xref: /linux/include/linux/mmzone.h (revision 82f0b6f0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
is_migrate_movable(int mt)87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
migratetype_is_mergeable(int mt)98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 	NR_ZONE_ACTIVE_ANON,
144 	NR_ZONE_INACTIVE_FILE,
145 	NR_ZONE_ACTIVE_FILE,
146 	NR_ZONE_UNEVICTABLE,
147 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
148 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
149 	/* Second 128 byte cacheline */
150 	NR_BOUNCE,
151 #if IS_ENABLED(CONFIG_ZSMALLOC)
152 	NR_ZSPAGES,		/* allocated in zsmalloc */
153 #endif
154 	NR_FREE_CMA_PAGES,
155 #ifdef CONFIG_UNACCEPTED_MEMORY
156 	NR_UNACCEPTED,
157 #endif
158 	NR_VM_ZONE_STAT_ITEMS };
159 
160 enum node_stat_item {
161 	NR_LRU_BASE,
162 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
164 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
165 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
166 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
167 	NR_SLAB_RECLAIMABLE_B,
168 	NR_SLAB_UNRECLAIMABLE_B,
169 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
170 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
171 	WORKINGSET_NODES,
172 	WORKINGSET_REFAULT_BASE,
173 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_FILE,
175 	WORKINGSET_ACTIVATE_BASE,
176 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_FILE,
178 	WORKINGSET_RESTORE_BASE,
179 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_FILE,
181 	WORKINGSET_NODERECLAIM,
182 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
183 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
184 			   only modified from process context */
185 	NR_FILE_PAGES,
186 	NR_FILE_DIRTY,
187 	NR_WRITEBACK,
188 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
189 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
190 	NR_SHMEM_THPS,
191 	NR_SHMEM_PMDMAPPED,
192 	NR_FILE_THPS,
193 	NR_FILE_PMDMAPPED,
194 	NR_ANON_THPS,
195 	NR_VMSCAN_WRITE,
196 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
197 	NR_DIRTIED,		/* page dirtyings since bootup */
198 	NR_WRITTEN,		/* page writings since bootup */
199 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
200 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
201 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
202 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
203 	NR_KERNEL_STACK_KB,	/* measured in KiB */
204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205 	NR_KERNEL_SCS_KB,	/* measured in KiB */
206 #endif
207 	NR_PAGETABLE,		/* used for pagetables */
208 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
209 #ifdef CONFIG_IOMMU_SUPPORT
210 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
211 #endif
212 #ifdef CONFIG_SWAP
213 	NR_SWAPCACHE,
214 #endif
215 #ifdef CONFIG_NUMA_BALANCING
216 	PGPROMOTE_SUCCESS,	/* promote successfully */
217 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
218 #endif
219 	/* PGDEMOTE_*: pages demoted */
220 	PGDEMOTE_KSWAPD,
221 	PGDEMOTE_DIRECT,
222 	PGDEMOTE_KHUGEPAGED,
223 	NR_MEMMAP, /* page metadata allocated through buddy allocator */
224 	NR_MEMMAP_BOOT, /* page metadata allocated through boot allocator */
225 	NR_VM_NODE_STAT_ITEMS
226 };
227 
228 /*
229  * Returns true if the item should be printed in THPs (/proc/vmstat
230  * currently prints number of anon, file and shmem THPs. But the item
231  * is charged in pages).
232  */
vmstat_item_print_in_thp(enum node_stat_item item)233 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
234 {
235 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
236 		return false;
237 
238 	return item == NR_ANON_THPS ||
239 	       item == NR_FILE_THPS ||
240 	       item == NR_SHMEM_THPS ||
241 	       item == NR_SHMEM_PMDMAPPED ||
242 	       item == NR_FILE_PMDMAPPED;
243 }
244 
245 /*
246  * Returns true if the value is measured in bytes (most vmstat values are
247  * measured in pages). This defines the API part, the internal representation
248  * might be different.
249  */
vmstat_item_in_bytes(int idx)250 static __always_inline bool vmstat_item_in_bytes(int idx)
251 {
252 	/*
253 	 * Global and per-node slab counters track slab pages.
254 	 * It's expected that changes are multiples of PAGE_SIZE.
255 	 * Internally values are stored in pages.
256 	 *
257 	 * Per-memcg and per-lruvec counters track memory, consumed
258 	 * by individual slab objects. These counters are actually
259 	 * byte-precise.
260 	 */
261 	return (idx == NR_SLAB_RECLAIMABLE_B ||
262 		idx == NR_SLAB_UNRECLAIMABLE_B);
263 }
264 
265 /*
266  * We do arithmetic on the LRU lists in various places in the code,
267  * so it is important to keep the active lists LRU_ACTIVE higher in
268  * the array than the corresponding inactive lists, and to keep
269  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
270  *
271  * This has to be kept in sync with the statistics in zone_stat_item
272  * above and the descriptions in vmstat_text in mm/vmstat.c
273  */
274 #define LRU_BASE 0
275 #define LRU_ACTIVE 1
276 #define LRU_FILE 2
277 
278 enum lru_list {
279 	LRU_INACTIVE_ANON = LRU_BASE,
280 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
281 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
282 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
283 	LRU_UNEVICTABLE,
284 	NR_LRU_LISTS
285 };
286 
287 enum vmscan_throttle_state {
288 	VMSCAN_THROTTLE_WRITEBACK,
289 	VMSCAN_THROTTLE_ISOLATED,
290 	VMSCAN_THROTTLE_NOPROGRESS,
291 	VMSCAN_THROTTLE_CONGESTED,
292 	NR_VMSCAN_THROTTLE,
293 };
294 
295 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
296 
297 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
298 
is_file_lru(enum lru_list lru)299 static inline bool is_file_lru(enum lru_list lru)
300 {
301 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
302 }
303 
is_active_lru(enum lru_list lru)304 static inline bool is_active_lru(enum lru_list lru)
305 {
306 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
307 }
308 
309 #define WORKINGSET_ANON 0
310 #define WORKINGSET_FILE 1
311 #define ANON_AND_FILE 2
312 
313 enum lruvec_flags {
314 	/*
315 	 * An lruvec has many dirty pages backed by a congested BDI:
316 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
317 	 *    It can be cleared by cgroup reclaim or kswapd.
318 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
319 	 *    It can only be cleared by kswapd.
320 	 *
321 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
322 	 * reclaim, but not vice versa. This only applies to the root cgroup.
323 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
324 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
325 	 * by kswapd).
326 	 */
327 	LRUVEC_CGROUP_CONGESTED,
328 	LRUVEC_NODE_CONGESTED,
329 };
330 
331 #endif /* !__GENERATING_BOUNDS_H */
332 
333 /*
334  * Evictable pages are divided into multiple generations. The youngest and the
335  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
336  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
337  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
338  * corresponding generation. The gen counter in folio->flags stores gen+1 while
339  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
340  *
341  * A page is added to the youngest generation on faulting. The aging needs to
342  * check the accessed bit at least twice before handing this page over to the
343  * eviction. The first check takes care of the accessed bit set on the initial
344  * fault; the second check makes sure this page hasn't been used since then.
345  * This process, AKA second chance, requires a minimum of two generations,
346  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
347  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
348  * rest of generations, if they exist, are considered inactive. See
349  * lru_gen_is_active().
350  *
351  * PG_active is always cleared while a page is on one of lrugen->folios[] so
352  * that the aging needs not to worry about it. And it's set again when a page
353  * considered active is isolated for non-reclaiming purposes, e.g., migration.
354  * See lru_gen_add_folio() and lru_gen_del_folio().
355  *
356  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
357  * number of categories of the active/inactive LRU when keeping track of
358  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
359  * in folio->flags.
