1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
10 #define _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
11
12 #include <__config>
13 #include <__random/clamp_to_integral.h>
14 #include <__random/exponential_distribution.h>
15 #include <__random/is_valid.h>
16 #include <__random/normal_distribution.h>
17 #include <__random/uniform_real_distribution.h>
18 #include <cmath>
19 #include <iosfwd>
20 #include <limits>
21
22 #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
23 # pragma GCC system_header
24 #endif
25
26 _LIBCPP_PUSH_MACROS
27 #include <__undef_macros>
28
29 _LIBCPP_BEGIN_NAMESPACE_STD
30
31 template<class _IntType = int>
32 class _LIBCPP_TEMPLATE_VIS poisson_distribution
33 {
34 static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type");
35 public:
36 // types
37 typedef _IntType result_type;
38
39 class _LIBCPP_TEMPLATE_VIS param_type
40 {
41 double __mean_;
42 double __s_;
43 double __d_;
44 double __l_;
45 double __omega_;
46 double __c0_;
47 double __c1_;
48 double __c2_;
49 double __c3_;
50 double __c_;
51
52 public:
53 typedef poisson_distribution distribution_type;
54
55 explicit param_type(double __mean = 1.0);
56
57 _LIBCPP_INLINE_VISIBILITY
mean()58 double mean() const {return __mean_;}
59
60 friend _LIBCPP_INLINE_VISIBILITY
61 bool operator==(const param_type& __x, const param_type& __y)
62 {return __x.__mean_ == __y.__mean_;}
63 friend _LIBCPP_INLINE_VISIBILITY
64 bool operator!=(const param_type& __x, const param_type& __y)
65 {return !(__x == __y);}
66
67 friend class poisson_distribution;
68 };
69
70 private:
71 param_type __p_;
72
73 public:
74 // constructors and reset functions
75 #ifndef _LIBCPP_CXX03_LANG
76 _LIBCPP_INLINE_VISIBILITY
poisson_distribution()77 poisson_distribution() : poisson_distribution(1.0) {}
78 _LIBCPP_INLINE_VISIBILITY
poisson_distribution(double __mean)79 explicit poisson_distribution(double __mean)
80 : __p_(__mean) {}
81 #else
82 _LIBCPP_INLINE_VISIBILITY
83 explicit poisson_distribution(double __mean = 1.0)
84 : __p_(__mean) {}
85 #endif
86 _LIBCPP_INLINE_VISIBILITY
poisson_distribution(const param_type & __p)87 explicit poisson_distribution(const param_type& __p) : __p_(__p) {}
88 _LIBCPP_INLINE_VISIBILITY
reset()89 void reset() {}
90
91 // generating functions
92 template<class _URNG>
93 _LIBCPP_INLINE_VISIBILITY
operator()94 result_type operator()(_URNG& __g)
95 {return (*this)(__g, __p_);}
96 template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
97
98 // property functions
99 _LIBCPP_INLINE_VISIBILITY
mean()100 double mean() const {return __p_.mean();}
101
102 _LIBCPP_INLINE_VISIBILITY
param()103 param_type param() const {return __p_;}
104 _LIBCPP_INLINE_VISIBILITY
param(const param_type & __p)105 void param(const param_type& __p) {__p_ = __p;}
106
107 _LIBCPP_INLINE_VISIBILITY
min()108 result_type min() const {return 0;}
109 _LIBCPP_INLINE_VISIBILITY
max()110 result_type max() const {return numeric_limits<result_type>::max();}
111
112 friend _LIBCPP_INLINE_VISIBILITY
113 bool operator==(const poisson_distribution& __x,
114 const poisson_distribution& __y)
115 {return __x.__p_ == __y.__p_;}
116 friend _LIBCPP_INLINE_VISIBILITY
117 bool operator!=(const poisson_distribution& __x,
118 const poisson_distribution& __y)
119 {return !(__x == __y);}
120 };
121
122 template<class _IntType>
param_type(double __mean)123 poisson_distribution<_IntType>::param_type::param_type(double __mean)
124 // According to the standard `inf` is a valid input, but it causes the
125 // distribution to hang, so we replace it with the maximum representable
126 // mean.
