates,
71 
72     /// Requests that only tied-for-best candidates be shown.
73     OCD_AmbiguousCandidates
74   };
75 
76   /// The parameter ordering that will be used for the candidate. This is
77   /// used to represent C++20 binary operator rewrites that reverse the order
78   /// of the arguments. If the parameter ordering is Reversed, the Args list is
79   /// reversed (but obviously the ParamDecls for the function are not).
80   ///
81   /// After forming an OverloadCandidate with reversed parameters, the list
82   /// of conversions will (as always) be indexed by argument, so will be
83   /// in reverse parameter order.
84   enum class OverloadCandidateParamOrder : char { Normal, Reversed };
85 
86   /// The kinds of rewrite we perform on overload candidates. Note that the
87   /// values here are chosen to serve as both bitflags and as a rank (lower
88   /// values are preferred by overload resolution).
89   enum OverloadCandidateRewriteKind : unsigned {
90     /// Candidate is not a rewritten candidate.
91     CRK_None = 0x0,
92 
93     /// Candidate is a rewritten candidate with a different operator name.
94     CRK_DifferentOperator = 0x1,
95 
96     /// Candidate is a rewritten candidate with a reversed order of parameters.
97     CRK_Reversed = 0x2,
98   };
99 
100   /// ImplicitConversionKind - The kind of implicit conversion used to
101   /// convert an argument to a parameter's type. The enumerator values
102   /// match with the table titled 'Conversions' in [over.ics.scs] and are listed
103   /// such that better conversion kinds have smaller values.
104   enum ImplicitConversionKind {
105     /// Identity conversion (no conversion)
106     ICK_Identity = 0,
107 
108     /// Lvalue-to-rvalue conversion (C++ [conv.lval])
109     ICK_Lvalue_To_Rvalue,
110 
111     /// Array-to-pointer conversion (C++ [conv.array])
112     ICK_Array_To_Pointer,
113 
114     /// Function-to-pointer (C++ [conv.array])
115     ICK_Function_To_Pointer,
116 
117     /// Function pointer conversion (C++17 [conv.fctptr])
118     ICK_Function_Conversion,
119 
120     /// Qualification conversions (C++ [conv.qual])
121     ICK_Qualification,
122 
123     /// Integral promotions (C++ [conv.prom])
124     ICK_Integral_Promotion,
125 
126     /// Floating point promotions (C++ [conv.fpprom])
127     ICK_Floating_Promotion,
128 
129     /// Complex promotions (Clang extension)
130     ICK_Complex_Promotion,
131 
132     /// Integral conversions (C++ [conv.integral])
133     ICK_Integral_Conversion,
134 
135     /// Floating point conversions (C++ [conv.double]
136     ICK_Floating_Conversion,
137 
138     /// Complex conversions (C99 6.3.1.6)
139     ICK_Complex_Conversion,
140 
141     /// Floating-integral conversions (C++ [conv.fpint])
142     ICK_Floating_Integral,
143 
144     /// Pointer conversions (C++ [conv.ptr])
145     ICK_Pointer_Conversion,
146 
147     /// Pointer-to-member conversions (C++ [conv.mem])
148     ICK_Pointer_Member,
149 
150     /// Boolean conversions (C++ [conv.bool])
151     ICK_Boolean_Conversion,
152 
153     /// Conversions between compatible types in C99
154     ICK_Compatible_Conversion,
155 
156     /// Derived-to-base (C++ [over.best.ics])
157     ICK_Derived_To_Base,
158 
159     /// Vector conversions
160     ICK_Vector_Conversion,
161 
162     /// Arm SVE Vector conversions
163     ICK_SVE_Vector_Conversion,
164 
165     /// RISC-V RVV Vector conversions
166     ICK_RVV_Vector_Conversion,
167 
168     /// A vector splat from an arithmetic type
169     ICK_Vector_Splat,
170 
171     /// Complex-real conversions (C99 6.3.1.7)
172     ICK_Complex_Real,
173 
174     /// Block Pointer conversions
175     ICK_Block_Pointer_Conversion,
176 
177     /// Transparent Union Conversions
178     ICK_TransparentUnionConversion,
179 
180     /// Objective-C ARC writeback conversion
181     ICK_Writeback_Conversion,
182 
183     /// Zero constant to event (OpenCL1.2 6.12.10)
184     ICK_Zero_Event_Conversion,
185 
186     /// Zero constant to queue
187     ICK_Zero_Queue_Conversion,
188 
189     /// Conversions allowed in C, but not C++
190     ICK_C_Only_Conversion,
191 
192     /// C-only conversion between pointers with incompatible types
193     ICK_Incompatible_Pointer_Conversion,
194 
195     /// Fixed point type conversions according to N1169.
196     ICK_Fixed_Point_Conversion,
197 
198     /// The number of conversion kinds
199     ICK_Num_Conversion_Kinds,
200   };
201 
202   /// ImplicitConversionRank - The rank of an implicit conversion
203   /// kind. The enumerator values match with Table 9 of (C++
204   /// 13.3.3.1.1) and are listed such that better conversion ranks
205   /// have smaller values.
206   enum ImplicitConversionRank {
207     /// Exact Match
208     ICR_Exact_Match = 0,
209 
210     /// Promotion
211     ICR_Promotion,
212 
213     /// Conversion
214     ICR_Conversion,
215 
216     /// OpenCL Scalar Widening
217     ICR_OCL_Scalar_Widening,
218 
219     /// Complex <-> Real conversion
220     ICR_Complex_Real_Conversion,
221 
222     /// ObjC ARC writeback conversion
223     ICR_Writeback_Conversion,
224 
225     /// Conversion only allowed in the C standard (e.g. void* to char*).
226     ICR_C_Conversion,
227 
228     /// Conversion not allowed by the C standard, but that we accept as an
229     /// extension anyway.
