xref: /netbsd/sys/net/if_vlan.c (revision 60b4fee9)
1 /*	$NetBSD: if_vlan.c,v 1.170 2022/06/20 08:14:48 yamaguchi Exp $	*/
2 
3 /*
4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright 1998 Massachusetts Institute of Technology
34  *
35  * Permission to use, copy, modify, and distribute this software and
36  * its documentation for any purpose and without fee is hereby
37  * granted, provided that both the above copyright notice and this
38  * permission notice appear in all copies, that both the above
39  * copyright notice and this permission notice appear in all
40  * supporting documentation, and that the name of M.I.T. not be used
41  * in advertising or publicity pertaining to distribution of the
42  * software without specific, written prior permission.  M.I.T. makes
43  * no representations about the suitability of this software for any
44  * purpose.  It is provided "as is" without express or implied
45  * warranty.
46  *
47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62  */
63 
64 /*
65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
67  * sort of sneaky in the implementation, since we need to pretend to be
68  * enough of an Ethernet implementation to make ARP work.  The way we do
69  * this is by telling everyone that we are an Ethernet interface, and then
70  * catch the packets that ether_output() left on our output queue when it
71  * calls if_start(), rewrite them for use by the real outgoing interface,
72  * and ask it to send them.
73  *
74  * TODO:
75  *
76  *	- Need some way to notify vlan interfaces when the parent
77  *	  interface changes MTU.
78  */
79 
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.170 2022/06/20 08:14:48 yamaguchi Exp $");
82 
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cpu.h>
101 #include <sys/pserialize.h>
102 #include <sys/psref.h>
103 #include <sys/pslist.h>
104 #include <sys/atomic.h>
105 #include <sys/device.h>
106 #include <sys/module.h>
107 
108 #include <net/bpf.h>
109 #include <net/if.h>
110 #include <net/if_dl.h>
111 #include <net/if_types.h>
112 #include <net/if_ether.h>
113 #include <net/if_vlanvar.h>
114 
115 #ifdef INET
116 #include <netinet/in.h>
117 #include <netinet/if_inarp.h>
118 #endif
119 #ifdef INET6
120 #include <netinet6/in6_ifattach.h>
121 #include <netinet6/in6_var.h>
122 #include <netinet6/nd6.h>
123 #endif
124 
125 #include "ioconf.h"
126 
127 struct vlan_mc_entry {
128 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
129 	/*
130 	 * A key to identify this entry.  The mc_addr below can't be
131 	 * used since multiple sockaddr may mapped into the same
132 	 * ether_multi (e.g., AF_UNSPEC).
133 	 */
134 	struct ether_multi	*mc_enm;
135 	struct sockaddr_storage		mc_addr;
136 };
137 
138 struct ifvlan_linkmib {
139 	struct ifvlan *ifvm_ifvlan;
140 	const struct vlan_multisw *ifvm_msw;
141 	int	ifvm_mtufudge;	/* MTU fudged by this much */
142 	int	ifvm_mintu;	/* min transmission unit */
143 	uint16_t ifvm_proto;	/* encapsulation ethertype */
144 	uint16_t ifvm_tag;	/* tag to apply on packets */
145 	struct ifnet *ifvm_p;	/* parent interface of this vlan */
146 
147 	struct psref_target ifvm_psref;
148 };
149 
150 struct ifvlan {
151 	struct ethercom ifv_ec;
152 	struct ifvlan_linkmib *ifv_mib;	/*
153 					 * reader must use vlan_getref_linkmib()
154 					 * instead of direct dereference
155 					 */
156 	kmutex_t ifv_lock;		/* writer lock for ifv_mib */
157 	pserialize_t ifv_psz;
158 	void *ifv_linkstate_hook;
159 	void *ifv_ifdetach_hook;
160 
161 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
162 	struct pslist_entry ifv_hash;
163 	int ifv_flags;
164 	bool ifv_stopping;
165 };
166 
167 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
168 
169 #define	ifv_if		ifv_ec.ec_if
170 
171 #define	ifv_msw		ifv_mib.ifvm_msw
172 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
173 #define	ifv_mintu	ifv_mib.ifvm_mintu
174 #define	ifv_tag		ifv_mib.ifvm_tag
175 
176 struct vlan_multisw {
177 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
178 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
179 	void	(*vmsw_purgemulti)(struct ifvlan *);
180 };
181 
182 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
183 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
184 static void	vlan_ether_purgemulti(struct ifvlan *);
185 
186 const struct vlan_multisw vlan_ether_multisw = {
187 	.vmsw_addmulti = vlan_ether_addmulti,
188 	.vmsw_delmulti = vlan_ether_delmulti,
189 	.vmsw_purgemulti = vlan_ether_purgemulti,
190 };
191 
192 static int	vlan_clone_create(struct if_clone *, int);
193 static int	vlan_clone_destroy(struct ifnet *);
194 static int	vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
195 static int	vlan_ioctl(struct ifnet *, u_long, void *);
196 static void	vlan_start(struct ifnet *);
197 static int	vlan_transmit(struct ifnet *, struct mbuf *);
198 static void	vlan_link_state_changed(void *);
199 static void	vlan_ifdetach(void *);
