Home
last modified time | relevance | path

Searched refs:memory (Results 1 – 25 of 2861) sorted by relevance

12345678910>>...115

/linux/tools/testing/selftests/memory-hotplug/
H A Dmem-on-off-test.sh25 if ! ls $SYSFS/devices/system/memory/memory* > /dev/null 2>&1; then
30 if ! grep -q 1 $SYSFS/devices/system/memory/memory*/removable; then
43 for memory in $SYSFS/devices/system/memory/memory*; do
63 grep -q online $SYSFS/devices/system/memory/memory$1/state
68 grep -q offline $SYSFS/devices/system/memory/memory$1/state
73 echo online > $SYSFS/devices/system/memory/memory$1/state
78 echo offline > $SYSFS/devices/system/memory/memory$1/state
83 local memory=$1
97 local memory=$1
111 local memory=$1
[all …]
/linux/Documentation/devicetree/bindings/memory-controllers/fsl/
H A Dfsl,ddr.yaml7 title: Freescale DDR memory controller
27 - fsl,bsc9132-memory-controller
28 - fsl,mpc8536-memory-controller
29 - fsl,mpc8540-memory-controller
30 - fsl,mpc8541-memory-controller
39 - fsl,p1020-memory-controller
40 - fsl,p1021-memory-controller
41 - fsl,p2020-memory-controller
42 - fsl,qoriq-memory-controller
65 memory-controller@2000 {
[all …]
/linux/drivers/gpu/drm/nouveau/nvkm/core/
H A Dmemory.c39 kfree(memory->tags); in nvkm_memory_tags_put()
40 memory->tags = NULL; in nvkm_memory_tags_put()
103 memory->func = func; in nvkm_memory_ctor()
110 struct nvkm_memory *memory = container_of(kref, typeof(*memory), kref); in nvkm_memory_del() local
112 if (memory->func->dtor) in nvkm_memory_del()
113 memory = memory->func->dtor(memory); in nvkm_memory_del()
114 kfree(memory); in nvkm_memory_del()
122 if (memory) { in nvkm_memory_unref()
131 if (memory) in nvkm_memory_ref()
133 return memory; in nvkm_memory_ref()
[all …]
H A Dfirmware.c116 nvkm_firmware_mem_sgl(struct nvkm_memory *memory) in nvkm_firmware_mem_sgl() argument
137 .memory = &fw->mem.memory, in nvkm_firmware_mem_map()
139 .sgl = nvkm_firmware_mem_sgl(memory), in nvkm_firmware_mem_map()
149 nvkm_firmware_mem_size(struct nvkm_memory *memory) in nvkm_firmware_mem_size() argument
157 nvkm_firmware_mem_addr(struct nvkm_memory *memory) in nvkm_firmware_mem_addr() argument
160 return nvkm_firmware_mem(memory)->phys; in nvkm_firmware_mem_addr()
164 nvkm_firmware_mem_page(struct nvkm_memory *memory) in nvkm_firmware_mem_page() argument
179 nvkm_firmware_mem_dtor(struct nvkm_memory *memory) in nvkm_firmware_mem_dtor() argument
197 struct nvkm_memory *memory = &fw->mem.memory; in nvkm_firmware_dtor() local
207 nvkm_memory_unref(&memory); in nvkm_firmware_dtor()
[all …]
/linux/Documentation/admin-guide/mm/
H A Dmemory-hotplug.rst21 downgrading the memory capacity. This dynamic memory resizing, sometimes
67 phase, the memory is visible in memory statistics, such as free and total
140 make use of that memory: the memory block has to be "online".
143 the memory block: the memory block has to be "offlined".
149 memory.
202 memory blocks only.
212 memory blocks; if onlining fails, memory blocks are removed again.
325 however, a memory block might span memory holes. A memory block spanning memory
368 that memory provided by a memory block is managed by
443 memory.
[all …]
H A Dnumaperf.rst13 A system supports such heterogeneous memory by grouping each memory type
16 are provided as memory only nodes. While memory only nodes do not provide
19 nodes with local memory and a memory only node for each of compute node::
31 CPUs or separate memory I/O devices that can initiate memory requests.
42 memory targets.
54 A memory initiator may have multiple memory targets in the same access
97 memory activity.
104 slower performing memory cached by a smaller higher performing memory. The
110 The term "far memory" is used to denote the last level memory in the
118 level memory, so the higher numbered cache level corresponds to memory
[all …]
H A Dconcepts.rst5 The memory management in Linux is a complex system that evolved over the
21 the amount of memory that can be installed. The physical memory is not
30 The virtual memory abstracts the details of physical memory from the
35 With virtual memory, each and every memory access uses a virtual
39 memory controller can understand.
