Home
last modified time | relevance | path

Searched refs:no_bias (Results 1 – 25 of 236) sorted by relevance

12345678910

/dports/misc/mxnet/incubator-mxnet-1.9.0/example/speech_recognition/
H A Dstt_layer_fc.py28 no_bias=False, argument
33 net = mx.sym.FullyConnected(data=net, num_hidden=num_hidden, no_bias=no_bias, name=name)
36 if no_bias:
37 net = mx.sym.FullyConnected(data=net, num_hidden=num_hidden, no_bias=no_bias, name=name)
39 …net = mx.sym.FullyConnected(data=net, num_hidden=num_hidden, bias=bias, no_bias=no_bias, name=name)
42 …net = mx.sym.FullyConnected(data=net, num_hidden=num_hidden, weight=weight, no_bias=no_bias, name=…
45 if no_bias:
46 …= mx.sym.FullyConnected(data=net, num_hidden=num_hidden, weight=weight, no_bias=no_bias, name=name)
48 …llyConnected(data=net, num_hidden=num_hidden, weight=weight, bias=bias, no_bias=no_bias, name=name)
102 no_bias=is_batchnorm,
H A Dstt_layer_conv.py28 no_bias=False, argument
34 …Convolution(data=net, num_filter=channels, kernel=filter_dimension, stride=stride, no_bias=no_bias,
38 no_bias=no_bias, name=name)
41 no_bias=no_bias, name=name)
44 bias=bias, no_bias=no_bias, name=name)
/dports/misc/py-mxnet/incubator-mxnet-1.9.0/example/speech_recognition/
H A Dstt_layer_fc.py28 no_bias=False, argument
33 net = mx.sym.FullyConnected(data=net, num_hidden=num_hidden, no_bias=no_bias, name=name)
36 if no_bias:
37 net = mx.sym.FullyConnected(data=net, num_hidden=num_hidden, no_bias=no_bias, name=name)
39 …net = mx.sym.FullyConnected(data=net, num_hidden=num_hidden, bias=bias, no_bias=no_bias, name=name)
42 …net = mx.sym.FullyConnected(data=net, num_hidden=num_hidden, weight=weight, no_bias=no_bias, name=…
45 if no_bias:
46 …= mx.sym.FullyConnected(data=net, num_hidden=num_hidden, weight=weight, no_bias=no_bias, name=name)
48 …llyConnected(data=net, num_hidden=num_hidden, weight=weight, bias=bias, no_bias=no_bias, name=name)
102 no_bias=is_batchnorm,
H A Dstt_layer_conv.py28 no_bias=False, argument
34 …Convolution(data=net, num_filter=channels, kernel=filter_dimension, stride=stride, no_bias=no_bias,
38 no_bias=no_bias, name=name)
41 no_bias=no_bias, name=name)
44 bias=bias, no_bias=no_bias, name=name)
/dports/misc/mxnet/incubator-mxnet-1.9.0/example/neural-style/
H A Dmodel_vgg19.py28 …v1_1', data=data , num_filter=64, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
30 …2', data=relu1_1 , num_filter=64, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
33 …_1', data=pool1 , num_filter=128, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
35 …', data=relu2_1 , num_filter=128, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
38 …_1', data=pool2 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
40 …', data=relu3_1 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
42 …', data=relu3_2 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
44 …', data=relu3_3 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
47 …_1', data=pool3 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
49 …', data=relu4_1 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
[all …]
/dports/misc/py-mxnet/incubator-mxnet-1.9.0/example/neural-style/
H A Dmodel_vgg19.py28 …v1_1', data=data , num_filter=64, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
30 …2', data=relu1_1 , num_filter=64, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
33 …_1', data=pool1 , num_filter=128, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
35 …', data=relu2_1 , num_filter=128, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
38 …_1', data=pool2 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
40 …', data=relu3_1 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
42 …', data=relu3_2 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
44 …', data=relu3_3 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
47 …_1', data=pool3 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
49 …', data=relu4_1 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), no_bias=False, workspace=…
[all …]
/dports/misc/mxnet/incubator-mxnet-1.9.0/example/gan/CGAN_mnist_R/
H A DCGAN_train.R44 no_bias <- T globalVar
57 4, no_bias = T) nameattr
62 2), pad = c(1, 1), num_filter = gen_features * 2, no_bias = no_bias) nameattr
