xref: /linux/include/linux/fortify-string.h (revision 2e577732)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FORTIFY_STRING_H_
3 #define _LINUX_FORTIFY_STRING_H_
4 
5 #include <linux/bitfield.h>
6 #include <linux/bug.h>
7 #include <linux/const.h>
8 #include <linux/limits.h>
9 
10 #define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable
11 #define __RENAME(x) __asm__(#x)
12 
13 #define FORTIFY_REASON_DIR(r)		FIELD_GET(BIT(0), r)
14 #define FORTIFY_REASON_FUNC(r)		FIELD_GET(GENMASK(7, 1), r)
15 #define FORTIFY_REASON(func, write)	(FIELD_PREP(BIT(0), write) | \
16 					 FIELD_PREP(GENMASK(7, 1), func))
17 
18 /* Overridden by KUnit tests. */
19 #ifndef fortify_panic
20 # define fortify_panic(func, write, avail, size, retfail)	\
21 	 __fortify_panic(FORTIFY_REASON(func, write), avail, size)
22 #endif
23 #ifndef fortify_warn_once
24 # define fortify_warn_once(x...)	WARN_ONCE(x)
25 #endif
26 
27 #define FORTIFY_READ		 0
28 #define FORTIFY_WRITE		 1
29 
30 #define EACH_FORTIFY_FUNC(macro)	\
31 	macro(strncpy),			\
32 	macro(strnlen),			\
33 	macro(strlen),			\
34 	macro(strscpy),			\
35 	macro(strlcat),			\
36 	macro(strcat),			\
37 	macro(strncat),			\
38 	macro(memset),			\
39 	macro(memcpy),			\
40 	macro(memmove),			\
41 	macro(memscan),			\
42 	macro(memcmp),			\
43 	macro(memchr),			\
44 	macro(memchr_inv),		\
45 	macro(kmemdup),			\
46 	macro(strcpy),			\
47 	macro(UNKNOWN),
48 
49 #define MAKE_FORTIFY_FUNC(func)	FORTIFY_FUNC_##func
50 
51 enum fortify_func {
52 	EACH_FORTIFY_FUNC(MAKE_FORTIFY_FUNC)
53 };
54 
55 void __fortify_report(const u8 reason, const size_t avail, const size_t size);
56 void __fortify_panic(const u8 reason, const size_t avail, const size_t size) __cold __noreturn;
57 void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)");
58 void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)");
59 void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?");
60 void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)");
61 void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?");
62 
63 #define __compiletime_strlen(p)					\
64 ({								\
65 	char *__p = (char *)(p);				\
66 	size_t __ret = SIZE_MAX;				\
67 	const size_t __p_size = __member_size(p);		\
68 	if (__p_size != SIZE_MAX &&				\
69 	    __builtin_constant_p(*__p)) {			\
70 		size_t __p_len = __p_size - 1;			\
71 		if (__builtin_constant_p(__p[__p_len]) &&	\
72 		    __p[__p_len] == '\0')			\
73 			__ret = __builtin_strlen(__p);		\
74 	}							\
75 	__ret;							\
76 })
77 
78 #if defined(__SANITIZE_ADDRESS__)
79 
80 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
81 extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset);
82 extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove);
83 extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy);
84 #elif defined(CONFIG_KASAN_GENERIC)
85 extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__asan_memset);
86 extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memmove);
87 extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memcpy);
88 #else /* CONFIG_KASAN_SW_TAGS */
89 extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__hwasan_memset);
90 extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memmove);
91 extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memcpy);
92 #endif
93 
94 extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr);
95 extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp);
96 extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat);
97 extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy);
98 extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen);
99 extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat);
100 extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy);
101 
102 #else
103 
104 #if defined(__SANITIZE_MEMORY__)
105 /*
106  * For KMSAN builds all memcpy/memset/memmove calls should be replaced by the
107  * corresponding __msan_XXX functions.