67 The address translation requires several memory accesses and memory
103 memory exceeds the maximal addressable size of virtual memory and
143 The `anonymous memory` or `anonymous mappings` represent memory that
160 memory allocated by user space processes etc.
167 reclaimable pages are page cache and anonymous memory.
[all …]
/linux/Documentation/arch/arm64/
H A Dkdump.rst2 crashkernel memory reservation on arm64
9 reserved memory is needed to pre-load the kdump kernel and boot such
12 That reserved memory for kdump is adapted to be able to minimally
28 Low memory and high memory
31 For kdump reservations, low memory is the memory area under a specific
37 whole system RAM is low memory. Outside of the low memory described
38 above, the rest of system RAM is considered high memory.
63 sufficient for the low memory needs of the kdump kernel.
74 to be allocated from the high memory and low memory respectively. On
80 low memory reservation will be done subsequently.
[all …]
/linux/drivers/gpu/drm/nouveau/nvkm/subdev/mmu/
H A Dmem.c31 struct nvkm_memory memory; member
45 return nvkm_mem(memory)->target; in nvkm_mem_target()
49 nvkm_mem_page(struct nvkm_memory *memory) in nvkm_mem_page() argument
75 .memory = &mem->memory, in nvkm_mem_map_dma()
115 .memory = &mem->memory, in nvkm_mem_map_sgl()
170 *pmemory = &mem->memory; in nvkm_mem_new_host()
227 struct nvkm_memory *memory = NULL; in nvkm_mem_new_type() local
232 argv, argc, &memory); in nvkm_mem_new_type()
235 argv, argc, &memory); in nvkm_mem_new_type()
239 nvkm_memory_unref(&memory); in nvkm_mem_new_type()
[all …]
/linux/Documentation/ABI/testing/
H A Dsysfs-devices-memory1 What: /sys/devices/system/memory
9 Users: hotplug memory add/remove tools
12 What: /sys/devices/system/memory/memoryX/removable
20 Users: hotplug memory remove tools
40 memory section directory name.
66 Users: hotplug memory remove tools
77 For online memory blocks, it returns in which zone memory
80 and the memory block cannot be offlined.
82 For offline memory blocks, it returns by which zone memory
87 memory block.
[all …]
/linux/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/
H A Dbase.c34 struct nvkm_memory *memory = &iobj->memory; in nvkm_instobj_load() local
39 if (!(map = nvkm_kmap(memory))) { in nvkm_instobj_load()
45 nvkm_done(memory); in nvkm_instobj_load()
54 struct nvkm_memory *memory = &iobj->memory; in nvkm_instobj_save() local
63 if (!(map = nvkm_kmap(memory))) { in nvkm_instobj_save()
69 nvkm_done(memory); in nvkm_instobj_save()
126 zero, nvkm_memory_addr(memory), nvkm_memory_size(memory)); in nvkm_instobj_new()
136 nvkm_done(memory); in nvkm_instobj_new()
139 container_of(memory, struct nvkm_instobj, memory)->preserve = preserve; in nvkm_instobj_new()
142 nvkm_memory_unref(&memory); in nvkm_instobj_new()
[all …]
H A Dnv50.c125 struct nvkm_memory *memory = &iobj->base.memory; in nv50_instobj_kmap() local
129 u64 size = nvkm_memory_size(memory); in nv50_instobj_kmap()
146 nvkm_memory_addr(&eobj->base.memory), in nv50_instobj_kmap()
147 nvkm_memory_size(&eobj->base.memory), in nv50_instobj_kmap()
187 memory = nv50_instobj(memory)->ram; in nv50_instobj_map()
211 iobj->base.memory.ptrs = NULL; in nv50_instobj_release()
286 nv50_instobj_size(struct nvkm_memory *memory) in nv50_instobj_size() argument
292 nv50_instobj_addr(struct nvkm_memory *memory) in nv50_instobj_addr() argument
306 nv50_instobj_release(&iobj->base.memory); in nv50_instobj_bar2()
365 *pmemory = &iobj->base.memory; in nv50_instobj_wrap()
[all …]
/linux/Documentation/admin-guide/cgroup-v1/
H A Dmemory.rst27 uses of the memory controller. The memory controller can be used to
69 memory.usage_in_bytes show current usage for memory
73 memory.limit_in_bytes set/show limit of memory usage
77 memory.max_usage_in_bytes show max memory usage recorded
86 memory.pressure_level set memory pressure notifications
247 memsw means memory+swap. Usage of memory+swap is limited by
405 # mount -t cgroup none /sys/fs/cgroup/memory -o memory
414 # echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
418 # cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
435 # cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
[all …]
/linux/arch/arm64/boot/dts/ti/
H A Dk3-am68-sk-som.dtsi12 memory@80000000 {
13 device_type = "memory";
19 reserved_memory: reserved-memory {
35 mcu_r5fss0_core0_memory_region: r5f-memory@a0100000 {
47 mcu_r5fss0_core1_memory_region: r5f-memory@a1100000 {
101 c71_0_dma_memory_region: c71-dma-memory@a6000000 {
107 c71_0_memory_region: c71-memory@a6100000 {
113 c71_1_dma_memory_region: c71-dma-memory@a7000000 {
119 c71_1_memory_region: c71-memory@a7100000 {
250 memory-region = <&c71_0_dma_memory_region>,
[all …]
/linux/Documentation/mm/
H A Dmemory-model.rst17 memory models it supports, what the default memory model is and
36 memory.
