/dports/math/R-cran-psych/psych/R/ |
H A D | factor.pa.R | 15 model <- loadings %*% t(loadings) 95 model <- loadings %*% t(loadings) 118 loadings <- uls$loadings 132 loadings <- loadings %*% diag(sign.max) 138 loadings <- as.matrix(loadings) 147 …} else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(load… 156 model <- loadings %*% t(loadings) 165 loadings <- rotated$loadings 178 loadings <- ob$loadings 188 loadings <- loadings[,ev.order]} [all …]
|
H A D | factor.minres.R | 13 model <- loadings %*% t(loadings) 24 model <- loadings %*% t(loadings) 104 model <- loadings %*% t(loadings) 126 loadings <- uls$loadings 146 loadings <- as.matrix(loadings) 155 …} else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(load… 164 model <- loadings %*% t(loadings) 172 loadings <- rotated$loadings 185 loadings <- ob$loadings 197 loadings <- loadings[,ev.order]} [all …]
|
H A D | factor.wls.R | 14 model <- loadings %*% t(loadings) 97 model <- loadings %*% t(loadings) 119 loadings <- uls$loadings 133 loadings <- loadings %*% diag(sign.max) 139 loadings <- as.matrix(loadings) 148 …} else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(load… 157 model <- loadings %*% t(loadings) 165 loadings <- rotated$loadings 178 loadings <- ob$loadings 190 loadings <- loadings[,ev.order]} [all …]
|
H A D | principal.R | 30 if(nfactors >0) {loadings <- loadings[,1:nfactors]} else {nfactors <- n} 41 loadings <- loadings %*% diag(sign.tot) 42 …} else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(load… 56 loadings <- rotated$loadings 60 loadings <- pro$loadings 62 if (rotate == "cluster") {loadings <- varimax(loadings)$loadings 64 loadings <- pro$loadings 73 loadings <- ob$loadings 81 ev.rotated <- diag(t(loadings) %*% loadings) 83 loadings <- loadings[,ev.order]} [all …]
|
H A D | fa.R | 103 model <- loadings %*% t(loadings) 239 model <- loadings %*% t(loadings) 262 loadings <- uls$loadings 263 model <- loadings %*% t(loadings) 282 …} else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(load… 291 model <- loadings %*% t(loadings) 301 loadings <- rotated$loadings 309 loadings <- pro$loadings 318 loadings <- ob$loadings 335 loadings <- loadings[,ev.order]} [all …]
|
H A D | ICLUST.sort.R | 2 if(is.matrix(ic.load)) {loadings <- ic.load} else { loadings <- ic.load$loadings} functionVar 4 nclust <- dim(loadings)[2] 5 nitems <- dim(loadings)[1] 6 loadings <- as.matrix(loadings) #just in case there is just one cluster 7 loadings <- unclass(loadings) #to get around the problem of a real loading matrix 8 …if(nclust > 1) {eigenvalue <- diag(t(ic.load$pattern)%*% loadings) #put the clusters into descend… 10 …if(clustsort) loadings <- loadings[,evorder] #added the clustsort option 2011.12.22 until now had… 13 var.labels <- rownames(loadings)} else {var.labels=labels} 17 loads <- data.frame(item=seq(1:nitems),content=var.labels,cluster=rep(0,nitems),loadings) 21 loads$cluster <- apply(abs(loadings),1,which.max) [all …]
|
H A D | omega.bifactor.R | 16 key <- sign(f$loadings[,1]) 20 f$loadings <- diag(key) %*% f$loadings 25 rownames(f$loadings) <- r.names 32 gload <- f$loadings[,1] 36 uniq <- nvar - tr(f$loadings %*% t(f$loadings))
|
H A D | factor.congruence.R | 10 if (!is.matrix(xi)) {if(!is.null(xi$loadings)) {xi <- xi$loadings} else {xi <- as.matrix(xi)}} 21 if (!is.matrix(x)) {if(!is.null(x$loadings)) {x <- x$loadings} else {x <- as.matrix(x)} } 22 if (!is.matrix(y)) {if(!is.null(y$loadings)) { y <- y$loadings } else {y <- as.matrix(y)}}
|
H A D | eigen.loadings.R | 8 if(!is.null(x$loadings)) { 9 ans <- x$loadings %*% diag(x$sdev) 10 rownames(ans) <- rownames(x$loadings) 11 colnames(ans) <- colnames(x$loadings)