360  */
361 #define MIN_NR_GENS		2U
362 #define MAX_NR_GENS		4U
363 
364 /*
365  * Each generation is divided into multiple tiers. A page accessed N times
366  * through file descriptors is in tier order_base_2(N). A page in the first tier
367  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
368  * tables or read ahead. A page in any other tier (N>1) is marked by
369  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
370  * supported without using additional bits in folio->flags.
371  *
372  * In contrast to moving across generations which requires the LRU lock, moving
373  * across tiers only involves atomic operations on folio->flags and therefore
374  * has a negligible cost in the buffered access path. In the eviction path,
375  * comparisons of refaulted/(evicted+protected) from the first tier and the
376  * rest infer whether pages accessed multiple times through file descriptors
377  * are statistically hot and thus worth protecting.
378  *
379  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
380  * number of categories of the active/inactive LRU when keeping track of
381  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
382  * folio->flags.
383  */
384 #define MAX_NR_TIERS		4U
385 
386 #ifndef __GENERATING_BOUNDS_H
387 
388 struct lruvec;
389 struct page_vma_mapped_walk;
390 
391 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
392 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
393 
394 #ifdef CONFIG_LRU_GEN
395 
396 enum {
397 	LRU_GEN_ANON,
398 	LRU_GEN_FILE,
399 };
400 
401 enum {
402 	LRU_GEN_CORE,
403 	LRU_GEN_MM_WALK,
404 	LRU_GEN_NONLEAF_YOUNG,
405 	NR_LRU_GEN_CAPS
406 };
407 
408 #define MIN_LRU_BATCH		BITS_PER_LONG
409 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
410 
411 /* whether to keep historical stats from evicted generations */
412 #ifdef CONFIG_LRU_GEN_STATS
413 #define NR_HIST_GENS		MAX_NR_GENS
414 #else
415 #define NR_HIST_GENS		1U
416 #endif
417 
418 /*
419  * The youngest generation number is stored in max_seq for both anon and file
420  * types as they are aged on an equal footing. The oldest generation numbers are
421  * stored in min_seq[] separately for anon and file types as clean file pages
422  * can be evicted regardless of swap constraints.
423  *
424  * Normally anon and file min_seq are in sync. But if swapping is constrained,
425  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
426  * min_seq behind.
427  *
428  * The number of pages in each generation is eventually consistent and therefore
429  * can be transiently negative when reset_batch_size() is pending.
430  */
431 struct lru_gen_folio {
432 	/* the aging increments the youngest generation number */
433 	unsigned long max_seq;
434 	/* the eviction increments the oldest generation numbers */
435 	unsigned long min_seq[ANON_AND_FILE];
436 	/* the birth time of each generation in jiffies */
437 	unsigned long timestamps[MAX_NR_GENS];
438 	/* the multi-gen LRU lists, lazily sorted on eviction */
439 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
440 	/* the multi-gen LRU sizes, eventually consistent */
441 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
442 	/* the exponential moving average of refaulted */
443 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
444 	/* the exponential moving average of evicted+protected */
445 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
446 	/* the first tier doesn't need protection, hence the minus one */
447 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
448 	/* can be modified without holding the LRU lock */
449 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
450 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
451 	/* whether the multi-gen LRU is enabled */
452 	bool enabled;
453 	/* the memcg generation this lru_gen_folio belongs to */
454 	u8 gen;
455 	/* the list segment this lru_gen_folio belongs to */
456 	u8 seg;
457 	/* per-node lru_gen_folio list for global reclaim */
458 	struct hlist_nulls_node list;
459 };
460 
461 enum {
462 	MM_LEAF_TOTAL,		/* total leaf entries */
463 	MM_LEAF_OLD,		/* old leaf entries */
464 	MM_LEAF_YOUNG,		/* young leaf entries */
465 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
466 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
467 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
468 	NR_MM_STATS
469 };
470 
471 /* double-buffering Bloom filters */
472 #define NR_BLOOM_FILTERS	2
473 
474 struct lru_gen_mm_state {
475 	/* synced with max_seq after each iteration */
476 	unsigned long seq;
477 	/* where the current iteration continues after */
478 	struct list_head *head;
479 	/* where the last iteration ended before */
480 	struct list_head *tail;
481 	/* Bloom filters flip after each iteration */
482 	unsigned long *filters[NR_BLOOM_FILTERS];
483 	/* the mm stats for debugging */
484 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
485 };
486 
487 struct lru_gen_mm_walk {
488 	/* the lruvec under reclaim */
489 	struct lruvec *lruvec;
490 	/* max_seq from lru_gen_folio: can be out of date */
491 	unsigned long seq;
492 	/* the next address within an mm to scan */
493 	unsigned long next_addr;
494 	/* to batch promoted pages */
495 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
496 	/* to batch the mm stats */
497 	int mm_stats[NR_MM_STATS];
498 	/* total batched items */
499 	int batched;
500 	bool can_swap;
501 	bool force_scan;
502 };
503 
504 /*
505  * For each node, memcgs are divided into two generations: the old and the
506  * young. For each generation, memcgs are randomly sharded into multiple bins
507  * to improve scalability. For each bin, the hlist_nulls is virtually divided
508  * into three segments: the head, the tail and the default.
509  *
510  * An onlining memcg is added to the tail of a random bin in the old generation.
511  * The eviction starts at the head of a random bin in the old generation. The
512  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
513  * the old generation, is incremented when all its bins become empty.
514  *
515  * There are four operations:
516  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
517  *    current generation (old or young) and updates its "seg" to "head";
518  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
519  *    current generation (old or young) and updates its "seg" to "tail";
520  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
521  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
522  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
523  *    young generation, updates its "gen" to "young" and resets its "seg" to
524  *    "default".
525  *
526  * The events that trigger the above operations are:
527  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
528  * 2. The first attempt to reclaim a memcg below low, which triggers
529  *    MEMCG_LRU_TAIL;
530  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
531  *    threshold, which triggers MEMCG_LRU_TAIL;
532  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
533  *    threshold, which triggers MEMCG_LRU_YOUNG;
534  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
535  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
536  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
537  *
538  * Notes:
539  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
540  *    of their max_seq counters ensures the eventual fairness to all eligible
541  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
542  * 2. There are only two valid generations: old (seq) and young (seq+1).
543  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
544  *    locklessly, a stale value (seq-1) does not wraparound to young.
545  */
546 #define MEMCG_NR_GENS	3
547 #define MEMCG_NR_BINS	8
548 
549 struct lru_gen_memcg {
550 	/* the per-node memcg generation counter */
551 	unsigned long seq;
552 	/* each memcg has one lru_gen_folio per node */
553 	unsigned long nr_memcgs[MEMCG_NR_GENS];
554 	/* per-node lru_gen_folio list for global reclaim */
555 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
556 	/* protects the above */
557 	spinlock_t lock;
558 };
559 
560 void lru_gen_init_pgdat(struct pglist_data *pgdat);
561 void lru_gen_init_lruvec(struct lruvec *lruvec);
562 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
563 
564 void lru_gen_init_memcg(struct mem_cgroup *memcg);
565 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
566 void lru_gen_online_memcg(struct mem_cgroup *memcg);
567 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
568 void lru_gen_release_memcg(struct mem_cgroup *memcg);
569 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
570 
571 #else /* !CONFIG_LRU_GEN */
572 
lru_gen_init_pgdat(struct pglist_data * pgdat)573 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
574 {
575 }
576 
lru_gen_init_lruvec(struct lruvec * lruvec)577 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
578 {
579 }
580 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)581 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
582 {
583 }
584 
lru_gen_init_memcg(struct mem_cgroup * memcg)585 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
586 {
587 }
588 
lru_gen_exit_memcg(struct mem_cgroup * memcg)589 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
590 {
591 }
592 
lru_gen_online_memcg(struct mem_cgroup * memcg)593 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
594 {
595 }
596 
lru_gen_offline_memcg(struct mem_cgroup * memcg)597 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
598 {
599 }
600 
lru_gen_release_memcg(struct mem_cgroup * memcg)601 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
602 {
603 }
604 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)605 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
606 {
607 }
608 
609 #endif /* CONFIG_LRU_GEN */
610 
611 struct lruvec {
612 	struct list_head		lists[NR_LRU_LISTS];
613 	/* per lruvec lru_lock for memcg */
614 	spinlock_t			lru_lock;
615 	/*
616 	 * These track the cost of reclaiming one LRU - file or anon -
617 	 * over the other. As the observed cost of reclaiming one LRU
618 	 * increases, the reclaim scan balance tips toward the other.