67 2), pad = c(1, 1), num_filter = gen_features, no_bias = no_bias) nameattr
72 2), pad = c(1, 1), num_filter = image_depth, no_bias = no_bias) nameattr
89 1), pad = c(0, 0), num_filter = 24, no_bias = no_bias) nameattr
96 pad = c(0, 0), num_filter = 32, no_bias = no_bias) nameattr
101 pad = c(0, 0), num_filter = 64, no_bias = no_bias) nameattr
106 pad = c(0, 0), num_filter = 64, no_bias = no_bias) nameattr
115 dfc <- mx.symbol.FullyConnected(data = dflat, name = "dfc", num_hidden = 1, no_bias = F)
/dports/misc/py-mxnet/incubator-mxnet-1.9.0/example/gan/CGAN_mnist_R/
H A DCGAN_train.R44 no_bias <- T globalVar
57 4, no_bias = T) nameattr
62 2), pad = c(1, 1), num_filter = gen_features * 2, no_bias = no_bias) nameattr
67 2), pad = c(1, 1), num_filter = gen_features, no_bias = no_bias) nameattr
72 2), pad = c(1, 1), num_filter = image_depth, no_bias = no_bias) nameattr
89 1), pad = c(0, 0), num_filter = 24, no_bias = no_bias) nameattr
96 pad = c(0, 0), num_filter = 32, no_bias = no_bias) nameattr
101 pad = c(0, 0), num_filter = 64, no_bias = no_bias) nameattr
106 pad = c(0, 0), num_filter = 64, no_bias = no_bias) nameattr
115 dfc <- mx.symbol.FullyConnected(data = dflat, name = "dfc", num_hidden = 1, no_bias = F)
/dports/misc/mxnet/incubator-mxnet-1.9.0/example/neural-style/end_to_end/
H A Dgen_v4.py26 ….sym.Convolution(data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=False)
33 …sym.Deconvolution(data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=True)
44 conv1_1 = mx.sym.Convolution(data, num_filter=48, kernel=(5, 5), pad=(2, 2), no_bias=False)
48 conv2_1 = mx.sym.Convolution(conv1_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=False)
52 conv3_1 = mx.sym.Convolution(conv2_1, num_filter=64, kernel=(3, 3), pad=(1, 1), no_bias=False)
56 conv4_1 = mx.sym.Convolution(conv3_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=False)
60 conv5_1 = mx.sym.Convolution(conv4_1, num_filter=48, kernel=(5, 5), pad=(2, 2), no_bias=False)
64 conv6_1 = mx.sym.Convolution(conv5_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=True)
68 out = mx.sym.Convolution(conv6_1, num_filter=3, kernel=(3, 3), pad=(1, 1), no_bias=True)
/dports/misc/py-mxnet/incubator-mxnet-1.9.0/example/neural-style/end_to_end/
H A Dgen_v4.py26 ….sym.Convolution(data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=False)
33 …sym.Deconvolution(data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=True)
44 conv1_1 = mx.sym.Convolution(data, num_filter=48, kernel=(5, 5), pad=(2, 2), no_bias=False)
48 conv2_1 = mx.sym.Convolution(conv1_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=False)
52 conv3_1 = mx.sym.Convolution(conv2_1, num_filter=64, kernel=(3, 3), pad=(1, 1), no_bias=False)
56 conv4_1 = mx.sym.Convolution(conv3_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=False)
60 conv5_1 = mx.sym.Convolution(conv4_1, num_filter=48, kernel=(5, 5), pad=(2, 2), no_bias=False)
64 conv6_1 = mx.sym.Convolution(conv5_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=True)
68 out = mx.sym.Convolution(conv6_1, num_filter=3, kernel=(3, 3), pad=(1, 1), no_bias=True)
/dports/misc/py-mxnet/incubator-mxnet-1.9.0/tests/python/mkl/
H A Dtest_subgraph.py330 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
338 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
347 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
363 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
373 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
382 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
394 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
406 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
668 no_bias=no_bias, flatten=flatten)
678 no_bias=no_bias, flatten=flatten)
[all …]
/dports/misc/mxnet/incubator-mxnet-1.9.0/tests/python/mkl/
H A Dtest_subgraph.py330 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
338 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
347 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
363 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
373 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
382 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
394 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
406 kernel=(3, 3), stride=(1, 1), no_bias=no_bias)
668 no_bias=no_bias, flatten=flatten)