230     ICR_C_Conversion_Extension
231   };
232 
233   ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind);
234 
235   /// NarrowingKind - The kind of narrowing conversion being performed by a
236   /// standard conversion sequence according to C++11 [dcl.init.list]p7.
237   enum NarrowingKind {
238     /// Not a narrowing conversion.
239     NK_Not_Narrowing,
240 
241     /// A narrowing conversion by virtue of the source and destination types.
242     NK_Type_Narrowing,
243 
244     /// A narrowing conversion, because a constant expression got narrowed.
245     NK_Constant_Narrowing,
246 
247     /// A narrowing conversion, because a non-constant-expression variable might
248     /// have got narrowed.
249     NK_Variable_Narrowing,
250 
251     /// Cannot tell whether this is a narrowing conversion because the
252     /// expression is value-dependent.
253     NK_Dependent_Narrowing,
254   };
255 
256   /// StandardConversionSequence - represents a standard conversion
257   /// sequence (C++ 13.3.3.1.1). A standard conversion sequence
258   /// contains between zero and three conversions. If a particular
259   /// conversion is not needed, it will be set to the identity conversion
260   /// (ICK_Identity).
261   class StandardConversionSequence {
262   public:
263     /// First -- The first conversion can be an lvalue-to-rvalue
264     /// conversion, array-to-pointer conversion, or
265     /// function-to-pointer conversion.
266     ImplicitConversionKind First : 8;
267 
268     /// Second - The second conversion can be an integral promotion,
269     /// floating point promotion, integral conversion, floating point
270     /// conversion, floating-integral conversion, pointer conversion,
271     /// pointer-to-member conversion, or boolean conversion.
272     ImplicitConversionKind Second : 8;
273 
274     /// Third - The third conversion can be a qualification conversion
275     /// or a function conversion.
276     ImplicitConversionKind Third : 8;
277 
278     /// Whether this is the deprecated conversion of a
279     /// string literal to a pointer to non-const character data
280     /// (C++ 4.2p2).
281     unsigned DeprecatedStringLiteralToCharPtr : 1;
282 
283     /// Whether the qualification conversion involves a change in the
284     /// Objective-C lifetime (for automatic reference counting).
285     unsigned QualificationIncludesObjCLifetime : 1;
286 
287     /// IncompatibleObjC - Whether this is an Objective-C conversion
288     /// that we should warn about (if we actually use it).
289     unsigned IncompatibleObjC : 1;
290 
291     /// ReferenceBinding - True when this is a reference binding
292     /// (C++ [over.ics.ref]).
293     unsigned ReferenceBinding : 1;
294 
295     /// DirectBinding - True when this is a reference binding that is a
296     /// direct binding (C++ [dcl.init.ref]).
297     unsigned DirectBinding : 1;
298 
299     /// Whether this is an lvalue reference binding (otherwise, it's
300     /// an rvalue reference binding).
301     unsigned IsLvalueReference : 1;
302 
303     /// Whether we're binding to a function lvalue.
304     unsigned BindsToFunctionLvalue : 1;
305 
306     /// Whether we're binding to an rvalue.
307     unsigned BindsToRvalue : 1;
308 
309     /// Whether this binds an implicit object argument to a
310     /// non-static member function without a ref-qualifier.
311     unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1;
312 
313     /// Whether this binds a reference to an object with a different
314     /// Objective-C lifetime qualifier.
315     unsigned ObjCLifetimeConversionBinding : 1;
316 
317     /// FromType - The type that this conversion is converting
318     /// from. This is an opaque pointer that can be translated into a
319     /// QualType.
320     void *FromTypePtr;
321 
322     /// ToType - The types that this conversion is converting to in
323     /// each step. This is an opaque pointer that can be translated
324     /// into a QualType.
325     void *ToTypePtrs[3];
326 
327     /// CopyConstructor - The copy constructor that is used to perform
328     /// this conversion, when the conversion is actually just the
329     /// initialization of an object via copy constructor. Such
330     /// conversions are either identity conversions or derived-to-base
331     /// conversions.
332     CXXConstructorDecl *CopyConstructor;
333     DeclAccessPair FoundCopyConstructor;
334 
setFromType(QualType T)335     void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
336 
setToType(unsigned Idx,QualType T)337     void setToType(unsigned Idx, QualType T) {
338       assert(Idx < 3 && "To type index is out of range");
339       ToTypePtrs[Idx] = T.getAsOpaquePtr();
340     }
341 
setAllToTypes(QualType T)342     void setAllToTypes(QualType T) {
343       ToTypePtrs[0] = T.getAsOpaquePtr();
344       ToTypePtrs[1] = ToTypePtrs[0];
345       ToTypePtrs[2] = ToTypePtrs[0];
346     }
347 
getFromType()348     QualType getFromType() const {
349       return QualType::getFromOpaquePtr(FromTypePtr);
350     }
351 
getToType(unsigned Idx)352     QualType getToType(unsigned Idx) const {
353       assert(Idx < 3 && "To type index is out of range");
354       return QualType::getFromOpaquePtr(ToTypePtrs[Idx]);
355     }
356 
357     void setAsIdentityConversion();
358 
isIdentityConversion()359     bool isIdentityConversion() const {
360       return Second == ICK_Identity && Third == ICK_Identity;
361     }
362 
363     ImplicitConversionRank getRank() const;
364     NarrowingKind
365     getNarrowingKind(ASTContext &Context, const Expr *Converted,
366                      APValue &ConstantValue, QualType &ConstantType,
367                      bool IgnoreFloatToIntegralConversion = false) const;
368     bool isPointerConversionToBool() const;
369     bool isPointerConversionToVoidPointer(ASTContext& Context) const;
370     void dump() const;
371   };
372 
373   /// UserDefinedConversionSequence - Represents a user-defined
374   /// conversion sequence (C++ 13.3.3.1.2).
375   struct UserDefinedConversionSequence {
376     /// Represents the standard conversion that occurs before
377     /// the actual user-defined conversion.