619 	 */
620 	unsigned long			anon_cost;
621 	unsigned long			file_cost;
622 	/* Non-resident age, driven by LRU movement */
623 	atomic_long_t			nonresident_age;
624 	/* Refaults at the time of last reclaim cycle */
625 	unsigned long			refaults[ANON_AND_FILE];
626 	/* Various lruvec state flags (enum lruvec_flags) */
627 	unsigned long			flags;
628 #ifdef CONFIG_LRU_GEN
629 	/* evictable pages divided into generations */
630 	struct lru_gen_folio		lrugen;
631 #ifdef CONFIG_LRU_GEN_WALKS_MMU
632 	/* to concurrently iterate lru_gen_mm_list */
633 	struct lru_gen_mm_state		mm_state;
634 #endif
635 #endif /* CONFIG_LRU_GEN */
636 #ifdef CONFIG_MEMCG
637 	struct pglist_data *pgdat;
638 #endif
639 	struct zswap_lruvec_state zswap_lruvec_state;
640 };
641 
642 /* Isolate for asynchronous migration */
643 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
644 /* Isolate unevictable pages */
645 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
646 
647 /* LRU Isolation modes. */
648 typedef unsigned __bitwise isolate_mode_t;
649 
650 enum zone_watermarks {
651 	WMARK_MIN,
652 	WMARK_LOW,
653 	WMARK_HIGH,
654 	WMARK_PROMO,
655 	NR_WMARK
656 };
657 
658 /*
659  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
660  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
661  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
662  */
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 #define NR_PCP_THP 2
665 #else
666 #define NR_PCP_THP 0
667 #endif
668 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
669 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
670 
671 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
672 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
673 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
674 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
675 
676 /*
677  * Flags used in pcp->flags field.
678  *
679  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
680  * previous page freeing.  To avoid to drain PCP for an accident
681  * high-order page freeing.
682  *
683  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
684  * draining PCP for consecutive high-order pages freeing without
685  * allocation if data cache slice of CPU is large enough.  To reduce
686  * zone lock contention and keep cache-hot pages reusing.
687  */
688 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
689 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
690 
691 struct per_cpu_pages {
692 	spinlock_t lock;	/* Protects lists field */
693 	int count;		/* number of pages in the list */
694 	int high;		/* high watermark, emptying needed */
695 	int high_min;		/* min high watermark */
696 	int high_max;		/* max high watermark */
697 	int batch;		/* chunk size for buddy add/remove */
698 	u8 flags;		/* protected by pcp->lock */
699 	u8 alloc_factor;	/* batch scaling factor during allocate */
700 #ifdef CONFIG_NUMA
701 	u8 expire;		/* When 0, remote pagesets are drained */
702 #endif
703 	short free_count;	/* consecutive free count */
704 
705 	/* Lists of pages, one per migrate type stored on the pcp-lists */
706 	struct list_head lists[NR_PCP_LISTS];
707 } ____cacheline_aligned_in_smp;
708 
709 struct per_cpu_zonestat {
710 #ifdef CONFIG_SMP
711 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
712 	s8 stat_threshold;
713 #endif
714 #ifdef CONFIG_NUMA
715 	/*
716 	 * Low priority inaccurate counters that are only folded
717 	 * on demand. Use a large type to avoid the overhead of
718 	 * folding during refresh_cpu_vm_stats.
719 	 */
720 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
721 #endif
722 };
723 
724 struct per_cpu_nodestat {
725 	s8 stat_threshold;
726 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
727 };
728 
729 #endif /* !__GENERATING_BOUNDS.H */
730 
731 enum zone_type {
732 	/*
733 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
734 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
735 	 * On architectures where this area covers the whole 32 bit address
736 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
737 	 * DMA addressing constraints. This distinction is important as a 32bit
738 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
739 	 * platforms may need both zones as they support peripherals with
740 	 * different DMA addressing limitations.
741 	 */
742 #ifdef CONFIG_ZONE_DMA
743 	ZONE_DMA,
744 #endif
745 #ifdef CONFIG_ZONE_DMA32
746 	ZONE_DMA32,
747 #endif
748 	/*
749 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
750 	 * performed on pages in ZONE_NORMAL if the DMA devices support
751 	 * transfers to all addressable memory.
752 	 */
753 	ZONE_NORMAL,
754 #ifdef CONFIG_HIGHMEM
755 	/*
756 	 * A memory area that is only addressable by the kernel through
757 	 * mapping portions into its own address space. This is for example
758 	 * used by i386 to allow the kernel to address the memory beyond
759 	 * 900MB. The kernel will set up special mappings (page
760 	 * table entries on i386) for each page that the kernel needs to
761 	 * access.
762 	 */
763 	ZONE_HIGHMEM,
764 #endif
765 	/*
766 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
767 	 * movable pages with few exceptional cases described below. Main use
768 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
769 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
770 	 * to increase the number of THP/huge pages. Notable special cases are:
771 	 *
772 	 * 1. Pinned pages: (long-term) pinning of movable pages might
773 	 *    essentially turn such pages unmovable. Therefore, we do not allow
774 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
775 	 *    faulted, they come from the right zone right away. However, it is
776 	 *    still possible that address space already has pages in
777 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
778 	 *    touches that memory before pinning). In such case we migrate them
779 	 *    to a different zone. When migration fails - pinning fails.
780 	 * 2. memblock allocations: kernelcore/movablecore setups might create
781 	 *    situations where ZONE_MOVABLE contains unmovable allocations
782 	 *    after boot. Memory offlining and allocations fail early.
783 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
784 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
785 	 *    for example, if we have sections that are only partially
786 	 *    populated. Memory offlining and allocations fail early.
787 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
788 	 *    memory offlining, such pages cannot be allocated.
789 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
790 	 *    hotplugged memory blocks might only partially be managed by the
791 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
792 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
793 	 *    some cases (virtio-mem), such pages can be skipped during
794 	 *    memory offlining, however, cannot be moved/allocated. These
795 	 *    techniques might use alloc_contig_range() to hide previously
796 	 *    exposed pages from the buddy again (e.g., to implement some sort
797 	 *    of memory unplug in virtio-mem).
798 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
799 	 *    situations where ZERO_PAGE(0) which is allocated differently
800 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
801 	 *    cannot be migrated.
802 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
803 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
804 	 *    such zone. Such pages cannot be really moved around as they are
805 	 *    self-stored in the range, but they are treated as movable when
806 	 *    the range they describe is about to be offlined.
807 	 *
808 	 * In general, no unmovable allocations that degrade memory offlining
809 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
810 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
811 	 * if has_unmovable_pages() states that there are no unmovable pages,
812 	 * there can be false negatives).
813 	 */
814 	ZONE_MOVABLE,
815 #ifdef CONFIG_ZONE_DEVICE
816 	ZONE_DEVICE,
817 #endif
818 	__MAX_NR_ZONES
819 
820 };
821 
822 #ifndef __GENERATING_BOUNDS_H
823 
824 #define ASYNC_AND_SYNC 2
825 
826 struct zone {
827 	/* Read-mostly fields */
828 
829 	/* zone watermarks, access with *_wmark_pages(zone) macros */
830 	unsigned long _watermark[NR_WMARK];
831 	unsigned long watermark_boost;
832 
833 	unsigned long nr_reserved_highatomic;
834 
835 	/*
836 	 * We don't know if the memory that we're going to allocate will be
837 	 * freeable or/and it will be released eventually, so to avoid totally
838 	 * wasting several GB of ram we must reserve some of the lower zone
839 	 * memory (otherwise we risk to run OOM on the lower zones despite
840 	 * there being tons of freeable ram on the higher zones).  This array is
841 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
842 	 * changes.
