/dports/math/gap/gap-4.11.0/pkg/ctbllib/tst/ |
H A D | sporsolv.tst | 128 gap> t:= CharacterTable( "Ru" );; 230 [ CharacterTable( "U3(8).6" ), 35, 6 ], [ CharacterTable( "ThN3B" ), 1, 1 ], 266 CharacterTable( "mx1j4" ) 297 [ CharacterTable( "2.2E6(2).2" ), CharacterTable( "2^(1+22).Co2" ), 298 CharacterTable( "Fi23" ), CharacterTable( "2^(9+16).S8(2)" ), 299 CharacterTable( "Th" ), CharacterTable( "(2^2xF4(2)):2" ), 300 CharacterTable( "2^(2+10+20).(M22.2xS3)" ), CharacterTable( "[2^30].L5(2)" ) 301 , CharacterTable( "S3xFi22.2" ), CharacterTable( "[2^35].(S5xL3(2))" ), 302 CharacterTable( "HN.2" ), CharacterTable( "O8+(3).S4" ) ] 396 > CharacterTable( nam ) ) ); [all …]
|
H A D | ctblpope.tst | 91 CharacterTable( "M24" ) 96 CharacterTable( "M22.2" ) 388 CharacterTable( "Co1" ) 425 [ CharacterTable( "Co2" ), CharacterTable( "2^11:M24" ) ] 520 CharacterTable( "M22" ) 740 CharacterTable( "M" ) 817 CharacterTable( "M" ) 936 [ CharacterTable( "2^11:M24" ), CharacterTable( "2^(1+8)+.O8+(2)" ), 1049 CharacterTable( "M" ) 1097 CharacterTable( "B" ) [all …]
|
H A D | ambigfus.tst | 27 CharacterTable( "Co3" ) 39 [ CharacterTable( "McL.2" ), CharacterTable( "HS" ), 83 [ CharacterTable( "3_2.U4(3).2_3'" ), CharacterTable( "3^5:M11" ), 103 [ CharacterTable( "Fi23" ), CharacterTable( "2.Fi22.2" ), 104 CharacterTable( "(3xO8+(3):3):2" ), CharacterTable( "O10-(2)" ), 105 CharacterTable( "(A4xO8+(2).3).2" ), CharacterTable( "He.2" ), 106 CharacterTable( "F3+M14" ), CharacterTable( "(A5xA9):2" ) ] 131 CharacterTable( "B" ) 173 gap> u:= CharacterTable( "Cyclic", 3 ) * CharacterTable( "O8+(2).3" ); 205 gap> u:= CharacterTable( "3^2:2" ) * CharacterTable( "L2(8).3" ); [all …]
|
H A D | ctblcons.tst | 31 CharacterTable( "2.A6.2_1" ) 51 [ CharacterTable( "4_1.L3(4).2_1" ), CharacterTable( "4_1.L3(4).2_2" ), 52 CharacterTable( "4_1.L3(4).2_3" ), CharacterTable( "4_2.L3(4).2_1" ), 53 CharacterTable( "4_2.L3(4).2_2" ), CharacterTable( "4_2.L3(4).2_3" ) ] 55 [ CharacterTable( "4_1.L3(4).2_1" ), CharacterTable( "4_1.L3(4).2_2" ), 56 CharacterTable( "4_2.L3(4).2_1" ), CharacterTable( "4_2.L3(4).2_3" ) ] 58 [ CharacterTable( "4_1.L3(4).2_3" ), CharacterTable( "4_2.L3(4).2_2" ) ] 133 gap> tblMG:= CharacterTable( "7:3" ) * CharacterTable( "A5" );; 140 gap> tblGA:= CharacterTable( "Cyclic", 3 ) * CharacterTable( "A5.2" );; 1561 [ CharacterTable( "2.L3(4).2_1" ), CharacterTable( "2.L3(4).2_2" ), [all …]
|
H A D | multfre2.tst | 558 CharacterTable( "A8xC2" ) 573 gap> tblMbar:= CharacterTable( "A8.2" ) * CharacterTable( "Cyclic", 2 );; 646 CharacterTable( "3^5:M11" ) 824 gap> tblMbar:= CharacterTable( "O8+(2).S3" ) * CharacterTable( "Cyclic", 2 );; 834 gap> tblNbar:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );; 855 gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );; 974 gap> s:= CharacterTable( "O8+(2).S3" ) * CharacterTable( "Cyclic", 2 );; 978 gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );; 983 gap> s:= CharacterTable( "O8+(2).2" ) * CharacterTable( "Cyclic", 2 );; 1053 gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );; [all …]
|