108  */
109 #include <linux/kmsan_string.h>
110 #define __underlying_memcpy	__msan_memcpy
111 #define __underlying_memmove	__msan_memmove
112 #define __underlying_memset	__msan_memset
113 #else
114 #define __underlying_memcpy	__builtin_memcpy
115 #define __underlying_memmove	__builtin_memmove
116 #define __underlying_memset	__builtin_memset
117 #endif
118 
119 #define __underlying_memchr	__builtin_memchr
120 #define __underlying_memcmp	__builtin_memcmp
121 #define __underlying_strcat	__builtin_strcat
122 #define __underlying_strcpy	__builtin_strcpy
123 #define __underlying_strlen	__builtin_strlen
124 #define __underlying_strncat	__builtin_strncat
125 #define __underlying_strncpy	__builtin_strncpy
126 
127 #endif
128 
129 /**
130  * unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking
131  *
132  * @dst: Destination memory address to write to
133  * @src: Source memory address to read from
134  * @bytes: How many bytes to write to @dst from @src
135  * @justification: Free-form text or comment describing why the use is needed
136  *
137  * This should be used for corner cases where the compiler cannot do the
138  * right thing, or during transitions between APIs, etc. It should be used
139  * very rarely, and includes a place for justification detailing where bounds
140  * checking has happened, and why existing solutions cannot be employed.
141  */
142 #define unsafe_memcpy(dst, src, bytes, justification)		\
143 	__underlying_memcpy(dst, src, bytes)
144 
145 /*
146  * Clang's use of __builtin_*object_size() within inlines needs hinting via
147  * __pass_*object_size(). The preference is to only ever use type 1 (member
148  * size, rather than struct size), but there remain some stragglers using
149  * type 0 that will be converted in the future.
150  */
151 #if __has_builtin(__builtin_dynamic_object_size)
152 #define POS			__pass_dynamic_object_size(1)
153 #define POS0			__pass_dynamic_object_size(0)
154 #else
155 #define POS			__pass_object_size(1)
156 #define POS0			__pass_object_size(0)
157 #endif
158 
159 #define __compiletime_lessthan(bounds, length)	(	\
160 	__builtin_constant_p((bounds) < (length)) &&	\
161 	(bounds) < (length)				\
162 )
163 
164 /**
165  * strncpy - Copy a string to memory with non-guaranteed NUL padding
166  *
167  * @p: pointer to destination of copy
168  * @q: pointer to NUL-terminated source string to copy
169  * @size: bytes to write at @p
170  *
171  * If strlen(@q) >= @size, the copy of @q will stop after @size bytes,
172  * and @p will NOT be NUL-terminated
173  *
174  * If strlen(@q) < @size, following the copy of @q, trailing NUL bytes
175  * will be written to @p until @size total bytes have been written.
176  *
177  * Do not use this function. While FORTIFY_SOURCE tries to avoid
178  * over-reads of @q, it cannot defend against writing unterminated
179  * results to @p. Using strncpy() remains ambiguous and fragile.
180  * Instead, please choose an alternative, so that the expectation
181  * of @p's contents is unambiguous:
182  *
183  * +--------------------+--------------------+------------+
184  * | **p** needs to be: | padded to **size** | not padded |
185  * +====================+====================+============+
186  * |     NUL-terminated | strscpy_pad()      | strscpy()  |
187  * +--------------------+--------------------+------------+
188  * | not NUL-terminated | strtomem_pad()     | strtomem() |
189  * +--------------------+--------------------+------------+
190  *
191  * Note strscpy*()'s differing return values for detecting truncation,
192  * and strtomem*()'s expectation that the destination is marked with
193  * __nonstring when it is a character array.
194  *
195  */
196 __FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3)
strncpy(char * const POS p,const char * q,__kernel_size_t size)197 char *strncpy(char * const POS p, const char *q, __kernel_size_t size)
198 {
199 	const size_t p_size = __member_size(p);
200 
201 	if (__compiletime_lessthan(p_size, size))
202 		__write_overflow();
203 	if (p_size < size)
204 		fortify_panic(FORTIFY_FUNC_strncpy, FORTIFY_WRITE, p_size, size, p);
205 	return __underlying_strncpy(p, q, size);
206 }
207 
208 extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen);
209 /**
210  * strnlen - Return bounded count of characters in a NUL-terminated string
211  *
212  * @p: pointer to NUL-terminated string to count.
213  * @maxlen: maximum number of characters to count.