843 	 */
844 	long lowmem_reserve[MAX_NR_ZONES];
845 
846 #ifdef CONFIG_NUMA
847 	int node;
848 #endif
849 	struct pglist_data	*zone_pgdat;
850 	struct per_cpu_pages	__percpu *per_cpu_pageset;
851 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
852 	/*
853 	 * the high and batch values are copied to individual pagesets for
854 	 * faster access
855 	 */
856 	int pageset_high_min;
857 	int pageset_high_max;
858 	int pageset_batch;
859 
860 #ifndef CONFIG_SPARSEMEM
861 	/*
862 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
863 	 * In SPARSEMEM, this map is stored in struct mem_section
864 	 */
865 	unsigned long		*pageblock_flags;
866 #endif /* CONFIG_SPARSEMEM */
867 
868 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
869 	unsigned long		zone_start_pfn;
870 
871 	/*
872 	 * spanned_pages is the total pages spanned by the zone, including
873 	 * holes, which is calculated as:
874 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
875 	 *
876 	 * present_pages is physical pages existing within the zone, which
877 	 * is calculated as:
878 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
879 	 *
880 	 * present_early_pages is present pages existing within the zone
881 	 * located on memory available since early boot, excluding hotplugged
882 	 * memory.
883 	 *
884 	 * managed_pages is present pages managed by the buddy system, which
885 	 * is calculated as (reserved_pages includes pages allocated by the
886 	 * bootmem allocator):
887 	 *	managed_pages = present_pages - reserved_pages;
888 	 *
889 	 * cma pages is present pages that are assigned for CMA use
890 	 * (MIGRATE_CMA).
891 	 *
892 	 * So present_pages may be used by memory hotplug or memory power
893 	 * management logic to figure out unmanaged pages by checking
894 	 * (present_pages - managed_pages). And managed_pages should be used
895 	 * by page allocator and vm scanner to calculate all kinds of watermarks
896 	 * and thresholds.
897 	 *
898 	 * Locking rules:
899 	 *
900 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
901 	 * It is a seqlock because it has to be read outside of zone->lock,
902 	 * and it is done in the main allocator path.  But, it is written
903 	 * quite infrequently.
904 	 *
905 	 * The span_seq lock is declared along with zone->lock because it is
906 	 * frequently read in proximity to zone->lock.  It's good to
907 	 * give them a chance of being in the same cacheline.
908 	 *
909 	 * Write access to present_pages at runtime should be protected by
910 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
911 	 * present_pages should use get_online_mems() to get a stable value.
912 	 */
913 	atomic_long_t		managed_pages;
914 	unsigned long		spanned_pages;
915 	unsigned long		present_pages;
916 #if defined(CONFIG_MEMORY_HOTPLUG)
917 	unsigned long		present_early_pages;
918 #endif
919 #ifdef CONFIG_CMA
920 	unsigned long		cma_pages;
921 #endif
922 
923 	const char		*name;
924 
925 #ifdef CONFIG_MEMORY_ISOLATION
926 	/*
927 	 * Number of isolated pageblock. It is used to solve incorrect
928 	 * freepage counting problem due to racy retrieving migratetype
929 	 * of pageblock. Protected by zone->lock.
930 	 */
931 	unsigned long		nr_isolate_pageblock;
932 #endif
933 
934 #ifdef CONFIG_MEMORY_HOTPLUG
935 	/* see spanned/present_pages for more description */
936 	seqlock_t		span_seqlock;
937 #endif
938 
939 	int initialized;
940 
941 	/* Write-intensive fields used from the page allocator */
942 	CACHELINE_PADDING(_pad1_);
943 
944 	/* free areas of different sizes */
945 	struct free_area	free_area[NR_PAGE_ORDERS];
946 
947 #ifdef CONFIG_UNACCEPTED_MEMORY
948 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
949 	struct list_head	unaccepted_pages;
950 #endif
951 
952 	/* zone flags, see below */
953 	unsigned long		flags;
954 
955 	/* Primarily protects free_area */
956 	spinlock_t		lock;
957 
958 	/* Write-intensive fields used by compaction and vmstats. */
959 	CACHELINE_PADDING(_pad2_);
960 
961 	/*
962 	 * When free pages are below this point, additional steps are taken
963 	 * when reading the number of free pages to avoid per-cpu counter
964 	 * drift allowing watermarks to be breached
965 	 */
966 	unsigned long percpu_drift_mark;
967 
968 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
969 	/* pfn where compaction free scanner should start */
970 	unsigned long		compact_cached_free_pfn;
971 	/* pfn where compaction migration scanner should start */
972 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
973 	unsigned long		compact_init_migrate_pfn;
974 	unsigned long		compact_init_free_pfn;
975 #endif
976 
977 #ifdef CONFIG_COMPACTION
978 	/*
979 	 * On compaction failure, 1<<compact_defer_shift compactions
980 	 * are skipped before trying again. The number attempted since
981 	 * last failure is tracked with compact_considered.
982 	 * compact_order_failed is the minimum compaction failed order.
983 	 */
984 	unsigned int		compact_considered;
985 	unsigned int		compact_defer_shift;
986 	int			compact_order_failed;
987 #endif
988 
989 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
990 	/* Set to true when the PG_migrate_skip bits should be cleared */
991 	bool			compact_blockskip_flush;
992 #endif
993 
994 	bool			contiguous;
995 
996 	CACHELINE_PADDING(_pad3_);
997 	/* Zone statistics */
998 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
999 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1000 } ____cacheline_internodealigned_in_smp;
1001 
1002 enum pgdat_flags {
1003 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1004 					 * many dirty file pages at the tail
1005 					 * of the LRU.
1006 					 */
1007 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1008 					 * many pages under writeback
1009 					 */
1010 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1011 };
1012 
1013 enum zone_flags {
1014 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1015 					 * Cleared when kswapd is woken.
1016 					 */
1017 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1018 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1019 };
1020 
zone_managed_pages(struct zone * zone)1021 static inline unsigned long zone_managed_pages(struct zone *zone)
1022 {
1023 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1024 }
1025 
zone_cma_pages(struct zone * zone)1026 static inline unsigned long zone_cma_pages(struct zone *zone)
1027 {
1028 #ifdef CONFIG_CMA
1029 	return zone->cma_pages;
1030 #else
1031 	return 0;
1032 #endif
1033 }
1034 
zone_end_pfn(const struct zone * zone)1035 static inline unsigned long zone_end_pfn(const struct zone *zone)
1036 {
1037 	return zone->zone_start_pfn + zone->spanned_pages;
1038 }
1039 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1040 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1041 {
1042 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1043 }
1044 
zone_is_initialized(struct zone * zone)1045 static inline bool zone_is_initialized(struct zone *zone)
1046 {
1047 	return zone->initialized;
1048 }
1049 
zone_is_empty(struct zone * zone)1050 static inline bool zone_is_empty(struct zone *zone)
1051 {
1052 	return zone->spanned_pages == 0;
1053 }
1054 
1055 #ifndef BUILD_VDSO32_64
1056 /*
1057  * The zone field is never updated after free_area_init_core()
1058  * sets it, so none of the operations on it need to be atomic.
1059  */
1060 
1061 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1062 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1063 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1064 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1065 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1066 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1067 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1068 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1069 
1070 /*
1071  * Define the bit shifts to access each section.  For non-existent
1072  * sections we define the shift as 0; that plus a 0 mask ensures
1073  * the compiler will optimise away reference to them.