|
H A D | schmid.R | 28 orth.load <- loadings(fact) 39 obminfact <-list(loadings= orth.load) nameattr 51 loadings <- obminfact$loadings functionVar 60 if(nfactors > 1) rownames(obminfact$loadings) <- attr(model,"dimnames")[[1]] 64 fload <- obminfact$loadings 74 gload <- loadings(gfactor) } else {gload<- c(NA,NA) #consider the case of two factors
|
/dports/math/R/R-4.1.2/src/library/stats/man/ |
H A D | loadings.Rd | 1 % File src/library/stats/man/loadings.Rd 6 \name{loadings} 7 \alias{loadings} 8 \alias{print.loadings} 12 Extract or print loadings in factor analysis (or principal 16 loadings(x, ...) 27 and loadings.} 35 ignored for \code{loadings}.} 45 draw the eye to the pattern of the larger loadings. 48 \code{"loadings"} method to print the loadings, and so passes down [all …]
|
H A D | summary.princomp.Rd | 11 \method{summary}{princomp}(object, loadings = FALSE, cutoff = 0.1, \dots) 13 \method{print}{summary.princomp}(x, digits = 3, loadings = x$print.loadings, 19 \item{loadings}{logical. Should loadings be included?} 24 loadings.} 32 \code{print.loadings}. 41 loadings = TRUE, cutoff = 0.2), digits = 2)
|
/dports/math/libRmath/R-4.1.1/src/library/stats/man/ |
H A D | loadings.Rd | 1 % File src/library/stats/man/loadings.Rd 6 \name{loadings} 7 \alias{loadings} 8 \alias{print.loadings} 12 Extract or print loadings in factor analysis (or principal 16 loadings(x, ...) 27 and loadings.} 35 ignored for \code{loadings}.} 45 draw the eye to the pattern of the larger loadings. 48 \code{"loadings"} method to print the loadings, and so passes down [all …]
|
H A D | summary.princomp.Rd | 11 \method{summary}{princomp}(object, loadings = FALSE, cutoff = 0.1, \dots) 13 \method{print}{summary.princomp}(x, digits = 3, loadings = x$print.loadings, 19 \item{loadings}{logical. Should loadings be included?} 24 loadings.} 32 \code{print.loadings}. 41 loadings = TRUE, cutoff = 0.2), digits = 2)
|
/dports/math/R/R-4.1.2/src/library/stats/R/ |
H A D | princomp-add.R | 24 p <- NCOL(object$loadings) 25 nm <- rownames(object$loadings) 35 scale(newdata, object$center, object$scale) %*% object$loadings 38 summary.princomp <- function(object, loadings = FALSE, cutoff = 0.1, ...) argument 41 object$print.loadings <- loadings 47 function(x, digits = 3L, loadings = x$print.loadings, cutoff = x$cutoff, argument 56 if(loadings) { 58 cx <- format(round(x$loadings, digits = digits)) 59 cx[abs(x$loadings) < cutoff] <- 93 loadings <- function(x, ...) x$loadings function
|
/dports/math/libRmath/R-4.1.1/src/library/stats/R/ |
H A D | princomp-add.R | 24 p <- NCOL(object$loadings) 25 nm <- rownames(object$loadings) 35 scale(newdata, object$center, object$scale) %*% object$loadings 38 summary.princomp <- function(object, loadings = FALSE, cutoff = 0.1, ...) argument 41 object$print.loadings <- loadings 47 function(x, digits = 3L, loadings = x$print.loadings, cutoff = x$cutoff, argument 56 if(loadings) { 58 cx <- format(round(x$loadings, digits = digits)) 59 cx[abs(x$loadings) < cutoff] <- 93 loadings <- function(x, ...) x$loadings function
|
/dports/math/R-cran-pls/pls/man/ |
H A D | scores.Rd | 5 \alias{loadings} 7 \alias{loadings.default} 13 loadings(object, ...) 15 \method{loadings}{default}(object, ...) 33 A matrix with scores or loadings. 43 The default \code{scores} and \code{loadings} methods also handle 44 \code{prcomp} objects (their scores and loadings components are called 50 There is a \code{loadings} function in package \pkg{stats}. It simply 51 returns any element named \code{"loadings"}. See 53 \code{stats::loadings(...)}. [all …]
|
/dports/devel/R-cran-broom/broom/R/ |