127 : __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean)
128 {
129 if (__mean_ < 10)
130 {
131 __s_ = 0;
132 __d_ = 0;
133 __l_ = _VSTD::exp(-__mean_);
134 __omega_ = 0;
135 __c3_ = 0;
136 __c2_ = 0;
137 __c1_ = 0;
138 __c0_ = 0;
139 __c_ = 0;
140 }
141 else
142 {
143 __s_ = _VSTD::sqrt(__mean_);
144 __d_ = 6 * __mean_ * __mean_;
145 __l_ = _VSTD::trunc(__mean_ - 1.1484);
146 __omega_ = .3989423 / __s_;
147 double __b1_ = .4166667E-1 / __mean_;
148 double __b2_ = .3 * __b1_ * __b1_;
149 __c3_ = .1428571 * __b1_ * __b2_;
150 __c2_ = __b2_ - 15. * __c3_;
151 __c1_ = __b1_ - 6. * __b2_ + 45. * __c3_;
152 __c0_ = 1. - __b1_ + 3. * __b2_ - 15. * __c3_;
153 __c_ = .1069 / __mean_;
154 }
155 }
156
157 template <class _IntType>
158 template<class _URNG>
159 _IntType
operator()160 poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
161 {
162 static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "");
163 double __tx;
164 uniform_real_distribution<double> __urd;
165 if (__pr.__mean_ < 10)
166 {
167 __tx = 0;
168 for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
169 __p *= __urd(__urng);
170 }
171 else
172 {
173 double __difmuk;
174 double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng);
175 double __u;
176 if (__g > 0)
177 {
178 __tx = _VSTD::trunc(__g);
179 if (__tx >= __pr.__l_)
180 return _VSTD::__clamp_to_integral<result_type>(__tx);
181 __difmuk = __pr.__mean_ - __tx;
182 __u = __urd(__urng);
183 if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
184 return _VSTD::__clamp_to_integral<result_type>(__tx);
185 }
186 exponential_distribution<double> __edist;
187 for (bool __using_exp_dist = false; true; __using_exp_dist = true)
188 {
189 double __e;
190 if (__using_exp_dist || __g <= 0)
191 {
192 double __t;
193 do
194 {
195 __e = __edist(__urng);
196 __u = __urd(__urng);
197 __u += __u - 1;
198 __t = 1.8 + (__u < 0 ? -__e : __e);
199 } while (__t <= -.6744);
200 __tx = _VSTD::trunc(__pr.__mean_ + __pr.__s_ * __t);
201 __difmuk = __pr.__mean_ - __tx;
202 __using_exp_dist = true;
203 }
204 double __px;
205 double __py;
206 if (__tx < 10 && __tx >= 0)
207 {
208 const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
209 40320, 362880};
210 __px = -__pr.__mean_;
211 __py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
212 }
213 else
214 {
215 double __del = .8333333E-1 / __tx;
216 __del -= 4.8 * __del * __del * __del;
217 double __v = __difmuk / __tx;
218 if (_VSTD::abs(__v) > 0.25)
219 __px = __tx * _VSTD::log(1 + __v) - __difmuk - __del;
220 else
221 __px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) *
222 __v + .1421878) * __v + -.1661269) * __v + .2000118) *
223 __v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
224 __py = .3989423 / _VSTD::sqrt(__tx);
225 }
226 double __r = (0.5 - __difmuk) / __pr.__s_;
227 double __r2 = __r * __r;
228 double __fx = -0.5 * __r2;
229 double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) *
230 __r2 + __pr.__c1_) * __r2 + __pr.__c0_);
231 if (__using_exp_dist)
232 {
233 if (__pr.__c_ * _VSTD::abs(__u) <= __py * _VSTD::exp(__px + __e) -
234 __fy * _VSTD::exp(__fx + __e))
235 break;
236 }
237 else
238 {
239 if (__fy - __u * __fy <= __py * _VSTD::exp(__px - __fx))
240 break;
241 }
242 }
243 }
244 return _VSTD::__clamp_to_integral<result_type>(__tx);
245 }
246
247 template <class _CharT, class _Traits, class _IntType>
248 _LIBCPP_HIDE_FROM_ABI basic_ostream<_CharT, _Traits>&
249 operator<<(basic_ostream<_CharT, _Traits>& __os,
250 const poisson_distribution<_IntType>& __x)
251 {
252 __save_flags<_CharT, _Traits> __lx(__os);
253 typedef basic_ostream<_CharT, _Traits> _OStream;
254 __os.flags(_OStream::dec | _OStream::left | _OStream::fixed |
255 _OStream::scientific);
256 return __os << __x.mean();
257 }
258
259 template <class _CharT, class _Traits, class _IntType>
260 _LIBCPP_HIDE_FROM_ABI basic_istream<_CharT, _Traits>&
261 operator>>(basic_istream<_CharT, _Traits>& __is,
262 poisson_distribution<_IntType>& __x)
263 {
264 typedef poisson_distribution<_IntType> _Eng;
265 typedef typename _Eng::param_type param_type;
266 __save_flags<_CharT, _Traits> __lx(__is);
267 typedef basic_istream<_CharT, _Traits> _Istream;
268 __is.flags(_Istream::dec | _Istream::skipws);
269 double __mean;
270 __is >> __mean;
271 if (!__is.fail())
272 __x.param(param_type(__mean));
273 return __is;
274 }
275
276 _LIBCPP_END_NAMESPACE_STD
277
278 _LIBCPP_POP_MACROS
279
280 #endif // _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
281