1074  */
1075 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1076 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1077 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1078 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1079 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1080 
1081 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1082 #ifdef NODE_NOT_IN_PAGE_FLAGS
1083 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1084 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1085 						SECTIONS_PGOFF : ZONES_PGOFF)
1086 #else
1087 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1088 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1089 						NODES_PGOFF : ZONES_PGOFF)
1090 #endif
1091 
1092 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1093 
1094 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1095 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1096 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1097 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1098 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1099 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1100 
page_zonenum(const struct page * page)1101 static inline enum zone_type page_zonenum(const struct page *page)
1102 {
1103 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1104 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1105 }
1106 
folio_zonenum(const struct folio * folio)1107 static inline enum zone_type folio_zonenum(const struct folio *folio)
1108 {
1109 	return page_zonenum(&folio->page);
1110 }
1111 
1112 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1113 static inline bool is_zone_device_page(const struct page *page)
1114 {
1115 	return page_zonenum(page) == ZONE_DEVICE;
1116 }
1117 
1118 /*
1119  * Consecutive zone device pages should not be merged into the same sgl
1120  * or bvec segment with other types of pages or if they belong to different
1121  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1122  * without scanning the entire segment. This helper returns true either if
1123  * both pages are not zone device pages or both pages are zone device pages
1124  * with the same pgmap.
1125  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1126 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1127 						     const struct page *b)
1128 {
1129 	if (is_zone_device_page(a) != is_zone_device_page(b))
1130 		return false;
1131 	if (!is_zone_device_page(a))
1132 		return true;
1133 	return a->pgmap == b->pgmap;
1134 }
1135 
1136 extern void memmap_init_zone_device(struct zone *, unsigned long,
1137 				    unsigned long, struct dev_pagemap *);
1138 #else
is_zone_device_page(const struct page * page)1139 static inline bool is_zone_device_page(const struct page *page)
1140 {
1141 	return false;
1142 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1143 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1144 						     const struct page *b)
1145 {
1146 	return true;
1147 }
1148 #endif
1149 
folio_is_zone_device(const struct folio * folio)1150 static inline bool folio_is_zone_device(const struct folio *folio)
1151 {
1152 	return is_zone_device_page(&folio->page);
1153 }
1154 
is_zone_movable_page(const struct page * page)1155 static inline bool is_zone_movable_page(const struct page *page)
1156 {
1157 	return page_zonenum(page) == ZONE_MOVABLE;
1158 }
1159 
folio_is_zone_movable(const struct folio * folio)1160 static inline bool folio_is_zone_movable(const struct folio *folio)
1161 {
1162 	return folio_zonenum(folio) == ZONE_MOVABLE;
1163 }
1164 #endif
1165 
1166 /*
1167  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1168  * intersection with the given zone
1169  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1170 static inline bool zone_intersects(struct zone *zone,
1171 		unsigned long start_pfn, unsigned long nr_pages)
1172 {
1173 	if (zone_is_empty(zone))
1174 		return false;
1175 	if (start_pfn >= zone_end_pfn(zone) ||
1176 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1177 		return false;
1178 
1179 	return true;
1180 }
1181 
1182 /*
1183  * The "priority" of VM scanning is how much of the queues we will scan in one
1184  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1185  * queues ("queue_length >> 12") during an aging round.
1186  */
1187 #define DEF_PRIORITY 12
1188 
1189 /* Maximum number of zones on a zonelist */
1190 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1191 
1192 enum {
1193 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1194 #ifdef CONFIG_NUMA
1195 	/*
1196 	 * The NUMA zonelists are doubled because we need zonelists that
1197 	 * restrict the allocations to a single node for __GFP_THISNODE.
1198 	 */
1199 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1200 #endif
1201 	MAX_ZONELISTS
1202 };
1203 
1204 /*
1205  * This struct contains information about a zone in a zonelist. It is stored
1206  * here to avoid dereferences into large structures and lookups of tables
1207  */
1208 struct zoneref {
1209 	struct zone *zone;	/* Pointer to actual zone */
1210 	int zone_idx;		/* zone_idx(zoneref->zone) */
1211 };
1212 
1213 /*
1214  * One allocation request operates on a zonelist. A zonelist
1215  * is a list of zones, the first one is the 'goal' of the
1216  * allocation, the other zones are fallback zones, in decreasing
1217  * priority.
1218  *
1219  * To speed the reading of the zonelist, the zonerefs contain the zone index
1220  * of the entry being read. Helper functions to access information given
1221  * a struct zoneref are
1222  *
1223  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1224  * zonelist_zone_idx()	- Return the index of the zone for an entry
1225  * zonelist_node_idx()	- Return the index of the node for an entry
1226  */
1227 struct zonelist {
1228 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1229 };
1230 
1231 /*
1232  * The array of struct pages for flatmem.
1233  * It must be declared for SPARSEMEM as well because there are configurations
1234  * that rely on that.
1235  */
1236 extern struct page *mem_map;
1237 
1238 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1239 struct deferred_split {
1240 	spinlock_t split_queue_lock;
1241 	struct list_head split_queue;
1242 	unsigned long split_queue_len;
1243 };
1244 #endif
1245 
1246 #ifdef CONFIG_MEMORY_FAILURE
1247 /*
1248  * Per NUMA node memory failure handling statistics.
1249  */
1250 struct memory_failure_stats {
1251 	/*
1252 	 * Number of raw pages poisoned.
1253 	 * Cases not accounted: memory outside kernel control, offline page,
1254 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1255 	 * error events, and unpoison actions from hwpoison_unpoison.
1256 	 */
1257 	unsigned long total;
1258 	/*
1259 	 * Recovery results of poisoned raw pages handled by memory_failure,
1260 	 * in sync with mf_result.
1261 	 * total = ignored + failed + delayed + recovered.
1262 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1263 	 */
1264 	unsigned long ignored;
1265 	unsigned long failed;
1266 	unsigned long delayed;
1267 	unsigned long recovered;
1268 };
1269 #endif
1270 
1271 /*
1272  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1273  * it's memory layout. On UMA machines there is a single pglist_data which
1274  * describes the whole memory.
1275  *
1276  * Memory statistics and page replacement data structures are maintained on a
1277  * per-zone basis.
1278  */
1279 typedef struct pglist_data {
1280 	/*
1281 	 * node_zones contains just the zones for THIS node. Not all of the
1282 	 * zones may be populated, but it is the full list. It is referenced by
1283 	 * this node's node_zonelists as well as other node's node_zonelists.
1284 	 */
1285 	struct zone node_zones[MAX_NR_ZONES];
1286 
1287 	/*
1288 	 * node_zonelists contains references to all zones in all nodes.
1289 	 * Generally the first zones will be references to this node's
1290 	 * node_zones.
1291 	 */
1292 	struct zonelist node_zonelists[MAX_ZONELISTS];
1293 
1294 	int nr_zones; /* number of populated zones in this node */
1295 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1296 	struct page *node_mem_map;
1297 #ifdef CONFIG_PAGE_EXTENSION
1298 	struct page_ext *node_page_ext;
1299 #endif
1300 #endif
1301 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1302 	/*
1303 	 * Must be held any time you expect node_start_pfn,
1304 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1305 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1306 	 * init.