214  *
215  * Returns number of characters in @p (NOT including the final NUL), or
216  * @maxlen, if no NUL has been found up to there.
217  *
218  */
strnlen(const char * const POS p,__kernel_size_t maxlen)219 __FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen)
220 {
221 	const size_t p_size = __member_size(p);
222 	const size_t p_len = __compiletime_strlen(p);
223 	size_t ret;
224 
225 	/* We can take compile-time actions when maxlen is const. */
226 	if (__builtin_constant_p(maxlen) && p_len != SIZE_MAX) {
227 		/* If p is const, we can use its compile-time-known len. */
228 		if (maxlen >= p_size)
229 			return p_len;
230 	}
231 
232 	/* Do not check characters beyond the end of p. */
233 	ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size);
234 	if (p_size <= ret && maxlen != ret)
235 		fortify_panic(FORTIFY_FUNC_strnlen, FORTIFY_READ, p_size, ret + 1, ret);
236 	return ret;
237 }
238 
239 /*
240  * Defined after fortified strnlen to reuse it. However, it must still be
241  * possible for strlen() to be used on compile-time strings for use in
242  * static initializers (i.e. as a constant expression).
243  */
244 /**
245  * strlen - Return count of characters in a NUL-terminated string
246  *
247  * @p: pointer to NUL-terminated string to count.
248  *
249  * Do not use this function unless the string length is known at
250  * compile-time. When @p is unterminated, this function may crash
251  * or return unexpected counts that could lead to memory content
252  * exposures. Prefer strnlen().
253  *
254  * Returns number of characters in @p (NOT including the final NUL).
255  *
256  */
257 #define strlen(p)							\
258 	__builtin_choose_expr(__is_constexpr(__builtin_strlen(p)),	\
259 		__builtin_strlen(p), __fortify_strlen(p))
260 __FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1)
__fortify_strlen(const char * const POS p)261 __kernel_size_t __fortify_strlen(const char * const POS p)
262 {
263 	const size_t p_size = __member_size(p);
264 	__kernel_size_t ret;
265 
266 	/* Give up if we don't know how large p is. */
267 	if (p_size == SIZE_MAX)
268 		return __underlying_strlen(p);
269 	ret = strnlen(p, p_size);
270 	if (p_size <= ret)
271 		fortify_panic(FORTIFY_FUNC_strlen, FORTIFY_READ, p_size, ret + 1, ret);
272 	return ret;
273 }
274 
275 /* Defined after fortified strnlen() to reuse it. */
276 extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(sized_strscpy);
sized_strscpy(char * const POS p,const char * const POS q,size_t size)277 __FORTIFY_INLINE ssize_t sized_strscpy(char * const POS p, const char * const POS q, size_t size)
278 {
279 	/* Use string size rather than possible enclosing struct size. */
280 	const size_t p_size = __member_size(p);
281 	const size_t q_size = __member_size(q);
282 	size_t len;
283 
284 	/* If we cannot get size of p and q default to call strscpy. */
285 	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
286 		return __real_strscpy(p, q, size);
287 
288 	/*
289 	 * If size can be known at compile time and is greater than
290 	 * p_size, generate a compile time write overflow error.
291 	 */
292 	if (__compiletime_lessthan(p_size, size))
293 		__write_overflow();
294 
295 	/* Short-circuit for compile-time known-safe lengths. */
296 	if (__compiletime_lessthan(p_size, SIZE_MAX)) {
297 		len = __compiletime_strlen(q);
298 
299 		if (len < SIZE_MAX && __compiletime_lessthan(len, size)) {
300 			__underlying_memcpy(p, q, len + 1);
301 			return len;
302 		}
303 	}
304 
305 	/*
306 	 * This call protects from read overflow, because len will default to q
307 	 * length if it smaller than size.
308 	 */
309 	len = strnlen(q, size);
310 	/*
311 	 * If len equals size, we will copy only size bytes which leads to
312 	 * -E2BIG being returned.
313 	 * Otherwise we will copy len + 1 because of the final '\O'.
314 	 */
315 	len = len == size ? size : len + 1;
316 
317 	/*
318 	 * Generate a runtime write overflow error if len is greater than
319 	 * p_size.
