Home
last modified time | relevance | path

Searched +refs:model +refs:matrix +refs:lm (Results 1 – 25 of 1353) sorted by relevance

12345678910>>...55

/dports/math/R-cran-VGAM/VGAM/man/
H A Dmodel.matrixvlm.Rd5 model.matrixvlm(object, type = c("vlm", "lm", "lm2", "bothlmlm2"),
14 The value \code{"vlm"} is the VLM model matrix corresponding
16 The value \code{"lm"} is the LM model matrix corresponding
86 the model matrix has attributes:
118 \code{\link[stats]{model.matrix}},
139 model.matrix(fit)
140 model.matrix(fit, linpred.index = 1, type = "lm")
141 model.matrix(fit, linpred.index = 2, type = "lm")
143 (Check1 <- head(model.matrix(fit, type = "lm")))
144 (Check2 <- model.matrix(fit, data = head(pneumo), type = "lm"))
[all …]
H A Dmodel.matrixqrrvglm.Rd5 model.matrixqrrvglm(object, type = c("latvar", "lm", "vlm"), \dots)
12 \item{type}{Type of model (or design) matrix returned.
14 The value \code{"latvar"} is model matrix mainly comprising
17 The value \code{"lm"} is the LM matrix directly
19 The value \code{"vlm"} is the big VLM model matrix \emph{given C}.
30 Creates a model matrix. Two types can be
33 (such as returned if it were of class \code{"lm"}).
45 to construct the big model matrix \emph{given C}.
90 model.matrix(mycqo, type = "latvar")
91 model.matrix(mycqo, type = "lm")
[all …]
H A Ddf.residual.Rd12 df.residual_vlm(object, type = c("vlm", "lm"), \dots)
37 of rows of the LM-type model: \eqn{nM}.
41 columns of the `big' VLM matrix.
44 columns of the `ordinary' LM matrix corresponding
52 when \code{type = "lm"} this is a \eqn{M}-vector of
59 \code{\link[stats]{lm}},
69 head(model.matrix(fit, type = "vlm"))
70 head(model.matrix(fit, type = "lm"))
77 nobs(fit, type = "lm") # n
78 nvar(fit, type = "lm") # p_LM
[all …]
/dports/math/R-cran-VGAM/VGAM/R/
H A Dmodel.matrix.vglm.q62 vlm2lm.model.matrix <-
102 } # vlm2lm.model.matrix
109 lm2vlm.model.matrix <-
141 kronecker(matrix(1, nrow.X.lm, 1), allB)
250 } # lm2vlm.model.matrix
373 n.lm <- nobs(object, type = "lm") # Number of rows of the LM matrix
716 if (length(rownames(model.matrix(model, type = "lm"))))
857 n.lm <- nobs(model, type = "lm")
858 X.lm <- model.matrix(model, type = "lm")
863 offset <- matrix(model@offset, n.lm, M)
[all …]
H A Dformula.vlm.q334 assign <- attr(model.matrix(model, type = "lm"), "assign")
391 x.lm <- model.matrix(object, type = "lm")
392 x.vlm <- model.matrix(object, type = "vlm")
399 "the model matrix; try vglm(..., x = TRUE) and rerun")
425 OOO <- matrix(0, n.lm, M)
426 Xm2 <- model.matrix(object, type = "lm2") # May be 0 x 0
435 Y <- as.matrix(Y)
571 OOO <- matrix(0, n.lm, M)
572 Xm2 <- model.matrix(object, type = "lm2") # May be 0 x 0
598 big.x.lm <- model.matrix(bigfit, type = "lm")
[all …]
H A Ddeviance.vlm.q109 lm = nobs(object, type = "lm") - nvar_vlm(object, type = "lm"),
128 nobs(object, type = "lm") * npred(object) -
146 allH <- matrix(unlist(constraints(object, type = "lm")), nrow = M)
155 X.lm.jay <- model.matrix(object, type = "lm", linpred.index = jay)
156 NumPars[jay] <- ncol(X.lm.jay)
198 coef(fit2, matrix = TRUE)
205 coef(fit3, matrix = TRUE)
209 constraints(fit2, type = "lm")
210 head(model.matrix(fit2, type = "term"))
211 head(model.matrix(fit2, type = "lm"))
[all …]
/dports/math/R-cran-memisc/memisc/man/
H A DwithVCov.Rd4 \alias{withVCov.lm}
7 \alias{summary.withVCov.lm}
20 \method{withVCov}{lm}(object, vcov, \dots)
23 \method{summary}{withVCov.lm}(object, \dots)
26 \item{object}{a fitted model object}
37 attributed to a fitted model object. Such a matrix may be produced by
41 \code{withVCov()} has no consequences on how a fitted model itself is
53 \code{withVCov} returns a slightly modified model object: It adds an
55 and modifies the class attribute. If e.g. the original model object has class
56 "lm" then the model object modified by \code{withVCov} has the class
[all …]
/dports/math/R-cran-SparseM/SparseM/man/
H A Dslm.Rd3 \title{Fit a linear regression model using sparse matrix algebra}
10 that it would be necessary to have a model.matrix function that
23 \code{lm()}, the response variable in the formula can be matrix valued.