1307 	 *
1308 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1309 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1310 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1311 	 *
1312 	 * Nests above zone->lock and zone->span_seqlock
1313 	 */
1314 	spinlock_t node_size_lock;
1315 #endif
1316 	unsigned long node_start_pfn;
1317 	unsigned long node_present_pages; /* total number of physical pages */
1318 	unsigned long node_spanned_pages; /* total size of physical page
1319 					     range, including holes */
1320 	int node_id;
1321 	wait_queue_head_t kswapd_wait;
1322 	wait_queue_head_t pfmemalloc_wait;
1323 
1324 	/* workqueues for throttling reclaim for different reasons. */
1325 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1326 
1327 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1328 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1329 					 * when throttling started. */
1330 #ifdef CONFIG_MEMORY_HOTPLUG
1331 	struct mutex kswapd_lock;
1332 #endif
1333 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1334 	int kswapd_order;
1335 	enum zone_type kswapd_highest_zoneidx;
1336 
1337 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1338 
1339 #ifdef CONFIG_COMPACTION
1340 	int kcompactd_max_order;
1341 	enum zone_type kcompactd_highest_zoneidx;
1342 	wait_queue_head_t kcompactd_wait;
1343 	struct task_struct *kcompactd;
1344 	bool proactive_compact_trigger;
1345 #endif
1346 	/*
1347 	 * This is a per-node reserve of pages that are not available
1348 	 * to userspace allocations.
1349 	 */
1350 	unsigned long		totalreserve_pages;
1351 
1352 #ifdef CONFIG_NUMA
1353 	/*
1354 	 * node reclaim becomes active if more unmapped pages exist.
1355 	 */
1356 	unsigned long		min_unmapped_pages;
1357 	unsigned long		min_slab_pages;
1358 #endif /* CONFIG_NUMA */
1359 
1360 	/* Write-intensive fields used by page reclaim */
1361 	CACHELINE_PADDING(_pad1_);
1362 
1363 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1364 	/*
1365 	 * If memory initialisation on large machines is deferred then this
1366 	 * is the first PFN that needs to be initialised.
1367 	 */
1368 	unsigned long first_deferred_pfn;
1369 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1370 
1371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1372 	struct deferred_split deferred_split_queue;
1373 #endif
1374 
1375 #ifdef CONFIG_NUMA_BALANCING
1376 	/* start time in ms of current promote rate limit period */
1377 	unsigned int nbp_rl_start;
1378 	/* number of promote candidate pages at start time of current rate limit period */
1379 	unsigned long nbp_rl_nr_cand;
1380 	/* promote threshold in ms */
1381 	unsigned int nbp_threshold;
1382 	/* start time in ms of current promote threshold adjustment period */
1383 	unsigned int nbp_th_start;
1384 	/*
1385 	 * number of promote candidate pages at start time of current promote
1386 	 * threshold adjustment period
1387 	 */
1388 	unsigned long nbp_th_nr_cand;
1389 #endif
1390 	/* Fields commonly accessed by the page reclaim scanner */
1391 
1392 	/*
1393 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1394 	 *
1395 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1396 	 */
1397 	struct lruvec		__lruvec;
1398 
1399 	unsigned long		flags;
1400 
1401 #ifdef CONFIG_LRU_GEN
1402 	/* kswap mm walk data */
1403 	struct lru_gen_mm_walk mm_walk;
1404 	/* lru_gen_folio list */
1405 	struct lru_gen_memcg memcg_lru;
1406 #endif
1407 
1408 	CACHELINE_PADDING(_pad2_);
1409 
1410 	/* Per-node vmstats */
1411 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1412 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1413 #ifdef CONFIG_NUMA
1414 	struct memory_tier __rcu *memtier;
1415 #endif
1416 #ifdef CONFIG_MEMORY_FAILURE
1417 	struct memory_failure_stats mf_stats;
1418 #endif
1419 } pg_data_t;
1420 
1421 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1422 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1423 
1424 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1425 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1426 
pgdat_end_pfn(pg_data_t * pgdat)1427 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1428 {
1429 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1430 }
1431 
1432 #include <linux/memory_hotplug.h>
1433 
1434 void build_all_zonelists(pg_data_t *pgdat);
1435 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1436 		   enum zone_type highest_zoneidx);
1437 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1438 			 int highest_zoneidx, unsigned int alloc_flags,
1439 			 long free_pages);
1440 bool zone_watermark_ok(struct zone *z, unsigned int order,
1441 		unsigned long mark, int highest_zoneidx,
1442 		unsigned int alloc_flags);
1443 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1444 		unsigned long mark, int highest_zoneidx);
1445 /*
1446  * Memory initialization context, use to differentiate memory added by
1447  * the platform statically or via memory hotplug interface.
1448  */
1449 enum meminit_context {
1450 	MEMINIT_EARLY,
1451 	MEMINIT_HOTPLUG,
1452 };
1453 
1454 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1455 				     unsigned long size);
1456 
1457 extern void lruvec_init(struct lruvec *lruvec);
1458 
lruvec_pgdat(struct lruvec * lruvec)1459 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1460 {
1461 #ifdef CONFIG_MEMCG
1462 	return lruvec->pgdat;
1463 #else
1464 	return container_of(lruvec, struct pglist_data, __lruvec);
1465 #endif
1466 }
1467 
1468 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1469 int local_memory_node(int node_id);
1470 #else
local_memory_node(int node_id)1471 static inline int local_memory_node(int node_id) { return node_id; };
1472 #endif
1473 
1474 /*
1475  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1476  */
1477 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1478 
1479 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1480 static inline bool zone_is_zone_device(struct zone *zone)
1481 {
1482 	return zone_idx(zone) == ZONE_DEVICE;
1483 }
1484 #else
zone_is_zone_device(struct zone * zone)1485 static inline bool zone_is_zone_device(struct zone *zone)
1486 {
1487 	return false;
1488 }
1489 #endif
1490 
1491 /*
1492  * Returns true if a zone has pages managed by the buddy allocator.
1493  * All the reclaim decisions have to use this function rather than
1494  * populated_zone(). If the whole zone is reserved then we can easily
1495  * end up with populated_zone() && !managed_zone().
1496  */
managed_zone(struct zone * zone)1497 static inline bool managed_zone(struct zone *zone)
1498 {
1499 	return zone_managed_pages(zone);
1500 }
1501 
1502 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1503 static inline bool populated_zone(struct zone *zone)
1504 {
1505 	return zone->present_pages;
1506 }
1507 
1508 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1509 static inline int zone_to_nid(struct zone *zone)
1510 {
1511 	return zone->node;
1512 }
1513 
zone_set_nid(struct zone * zone,int nid)1514 static inline void zone_set_nid(struct zone *zone, int nid)
1515 {
1516 	zone->node = nid;
1517 }
1518 #else
zone_to_nid(struct zone * zone)1519 static inline int zone_to_nid(struct zone *zone)
1520 {
1521 	return 0;
1522 }
1523 
zone_set_nid(struct zone * zone,int nid)1524 static inline void zone_set_nid(struct zone *zone, int nid) {}
1525 #endif
1526 
1527 extern int movable_zone;
1528 
is_highmem_idx(enum zone_type idx)1529 static inline int is_highmem_idx(enum zone_type idx)
1530 {
1531 #ifdef CONFIG_HIGHMEM
1532 	return (idx == ZONE_HIGHMEM ||
1533 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1534 #else
1535 	return 0;
1536 #endif
1537 }
1538 
1539 /**
1540  * is_highmem - helper function to quickly check if a struct zone is a
1541  *              highmem zone or not.  This is an attempt to keep references
1542  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1543  * @zone: pointer to struct zone variable
1544  * Return: 1 for a highmem zone, 0 otherwise
1545  */
is_highmem(struct zone * zone)1546 static inline int is_highmem(struct zone *zone)
1547 {
1548 	return is_highmem_idx(zone_idx(zone));
1549 }
1550 
1551 #ifdef CONFIG_ZONE_DMA
1552 bool has_managed_dma(void);
1553 #else
has_managed_dma(void)1554 static inline bool has_managed_dma(void)
1555 {
1556 	return false;
1557 }
1558 #endif
1559 
1560 
1561 #ifndef CONFIG_NUMA
1562 
1563 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1564 static inline struct pglist_data *NODE_DATA(int nid)
1565 {
1566 	return &contig_page_data;
1567 }
1568 
1569 #else /* CONFIG_NUMA */
1570 
1571 #include <asm/mmzone.h>
1572 
1573 #endif /* !CONFIG_NUMA */
1574 
1575 extern struct pglist_data *first_online_pgdat(void);
1576 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1577 extern struct zone *next_zone(struct zone *zone);
1578 
1579 /**
1580  * for_each_online_pgdat - helper macro to iterate over all online nodes
1581  * @pgdat: pointer to a pg_data_t variable
1582  */
1583 #define for_each_online_pgdat(pgdat)			\
1584 	for (pgdat = first_online_pgdat();		\
1585 	     pgdat;					\
1586 	     pgdat = next_online_pgdat(pgdat))
1587 /**
1588  * for_each_zone - helper macro to iterate over all memory zones
1589  * @zone: pointer to struct zone variable
1590  *
1591  * The user only needs to declare the zone variable, for_each_zone
1592  * fills it in.