46 memory to the page allocator.
65 as hot-plug and hot-remove of the physical memory, alternative memory
67 the memory map for larger systems.
98 all the memory sections.
101 initialize the memory sections and the memory maps.
135 allocate memory map on the persistent memory device.
156 subject to its memory ranges being exposed through the sysfs memory
170 events related to device-memory, typically GPU memory. See
[all …]
H A Dhmm.rst6 memory like GPU on board memory) into regular kernel path, with the cornerstone
34 driver and regular application memory (private anonymous, shared memory, or
60 various memory copies.
77 buses only allow basic memory access from device to main memory; even cache
85 memory and cannot perform atomic operations on it. Thus device memory cannot
100 access any memory but we must also permit any memory to be migrated to device
128 memory for the device memory and second to perform migration. Policy decisions
316 system memory and device private memory.
433 back from device memory to regular memory cannot fail because it would
435 get more experience in how device memory is used and its impact on memory
[all …]
H A Dnuma.rst12 or more CPUs, local memory, and/or IO buses. For brevity and to
32 cell containing the target memory. For example, access to memory by CPUs
39 memory bandwidth. However, to achieve scalable memory bandwidth, system and
41 [cache misses] to be to "local" memory--memory on the same cell, if any--or
42 to the closest cell with memory.
50 CPUs, memory and/or IO buses. And, again, memory accesses to memory on
70 For each node with memory, Linux constructs an independent memory management
110 allocation behavior using Linux NUMA memory policy. [see
125 does contain memory overflows.
130 a subsystem allocates per CPU memory resources, for example.
[all …]
/linux/Documentation/core-api/
H A Dmemory-hotplug.rst17 to allocate from the new memory.
24 allocate pages from the new memory.
28 longer possible from the memory but some of the memory to be offlined
30 subsystem from the indicated memory block.
34 the memory block that we attempted to offline.
37 Generated after offlining memory is complete.
63 - start_pfn is start_pfn of online/offline memory.
89 When adding/removing memory that uses memory block devices (i.e. ordinary RAM),
94 space once memory has been fully added. And when removing memory, we
100 memory faster than expected:
[all …]
/linux/drivers/staging/octeon/
H A Dethernet-mem.c49 char *memory; in cvm_oct_free_hw_skbuff() local
52 memory = cvmx_fpa_alloc(pool); in cvm_oct_free_hw_skbuff()
53 if (memory) { in cvm_oct_free_hw_skbuff()
59 } while (memory); in cvm_oct_free_hw_skbuff()
79 char *memory; in cvm_oct_fill_hw_memory() local
94 memory = kmalloc(size + 256, GFP_ATOMIC); in cvm_oct_fill_hw_memory()
95 if (unlikely(!memory)) { in cvm_oct_fill_hw_memory()
101 *((char **)fpa - 1) = memory; in cvm_oct_fill_hw_memory()
116 char *memory; in cvm_oct_free_hw_memory() local
124 memory = *((char **)fpa - 1); in cvm_oct_free_hw_memory()
[all …]
/linux/drivers/gpu/drm/nouveau/nvkm/subdev/fb/
H A Dram.c32 struct nvkm_memory memory; member
41 return nvkm_instobj_wrap(nvkm_vram(memory)->ram->fb->subdev.device, memory, pmemory); in nvkm_vram_kmap()
48 struct nvkm_vram *vram = nvkm_vram(memory); in nvkm_vram_map()
50 .memory = &vram->memory, in nvkm_vram_map()
59 nvkm_vram_size(struct nvkm_memory *memory) in nvkm_vram_size() argument
65 nvkm_vram_addr(struct nvkm_memory *memory) in nvkm_vram_addr() argument
74 nvkm_vram_page(struct nvkm_memory *memory) in nvkm_vram_page() argument