378     ///
379     /// C++11 13.3.3.1.2p1:
380     ///   If the user-defined conversion is specified by a constructor
381     ///   (12.3.1), the initial standard conversion sequence converts
382     ///   the source type to the type required by the argument of the
383     ///   constructor. If the user-defined conversion is specified by
384     ///   a conversion function (12.3.2), the initial standard
385     ///   conversion sequence converts the source type to the implicit
386     ///   object parameter of the conversion function.
387     StandardConversionSequence Before;
388 
389     /// EllipsisConversion - When this is true, it means user-defined
390     /// conversion sequence starts with a ... (ellipsis) conversion, instead of
391     /// a standard conversion. In this case, 'Before' field must be ignored.
392     // FIXME. I much rather put this as the first field. But there seems to be
393     // a gcc code gen. bug which causes a crash in a test. Putting it here seems
394     // to work around the crash.
395     bool EllipsisConversion : 1;
396 
397     /// HadMultipleCandidates - When this is true, it means that the
398     /// conversion function was resolved from an overloaded set having
399     /// size greater than 1.
400     bool HadMultipleCandidates : 1;
401 
402     /// After - Represents the standard conversion that occurs after
403     /// the actual user-defined conversion.
404     StandardConversionSequence After;
405 
406     /// ConversionFunction - The function that will perform the
407     /// user-defined conversion. Null if the conversion is an
408     /// aggregate initialization from an initializer list.
409     FunctionDecl* ConversionFunction;
410 
411     /// The declaration that we found via name lookup, which might be
412     /// the same as \c ConversionFunction or it might be a using declaration
413     /// that refers to \c ConversionFunction.
414     DeclAccessPair FoundConversionFunction;
415 
416     void dump() const;
417   };
418 
419   /// Represents an ambiguous user-defined conversion sequence.
420   struct AmbiguousConversionSequence {
421     using ConversionSet =
422         SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>;
423 
424     void *FromTypePtr;
425     void *ToTypePtr;
426     char Buffer[sizeof(ConversionSet)];
427 
getFromTypeAmbiguousConversionSequence428     QualType getFromType() const {
429       return QualType::getFromOpaquePtr(FromTypePtr);
430     }
431 
getToTypeAmbiguousConversionSequence432     QualType getToType() const {
433       return QualType::getFromOpaquePtr(ToTypePtr);
434     }
435 
setFromTypeAmbiguousConversionSequence436     void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
setToTypeAmbiguousConversionSequence437     void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); }
438 
conversionsAmbiguousConversionSequence439     ConversionSet &conversions() {
440       return *reinterpret_cast<ConversionSet*>(Buffer);
441     }
442 
conversionsAmbiguousConversionSequence443     const ConversionSet &conversions() const {
444       return *reinterpret_cast<const ConversionSet*>(Buffer);
445     }
446 
addConversionAmbiguousConversionSequence447     void addConversion(NamedDecl *Found, FunctionDecl *D) {
448       conversions().push_back(std::make_pair(Found, D));
449     }
450 
451     using iterator = ConversionSet::iterator;
452 
beginAmbiguousConversionSequence453     iterator begin() { return conversions().begin(); }
endAmbiguousConversionSequence454     iterator end() { return conversions().end(); }
455 
456     using const_iterator = ConversionSet::const_iterator;
457 
beginAmbiguousConversionSequence458     const_iterator begin() const { return conversions().begin(); }
endAmbiguousConversionSequence459     const_iterator end() const { return conversions().end(); }
460 
461     void construct();
462     void destruct();
463     void copyFrom(const AmbiguousConversionSequence &);
464   };
465 
466   /// BadConversionSequence - Records information about an invalid
467   /// conversion sequence.
468   struct BadConversionSequence {
469     enum FailureKind {
470       no_conversion,
471       unrelated_class,
472       bad_qualifiers,
473       lvalue_ref_to_rvalue,
474       rvalue_ref_to_lvalue,
475       too_few_initializers,
476       too_many_initializers,
477     };
478 
479     // This can be null, e.g. for implicit object arguments.
480     Expr *FromExpr;
481 
482     FailureKind Kind;
483 
484   private:
485     // The type we're converting from (an opaque QualType).
486     void *FromTy;
487 
488     // The type we're converting to (an opaque QualType).
489     void *ToTy;
490 
491   public:
initBadConversionSequence492     void init(FailureKind K, Expr *From, QualType To) {
493       init(K, From->getType(), To);
494       FromExpr = From;
495     }
496 
initBadConversionSequence497     void init(FailureKind K, QualType From, QualType To) {
498       Kind = K;
499       FromExpr = nullptr;
500       setFromType(From);
501       setToType(To);
502     }
503 
getFromTypeBadConversionSequence504     QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); }
getToTypeBadConversionSequence505     QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); }
506 
setFromExprBadConversionSequence507     void setFromExpr(Expr *E) {
508       FromExpr = E;
509       setFromType(E->getType());
510     }
511 
setFromTypeBadConversionSequence512     void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); }
setToTypeBadConversionSequence513     void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); }
514   };
515 
516   /// ImplicitConversionSequence - Represents an implicit conversion
517   /// sequence, which may be a standard conversion sequence
518   /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2),
519   /// or an ellipsis conversion sequence (C++ 13.3.3.1.3).
520   class ImplicitConversionSequence {
521   public:
522     /// Kind - The kind of implicit conversion sequence. BadConversion
523     /// specifies that there is no conversion from the source type to
524     /// the target type.  AmbiguousConversion represents the unique
525     /// ambiguous conversion (C++0x [over.best.ics]p10).
526     /// StaticObjectArgumentConversion represents the conversion rules for
527     /// the synthesized first argument of calls to static member functions
528     /// ([over.best.ics.general]p8).