50 default = \code{NULL} appearing in the model formula.
84 X <- model.matrix(lsq) #extract the design matrix
85 y <- model.response(lsq) # extract the rhs
86 X1 <- as.matrix(X)
88 lm.time <- system.time(lm(y~X1-1) -> lm.o) # very slow
94 cat("lm time =",lm.time,"\n")
96 sum.lm <- summary(lm.o)
[all …]
/dports/math/R-cran-car/car/man/
H A Dhccm.Rd5 % 2012-04-04: weighted lm now allowed. John
12 \alias{hccm.lm}
23 hccm(model, ...)
25 \method{hccm}{lm}(model, type=c("hc3", "hc0", "hc1", "hc2", "hc4"),
28 \method{hccm}{default}(model, ...)
32 \item{model}{a unweighted or weighted linear model, produced by \code{lm}.}
38 matrix that's returned.}
43 …The original White-corrected coefficient covariance matrix (\code{"hc0"}) for an unweighted model
47 corrected covariance matrix.
54 The heteroscedasticity-corrected covariance matrix for the model.
[all …]
/dports/devel/R-cran-gmodels/gmodels/man/
H A Dmake.contrasts.Rd7 Construct a user-specified contrast matrix.
13 \item{contr}{ vector or matrix specifying contrasts (one per row).}
14 \item{how.many}{ dimensions of the desired contrast matrix. This
26 \code{make.contrasts} returns a matrix with dimensions
30 This matrix can then be used as the argument to
32 functions (eg, \code{\link{lm}}).
48 reg <- lm(y ~ x)
66 summary(lm( y ~ x ) )
68 # or use contrasts.lm
69 reg <- lm(y ~ x)
[all …]
/dports/finance/R-cran-AER/AER/man/
H A Divreg.fit.Rd15 \item{x}{regressor matrix.}
17 \item{z}{instruments matrix.}
21 \item{\dots}{further arguments passed to \code{\link[stats:lmfit]{lm.fit}} or
22 \code{\link[stats]{lm.wfit}}, respectively.}
28 \code{hatvalues}, \code{predict}, \code{terms}, \code{model.matrix}, \code{bread},
31 \code{ivreg.fit} is a convenience interface to \code{\link{lm.fit}} (or \code{\link{lm.wfit}})
46 \item{rank}{the numeric rank of the fitted linear model.}
47 \item{df.residual}{residual degrees of freedom for fitted model.}
52 \seealso{\code{\link{ivreg}}, \code{\link[stats:lmfit]{lm.fit}}}
67 x <- model.matrix(fm, component = "regressors")
[all …]
/dports/math/R/R-4.1.2/src/library/stats/man/
H A Dvcov.Rd10 \alias{vcov.lm}
12 \alias{vcov.summary.lm}
18 Returns the variance-covariance matrix of the main parameters of
19 a fitted model object. The \dQuote{main} parameters of model
25 \S3method{vcov}{lm}(object, complete = TRUE, \dots)
38 full variance-covariance matrix should be returned also in case of
50 \item{vc}{a variance-covariance matrix, typically \dQuote{incomplete},
58 \code{summary.lm}, \code{summary.glm},
70 model fits encoded via NA coefficients: It augments a vcov--matrix
76 A matrix of the estimated covariances between the parameter estimates
[all …]
H A Dlm.Rd26 model to be fitted. The details of model specification are given
56 components of the fit (the model frame, the model matrix, the
64 of \code{\link{model.matrix.default}}.}
68 This should be \code{NULL} or a numeric vector or matrix of extents
77 Models for \code{lm} are specified symbolically. A typical model has
92 If \code{response} is a matrix a linear model is fitted separately by
93 least-squares to each column of the matrix.