320 	 */
321 	if (p_size < len)
322 		fortify_panic(FORTIFY_FUNC_strscpy, FORTIFY_WRITE, p_size, len, -E2BIG);
323 
324 	/*
325 	 * We can now safely call vanilla strscpy because we are protected from:
326 	 * 1. Read overflow thanks to call to strnlen().
327 	 * 2. Write overflow thanks to above ifs.
328 	 */
329 	return __real_strscpy(p, q, len);
330 }
331 
332 /* Defined after fortified strlen() to reuse it. */
333 extern size_t __real_strlcat(char *p, const char *q, size_t avail) __RENAME(strlcat);
334 /**
335  * strlcat - Append a string to an existing string
336  *
337  * @p: pointer to %NUL-terminated string to append to
338  * @q: pointer to %NUL-terminated string to append from
339  * @avail: Maximum bytes available in @p
340  *
341  * Appends %NUL-terminated string @q after the %NUL-terminated
342  * string at @p, but will not write beyond @avail bytes total,
343  * potentially truncating the copy from @q. @p will stay
344  * %NUL-terminated only if a %NUL already existed within
345  * the @avail bytes of @p. If so, the resulting number of
346  * bytes copied from @q will be at most "@avail - strlen(@p) - 1".
347  *
348  * Do not use this function. While FORTIFY_SOURCE tries to avoid
349  * read and write overflows, this is only possible when the sizes
350  * of @p and @q are known to the compiler. Prefer building the
351  * string with formatting, via scnprintf(), seq_buf, or similar.
352  *
353  * Returns total bytes that _would_ have been contained by @p
354  * regardless of truncation, similar to snprintf(). If return
355  * value is >= @avail, the string has been truncated.
356  *
357  */
358 __FORTIFY_INLINE
strlcat(char * const POS p,const char * const POS q,size_t avail)359 size_t strlcat(char * const POS p, const char * const POS q, size_t avail)
360 {
361 	const size_t p_size = __member_size(p);
362 	const size_t q_size = __member_size(q);
363 	size_t p_len, copy_len;
364 	size_t actual, wanted;
365 
366 	/* Give up immediately if both buffer sizes are unknown. */
367 	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
368 		return __real_strlcat(p, q, avail);
369 
370 	p_len = strnlen(p, avail);
371 	copy_len = strlen(q);
372 	wanted = actual = p_len + copy_len;
373 
374 	/* Cannot append any more: report truncation. */
375 	if (avail <= p_len)
376 		return wanted;
377 
378 	/* Give up if string is already overflowed. */
379 	if (p_size <= p_len)
380 		fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_READ, p_size, p_len + 1, wanted);
381 
382 	if (actual >= avail) {
383 		copy_len = avail - p_len - 1;
384 		actual = p_len + copy_len;
385 	}
386 
387 	/* Give up if copy will overflow. */
388 	if (p_size <= actual)
389 		fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_WRITE, p_size, actual + 1, wanted);
390 	__underlying_memcpy(p + p_len, q, copy_len);
391 	p[actual] = '\0';
392 
393 	return wanted;
394 }
395 
396 /* Defined after fortified strlcat() to reuse it. */
397 /**
398  * strcat - Append a string to an existing string
399  *
400  * @p: pointer to NUL-terminated string to append to
401  * @q: pointer to NUL-terminated source string to append from
402  *
403  * Do not use this function. While FORTIFY_SOURCE tries to avoid
404  * read and write overflows, this is only possible when the
405  * destination buffer size is known to the compiler. Prefer
406  * building the string with formatting, via scnprintf() or similar.
407  * At the very least, use strncat().
408  *
409  * Returns @p.
410  *
411  */
412 __FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2)
strcat(char * const POS p,const char * q)413 char *strcat(char * const POS p, const char *q)
414 {
415 	const size_t p_size = __member_size(p);
416 	const size_t wanted = strlcat(p, q, p_size);
417 
418 	if (p_size <= wanted)
419 		fortify_panic(FORTIFY_FUNC_strcat, FORTIFY_WRITE, p_size, wanted + 1, p);
420 	return p;
421 }
422 
423 /**
424  * strncat - Append a string to an existing string
425  *
426  * @p: pointer to NUL-terminated string to append to
427  * @q: pointer to source string to append from
428  * @count: Maximum bytes to read from @q
429  *
430  * Appends at most @count bytes from @q (stopping at the first
431  * NUL byte) after the NUL-terminated string at @p. @p will be
432  * NUL-terminated.