529     enum Kind {
530       StandardConversion = 0,
531       StaticObjectArgumentConversion,
532       UserDefinedConversion,
533       AmbiguousConversion,
534       EllipsisConversion,
535       BadConversion
536     };
537 
538   private:
539     enum {
540       Uninitialized = BadConversion + 1
541     };
542 
543     /// ConversionKind - The kind of implicit conversion sequence.
544     unsigned ConversionKind : 31;
545 
546     // Whether the initializer list was of an incomplete array.
547     unsigned InitializerListOfIncompleteArray : 1;
548 
549     /// When initializing an array or std::initializer_list from an
550     /// initializer-list, this is the array or std::initializer_list type being
551     /// initialized. The remainder of the conversion sequence, including ToType,
552     /// describe the worst conversion of an initializer to an element of the
553     /// array or std::initializer_list. (Note, 'worst' is not well defined.)
554     QualType InitializerListContainerType;
555 
setKind(Kind K)556     void setKind(Kind K) {
557       destruct();
558       ConversionKind = K;
559     }
560 
destruct()561     void destruct() {
562       if (ConversionKind == AmbiguousConversion) Ambiguous.destruct();
563     }
564 
565   public:
566     union {
567       /// When ConversionKind == StandardConversion, provides the
568       /// details of the standard conversion sequence.
569       StandardConversionSequence Standard;
570 
571       /// When ConversionKind == UserDefinedConversion, provides the
572       /// details of the user-defined conversion sequence.
573       UserDefinedConversionSequence UserDefined;
574 
575       /// When ConversionKind == AmbiguousConversion, provides the
576       /// details of the ambiguous conversion.
577       AmbiguousConversionSequence Ambiguous;
578 
579       /// When ConversionKind == BadConversion, provides the details
580       /// of the bad conversion.
581       BadConversionSequence Bad;
582     };
583 
ImplicitConversionSequence()584     ImplicitConversionSequence()
585         : ConversionKind(Uninitialized),
586           InitializerListOfIncompleteArray(false) {
587       Standard.setAsIdentityConversion();
588     }
589 
ImplicitConversionSequence(const ImplicitConversionSequence & Other)590     ImplicitConversionSequence(const ImplicitConversionSequence &Other)
591         : ConversionKind(Other.ConversionKind),
592           InitializerListOfIncompleteArray(
593               Other.InitializerListOfIncompleteArray),
594           InitializerListContainerType(Other.InitializerListContainerType) {
595       switch (ConversionKind) {
596       case Uninitialized: break;
597       case StandardConversion: Standard = Other.Standard; break;
598       case StaticObjectArgumentConversion:
599         break;
600       case UserDefinedConversion: UserDefined = Other.UserDefined; break;
601       case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break;
602       case EllipsisConversion: break;
603       case BadConversion: Bad = Other.Bad; break;
604       }
605     }
606 
607     ImplicitConversionSequence &
608     operator=(const ImplicitConversionSequence &Other) {
609       destruct();
610       new (this) ImplicitConversionSequence(Other);
611       return *this;
612     }
613 
~ImplicitConversionSequence()614     ~ImplicitConversionSequence() {
615       destruct();
616     }
617 
getKind()618     Kind getKind() const {
619       assert(isInitialized() && "querying uninitialized conversion");
620       return Kind(ConversionKind);
621     }
622 
623     /// Return a ranking of the implicit conversion sequence
624     /// kind, where smaller ranks represent better conversion
625     /// sequences.
626     ///
627     /// In particular, this routine gives user-defined conversion
628     /// sequences and ambiguous conversion sequences the same rank,
629     /// per C++ [over.best.ics]p10.
getKindRank()630     unsigned getKindRank() const {
631       switch (getKind()) {
632       case StandardConversion:
633       case StaticObjectArgumentConversion:
634         return 0;
635 
636       case UserDefinedConversion:
637       case AmbiguousConversion:
638         return 1;
639 
640       case EllipsisConversion:
641         return 2;
642 
643       case BadConversion:
644         return 3;
645       }
646 
647       llvm_unreachable("Invalid ImplicitConversionSequence::Kind!");
648     }
649 
isBad()650     bool isBad() const { return getKind() == BadConversion; }
isStandard()651     bool isStandard() const { return getKind() == StandardConversion; }
isStaticObjectArgument()652     bool isStaticObjectArgument() const {
653       return getKind() == StaticObjectArgumentConversion;
654     }
isEllipsis()655     bool isEllipsis() const { return getKind() == EllipsisConversion; }
isAmbiguous()656     bool isAmbiguous() const { return getKind() == AmbiguousConversion; }
isUserDefined()657     bool isUserDefined() const { return getKind() == UserDefinedConversion; }
isFailure()658     bool isFailure() const { return isBad() || isAmbiguous(); }
659 
660     /// Determines whether this conversion sequence has been
661     /// initialized.  Most operations should never need to query
662     /// uninitialized conversions and should assert as above.
isInitialized()663     bool isInitialized() const { return ConversionKind != Uninitialized; }
664 
665     /// Sets this sequence as a bad conversion for an explicit argument.
setBad(BadConversionSequence::FailureKind Failure,Expr * FromExpr,QualType ToType)666     void setBad(BadConversionSequence::FailureKind Failure,
667                 Expr *FromExpr, QualType ToType) {
668       setKind(BadConversion);
669       Bad.init(Failure, FromExpr, ToType);
670     }
671 
672     /// Sets this sequence as a bad conversion for an implicit argument.