H A D | docxpl.tst | 27 CharacterTable( "J1" ) 29 CharacterTable( "L2(11)" ) 31 CharacterTable( "A5.2" ) 43 CharacterTable( "M11" ) 47 CharacterTable( "M11" ) 55 CharacterTable( "L2(11)" ) 79 CharacterTable( "M12" ) 84 CharacterTable( "M11" ) 382 CharacterTable( "A5" ) 386 CharacterTable( "A5" ) [all …]
|
H A D | multfree.tst | 58 gap> tbl:= CharacterTable( "M11" ); 59 CharacterTable( "M11" ) 99 gap> m12:= CharacterTable( "M12" );; 461 gap> tbl:= CharacterTable( "A5" );; 493 gap> tbl:= CharacterTable( "M11" );; 507 gap> tbl:= CharacterTable( "M11" ); 508 CharacterTable( "M11" ) 518 > max:= CharacterTable( name ); 583 > max:= CharacterTable( name ); 602 gap> m12:= CharacterTable( "M12" );; [all …]
|
H A D | ctocenex.tst | 38 > tblG := CharacterTable( entry[1] ); 39 > tblmG := CharacterTable( entry[2] ); 40 > tblnG := CharacterTable( entry[3] ); 41 > lib := CharacterTable( id ); 102 > tblG := CharacterTable( entry[1] ); 103 > tblmG := CharacterTable( entry[2] ); 104 > tblnG := CharacterTable( entry[3] ); 105 > lib := CharacterTable( id ); 142 > tblG := CharacterTable( entry[1] ); 188 gap> 3f3p:= CharacterTable( "3.F3+" );; [all …]
|
H A D | probgen.tst | 1231 > [ CharacterTable( "Fi23" ) * CharacterTable( "Cyclic", 2 ), 1236 > [ CharacterTable( "3.A7.2" ) * CharacterTable( "Cyclic", 2 ), 1238 > CharacterTable( "7:6" ) * CharacterTable( "L3(2)" ) ], 1246 > [ CharacterTable( "S8" ) * CharacterTable( "C2" ), 1247 > CharacterTable( "5:4" ) * CharacterTable( "S5" ) ], 1251 > [ CharacterTable( "J1" ) * CharacterTable( "C2" ) ], 1490 gap> s2:= CharacterTable( "A5.2" ) * CharacterTable( "U4(2).2" ); 1537 gap> h2:= CharacterTable( "S5" ) * CharacterTable( "O8-(2).2" );; 1577 gap> CharacterTable( "L2(64).3" ); CharacterTable( "U4(4).2" ); 1693 > CharacterTable( "Cyclic", 3 ) * CharacterTable( "M22" ), [all …]
|
H A D | ctbldeco.tst | 16 gap> ordtbl:= CharacterTable( "M11" ); 17 CharacterTable( "M11" ) 121 Character( CharacterTable( "M11" ), [ 10, -2, 1, 0, 0, 1, E(8)+E(8)^3, 122 -E(8)-E(8)^3, -1, -1 ] ), Character( CharacterTable( "M11" ), 189 gap> t:= CharacterTable( "S6" ) mod 5; 209 gap> ordtbl:= CharacterTable( "A6" ); 210 CharacterTable( "A6" ) 237 gap> AtlasLabelsOfIrreducibles( CharacterTable( "3.A6" ) ); 242 gap> AtlasLabelsOfIrreducibles( CharacterTable( "3.A6" ) mod 5 ); 246 gap> AtlasLabelsOfIrreducibles( CharacterTable( "3.A6.2_1" ) ); [all …]
|
/dports/math/gap/gap-4.11.0/pkg/HeLP-3.5/examples/ |
H A D | examples.tst | 7 C := CharacterTable("A5"); 52 C := CharacterTable( "A6" ); 107 C2 := CharacterTable("S5"); 121 C := CharacterTable("M11"); 154 C := CharacterTable("A7"); 199 C := CharacterTable("A6"); 231 C := CharacterTable("A5"); 247 C := CharacterTable("A6"); 346 C := CharacterTable(G);; 379 C := CharacterTable("A5"); [all …]
|
H A D | extended_examples.autodoc | 18 C1 := CharacterTable(G); 19 #! CharacterTable( SL(2,7) ) 24 C2 := CharacterTable("2.L2(7)"); 25 #! CharacterTable( "2.L3(2)" ) 45 C := CharacterTable("A5"); 46 #! CharacterTable( "A5" ) 53 C := CharacterTable("L3(7).2"); 54 #! CharacterTable( "L3(7).2" ) 272 C := CharacterTable("M11"); 273 #! CharacterTable( "M11" ) [all …]