76 return nvkm_vram(memory)->page; in nvkm_vram_page()
86 nvkm_vram_dtor(struct nvkm_memory *memory) in nvkm_vram_dtor() argument
136 *pmemory = &vram->memory; in nvkm_ram_wrap()
[all …]
/linux/fs/btrfs/tests/
H A Dextent-io-tests.c727 if (!memory) { in test_eb_mem_ops()
745 memcpy(memory, memory + 16, 16); in test_eb_mem_ops()
751 memcpy(memory, memory + 2048, 16); in test_eb_mem_ops()
756 memcpy(memory, memory + 2048, 2048); in test_eb_mem_ops()
762 memmove(memory + 512, memory + 256, 512); in test_eb_mem_ops()
768 memmove(memory + 2048, memory + 512, 2048); in test_eb_mem_ops()
773 memmove(memory + 512, memory + 2048, 2048); in test_eb_mem_ops()
780 memcpy(memory, memory + 4096 - 128, 256); in test_eb_mem_ops()
786 memcpy(memory + 4096 - 128, memory + 4096 + 128, 256); in test_eb_mem_ops()
792 memmove(memory + 4096 - 128, memory + 4096 - 64, 256); in test_eb_mem_ops()
[all …]
/linux/Documentation/userspace-api/media/v4l/
H A Ddev-mem2mem.rst9 A V4L2 memory-to-memory device can compress, decompress, transform, or
10 otherwise convert video data from one format into another format, in memory.
11 Such memory-to-memory devices set the ``V4L2_CAP_VIDEO_M2M`` or
12 ``V4L2_CAP_VIDEO_M2M_MPLANE`` capability. Examples of memory-to-memory
16 A memory-to-memory video node acts just like a normal video node, but it
17 supports both output (sending frames from memory to the hardware)
19 memory) stream I/O. An application will have to setup the stream I/O for
23 Memory-to-memory devices function as a shared resource: you can
32 One of the most common memory-to-memory device is the codec. Codecs
35 See :ref:`codec-controls`. More details on how to use codec memory-to-memory
/linux/Documentation/arch/powerpc/
H A Dfirmware-assisted-dump.rst50 low memory regions (boot memory) from source to destination area.
54 The term 'boot memory' means size of the low memory chunk
56 booted with restricted memory. By default, the boot memory
68 - After the low memory (boot memory) area has been saved, the
78 boot memory size effectively booting with restricted memory
90 memory back to general use, except the memory required for
134 memory is held.
151 kernel memory and most of the user space memory except the user pages
156 Low memory Top of memory
185 Low memory Top of memory
[all …]
/linux/Documentation/devicetree/bindings/memory-controllers/
H A Dnvidia,tegra210-emc.yaml15 sent from the memory controller.
26 - description: external memory clock
36 memory-region:
39 phandle to a reserved memory region describing the table of EMC
42 nvidia,memory-controller:
45 phandle of the memory controller node
52 - nvidia,memory-controller
61 reserved-memory {
72 external-memory-controller@7001b000 {
80 memory-region = <&emc_table>;
[all …]
/linux/tools/testing/memblock/tests/
H A Dbasic_api.c18 ASSERT_EQ(memblock.memory.cnt, 1); in memblock_initialization_check()
45 rgn = &memblock.memory.regions[0]; in memblock_add_simple_check()
60 ASSERT_EQ(memblock.memory.cnt, 1); in memblock_add_simple_check()
78 rgn = &memblock.memory.regions[0]; in memblock_add_node_simple_check()
97 ASSERT_EQ(memblock.memory.cnt, 1); in memblock_add_node_simple_check()
121 rgn1 = &memblock.memory.regions[0]; in memblock_add_disjoint_check()
122 rgn2 = &memblock.memory.regions[1]; in memblock_add_disjoint_check()
145 ASSERT_EQ(memblock.memory.cnt, 2); in memblock_add_disjoint_check()
175 rgn = &memblock.memory.regions[0]; in memblock_add_overlap_top_check()
197 ASSERT_EQ(memblock.memory.cnt, 1); in memblock_add_overlap_top_check()
[all …]

12345678910>>...115