setBad(BadConversionSequence::FailureKind Failure,QualType FromType,QualType ToType)673     void setBad(BadConversionSequence::FailureKind Failure,
674                 QualType FromType, QualType ToType) {
675       setKind(BadConversion);
676       Bad.init(Failure, FromType, ToType);
677     }
678 
setStandard()679     void setStandard() { setKind(StandardConversion); }
setStaticObjectArgument()680     void setStaticObjectArgument() { setKind(StaticObjectArgumentConversion); }
setEllipsis()681     void setEllipsis() { setKind(EllipsisConversion); }
setUserDefined()682     void setUserDefined() { setKind(UserDefinedConversion); }
683 
setAmbiguous()684     void setAmbiguous() {
685       if (ConversionKind == AmbiguousConversion) return;
686       ConversionKind = AmbiguousConversion;
687       Ambiguous.construct();
688     }
689 
setAsIdentityConversion(QualType T)690     void setAsIdentityConversion(QualType T) {
691       setStandard();
692       Standard.setAsIdentityConversion();
693       Standard.setFromType(T);
694       Standard.setAllToTypes(T);
695     }
696 
697     // True iff this is a conversion sequence from an initializer list to an
698     // array or std::initializer.
hasInitializerListContainerType()699     bool hasInitializerListContainerType() const {
700       return !InitializerListContainerType.isNull();
701     }
setInitializerListContainerType(QualType T,bool IA)702     void setInitializerListContainerType(QualType T, bool IA) {
703       InitializerListContainerType = T;
704       InitializerListOfIncompleteArray = IA;
705     }
isInitializerListOfIncompleteArray()706     bool isInitializerListOfIncompleteArray() const {
707       return InitializerListOfIncompleteArray;
708     }
getInitializerListContainerType()709     QualType getInitializerListContainerType() const {
710       assert(hasInitializerListContainerType() &&
711              "not initializer list container");
712       return InitializerListContainerType;
713     }
714 
715     /// Form an "implicit" conversion sequence from nullptr_t to bool, for a
716     /// direct-initialization of a bool object from nullptr_t.
getNullptrToBool(QualType SourceType,QualType DestType,bool NeedLValToRVal)717     static ImplicitConversionSequence getNullptrToBool(QualType SourceType,
718                                                        QualType DestType,
719                                                        bool NeedLValToRVal) {
720       ImplicitConversionSequence ICS;
721       ICS.setStandard();
722       ICS.Standard.setAsIdentityConversion();
723       ICS.Standard.setFromType(SourceType);
724       if (NeedLValToRVal)
725         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
726       ICS.Standard.setToType(0, SourceType);
727       ICS.Standard.Second = ICK_Boolean_Conversion;
728       ICS.Standard.setToType(1, DestType);
729       ICS.Standard.setToType(2, DestType);
730       return ICS;
731     }
732 
733     // The result of a comparison between implicit conversion
734     // sequences. Use Sema::CompareImplicitConversionSequences to
735     // actually perform the comparison.
736     enum CompareKind {
737       Better = -1,
738       Indistinguishable = 0,
739       Worse = 1
740     };
741 
742     void DiagnoseAmbiguousConversion(Sema &S,
743                                      SourceLocation CaretLoc,
744                                      const PartialDiagnostic &PDiag) const;
745 
746     void dump() const;
747   };
748 
749   enum OverloadFailureKind {
750     ovl_fail_too_many_arguments,
751     ovl_fail_too_few_arguments,
752     ovl_fail_bad_conversion,
753     ovl_fail_bad_deduction,
754 
755     /// This conversion candidate was not considered because it
756     /// duplicates the work of a trivial or derived-to-base
757     /// conversion.
758     ovl_fail_trivial_conversion,
759 
760     /// This conversion candidate was not considered because it is
761     /// an illegal instantiation of a constructor temploid: it is
762     /// callable with one argument, we only have one argument, and
763     /// its first parameter type is exactly the type of the class.
764     ///
765     /// Defining such a constructor directly is illegal, and
766     /// template-argument deduction is supposed to ignore such
767     /// instantiations, but we can still get one with the right
768     /// kind of implicit instantiation.
769     ovl_fail_illegal_constructor,
770 
771     /// This conversion candidate is not viable because its result
772     /// type is not implicitly convertible to the desired type.
773     ovl_fail_bad_final_conversion,
774 
775     /// This conversion function template specialization candidate is not
776     /// viable because the final conversion was not an exact match.
777     ovl_fail_final_conversion_not_exact,
778 
779     /// (CUDA) This candidate was not viable because the callee
780     /// was not accessible from the caller's target (i.e. host->device,
781     /// global->host, device->host).
782     ovl_fail_bad_target,
783 
784     /// This candidate function was not viable because an enable_if
785     /// attribute disabled it.
786     ovl_fail_enable_if,
787 
788     /// This candidate constructor or conversion function is explicit but
789     /// the context doesn't permit explicit functions.
790     ovl_fail_explicit,
791 
792     /// This candidate was not viable because its address could not be taken.
793     ovl_fail_addr_not_available,
794 
795     /// This inherited constructor is not viable because it would slice the
796     /// argument.
797     ovl_fail_inhctor_slice,
798 
799     /// This candidate was not viable because it is a non-default multiversioned
800     /// function.
801     ovl_non_default_multiversion_function,
802 
803     /// This constructor/conversion candidate fail due to an address space
804     /// mismatch between the object being constructed and the overload
805     /// candidate.
806     ovl_fail_object_addrspace_mismatch,
807 
808     /// This candidate was not viable because its associated constraints were
809     /// not satisfied.
810     ovl_fail_constraints_not_satisfied,
811 
812     /// This candidate was not viable because it has internal linkage and is
813     /// from a different module unit than the use.
814     ovl_fail_module_mismatched,
815   };
816 
817   /// A list of implicit conversion sequences for the arguments of an
818   /// OverloadCandidate.
819   using ConversionSequenceList =
820       llvm::MutableArrayRef<ImplicitConversionSequence>;
821 
822   /// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
823   struct OverloadCandidate {
824     /// Function - The actual function that this candidate
825     /// represents. When NULL, this is a built-in candidate
826     /// (C++ [over.oper]) or a surrogate for a conversion to a
827     /// function pointer or reference (C++ [over.call.object]).
828     FunctionDecl *Function;
829 
830     /// FoundDecl - The original declaration that was looked up /
831     /// invented / otherwise found, together with its access.
832     /// Might be a UsingShadowDecl or a FunctionTemplateDecl.
