Searched refs:ONE_OVER_FOUR_PI (Results 1 – 5 of 5) sorted by relevance
16 #define ONE_OVER_FOUR_PI 7.9577471545947668E-02 macro55 V->Val[0] = ONE_OVER_FOUR_PI * xxs/ CUB(r) ; in F_BiotSavart()56 V->Val[1] = ONE_OVER_FOUR_PI * yys/ CUB(r) ; in F_BiotSavart()57 V->Val[2] = ONE_OVER_FOUR_PI * zzs/ CUB(r) ; in F_BiotSavart()86 cte = ONE_OVER_FOUR_PI/(r*r*r*r*r); in F_Pocklington()
14 #define ONE_OVER_FOUR_PI 7.9577471545947668E-02 macro35 V->Val[0] = - ONE_OVER_FOUR_PI * log(d) ; in GF_Laplace()43 V->Val[0] = ONE_OVER_FOUR_PI / sqrt(d) ; in GF_Laplace()87 V->Val[0] = - ONE_OVER_FOUR_PI * xxs / r ; in GF_GradLaplace()88 V->Val[1] = - ONE_OVER_FOUR_PI * yys / r ; in GF_GradLaplace()89 V->Val[2] = - ONE_OVER_FOUR_PI * zzs / r ; in GF_GradLaplace()150 V->Val[0] = - ONE_OVER_FOUR_PI * (a * xxs + b * yys + c * zzs) in GF_NPxGradLaplace()202 V->Val[0] = ONE_OVER_FOUR_PI * (a * xxs + b * yys + c * zzs) in GF_NSxGradLaplace()
28 #define ONE_OVER_FOUR_PI 7.9577471545947668E-02 macro63 V->Val[0] = ONE_OVER_FOUR_PI * cos(kr) / r ; in GF_Helmholtz()64 V->Val[MAX_DIM] = -ONE_OVER_FOUR_PI * sin(kr) / r ; in GF_Helmholtz()107 V->Val[0] = ONE_OVER_FOUR_PI * cos(kr) / r ; in GF_HelmholtzThinWire()108 V->Val[MAX_DIM] = -ONE_OVER_FOUR_PI * sin(kr) / r ; in GF_HelmholtzThinWire()159 c1 = - ONE_OVER_FOUR_PI / CUB(r) ; in GF_GradHelmholtz()160 c2 = ONE_OVER_FOUR_PI * Fct->Para[1] / SQU(r) ; in GF_GradHelmholtz()286 c1 = - ONE_OVER_FOUR_PI / CUB(r) ; in GF_NSxGradHelmholtz()287 c2 = ONE_OVER_FOUR_PI * Fct->Para[1] / SQU(r) ; in GF_NSxGradHelmholtz()
25 #define ONE_OVER_FOUR_PI 7.9577471545947668E-02 macro65 Val->Val[0] = - ONE_OVER_FOUR_PI * log(r2) ; in GF_LaplacexForm()69 Val->Val[0] = - ONE_OVER_FOUR_PI * log(SQU(RADIUS)) ; in GF_LaplacexForm()118 Val->Val[0] = - ONE_OVER_FOUR_PI * I1 ; in GF_LaplacexForm()148 Val->Val[0] = ONE_OVER_FOUR_PI * in GF_LaplacexForm()318 Val->Val[0] *= ONE_OVER_FOUR_PI ; in GF_LaplacexForm()417 Val->Val[0] = ONE_OVER_FOUR_PI * ( (xs[0]-x) * I1 + (xs[1]-xs[0]) * I2 ) * a2 ; in GF_GradLaplacexForm()418 Val->Val[1] = ONE_OVER_FOUR_PI * ( (ys[0]-y) * I1 + (ys[1]-ys[0]) * I2 ) * a2 ; in GF_GradLaplacexForm()609 Val->Val[0] *= ONE_OVER_FOUR_PI ; in GF_GradLaplacexForm()610 Val->Val[1] *= ONE_OVER_FOUR_PI ; in GF_GradLaplacexForm()[all …]
16 #define ONE_OVER_FOUR_PI 7.9577471545947668E-02 macro196 cn = sqrt((2*l+1)*ONE_OVER_FOUR_PI) ; /* Normalization Factor */ in SphericalHarmonics()