433  *
434  * Do not use this function. While FORTIFY_SOURCE tries to avoid
435  * read and write overflows, this is only possible when the sizes
436  * of @p and @q are known to the compiler. Prefer building the
437  * string with formatting, via scnprintf() or similar.
438  *
439  * Returns @p.
440  *
441  */
442 /* Defined after fortified strlen() and strnlen() to reuse them. */
443 __FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3)
strncat(char * const POS p,const char * const POS q,__kernel_size_t count)444 char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count)
445 {
446 	const size_t p_size = __member_size(p);
447 	const size_t q_size = __member_size(q);
448 	size_t p_len, copy_len, total;
449 
450 	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
451 		return __underlying_strncat(p, q, count);
452 	p_len = strlen(p);
453 	copy_len = strnlen(q, count);
454 	total = p_len + copy_len + 1;
455 	if (p_size < total)
456 		fortify_panic(FORTIFY_FUNC_strncat, FORTIFY_WRITE, p_size, total, p);
457 	__underlying_memcpy(p + p_len, q, copy_len);
458 	p[p_len + copy_len] = '\0';
459 	return p;
460 }
461 
fortify_memset_chk(__kernel_size_t size,const size_t p_size,const size_t p_size_field)462 __FORTIFY_INLINE bool fortify_memset_chk(__kernel_size_t size,
463 					 const size_t p_size,
464 					 const size_t p_size_field)
465 {
466 	if (__builtin_constant_p(size)) {
467 		/*
468 		 * Length argument is a constant expression, so we
469 		 * can perform compile-time bounds checking where
470 		 * buffer sizes are also known at compile time.
471 		 */
472 
473 		/* Error when size is larger than enclosing struct. */
474 		if (__compiletime_lessthan(p_size_field, p_size) &&
475 		    __compiletime_lessthan(p_size, size))
476 			__write_overflow();
477 
478 		/* Warn when write size is larger than dest field. */
479 		if (__compiletime_lessthan(p_size_field, size))
480 			__write_overflow_field(p_size_field, size);
481 	}
482 	/*
483 	 * At this point, length argument may not be a constant expression,
484 	 * so run-time bounds checking can be done where buffer sizes are
485 	 * known. (This is not an "else" because the above checks may only
486 	 * be compile-time warnings, and we want to still warn for run-time
487 	 * overflows.)
488 	 */
489 
490 	/*
491 	 * Always stop accesses beyond the struct that contains the
492 	 * field, when the buffer's remaining size is known.
493 	 * (The SIZE_MAX test is to optimize away checks where the buffer
494 	 * lengths are unknown.)
495 	 */
496 	if (p_size != SIZE_MAX && p_size < size)
497 		fortify_panic(FORTIFY_FUNC_memset, FORTIFY_WRITE, p_size, size, true);
498 	return false;
499 }
500 
501 #define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({	\
502 	size_t __fortify_size = (size_t)(size);				\
503 	fortify_memset_chk(__fortify_size, p_size, p_size_field),	\
504 	__underlying_memset(p, c, __fortify_size);			\
505 })
506 
507 /*
508  * __struct_size() vs __member_size() must be captured here to avoid
509  * evaluating argument side-effects further into the macro layers.
510  */
511 #ifndef CONFIG_KMSAN
512 #define memset(p, c, s) __fortify_memset_chk(p, c, s,			\
513 		__struct_size(p), __member_size(p))
514 #endif
515 
516 /*
517  * To make sure the compiler can enforce protection against buffer overflows,
518  * memcpy(), memmove(), and memset() must not be used beyond individual
519  * struct members. If you need to copy across multiple members, please use
520  * struct_group() to create a named mirror of an anonymous struct union.
521  * (e.g. see struct sk_buff.) Read overflow checking is currently only
522  * done when a write overflow is also present, or when building with W=1.