833     DeclAccessPair FoundDecl;
834 
835     /// BuiltinParamTypes - Provides the parameter types of a built-in overload
836     /// candidate. Only valid when Function is NULL.
837     QualType BuiltinParamTypes[3];
838 
839     /// Surrogate - The conversion function for which this candidate
840     /// is a surrogate, but only if IsSurrogate is true.
841     CXXConversionDecl *Surrogate;
842 
843     /// The conversion sequences used to convert the function arguments
844     /// to the function parameters. Note that these are indexed by argument,
845     /// so may not match the parameter order of Function.
846     ConversionSequenceList Conversions;
847 
848     /// The FixIt hints which can be used to fix the Bad candidate.
849     ConversionFixItGenerator Fix;
850 
851     /// Viable - True to indicate that this overload candidate is viable.
852     bool Viable : 1;
853 
854     /// Whether this candidate is the best viable function, or tied for being
855     /// the best viable function.
856     ///
857     /// For an ambiguous overload resolution, indicates whether this candidate
858     /// was part of the ambiguity kernel: the minimal non-empty set of viable
859     /// candidates such that all elements of the ambiguity kernel are better
860     /// than all viable candidates not in the ambiguity kernel.
861     bool Best : 1;
862 
863     /// IsSurrogate - True to indicate that this candidate is a
864     /// surrogate for a conversion to a function pointer or reference
865     /// (C++ [over.call.object]).
866     bool IsSurrogate : 1;
867 
868     /// IgnoreObjectArgument - True to indicate that the first
869     /// argument's conversion, which for this function represents the
870     /// implicit object argument, should be ignored. This will be true
871     /// when the candidate is a static member function (where the
872     /// implicit object argument is just a placeholder) or a
873     /// non-static member function when the call doesn't have an
874     /// object argument.
875     bool IgnoreObjectArgument : 1;
876 
877     /// True if the candidate was found using ADL.
878     CallExpr::ADLCallKind IsADLCandidate : 1;
879 
880     /// Whether this is a rewritten candidate, and if so, of what kind?
881     unsigned RewriteKind : 2;
882 
883     /// FailureKind - The reason why this candidate is not viable.
884     /// Actually an OverloadFailureKind.
885     unsigned char FailureKind;
886 
887     /// The number of call arguments that were explicitly provided,
888     /// to be used while performing partial ordering of function templates.
889     unsigned ExplicitCallArguments;
890 
891     union {
892       DeductionFailureInfo DeductionFailure;
893 
894       /// FinalConversion - For a conversion function (where Function is
895       /// a CXXConversionDecl), the standard conversion that occurs
896       /// after the call to the overload candidate to convert the result
897       /// of calling the conversion function to the required type.
898       StandardConversionSequence FinalConversion;
899     };
900 
901     /// Get RewriteKind value in OverloadCandidateRewriteKind type (This
902     /// function is to workaround the spurious GCC bitfield enum warning)
getRewriteKindOverloadCandidate903     OverloadCandidateRewriteKind getRewriteKind() const {
904       return static_cast<OverloadCandidateRewriteKind>(RewriteKind);
905     }
906 
isReversedOverloadCandidate907     bool isReversed() const { return getRewriteKind() & CRK_Reversed; }
908 
909     /// hasAmbiguousConversion - Returns whether this overload
910     /// candidate requires an ambiguous conversion or not.
hasAmbiguousConversionOverloadCandidate911     bool hasAmbiguousConversion() const {
912       for (auto &C : Conversions) {
913         if (!C.isInitialized()) return false;
914         if (C.isAmbiguous()) return true;
915       }
916       return false;
917     }
918 
TryToFixBadConversionOverloadCandidate919     bool TryToFixBadConversion(unsigned Idx, Sema &S) {
920       bool CanFix = Fix.tryToFixConversion(
921                       Conversions[Idx].Bad.FromExpr,
922                       Conversions[Idx].Bad.getFromType(),
923                       Conversions[Idx].Bad.getToType(), S);
924 
925       // If at least one conversion fails, the candidate cannot be fixed.
926       if (!CanFix)
927         Fix.clear();
928 
929       return CanFix;
930     }
931 
getNumParamsOverloadCandidate932     unsigned getNumParams() const {
933       if (IsSurrogate) {
934         QualType STy = Surrogate->getConversionType();
935         while (STy->isPointerType() || STy->isReferenceType())
936           STy = STy->getPointeeType();
937         return STy->castAs<FunctionProtoType>()->getNumParams();
938       }
939       if (Function)
940         return Function->getNumParams();
941       return ExplicitCallArguments;
942     }
943 
944     bool NotValidBecauseConstraintExprHasError() const;
945 
946   private:
947     friend class OverloadCandidateSet;
OverloadCandidateOverloadCandidate948     OverloadCandidate()
949         : IsSurrogate(false), IsADLCandidate(CallExpr::NotADL), RewriteKind(CRK_None) {}
950   };
951 
952   /// OverloadCandidateSet - A set of overload candidates, used in C++
953   /// overload resolution (C++ 13.3).
954   class OverloadCandidateSet {
955   public:
956     enum CandidateSetKind {
957       /// Normal lookup.
958       CSK_Normal,
959 
960       /// C++ [over.match.oper]:
961       /// Lookup of operator function candidates in a call using operator
962       /// syntax. Candidates that have no parameters of class type will be
963       /// skipped unless there is a parameter of (reference to) enum type and
964       /// the corresponding argument is of the same enum type.
965       CSK_Operator,
966 
967       /// C++ [over.match.copy]:
968       /// Copy-initialization of an object of class type by user-defined
969       /// conversion.
970       CSK_InitByUserDefinedConversion,
971 
972       /// C++ [over.match.ctor], [over.match.list]
973       /// Initialization of an object of class type by constructor,
974       /// using either a parenthesized or braced list of arguments.