1593  */
1594 #define for_each_zone(zone)			        \
1595 	for (zone = (first_online_pgdat())->node_zones; \
1596 	     zone;					\
1597 	     zone = next_zone(zone))
1598 
1599 #define for_each_populated_zone(zone)		        \
1600 	for (zone = (first_online_pgdat())->node_zones; \
1601 	     zone;					\
1602 	     zone = next_zone(zone))			\
1603 		if (!populated_zone(zone))		\
1604 			; /* do nothing */		\
1605 		else
1606 
zonelist_zone(struct zoneref * zoneref)1607 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1608 {
1609 	return zoneref->zone;
1610 }
1611 
zonelist_zone_idx(struct zoneref * zoneref)1612 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1613 {
1614 	return zoneref->zone_idx;
1615 }
1616 
zonelist_node_idx(struct zoneref * zoneref)1617 static inline int zonelist_node_idx(struct zoneref *zoneref)
1618 {
1619 	return zone_to_nid(zoneref->zone);
1620 }
1621 
1622 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1623 					enum zone_type highest_zoneidx,
1624 					nodemask_t *nodes);
1625 
1626 /**
1627  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1628  * @z: The cursor used as a starting point for the search
1629  * @highest_zoneidx: The zone index of the highest zone to return
1630  * @nodes: An optional nodemask to filter the zonelist with
1631  *
1632  * This function returns the next zone at or below a given zone index that is
1633  * within the allowed nodemask using a cursor as the starting point for the
1634  * search. The zoneref returned is a cursor that represents the current zone
1635  * being examined. It should be advanced by one before calling
1636  * next_zones_zonelist again.
1637  *
1638  * Return: the next zone at or below highest_zoneidx within the allowed
1639  * nodemask using a cursor within a zonelist as a starting point
1640  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1641 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1642 					enum zone_type highest_zoneidx,
1643 					nodemask_t *nodes)
1644 {
1645 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1646 		return z;
1647 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1648 }
1649 
1650 /**
1651  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1652  * @zonelist: The zonelist to search for a suitable zone
1653  * @highest_zoneidx: The zone index of the highest zone to return
1654  * @nodes: An optional nodemask to filter the zonelist with
1655  *
1656  * This function returns the first zone at or below a given zone index that is
1657  * within the allowed nodemask. The zoneref returned is a cursor that can be
1658  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1659  * one before calling.
1660  *
1661  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1662  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1663  * update due to cpuset modification.
1664  *
1665  * Return: Zoneref pointer for the first suitable zone found
1666  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1667 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1668 					enum zone_type highest_zoneidx,
1669 					nodemask_t *nodes)
1670 {
1671 	return next_zones_zonelist(zonelist->_zonerefs,
1672 							highest_zoneidx, nodes);
1673 }
1674 
1675 /**
1676  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1677  * @zone: The current zone in the iterator
1678  * @z: The current pointer within zonelist->_zonerefs being iterated
1679  * @zlist: The zonelist being iterated
1680  * @highidx: The zone index of the highest zone to return
1681  * @nodemask: Nodemask allowed by the allocator
1682  *
1683  * This iterator iterates though all zones at or below a given zone index and
1684  * within a given nodemask
1685  */
1686 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1687 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1688 		zone;							\
1689 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1690 			zone = zonelist_zone(z))
1691 
1692 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1693 	for (zone = z->zone;	\
1694 		zone;							\
1695 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1696 			zone = zonelist_zone(z))
1697 
1698 
1699 /**
1700  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1701  * @zone: The current zone in the iterator
1702  * @z: The current pointer within zonelist->zones being iterated
1703  * @zlist: The zonelist being iterated
1704  * @highidx: The zone index of the highest zone to return
1705  *
1706  * This iterator iterates though all zones at or below a given zone index.
1707  */
1708 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1709 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1710 
1711 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1712 static inline bool movable_only_nodes(nodemask_t *nodes)
1713 {
1714 	struct zonelist *zonelist;
1715 	struct zoneref *z;
1716 	int nid;
1717 
1718 	if (nodes_empty(*nodes))
1719 		return false;
1720 
1721 	/*
1722 	 * We can chose arbitrary node from the nodemask to get a
1723 	 * zonelist as they are interlinked. We just need to find
1724 	 * at least one zone that can satisfy kernel allocations.
1725 	 */
1726 	nid = first_node(*nodes);
1727 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1728 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1729 	return (!z->zone) ? true : false;
1730 }
1731 
1732 
1733 #ifdef CONFIG_SPARSEMEM
1734 #include <asm/sparsemem.h>
1735 #endif
1736 
1737 #ifdef CONFIG_FLATMEM
1738 #define pfn_to_nid(pfn)		(0)
1739 #endif
1740 
1741 #ifdef CONFIG_SPARSEMEM
1742 
1743 /*
1744  * PA_SECTION_SHIFT		physical address to/from section number
1745  * PFN_SECTION_SHIFT		pfn to/from section number
1746  */
1747 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1748 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1749 
1750 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1751 
1752 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1753 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1754 
1755 #define SECTION_BLOCKFLAGS_BITS \
1756 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1757 
1758 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1759 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1760 #endif
1761 
pfn_to_section_nr(unsigned long pfn)1762 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1763 {
1764 	return pfn >> PFN_SECTION_SHIFT;
1765 }
section_nr_to_pfn(unsigned long sec)1766 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1767 {
1768 	return sec << PFN_SECTION_SHIFT;
1769 }
1770 
1771 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1772 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1773 
1774 #define SUBSECTION_SHIFT 21
1775 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1776 
1777 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1778 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1779 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1780 
1781 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1782 #error Subsection size exceeds section size
1783 #else
1784 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1785 #endif
1786 
1787 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1788 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1789 
1790 struct mem_section_usage {
1791 	struct rcu_head rcu;
1792 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1793 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1794 #endif
1795 	/* See declaration of similar field in struct zone */
1796 	unsigned long pageblock_flags[0];
1797 };
1798 
1799 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1800 
1801 struct page;
1802 struct page_ext;
1803 struct mem_section {
1804 	/*
1805 	 * This is, logically, a pointer to an array of struct
1806 	 * pages.  However, it is stored with some other magic.
1807 	 * (see sparse.c::sparse_init_one_section())
1808 	 *
1809 	 * Additionally during early boot we encode node id of
1810 	 * the location of the section here to guide allocation.
1811 	 * (see sparse.c::memory_present())
1812 	 *
1813 	 * Making it a UL at least makes someone do a cast
1814 	 * before using it wrong.
1815 	 */
1816 	unsigned long section_mem_map;
1817 
1818 	struct mem_section_usage *usage;
1819 #ifdef CONFIG_PAGE_EXTENSION
1820 	/*
1821 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1822 	 * section. (see page_ext.h about this.)