95 See \code{\link{model.matrix}} for some further details. The terms in
152 \item{x}{if requested, the model matrix used.}
248 stopifnot(identical(lm(weight ~ group, method = "model.frame"),
[all …]
H A Dsummary.lm.Rd6 \name{summary.lm}
23 \item{correlation}{logical; if \code{TRUE}, the correlation matrix of
49 statistics of the fitted linear model given in \code{object}, using
55 \item{coefficients}{a \eqn{p \times 4}{p x 4} matrix with columns for
71 the model},
77 \item{cov.unscaled}{a \eqn{p \times p}{p x p} matrix of (unscaled)
79 \item{correlation}{the correlation matrix corresponding to the above
86 The model fitting function \code{\link{lm}}, \code{\link{summary}}.
88 Function \code{\link{coef}} will extract the matrix of coefficients
99 ## model with *aliased* coefficient:
[all …]
H A Dproj.Rd17 \method{proj}{lm}(object, onedf = FALSE, unweighted.scale = FALSE, \dots)
21 \alias{proj.lm}
25 \item{object}{An object of class \code{"lm"} or a class inheriting from
29 the columns of the model matrix. If \code{FALSE}, the single-column
30 projections are collapsed by terms of the model (as represented in
39 of the data onto the terms of a linear model. It is most frequently
47 A projection matrix or (for multi-stratum objects) a list of
59 The methods for \code{lm} and \code{aov} models add a column to the
61 onto the orthogonal complement of the model space).
65 model matrix corresponding to that term. In this case the matrix does
[all …]
/dports/math/libRmath/R-4.1.1/src/library/stats/man/
H A Dvcov.Rd10 \alias{vcov.lm}
12 \alias{vcov.summary.lm}
18 Returns the variance-covariance matrix of the main parameters of
19 a fitted model object. The \dQuote{main} parameters of model
25 \S3method{vcov}{lm}(object, complete = TRUE, \dots)
38 full variance-covariance matrix should be returned also in case of
50 \item{vc}{a variance-covariance matrix, typically \dQuote{incomplete},
58 \code{summary.lm}, \code{summary.glm},
70 model fits encoded via NA coefficients: It augments a vcov--matrix
76 A matrix of the estimated covariances between the parameter estimates
[all …]
H A Dlm.Rd26 model to be fitted. The details of model specification are given
56 components of the fit (the model frame, the model matrix, the
64 of \code{\link{model.matrix.default}}.}
68 This should be \code{NULL} or a numeric vector or matrix of extents
77 Models for \code{lm} are specified symbolically. A typical model has
92 If \code{response} is a matrix a linear model is fitted separately by
93 least-squares to each column of the matrix.
95 See \code{\link{model.matrix}} for some further details. The terms in
152 \item{x}{if requested, the model matrix used.}
248 stopifnot(identical(lm(weight ~ group, method = "model.frame"),
[all …]
H A Dsummary.lm.Rd6 \name{summary.lm}
23 \item{correlation}{logical; if \code{TRUE}, the correlation matrix of
49 statistics of the fitted linear model given in \code{object}, using
55 \item{coefficients}{a \eqn{p \times 4}{p x 4} matrix with columns for
71 the model},
77 \item{cov.unscaled}{a \eqn{p \times p}{p x p} matrix of (unscaled)
79 \item{correlation}{the correlation matrix corresponding to the above
86 The model fitting function \code{\link{lm}}, \code{\link{summary}}.
88 Function \code{\link{coef}} will extract the matrix of coefficients
99 ## model with *aliased* coefficient:
[all …]
H A Dproj.Rd17 \method{proj}{lm}(object, onedf = FALSE, unweighted.scale = FALSE, \dots)
21 \alias{proj.lm}
25 \item{object}{An object of class \code{"lm"} or a class inheriting from
29 the columns of the model matrix. If \code{FALSE}, the single-column
30 projections are collapsed by terms of the model (as represented in
39 of the data onto the terms of a linear model. It is most frequently
47 A projection matrix or (for multi-stratum objects) a list of
59 The methods for \code{lm} and \code{aov} models add a column to the
61 onto the orthogonal complement of the model space).
