Searched refs:p_dynamic_callables (Results 1 – 3 of 3) sorted by relevance
/dports/science/py-GPy/GPy-1.10.0/GPy/models/ |
H A D | state_space_main.py | 1202 cls._kalman_prediction_step_SVD(k, prev_mean ,P_upd, p_dynamic_callables, 1207 cls._kalman_prediction_step(k, prev_mean ,P[k,:,:], p_dynamic_callables, 1834 p_P_prev_step, p_dynamic_callables): argument 1870 A = p_dynamic_callables.Ak(k,p_m,p_P) # state transition matrix (or Jacobian) 1893 def rts_smoother(cls,state_dim, p_dynamic_callables, filter_means, argument 1949 filter_covars[k,:,:], p_dynamic_callables, 3055 cls._kalman_prediction_step_SVD(k, prev_mean ,P_upd, p_dynamic_callables, 3060 cls._kalman_prediction_step(k, prev_mean ,P[k,:,:], p_dynamic_callables, 3121 p_dynamic_callables=None, X=None, F=None,L=None,Qc=None): argument 3162 if p_dynamic_callables is None: # make this object from scratch [all …]
|
H A D | state_space_cython.pyx | 548 Dynamic_Callables_Cython p_dynamic_callables, argument 618 …cdef np.ndarray[DTYPE_t, ndim=2] A = p_dynamic_callables.Ak(k,p_m,Prev_cov) # state transition mat… 619 …cdef np.ndarray[DTYPE_t, ndim=2] Q = p_dynamic_callables.Qk(k) # state noise matrx. This is necess… 620 cdef np.ndarray[DTYPE_t, ndim=2] Q_sr = p_dynamic_callables.Q_srk(k) 622 cdef np.ndarray[DTYPE_t, ndim=2] m_pred = p_dynamic_callables.f_a(k, p_m, A) # predicted mean 655 dA_all_params = p_dynamic_callables.dAk(k) # derivatives of A wrt parameters 656 dQ_all_params = p_dynamic_callables.dQk(k) # derivatives of Q wrt parameters 912 … _cont_discr_kalman_filter_raw_Cython(int state_dim, Dynamic_Callables_Cython p_dynamic_callables, argument 967 _kalman_prediction_step_SVD_Cython(k, prev_mean ,P_upd, p_dynamic_callables, 1001 return (M, P, log_likelihood, grad_log_likelihood, p_dynamic_callables.reset(False))
|
H A D | state_space_model.py | 257 p_dynamic_callables=SmootherMatrObject, X=X, F=F,L=L,Qc=Qc)
|