523  *
524  * Mitigation coverage matrix
525  *					Bounds checking at:
526  *					+-------+-------+-------+-------+
527  *					| Compile time  |   Run time    |
528  * memcpy() argument sizes:		| write | read  | write | read  |
529  *        dest     source   length      +-------+-------+-------+-------+
530  * memcpy(known,   known,   constant)	|   y   |   y   |  n/a  |  n/a  |
531  * memcpy(known,   unknown, constant)	|   y   |   n   |  n/a  |   V   |
532  * memcpy(known,   known,   dynamic)	|   n   |   n   |   B   |   B   |
533  * memcpy(known,   unknown, dynamic)	|   n   |   n   |   B   |   V   |
534  * memcpy(unknown, known,   constant)	|   n   |   y   |   V   |  n/a  |
535  * memcpy(unknown, unknown, constant)	|   n   |   n   |   V   |   V   |
536  * memcpy(unknown, known,   dynamic)	|   n   |   n   |   V   |   B   |
537  * memcpy(unknown, unknown, dynamic)	|   n   |   n   |   V   |   V   |
538  *					+-------+-------+-------+-------+
539  *
540  * y = perform deterministic compile-time bounds checking
541  * n = cannot perform deterministic compile-time bounds checking
542  * n/a = no run-time bounds checking needed since compile-time deterministic
543  * B = can perform run-time bounds checking (currently unimplemented)
544  * V = vulnerable to run-time overflow (will need refactoring to solve)
545  *
546  */
fortify_memcpy_chk(__kernel_size_t size,const size_t p_size,const size_t q_size,const size_t p_size_field,const size_t q_size_field,const u8 func)547 __FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size,
548 					 const size_t p_size,
549 					 const size_t q_size,
550 					 const size_t p_size_field,
551 					 const size_t q_size_field,
552 					 const u8 func)
553 {
554 	if (__builtin_constant_p(size)) {
555 		/*
556 		 * Length argument is a constant expression, so we
557 		 * can perform compile-time bounds checking where
558 		 * buffer sizes are also known at compile time.
559 		 */
560 
561 		/* Error when size is larger than enclosing struct. */
562 		if (__compiletime_lessthan(p_size_field, p_size) &&
563 		    __compiletime_lessthan(p_size, size))
564 			__write_overflow();
565 		if (__compiletime_lessthan(q_size_field, q_size) &&
566 		    __compiletime_lessthan(q_size, size))
567 			__read_overflow2();
568 
569 		/* Warn when write size argument larger than dest field. */
570 		if (__compiletime_lessthan(p_size_field, size))
571 			__write_overflow_field(p_size_field, size);
572 		/*
573 		 * Warn for source field over-read when building with W=1
574 		 * or when an over-write happened, so both can be fixed at
575 		 * the same time.
576 		 */
577 		if ((IS_ENABLED(KBUILD_EXTRA_WARN1) ||
578 		     __compiletime_lessthan(p_size_field, size)) &&
579 		    __compiletime_lessthan(q_size_field, size))
580 			__read_overflow2_field(q_size_field, size);
581 	}
582 	/*
583 	 * At this point, length argument may not be a constant expression,
584 	 * so run-time bounds checking can be done where buffer sizes are
585 	 * known. (This is not an "else" because the above checks may only
586 	 * be compile-time warnings, and we want to still warn for run-time
587 	 * overflows.)
588 	 */
589 
590 	/*
591 	 * Always stop accesses beyond the struct that contains the
592 	 * field, when the buffer's remaining size is known.
593 	 * (The SIZE_MAX test is to optimize away checks where the buffer
594 	 * lengths are unknown.)
595 	 */
596 	if (p_size != SIZE_MAX && p_size < size)
597 		fortify_panic(func, FORTIFY_WRITE, p_size, size, true);
598 	else if (q_size != SIZE_MAX && q_size < size)
599 		fortify_panic(func, FORTIFY_READ, p_size, size, true);
600 
601 	/*
602 	 * Warn when writing beyond destination field size.
603 	 *
604 	 * We must ignore p_size_field == 0 for existing 0-element
605 	 * fake flexible arrays, until they are all converted to
606 	 * proper flexible arrays.