1823 	 */
1824 	struct page_ext *page_ext;
1825 	unsigned long pad;
1826 #endif
1827 	/*
1828 	 * WARNING: mem_section must be a power-of-2 in size for the
1829 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1830 	 */
1831 };
1832 
1833 #ifdef CONFIG_SPARSEMEM_EXTREME
1834 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1835 #else
1836 #define SECTIONS_PER_ROOT	1
1837 #endif
1838 
1839 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1840 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1841 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1842 
1843 #ifdef CONFIG_SPARSEMEM_EXTREME
1844 extern struct mem_section **mem_section;
1845 #else
1846 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1847 #endif
1848 
section_to_usemap(struct mem_section * ms)1849 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1850 {
1851 	return ms->usage->pageblock_flags;
1852 }
1853 
__nr_to_section(unsigned long nr)1854 static inline struct mem_section *__nr_to_section(unsigned long nr)
1855 {
1856 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1857 
1858 	if (unlikely(root >= NR_SECTION_ROOTS))
1859 		return NULL;
1860 
1861 #ifdef CONFIG_SPARSEMEM_EXTREME
1862 	if (!mem_section || !mem_section[root])
1863 		return NULL;
1864 #endif
1865 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1866 }
1867 extern size_t mem_section_usage_size(void);
1868 
1869 /*
1870  * We use the lower bits of the mem_map pointer to store
1871  * a little bit of information.  The pointer is calculated
1872  * as mem_map - section_nr_to_pfn(pnum).  The result is
1873  * aligned to the minimum alignment of the two values:
1874  *   1. All mem_map arrays are page-aligned.
1875  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1876  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1877  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1878  *      worst combination is powerpc with 256k pages,
1879  *      which results in PFN_SECTION_SHIFT equal 6.
1880  * To sum it up, at least 6 bits are available on all architectures.
1881  * However, we can exceed 6 bits on some other architectures except
1882  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1883  * with the worst case of 64K pages on arm64) if we make sure the
1884  * exceeded bit is not applicable to powerpc.
1885  */
1886 enum {
1887 	SECTION_MARKED_PRESENT_BIT,
1888 	SECTION_HAS_MEM_MAP_BIT,
1889 	SECTION_IS_ONLINE_BIT,
1890 	SECTION_IS_EARLY_BIT,
1891 #ifdef CONFIG_ZONE_DEVICE
1892 	SECTION_TAINT_ZONE_DEVICE_BIT,
1893 #endif
1894 	SECTION_MAP_LAST_BIT,
1895 };
1896 
1897 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1898 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1899 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1900 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1901 #ifdef CONFIG_ZONE_DEVICE
1902 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1903 #endif
1904 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1905 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1906 
__section_mem_map_addr(struct mem_section * section)1907 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1908 {
1909 	unsigned long map = section->section_mem_map;
1910 	map &= SECTION_MAP_MASK;
1911 	return (struct page *)map;
1912 }
1913 
present_section(struct mem_section * section)1914 static inline int present_section(struct mem_section *section)
1915 {
1916 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1917 }
1918 
present_section_nr(unsigned long nr)1919 static inline int present_section_nr(unsigned long nr)
1920 {
1921 	return present_section(__nr_to_section(nr));
1922 }
1923 
valid_section(struct mem_section * section)1924 static inline int valid_section(struct mem_section *section)
1925 {
1926 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1927 }
1928 
early_section(struct mem_section * section)1929 static inline int early_section(struct mem_section *section)
1930 {
1931 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1932 }
1933 
valid_section_nr(unsigned long nr)1934 static inline int valid_section_nr(unsigned long nr)
1935 {
1936 	return valid_section(__nr_to_section(nr));
1937 }
1938 
online_section(struct mem_section * section)1939 static inline int online_section(struct mem_section *section)
1940 {
1941 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1942 }
1943 
1944 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1945 static inline int online_device_section(struct mem_section *section)
1946 {
1947 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1948 
1949 	return section && ((section->section_mem_map & flags) == flags);
1950 }
1951 #else
online_device_section(struct mem_section * section)1952 static inline int online_device_section(struct mem_section *section)
1953 {
1954 	return 0;
1955 }
1956 #endif
1957 
online_section_nr(unsigned long nr)1958 static inline int online_section_nr(unsigned long nr)
1959 {
1960 	return online_section(__nr_to_section(nr));
1961 }
1962 
1963 #ifdef CONFIG_MEMORY_HOTPLUG
1964 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1965 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1966 #endif
1967 
__pfn_to_section(unsigned long pfn)1968 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1969 {
1970 	return __nr_to_section(pfn_to_section_nr(pfn));
1971 }
1972 
1973 extern unsigned long __highest_present_section_nr;
1974 
subsection_map_index(unsigned long pfn)1975 static inline int subsection_map_index(unsigned long pfn)
1976 {
1977 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1978 }
1979 
1980 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1981 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1982 {
1983 	int idx = subsection_map_index(pfn);
1984 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
1985 
1986 	return usage ? test_bit(idx, usage->subsection_map) : 0;
1987 }
1988 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1989 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1990 {
1991 	return 1;
1992 }
1993 #endif
1994 
1995 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1996 /**
1997  * pfn_valid - check if there is a valid memory map entry for a PFN
1998  * @pfn: the page frame number to check
1999  *
2000  * Check if there is a valid memory map entry aka struct page for the @pfn.
2001  * Note, that availability of the memory map entry does not imply that
2002  * there is actual usable memory at that @pfn. The struct page may
2003  * represent a hole or an unusable page frame.
2004  *
2005  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2006  */
pfn_valid(unsigned long pfn)2007 static inline int pfn_valid(unsigned long pfn)
2008 {
2009 	struct mem_section *ms;
2010 	int ret;
2011 
2012 	/*
2013 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2014 	 * pfn. Else it might lead to false positives when
2015 	 * some of the upper bits are set, but the lower bits
2016 	 * match a valid pfn.
2017 	 */
2018 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2019 		return 0;
2020 
2021 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2022 		return 0;
2023 	ms = __pfn_to_section(pfn);
2024 	rcu_read_lock_sched();
2025 	if (!valid_section(ms)) {
2026 		rcu_read_unlock_sched();
2027 		return 0;
2028 	}
2029 	/*
2030 	 * Traditionally early sections always returned pfn_valid() for
2031 	 * the entire section-sized span.
2032 	 */
2033 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2034 	rcu_read_unlock_sched();
2035 
2036 	return ret;
2037 }
2038 #endif
2039 
pfn_in_present_section(unsigned long pfn)2040 static inline int pfn_in_present_section(unsigned long pfn)
2041 {
2042 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2043 		return 0;
2044 	return present_section(__pfn_to_section(pfn));
2045 }
2046 
next_present_section_nr(unsigned long section_nr)2047 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2048 {
2049 	while (++section_nr <= __highest_present_section_nr) {
2050 		if (present_section_nr(section_nr))
2051 			return section_nr;
2052 	}
2053 
2054 	return -1;
2055 }
2056 
2057 /*
2058  * These are _only_ used during initialisation, therefore they
2059  * can use __initdata ...  They could have names to indicate
2060  * this restriction.
2061  */
2062 #ifdef CONFIG_NUMA
2063 #define pfn_to_nid(pfn)							\
2064 ({									\
2065 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2066 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2067 })
2068 #else
2069 #define pfn_to_nid(pfn)		(0)
2070 #endif
2071 
2072 void sparse_init(void);
2073 #else
2074 #define sparse_init()	do {} while (0)
2075 #define sparse_index_init(_sec, _nid)  do {} while (0)
2076 #define pfn_in_present_section pfn_valid
2077 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2078 #endif /* CONFIG_SPARSEMEM */
2079 
2080 #endif /* !__GENERATING_BOUNDS.H */
2081 #endif /* !__ASSEMBLY__ */
2082 #endif /* _LINUX_MMZONE_H */
2083