975       CSK_InitByConstructor,
976     };
977 
978     /// Information about operator rewrites to consider when adding operator
979     /// functions to a candidate set.
980     struct OperatorRewriteInfo {
OperatorRewriteInfoOperatorRewriteInfo981       OperatorRewriteInfo()
982           : OriginalOperator(OO_None), OpLoc(), AllowRewrittenCandidates(false) {}
OperatorRewriteInfoOperatorRewriteInfo983       OperatorRewriteInfo(OverloadedOperatorKind Op, SourceLocation OpLoc,
984                           bool AllowRewritten)
985           : OriginalOperator(Op), OpLoc(OpLoc),
986             AllowRewrittenCandidates(AllowRewritten) {}
987 
988       /// The original operator as written in the source.
989       OverloadedOperatorKind OriginalOperator;
990       /// The source location of the operator.
991       SourceLocation OpLoc;
992       /// Whether we should include rewritten candidates in the overload set.
993       bool AllowRewrittenCandidates;
994 
995       /// Would use of this function result in a rewrite using a different
996       /// operator?
isRewrittenOperatorOperatorRewriteInfo997       bool isRewrittenOperator(const FunctionDecl *FD) {
998         return OriginalOperator &&
999                FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator;
1000       }
1001 
isAcceptableCandidateOperatorRewriteInfo1002       bool isAcceptableCandidate(const FunctionDecl *FD) {
1003         if (!OriginalOperator)
1004           return true;
1005 
1006         // For an overloaded operator, we can have candidates with a different
1007         // name in our unqualified lookup set. Make sure we only consider the
1008         // ones we're supposed to.
1009         OverloadedOperatorKind OO =
1010             FD->getDeclName().getCXXOverloadedOperator();
1011         return OO && (OO == OriginalOperator ||
1012                       (AllowRewrittenCandidates &&
1013                        OO == getRewrittenOverloadedOperator(OriginalOperator)));
1014       }
1015 
1016       /// Determine the kind of rewrite that should be performed for this
1017       /// candidate.
1018       OverloadCandidateRewriteKind
getRewriteKindOperatorRewriteInfo1019       getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) {
1020         OverloadCandidateRewriteKind CRK = CRK_None;
1021         if (isRewrittenOperator(FD))
1022           CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator);
1023         if (PO == OverloadCandidateParamOrder::Reversed)
1024           CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed);
1025         return CRK;
1026       }
1027       /// Determines whether this operator could be implemented by a function
1028       /// with reversed parameter order.
isReversibleOperatorRewriteInfo1029       bool isReversible() {
1030         return AllowRewrittenCandidates && OriginalOperator &&
1031                (getRewrittenOverloadedOperator(OriginalOperator) != OO_None ||
1032                 allowsReversed(OriginalOperator));
1033       }
1034 
1035       /// Determine whether reversing parameter order is allowed for operator
1036       /// Op.
1037       bool allowsReversed(OverloadedOperatorKind Op);
1038 
1039       /// Determine whether we should add a rewritten candidate for \p FD with
1040       /// reversed parameter order.
1041       /// \param OriginalArgs are the original non reversed arguments.
1042       bool shouldAddReversed(Sema &S, ArrayRef<Expr *> OriginalArgs,
1043                              FunctionDecl *FD);
1044     };
1045 
1046   private:
1047     SmallVector<OverloadCandidate, 16> Candidates;
1048     llvm::SmallPtrSet<uintptr_t, 16> Functions;
1049 
1050     // Allocator for ConversionSequenceLists. We store the first few of these
1051     // inline to avoid allocation for small sets.
1052     llvm::BumpPtrAllocator SlabAllocator;
1053 
1054     SourceLocation Loc;
1055     CandidateSetKind Kind;
1056     OperatorRewriteInfo RewriteInfo;
1057 
1058     constexpr static unsigned NumInlineBytes =
1059         24 * sizeof(ImplicitConversionSequence);
1060     unsigned NumInlineBytesUsed = 0;
1061     alignas(void *) char InlineSpace[NumInlineBytes];
1062 
1063     // Address space of the object being constructed.
1064     LangAS DestAS = LangAS::Default;
1065 
1066     /// If we have space, allocates from inline storage. Otherwise, allocates
1067     /// from the slab allocator.
1068     /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator
1069     /// instead.
1070     /// FIXME: Now that this only allocates ImplicitConversionSequences, do we
1071     /// want to un-generalize this?
1072     template <typename T>
slabAllocate(unsigned N)1073     T *slabAllocate(unsigned N) {
1074       // It's simpler if this doesn't need to consider alignment.
1075       static_assert(alignof(T) == alignof(void *),
1076                     "Only works for pointer-aligned types.");
1077       static_assert(std::is_trivial<T>::value ||
1078                         std::is_same<ImplicitConversionSequence, T>::value,
1079                     "Add destruction logic to OverloadCandidateSet::clear().");
1080 
1081       unsigned NBytes = sizeof(T) * N;
1082       if (NBytes > NumInlineBytes - NumInlineBytesUsed)
1083         return SlabAllocator.Allocate<T>(N);
1084       char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed;
1085       assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
1086              "Misaligned storage!");
1087 
1088       NumInlineBytesUsed += NBytes;
1089       return reinterpret_cast<T *>(FreeSpaceStart);
1090     }
1091 
1092     void destroyCandidates();
1093 
1094   public:
1095     OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK,
1096                          OperatorRewriteInfo RewriteInfo = {})
Loc(Loc)1097         : Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {}
1098     OverloadCandidateSet(const OverloadCandidateSet &) = delete;
1099     OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete;
~OverloadCandidateSet()1100     ~OverloadCandidateSet() { destroyCandidates(); }
1101 
getLocation()1102     SourceLocation getLocation() const { return Loc; }
getKind()1103     CandidateSetKind getKind() const { return Kind; }
getRewriteInfo()1104     OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; }
1105 
1106     /// Whether diagnostics should be deferred.