607 	 *
608 	 * The implementation of __builtin_*object_size() behaves
609 	 * like sizeof() when not directly referencing a flexible
610 	 * array member, which means there will be many bounds checks
611 	 * that will appear at run-time, without a way for them to be
612 	 * detected at compile-time (as can be done when the destination
613 	 * is specifically the flexible array member).
614 	 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832
615 	 */
616 	if (p_size_field != 0 && p_size_field != SIZE_MAX &&
617 	    p_size != p_size_field && p_size_field < size)
618 		return true;
619 
620 	return false;
621 }
622 
623 #define __fortify_memcpy_chk(p, q, size, p_size, q_size,		\
624 			     p_size_field, q_size_field, op) ({		\
625 	const size_t __fortify_size = (size_t)(size);			\
626 	const size_t __p_size = (p_size);				\
627 	const size_t __q_size = (q_size);				\
628 	const size_t __p_size_field = (p_size_field);			\
629 	const size_t __q_size_field = (q_size_field);			\
630 	fortify_warn_once(fortify_memcpy_chk(__fortify_size, __p_size,	\
631 				     __q_size, __p_size_field,		\
632 				     __q_size_field, FORTIFY_FUNC_ ##op), \
633 		  #op ": detected field-spanning write (size %zu) of single %s (size %zu)\n", \
634 		  __fortify_size,					\
635 		  "field \"" #p "\" at " FILE_LINE,			\
636 		  __p_size_field);					\
637 	__underlying_##op(p, q, __fortify_size);			\
638 })
639 
640 /*
641  * Notes about compile-time buffer size detection:
642  *
643  * With these types...
644  *
645  *	struct middle {
646  *		u16 a;
647  *		u8 middle_buf[16];
648  *		int b;
649  *	};
650  *	struct end {
651  *		u16 a;
652  *		u8 end_buf[16];
653  *	};
654  *	struct flex {
655  *		int a;
656  *		u8 flex_buf[];
657  *	};
658  *
659  *	void func(TYPE *ptr) { ... }
660  *
661  * Cases where destination size cannot be currently detected:
662  * - the size of ptr's object (seemingly by design, gcc & clang fail):
663  *	__builtin_object_size(ptr, 1) == SIZE_MAX
664  * - the size of flexible arrays in ptr's obj (by design, dynamic size):
665  *	__builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX
666  * - the size of ANY array at the end of ptr's obj (gcc and clang bug):
667  *	__builtin_object_size(ptr->end_buf, 1) == SIZE_MAX
668  *	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
669  *
670  * Cases where destination size is currently detected:
671  * - the size of non-array members within ptr's object:
672  *	__builtin_object_size(ptr->a, 1) == 2
673  * - the size of non-flexible-array in the middle of ptr's obj:
674  *	__builtin_object_size(ptr->middle_buf, 1) == 16
675  *
676  */
677 
678 /*
679  * __struct_size() vs __member_size() must be captured here to avoid
680  * evaluating argument side-effects further into the macro layers.
681  */
682 #define memcpy(p, q, s)  __fortify_memcpy_chk(p, q, s,			\
683 		__struct_size(p), __struct_size(q),			\
684 		__member_size(p), __member_size(q),			\
685 		memcpy)
686 #define memmove(p, q, s)  __fortify_memcpy_chk(p, q, s,			\
687 		__struct_size(p), __struct_size(q),			\
688 		__member_size(p), __member_size(q),			\
689 		memmove)
690 
691 extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan);
memscan(void * const POS0 p,int c,__kernel_size_t size)692 __FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size)
693 {
694 	const size_t p_size = __struct_size(p);
695 
696 	if (__compiletime_lessthan(p_size, size))
697 		__read_overflow();
698 	if (p_size < size)
699 		fortify_panic(FORTIFY_FUNC_memscan, FORTIFY_READ, p_size, size, NULL);
700 	return __real_memscan(p, c, size);
701 }
702 
703 __FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3)
memcmp(const void * const POS0 p,const void * const POS0 q,__kernel_size_t size)704 int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size)
705 {
706 	const size_t p_size = __struct_size(p);
707 	const size_t q_size = __struct_size(q);