678 no_bias=no_bias, flatten=flatten)
[all …]
/dports/misc/py-gluoncv/gluon-cv-0.9.0/gluoncv/nn/
H A Dfeature.py143 y, num_filter=num_trans, kernel=(1, 1), no_bias=use_bn,
150 no_bias=use_bn, name='expand_conv{}'.format(i), attr={'__init__': weight_init})
200 use_elewadd=True, use_p6=False, p6_conv=True, no_bias=True, pretrained=False, argument
220 stride=(1, 1), no_bias=no_bias,
231 stride=(2, 2), no_bias=no_bias,
242 stride=(1, 1), no_bias=no_bias,
264 no_bias=no_bias, name='P{}_conv1'.format(num_stages - i),
/dports/misc/py-mxnet/incubator-mxnet-1.9.0/src/operator/quantization/
H A Dquantized_conv.cc39 CHECK_EQ(in_shape->size(), param.no_bias? 6U : 9U); in QuantizedConvShape()
124 const int start = param.no_bias? 2 : 3; in QuantizedConvShape()
125 const int end = param.no_bias? 6 : 9; in QuantizedConvShape()
129 if (!param.no_bias) { in QuantizedConvShape()
140 CHECK_EQ(in_type->size(), param.no_bias? 6U : 9U); in QuantizedConvType()
146 if (!param.no_bias) { in QuantizedConvType()
149 const size_t start = param.no_bias? 2 : 3; in QuantizedConvType()
150 const size_t end = param.no_bias? 6 : 9; in QuantizedConvType()
191 return param.no_bias? 6 : 9; in __anonc4f6c4ae0202()
198 if (param.no_bias) { in __anonc4f6c4ae0302()
/dports/misc/mxnet/incubator-mxnet-1.9.0/src/operator/quantization/
H A Dquantized_conv.cc39 CHECK_EQ(in_shape->size(), param.no_bias? 6U : 9U); in QuantizedConvShape()
124 const int start = param.no_bias? 2 : 3; in QuantizedConvShape()
125 const int end = param.no_bias? 6 : 9; in QuantizedConvShape()
129 if (!param.no_bias) { in QuantizedConvShape()
140 CHECK_EQ(in_type->size(), param.no_bias? 6U : 9U); in QuantizedConvType()
146 if (!param.no_bias) { in QuantizedConvType()
149 const size_t start = param.no_bias? 2 : 3; in QuantizedConvType()
150 const size_t end = param.no_bias? 6 : 9; in QuantizedConvType()
191 return param.no_bias? 6 : 9; in __anonada5ab580202()
198 if (param.no_bias) { in __anonada5ab580302()
/dports/misc/mxnet/incubator-mxnet-1.9.0/example/vae-gan/
H A Dvaegan_mxnet.py63 …volution(data, name='enc1', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef, no_bias=no_bias)
67 …ution(eact1, name='enc2', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*2, no_bias=no_bias)
71 …ution(eact2, name='enc3', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*4, no_bias=no_bias)
75 …ution(eact3, name='enc4', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*8, no_bias=no_bias)
97 …and, name='gen1', kernel=(5,5), stride=(2,2),target_shape=(2,2), num_filter=ngf*8, no_bias=no_bias)
101 …ct1, name='gen2', kernel=(5,5), stride=(2,2),target_shape=(4,4), num_filter=ngf*4, no_bias=no_bias)
113 …ct4, name='gen5', kernel=(5,5), stride=(2,2), target_shape=(32,32), num_filter=nc, no_bias=no_bias)
126 …onvolution(data, name='d1', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf, no_bias=no_bias)
129 …olution(dact1, name='d2', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*2, no_bias=no_bias)
133 …olution(dact2, name='d3', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*4, no_bias=no_bias)
[all …]
/dports/misc/py-mxnet/incubator-mxnet-1.9.0/example/vae-gan/
H A Dvaegan_mxnet.py63 …volution(data, name='enc1', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef, no_bias=no_bias)
67 …ution(eact1, name='enc2', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*2, no_bias=no_bias)
71 …ution(eact2, name='enc3', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*4, no_bias=no_bias)
75 …ution(eact3, name='enc4', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=nef*8, no_bias=no_bias)
97 …and, name='gen1', kernel=(5,5), stride=(2,2),target_shape=(2,2), num_filter=ngf*8, no_bias=no_bias)
101 …ct1, name='gen2', kernel=(5,5), stride=(2,2),target_shape=(4,4), num_filter=ngf*4, no_bias=no_bias)
113 …ct4, name='gen5', kernel=(5,5), stride=(2,2), target_shape=(32,32), num_filter=nc, no_bias=no_bias)
126 …onvolution(data, name='d1', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf, no_bias=no_bias)
129 …olution(dact1, name='d2', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*2, no_bias=no_bias)
133 …olution(dact2, name='d3', kernel=(5,5), stride=(2,2), pad=(2,2), num_filter=ndf*4, no_bias=no_bias)
[all …]