H A D | stats-factanal-tidiers.R | 53 loadings <- stats::loadings(x) functionVar 54 class(loadings) <- "matrix" 57 variable = rownames(loadings), 59 data.frame(loadings) 159 loadings <- stats::loadings(x) functionVar 160 class(loadings) <- "matrix" 161 total.variance <- sum(apply(loadings, 2, function(i) sum(i^2) / length(i)))
|
/dports/math/R-cran-robustbase/robustbase/R/ |
H A D | classPC.R | 15 .signflip <- function(loadings) { argument 16 apply(loadings, 2L, 39 loadings <- svd$v[,1:rank, drop=FALSE] functionVar 49 loadings <- crossprod(x, e$vectors[,ii]) * rep(1/sqrt(evs), each=p) 54 loadings <- .signflip(loadings) 56 list(rank=rank, eigenvalues=eigenvalues, loadings=loadings, nameattr 57 scores = if(scores) x %*% loadings,
|
/dports/math/R-cran-psych/psych/man/ |
H A D | eigen.loadings.Rd | 1 \name{eigen.loadings} 2 \alias{eigen.loadings} 3 …e{Convert eigen vectors and eigen values to the more normal (for psychologists) component loadings} 4 …loadings from a factor analysis. eigen.loadings translates them into the more typical metric of e… 7 eigen.loadings(x) 15 …A matrix of Principal Component loadings more typical for what is expected in psychometrics. That… 26 y$loadings[1:8,1:4] #as they appear from princomp 27 eigen.loadings(x)[1:8,1:4] # rescaled by the eigen values
|
H A D | factor.congruence.Rd | 4 \description{Given two sets of factor loadings, report their degree of congruence (vector cosine). 11 \item{x}{ A matrix of factor loadings or a list of matrices of factor loadings} 12 \item{y}{ A second matrix of factor loadings (if x is a list, then y may be empty)} 16 \details{Find the coefficient of factor congruence between two sets of factor loadings. 18 …he cosines of pairs of vectors defined by the loadings matrix and based at the origin. Thus, for … 20 …loadings. Factor congruences are based upon the raw cross products, while correlations are based … 22 …actor analysis or principal components analyis output (which includes a loadings object), or a mix…
|
H A D | polar.Rd | 3 \title{Convert Cartesian factor loadings into polar coordinates } 4 …loadings). Tables of factor loadings are frequently sorted by the size of loadings. This style o… 11 \item{f}{A matrix of loadings or the output from a factor or cluster analysis program} 14 …s have high loadings on two factors. (These items are said to have complexity 2, see \code{\link{… 16 For each pair of factors, item loadings are converted to an angle with the first factor, and a vect…
|
H A D | fa.sort.Rd | 5 \title{Sort factor analysis or principal components analysis loadings} 7 …loadings, sometimes it is useful to do this outside of the print function. fa.sort takes the outpu… 18 The fa.results$loadings are replaced with sorted loadings. 20 \value{ A sorted factor analysis, principal components analysis, or omega loadings matrix.
|
/dports/math/R-cran-recipes/recipes/tests/testthat/ |
H A D | test_ica.R | 97 loadings <- dimRed::getRotationMatrix(ica_extract_trained$steps[[1]]$res) globalVar 98 comps <- ncol(loadings) 99 loadings <- as.data.frame(loadings) globalVar 100 rownames(loadings) <- vars 101 colnames(loadings) <- paste0("IC", 1:comps) 102 loadings <- utils::stack(loadings) globalVar 106 component = as.character(loadings$ind), 107 value = loadings$values,
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/multivariate/ |
H A D | factor.py | 129 self.loadings = None 277 self.loadings = A 431 self.loadings = load 561 self.loadings = factor.loadings 659 L = self.loadings 771 loadings = pd.DataFrame( 772 self.loadings, 778 summ.add_df(loadings) 841 self.loadings, 955 loadings = self.loadings_no_rot if plot_prerotated else self.loadings [all …]
|