1107     bool shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, SourceLocation OpLoc);
1108 
1109     /// Determine when this overload candidate will be new to the
1110     /// overload set.
1111     bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO =
1112                                      OverloadCandidateParamOrder::Normal) {
1113       uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl());
1114       Key |= static_cast<uintptr_t>(PO);
1115       return Functions.insert(Key).second;
1116     }
1117 
1118     /// Exclude a function from being considered by overload resolution.
exclude(Decl * F)1119     void exclude(Decl *F) {
1120       isNewCandidate(F, OverloadCandidateParamOrder::Normal);
1121       isNewCandidate(F, OverloadCandidateParamOrder::Reversed);
1122     }
1123 
1124     /// Clear out all of the candidates.
1125     void clear(CandidateSetKind CSK);
1126 
1127     using iterator = SmallVectorImpl<OverloadCandidate>::iterator;
1128 
begin()1129     iterator begin() { return Candidates.begin(); }
end()1130     iterator end() { return Candidates.end(); }
1131 
size()1132     size_t size() const { return Candidates.size(); }
empty()1133     bool empty() const { return Candidates.empty(); }
1134 
1135     /// Allocate storage for conversion sequences for NumConversions
1136     /// conversions.
1137     ConversionSequenceList
allocateConversionSequences(unsigned NumConversions)1138     allocateConversionSequences(unsigned NumConversions) {
1139       ImplicitConversionSequence *Conversions =
1140           slabAllocate<ImplicitConversionSequence>(NumConversions);
1141 
1142       // Construct the new objects.
1143       for (unsigned I = 0; I != NumConversions; ++I)
1144         new (&Conversions[I]) ImplicitConversionSequence();
1145 
1146       return ConversionSequenceList(Conversions, NumConversions);
1147     }
1148 
1149     /// Add a new candidate with NumConversions conversion sequence slots
1150     /// to the overload set.
1151     OverloadCandidate &
1152     addCandidate(unsigned NumConversions = 0,
1153                  ConversionSequenceList Conversions = std::nullopt) {
1154       assert((Conversions.empty() || Conversions.size() == NumConversions) &&
1155              "preallocated conversion sequence has wrong length");
1156 
1157       Candidates.push_back(OverloadCandidate());
1158       OverloadCandidate &C = Candidates.back();
1159       C.Conversions = Conversions.empty()
1160                           ? allocateConversionSequences(NumConversions)
1161                           : Conversions;
1162       return C;
1163     }
1164 
1165     /// Find the best viable function on this overload set, if it exists.
1166     OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc,
1167                                          OverloadCandidateSet::iterator& Best);
1168 
1169     SmallVector<OverloadCandidate *, 32> CompleteCandidates(
1170         Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
1171         SourceLocation OpLoc = SourceLocation(),
1172         llvm::function_ref<bool(OverloadCandidate &)> Filter =
1173             [](OverloadCandidate &) { return true; });
1174 
1175     void NoteCandidates(
1176         PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD,
1177         ArrayRef<Expr *> Args, StringRef Opc = "",
1178         SourceLocation Loc = SourceLocation(),
1179         llvm::function_ref<bool(OverloadCandidate &)> Filter =
1180             [](OverloadCandidate &) { return true; });
1181 
1182     void NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
1183                         ArrayRef<OverloadCandidate *> Cands,
1184                         StringRef Opc = "",
1185                         SourceLocation OpLoc = SourceLocation());
1186 
getDestAS()1187     LangAS getDestAS() { return DestAS; }
1188 
setDestAS(LangAS AS)1189     void setDestAS(LangAS AS) {
1190       assert((Kind == CSK_InitByConstructor ||
1191               Kind == CSK_InitByUserDefinedConversion) &&
1192              "can't set the destination address space when not constructing an "
1193              "object");
1194       DestAS = AS;
1195     }
1196 
1197   };
1198 
1199   bool isBetterOverloadCandidate(Sema &S,
1200                                  const OverloadCandidate &Cand1,
1201                                  const OverloadCandidate &Cand2,
1202                                  SourceLocation Loc,
1203                                  OverloadCandidateSet::CandidateSetKind Kind);
1204 
1205   struct ConstructorInfo {
1206     DeclAccessPair FoundDecl;
1207     CXXConstructorDecl *Constructor;
1208     FunctionTemplateDecl *ConstructorTmpl;
1209 
1210     explicit operator bool() const { return Constructor; }
1211   };
1212 
1213   // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload
1214   // that takes one of these.
getConstructorInfo(NamedDecl * ND)1215   inline ConstructorInfo getConstructorInfo(NamedDecl *ND) {
1216     if (isa<UsingDecl>(ND))
1217       return ConstructorInfo{};
1218 
1219     // For constructors, the access check is performed against the underlying
1220     // declaration, not the found declaration.
1221     auto *D = ND->getUnderlyingDecl();
1222     ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr,
1223                             nullptr};
1224     Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
1225     if (Info.ConstructorTmpl)
1226       D = Info.ConstructorTmpl->getTemplatedDecl();
1227     Info.Constructor = dyn_cast<CXXConstructorDecl>(D);
1228     return Info;
1229   }
1230 
1231   // Returns false if signature help is relevant despite number of arguments
1232   // exceeding parameters. Specifically, it returns false when
1233   // PartialOverloading is true and one of the following:
1234   // * Function is variadic
1235   // * Function is template variadic
1236   // * Function is an instantiation of template variadic function
1237   // The last case may seem strange. The idea is that if we added one more
1238   // argument, we'd end up with a function similar to Function. Since, in the
1239   // context of signature help and/or code completion, we do not know what the
1240   // type of the next argument (that the user is typing) will be, this is as
1241   // good candidate as we can get, despite the fact that it takes one less
1242   // parameter.
1243   bool shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function);
1244 
1245 } // namespace clang
1246 
1247 #endif // LLVM_CLANG_SEMA_OVERLOAD_H
1248