|
/dports/math/gap/gap-4.11.0/pkg/spinsym-1.5.2/tst/ |
H A D | testall.tst | 15 gap> ordtbl:= CharacterTable( "2.Sym(18)" ); 16 CharacterTable( "2.Sym(18)" ) 21 gap> ctS:= CharacterTable( "Sym(5)" );; 25 gap> ctA:= CharacterTable( "Alt(5)" );; 48 gap> ctS:= CharacterTable( "Sym(5)" );; 80 gap> ct:= CharacterTable( "Sym(3)" );; 83 gap> ct:= CharacterTable( "Alt(3)" );; 119 CharacterTable( "2.(Alt(8)xAlt(5))" ) 122 CharacterTable( "2.(Alt(8)xSym(5))" ) 125 CharacterTable( "2.(Sym(8)xAlt(5))" ) [all …]
|
/dports/science/mpqc/mpqc-2.3.1/src/lib/math/symmetry/ |
H A D | chartab.cc | 60 CharacterTable::CharacterTable() in CharacterTable() function in CharacterTable 65 CharacterTable::CharacterTable(const CharacterTable& ct) in CharacterTable() function in CharacterTable 71 CharacterTable::~CharacterTable() in ~CharacterTable() 80 CharacterTable& 81 CharacterTable::operator=(const CharacterTable& ct) in operator =() 123 CharacterTable::print(ostream& os) const in print() 147 CharacterTable::CharacterTable(const char *cpg, const SymmetryOperation& frame) in CharacterTable() function in CharacterTable 180 CharacterTable::CharacterTable(const char *cpg) in CharacterTable() function in CharacterTable 210 CharacterTable::parse_symbol() in parse_symbol()
|
H A D | pointgrp.h | 230 class CharacterTable; variable 240 friend class CharacterTable; variable 325 class CharacterTable { 355 CharacterTable(); 358 CharacterTable(const char*); 362 CharacterTable(const char*,const SymmetryOperation&); 364 CharacterTable(const CharacterTable&); 365 ~CharacterTable(); 367 CharacterTable& operator=(const CharacterTable&); 500 CharacterTable char_table() const;
|
/dports/math/gap/gap-4.11.0/tst/testinstall/ |
H A D | ctbl.tst | 6 gap> t:= CharacterTable( g );; 248 CharacterTable( Group( [ f1, f2, f3 ] ) ) 255 CharacterTable( Sym( [ 1 .. 5 ] ) ) 257 CharacterTable( SymmetricGroup( [ 1 .. 5 ] ) ) 259 "CharacterTable( Sym( [ 1 .. 5 ] ) )" 265 CharacterTable( Sym( [ 1 .. 5 ] ) ) 298 gap> t:= CharacterTable( g );; 306 gap> t:= CharacterTable( g );; 313 gap> t:= CharacterTable( g );; 317 gap> t:= CharacterTable( g );; [all …]
|
H A D | ctblfuns.tst | 8 [ Character( CharacterTable( Group([ (1,2)(3,4), (1,3)(2,4) ]) ), 9 [ 1, 1, 1, 1 ] ), Character( CharacterTable( Group([ (1,2)(3,4), (1,3)(2,4) 10 ]) ), [ 1, -1, -1, 1 ] ), Character( CharacterTable( Group( 12 Character( CharacterTable( Group([ (1,2)(3,4), (1,3)(2,4) ]) ), 19 gap> l:=List( AllSmallGroups(12), CharacterTable );; 26 gap> ForAll(AllSmallGroups(12),g -> IsInternallyConsistent(CharacterTable(g) mod 2));
|
/dports/math/gap/gap-4.11.0/pkg/HeLP-3.5/tst/ |
H A D | yes_4ti2.tst | 14 gap> C := CharacterTable("A5");; 22 gap> C := CharacterTable( "A6" );; 38 gap> C1 := CharacterTable(PSL(2,7));; 57 gap> C := CharacterTable("A5");; 71 gap> C := CharacterTable("A6");; 100 gap> C := CharacterTable("A12");; 114 gap> C := CharacterTable("M11");; 129 gap> C := CharacterTable("M22");; 133 gap> C := CharacterTable(G);; 139 gap> C := CharacterTable("A6");; [all …]
|