/dports/misc/mxnet/incubator-mxnet-1.9.0/example/image-classification/
H A Dsymbol_resnet-v2.R33 no_bias=TRUE, workspace=workspace,
40 no_bias=TRUE, workspace=workspace,
46 stride=c(1,1), pad=c(0,0), no_bias=TRUE, nameattr
52 kernel=c(1,1), stride=stride, no_bias=TRUE, nameattr
61 stride=stride, pad=c(1,1), no_bias=TRUE, nameattr
68 stride=c(1,1), pad=c(1,1), no_bias=TRUE, nameattr
74 stride=stride, no_bias=TRUE,
92 no_bias=TRUE, name="conv0", workspace=workspace)
/dports/misc/py-mxnet/incubator-mxnet-1.9.0/example/image-classification/
H A Dsymbol_resnet-v2.R33 no_bias=TRUE, workspace=workspace,
40 no_bias=TRUE, workspace=workspace,
46 stride=c(1,1), pad=c(0,0), no_bias=TRUE, nameattr
52 kernel=c(1,1), stride=stride, no_bias=TRUE, nameattr
61 stride=stride, pad=c(1,1), no_bias=TRUE, nameattr
68 stride=c(1,1), pad=c(1,1), no_bias=TRUE, nameattr
74 stride=stride, no_bias=TRUE,
92 no_bias=TRUE, name="conv0", workspace=workspace)
/dports/misc/tvm/incubator-tvm-0.6.1/tests/python/frontend/mxnet/model_zoo/
H A Dresnet.py52 no_bias=True, workspace=workspace, name=name + '_conv1')
56 no_bias=True, workspace=workspace, name=name + '_conv2')
59 ….Convolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True,
64 …t = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
73 no_bias=True, workspace=workspace, name=name + '_conv1')
77 no_bias=True, workspace=workspace, name=name + '_conv2')
81 …t = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
119 no_bias=True, name="conv0", workspace=workspace)
122 no_bias=True, name="conv0", workspace=workspace)
/dports/misc/tvm/incubator-tvm-0.6.1/nnvm/tests/python/frontend/mxnet/model_zoo/
H A Dresnet.py52 no_bias=True, workspace=workspace, name=name + '_conv1')
56 no_bias=True, workspace=workspace, name=name + '_conv2')
59 ….Convolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True,
64 …t = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
73 no_bias=True, workspace=workspace, name=name + '_conv1')
77 no_bias=True, workspace=workspace, name=name + '_conv2')
81 …t = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
119 no_bias=True, name="conv0", workspace=workspace)
122 no_bias=True, name="conv0", workspace=workspace)
/dports/misc/mxnet/incubator-mxnet-1.9.0/3rdparty/tvm/tests/python/frontend/mxnet/model_zoo/
H A Dresnet.py70 no_bias=True,
84 no_bias=True,
98 no_bias=True,
110 no_bias=True,
128 no_bias=True,
142 no_bias=True,
154 no_bias=True,
211 no_bias=True,
222 no_bias=True,
/dports/misc/mxnet/incubator-mxnet-1.9.0/example/ssd/symbol/
H A Dresnet.py52 no_bias=True, workspace=workspace, name=name + '_conv1')
56 no_bias=True, workspace=workspace, name=name + '_conv2')
59 ….Convolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True,
64 …t = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
73 no_bias=True, workspace=workspace, name=name + '_conv1')
77 no_bias=True, workspace=workspace, name=name + '_conv2')
81 …t = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
112 no_bias=True, name="conv0", workspace=workspace)
115 no_bias=True, name="conv0", workspace=workspace)
/dports/misc/mxnet/incubator-mxnet-1.9.0/example/image-classification/symbols/
H A Dresnet-v1.py50 no_bias=True, workspace=workspace, name=name + '_conv1')
54 no_bias=True, workspace=workspace, name=name + '_conv2')
57 ….Convolution(data=act2, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True,
64 …c = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
72 no_bias=True, workspace=workspace, name=name + '_conv1')
76 no_bias=True, workspace=workspace, name=name + '_conv2')
82 …c = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
119 no_bias=True, name="conv0", workspace=workspace)
124 no_bias=True, name="conv0", workspace=workspace)
H A Dresnet.py53 no_bias=True, workspace=workspace, name=name + '_conv1')
57 no_bias=True, workspace=workspace, name=name + '_conv2')
60 ….Convolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True,
65 …t = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
74 no_bias=True, workspace=workspace, name=name + '_conv1')
78 no_bias=True, workspace=workspace, name=name + '_conv2')
82 …t = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
119 no_bias=True, name="conv0", workspace=workspace)
122 no_bias=True, name="conv0", workspace=workspace)

12345678910