708 
709 	if (__builtin_constant_p(size)) {
710 		if (__compiletime_lessthan(p_size, size))
711 			__read_overflow();
712 		if (__compiletime_lessthan(q_size, size))
713 			__read_overflow2();
714 	}
715 	if (p_size < size)
716 		fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, p_size, size, INT_MIN);
717 	else if (q_size < size)
718 		fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, q_size, size, INT_MIN);
719 	return __underlying_memcmp(p, q, size);
720 }
721 
722 __FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3)
memchr(const void * const POS0 p,int c,__kernel_size_t size)723 void *memchr(const void * const POS0 p, int c, __kernel_size_t size)
724 {
725 	const size_t p_size = __struct_size(p);
726 
727 	if (__compiletime_lessthan(p_size, size))
728 		__read_overflow();
729 	if (p_size < size)
730 		fortify_panic(FORTIFY_FUNC_memchr, FORTIFY_READ, p_size, size, NULL);
731 	return __underlying_memchr(p, c, size);
732 }
733 
734 void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv);
memchr_inv(const void * const POS0 p,int c,size_t size)735 __FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size)
736 {
737 	const size_t p_size = __struct_size(p);
738 
739 	if (__compiletime_lessthan(p_size, size))
740 		__read_overflow();
741 	if (p_size < size)
742 		fortify_panic(FORTIFY_FUNC_memchr_inv, FORTIFY_READ, p_size, size, NULL);
743 	return __real_memchr_inv(p, c, size);
744 }
745 
746 extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup_noprof)
747 								    __realloc_size(2);
kmemdup_noprof(const void * const POS0 p,size_t size,gfp_t gfp)748 __FORTIFY_INLINE void *kmemdup_noprof(const void * const POS0 p, size_t size, gfp_t gfp)
749 {
750 	const size_t p_size = __struct_size(p);
751 
752 	if (__compiletime_lessthan(p_size, size))
753 		__read_overflow();
754 	if (p_size < size)
755 		fortify_panic(FORTIFY_FUNC_kmemdup, FORTIFY_READ, p_size, size,
756 			      __real_kmemdup(p, 0, gfp));
757 	return __real_kmemdup(p, size, gfp);
758 }
759 #define kmemdup(...)	alloc_hooks(kmemdup_noprof(__VA_ARGS__))
760 
761 /**
762  * strcpy - Copy a string into another string buffer
763  *
764  * @p: pointer to destination of copy
765  * @q: pointer to NUL-terminated source string to copy
766  *
767  * Do not use this function. While FORTIFY_SOURCE tries to avoid
768  * overflows, this is only possible when the sizes of @q and @p are
769  * known to the compiler. Prefer strscpy(), though note its different
770  * return values for detecting truncation.
771  *
772  * Returns @p.
773  *
774  */
775 /* Defined after fortified strlen to reuse it. */
776 __FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2)
strcpy(char * const POS p,const char * const POS q)777 char *strcpy(char * const POS p, const char * const POS q)
778 {
779 	const size_t p_size = __member_size(p);
780 	const size_t q_size = __member_size(q);
781 	size_t size;
782 
783 	/* If neither buffer size is known, immediately give up. */
784 	if (__builtin_constant_p(p_size) &&
785 	    __builtin_constant_p(q_size) &&
786 	    p_size == SIZE_MAX && q_size == SIZE_MAX)
787 		return __underlying_strcpy(p, q);
788 	size = strlen(q) + 1;
789 	/* Compile-time check for const size overflow. */
790 	if (__compiletime_lessthan(p_size, size))
791 		__write_overflow();
792 	/* Run-time check for dynamic size overflow. */
793 	if (p_size < size)
794 		fortify_panic(FORTIFY_FUNC_strcpy, FORTIFY_WRITE, p_size, size, p);
795 	__underlying_memcpy(p, q, size);
796 	return p;
797 }
798 
799 /* Don't use these outside the FORITFY_SOURCE implementation */
800 #undef __underlying_memchr
801 #undef __underlying_memcmp
802 #undef __underlying_strcat
803 #undef __underlying_strcpy
804 #undef __underlying_strlen
805 #undef __underlying_strncat
806 #undef __underlying_strncpy
807 
808 #undef POS
809 #undef POS0
810 
811 #endif /* _LINUX_FORTIFY_STRING_H_ */
812