H A D | yes_normaliz.tst | 14 gap> C := CharacterTable("A5");; 22 gap> C := CharacterTable( "A6" );; 39 gap> C1 := CharacterTable(PSL(2,7));; 57 gap> C := CharacterTable("A5");; 71 gap> C := CharacterTable("A6");; 100 gap> C := CharacterTable("A12");; 114 gap> C := CharacterTable("M11");; 129 gap> C := CharacterTable("M22");; 133 gap> C := CharacterTable(G);; 139 gap> C := CharacterTable("A6");; [all …]
|
/dports/math/gap/gap-4.11.0/lib/ |
H A D | ctbllatt.gd | 71 ## gap> s4:= CharacterTable( "Symmetric", 4 );; 132 ## gap> s4:= CharacterTable( "Symmetric", 4 );; 208 ## gap> s6:= CharacterTable( "S6" );; 213 ## [ Character( CharacterTable( "A6.2_1" ), 215 ## Character( CharacterTable( "A6.2_1" ), 217 ## Character( CharacterTable( "A6.2_1" ), 250 ## [ Character( CharacterTable( "A6.2_1" ), 252 ## Character( CharacterTable( "A6.2_1" ), 326 ## gap> s4:= CharacterTable( "Symmetric", 4 );; 410 ## gap> s4:= CharacterTable( "Symmetric", 4 );; [all …]
|
H A D | ctblfuns.gd | 205 ## gap> tS4:= CharacterTable( S4 );; 206 ## gap> tD8:= CharacterTable( D8 );; 332 ## CharacterTable( Sym( [ 1 .. 4 ] ) ) 1293 ## gap> tbl:= CharacterTable( "A5" );; 1725 ## Character( CharacterTable( "A5" ), 1757 ## [ Character( CharacterTable( "A5" ), 1759 ## Character( CharacterTable( "A5" ), 1761 ## Character( CharacterTable( "A5" ), 1871 ## gap> a5:= CharacterTable( "A5" );; s5:= CharacterTable( "S5" );; 2222 ## gap> tbl:= CharacterTable( "A5" );; [all …]
|
H A D | ctblauto.gd | 126 ## gap> tbld8:= CharacterTable( "Dihedral", 8 );; 128 ## [ Character( CharacterTable( "Dihedral(8)" ), [ 1, 1, 1, 1, 1 ] ), 132 ## Character( CharacterTable( "Dihedral(8)" ), [ 2, 0, -2, 0, 0 ] ) ] 219 ## gap> tblq8:= CharacterTable( "Quaternionic", 8 );; 221 ## [ Character( CharacterTable( "Q8" ), [ 1, 1, 1, 1, 1 ] ), 222 ## Character( CharacterTable( "Q8" ), [ 1, 1, 1, -1, -1 ] ), 223 ## Character( CharacterTable( "Q8" ), [ 1, -1, 1, 1, -1 ] ), 224 ## Character( CharacterTable( "Q8" ), [ 1, -1, 1, -1, 1 ] ), 225 ## Character( CharacterTable( "Q8" ), [ 2, 0, -2, 0, 0 ] ) ] 232 ## gap> tbld6:= CharacterTable( "Dihedral", 6 );; [all …]
|
/dports/math/gap/gap-4.11.0/tst/teststandard/ |
H A D | ctblisoc.tst | 6 gap> t:= CharacterTable( g );; 22 gap> t:= CharacterTable( g );; 38 gap> t:= CharacterTable( g );; 43 gap> t:= CharacterTable( g );; 48 gap> t:= CharacterTable( g );; 57 gap> t:= CharacterTable( g );; 74 gap> t:= CharacterTable( g );; 91 gap> t:= CharacterTable( g );; 105 > t:= CharacterTable( "4_1.L3(4).2_3" ); 126 gap> t:= CharacterTable( g );; [all …]
|
/dports/math/gap/gap-4.11.0/tst/testbugfix/ |
H A D | 2005-08-23-t00320.tst | 2 gap> tbl:= CharacterTable( ElementaryAbelianGroup( 4 ) );; 9 > tbl:= CharacterTableIsoclinic( CharacterTable( "2.A5.2" ) ); 11 > Error( CharacterTable( "Isoclinic(2.A5.2)" ), " mod 3" ); 15 gap> tbl:= CharacterTable( Group( () ) );;
|
H A D | 00015.tst | 7 gap> t1:= CharacterTable( CyclicGroup( 2 ) );; SetIdentifier( t1, "C2" ); 8 gap> t2:= CharacterTable( CyclicGroup( 3 ) );; SetIdentifier( t2, "C3" ); 10 CharacterTable( "C2xC2" ) 15 gap> t:= CharacterTable( SymmetricGroup( 4 ) );;
|