65 model matrix corresponding to that term. In this case the matrix does
[all …]
/dports/math/R-cran-car/car/
H A DNAMESPACE8 S3method(Confint, lm)
17 S3method(S, lm)
43 S3method(brief, matrix)
70 "AIC", "BIC", "expand.model.frame")
84 glm, glm.fit, hatvalues, is.empty.model, lm, lm.fit, loess, loess.control,
85 logLik, lowess, lsfit, make.link, median, model.frame, model.matrix,
86 model.matrix.default, model.response, model.weights, na.action, na.omit, na.pass,
92 # importFrom(VGAM, vcovvlm, coefvlm, formulavlm, model.matrixvlm)
206 # scatterplot.matrix,
232 S3method(some, matrix)
[all …]
/dports/finance/R-cran-plm/plm/vignettes/
H A DC_plmModelComponents.Rmd27 the model matrix `X` (with `model.matrix`),
52 Next, the `X` matrix is extracted using `model.matrix`. The usual way
54 `terms` object and a `data.frame` created with `model.frame`. `lm` uses
56 `data.frame` created with `model.frame`. Therefore, `model.matrix`
81 Xols <- model.matrix(mfols)
83 coef(lm.fit(Xols, y))
120 X1 <- model.matrix(mfSB1, rhs = 1)
121 W1 <- model.matrix(mfSB1, rhs = 2)
149 X2 <- model.matrix(mfSB2, rhs = 1)
150 W2 <- model.matrix(mfSB2, rhs = 2)
[all …]
/dports/finance/R-cran-plm/plm/inst/doc/
H A DC_plmModelComponents.Rmd27 the model matrix `X` (with `model.matrix`),
52 Next, the `X` matrix is extracted using `model.matrix`. The usual way
54 `terms` object and a `data.frame` created with `model.frame`. `lm` uses
56 `data.frame` created with `model.frame`. Therefore, `model.matrix`
81 Xols <- model.matrix(mfols)
83 coef(lm.fit(Xols, y))
120 X1 <- model.matrix(mfSB1, rhs = 1)
121 W1 <- model.matrix(mfSB1, rhs = 2)
149 X2 <- model.matrix(mfSB2, rhs = 1)
150 W2 <- model.matrix(mfSB2, rhs = 2)
[all …]
/dports/math/R-cran-MatrixModels/MatrixModels/man/
H A Dlm.fit.sparse.Rd1 \name{lm.fit.sparse}
2 \alias{lm.fit.sparse}
11 lm.fit.sparse(x, y, w = NULL, offset = NULL,
17 \item{x}{\emph{sparse} design matrix of dimension \code{n * p}, i.e.,
20 \code{\link{sparse.model.matrix}}.}
21 \item{y}{vector of observations of length \code{n}, or a matrix with
38 \code{FALSE}, a singular model is an error.}
59 \code{\link{sparse.model.matrix}} from the \pkg{Matrix} package;
61 \code{\link{lm.fit}()}.
83 X <- Matrix::sparse.model.matrix( ~ (a+b+c+d)^2 + c*x, data = dM)
[all …]
/dports/math/apache-commons-math/commons-math3-3.6.1-src/src/test/R/
H A DmultipleOLSRegressionTestCases38 errors <- as.vector(as.matrix(coefficients(summary(model)))[,2])
90 model <- lm(y ~ x1 + x2 + x3 + x4 + x5)
110 design <- matrix(c(60323,83.0,234289,2356,1590,107608,1947,
134 model <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6)
136 estimates <- matrix(c(-3482258.63459582,890420.383607373,
160 model <- lm(y ~ 0 + x1 + x2 + x3 + x4 + x5 + x6)
186 design <- matrix(c(80.2,17.0,15,12,9.96,
241 model <- lm(y ~ x1 + x2 + x3 + x4)
243 estimates <- matrix(c(91.05542390271397,6.94881329475087,
278 model <- lm(y ~ 0 + x1 + x2 + x3 + x4)
[all …]
/dports/math/R-cran-robustbase/robustbase/man/
H A DsplitFrame.Rd7 Splits the design matrix into categorical and continuous
12 splitFrame(mf, x = model.matrix(mt, mf),
16 \item{mf}{model frame (as returned by \code{\link{model.frame}}).}
17 \item{x}{(optional) design matrix, defaulting to the derived
18 \code{\link{model.matrix}}.}
45 categorical in the original design matrix}
65 fm1 <- lm(Y ~ Region + X1 + X2 + X3, education)
66 fmC <- lm(Y ~ Region + X1 + X2 + X3, educaCh )
68 splC <- splitFrame(fmC$model)
72 fm2 <- lm(Y ~ Region:X1:X2 + X1*X2, education)
[all …]

12345678910>>...55