200 static void	vlan_unconfig(struct ifnet *);
201 static int	vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
202 static void	vlan_hash_init(void);
203 static int	vlan_hash_fini(void);
204 static int	vlan_tag_hash(uint16_t, u_long);
205 static struct ifvlan_linkmib*
206 		vlan_getref_linkmib(struct ifvlan *, struct psref *);
207 static void	vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
208 static void	vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
209 static struct ifvlan_linkmib*
210 		vlan_lookup_tag_psref(struct ifnet *, uint16_t,
211 		    struct psref *);
212 
213 #if !defined(VLAN_TAG_HASH_SIZE)
214 #define VLAN_TAG_HASH_SIZE 32
215 #endif
216 static struct {
217 	kmutex_t lock;
218 	struct pslist_head *lists;
219 	u_long mask;
220 } ifv_hash __cacheline_aligned = {
221 	.lists = NULL,
222 	.mask = 0,
223 };
224 
225 pserialize_t vlan_psz __read_mostly;
226 static struct psref_class *ifvm_psref_class __read_mostly;
227 
228 struct if_clone vlan_cloner =
229     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
230 
231 static uint32_t nvlanifs;
232 
233 static inline int
vlan_safe_ifpromisc(struct ifnet * ifp,int pswitch)234 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
235 {
236 	int e;
237 
238 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
239 	e = ifpromisc(ifp, pswitch);
240 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
241 
242 	return e;
243 }
244 
245 __unused static inline int
vlan_safe_ifpromisc_locked(struct ifnet * ifp,int pswitch)246 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
247 {
248 	int e;
249 
250 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
251 	e = ifpromisc_locked(ifp, pswitch);
252 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
253 
254 	return e;
255 }
256 
257 void
vlanattach(int n)258 vlanattach(int n)
259 {
260 
261 	/*
262 	 * Nothing to do here, initialization is handled by the
263 	 * module initialization code in vlaninit() below.
264 	 */
265 }
266 
267 static void
vlaninit(void)268 vlaninit(void)
269 {
270 	nvlanifs = 0;
271 
272 	mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
273 	vlan_psz = pserialize_create();
274 	ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
275 	if_clone_attach(&vlan_cloner);
276 
277 	vlan_hash_init();
278 	MODULE_HOOK_SET(if_vlan_vlan_input_hook, vlan_input);
279 }
280 
281 static int
vlandetach(void)282 vlandetach(void)
283 {
284 	int error;
285 
286 	if (nvlanifs > 0)
287 		return EBUSY;
288 
289 	error = vlan_hash_fini();
290 	if (error != 0)
291 		return error;
292 
293 	if_clone_detach(&vlan_cloner);
294 	psref_class_destroy(ifvm_psref_class);
295 	pserialize_destroy(vlan_psz);
296 	mutex_destroy(&ifv_hash.lock);
297 
298 	MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
299 	return 0;
300 }
301 
302 static void
vlan_reset_linkname(struct ifnet * ifp)303 vlan_reset_linkname(struct ifnet *ifp)
304 {
305 
306 	/*
307 	 * We start out with a "802.1Q VLAN" type and zero-length
308 	 * addresses.  When we attach to a parent interface, we
309 	 * inherit its type, address length, address, and data link
310 	 * type.
311 	 */
312 
313 	ifp->if_type = IFT_L2VLAN;
314 	ifp->if_addrlen = 0;
315 	ifp->if_dlt = DLT_NULL;
316 	if_alloc_sadl(ifp);
317 }
318 
319 static int
vlan_clone_create(struct if_clone * ifc,int unit)320 vlan_clone_create(struct if_clone *ifc, int unit)
321 {
322 	struct ifvlan *ifv;
323 	struct ifnet *ifp;
324 	struct ifvlan_linkmib *mib;
325 
326 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
327 	mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
328 	ifp = &ifv->ifv_if;
329 	LIST_INIT(&ifv->ifv_mc_listhead);
330 
331 	mib->ifvm_ifvlan = ifv;
332 	mib->ifvm_p = NULL;
333 	psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
334 
335 	mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
336 	ifv->ifv_psz = pserialize_create();
337 	ifv->ifv_mib = mib;
338 
339 	atomic_inc_uint(&nvlanifs);
340 
341 	if_initname(ifp, ifc->ifc_name, unit);
342 	ifp->if_softc = ifv;
343 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
344 #ifdef NET_MPSAFE
345 	ifp->if_extflags = IFEF_MPSAFE;
346 #endif
347 	ifp->if_start = vlan_start;
348 	ifp->if_transmit = vlan_transmit;
349 	ifp->if_ioctl = vlan_ioctl;
350 	IFQ_SET_READY(&ifp->if_snd);
351 	if_initialize(ifp);
352 	/*
353 	 * Set the link state to down.
354 	 * When the parent interface attaches we will use that link state.
355 	 * When the parent interface link state changes, so will ours.
356 	 * When the parent interface detaches, set the link state to down.
357 	 */
358 	ifp->if_link_state = LINK_STATE_DOWN;
359 
360 	vlan_reset_linkname(ifp);
361 	if_register(ifp);
362 	return 0;
363 }
364 
365 static int
vlan_clone_destroy(struct ifnet * ifp)366 vlan_clone_destroy(struct ifnet *ifp)
367 {
368 	struct ifvlan *ifv = ifp->if_softc;
369 
370 	atomic_dec_uint(&nvlanifs);
371 
372 	IFNET_LOCK(ifp);
373 	vlan_unconfig(ifp);
374 	IFNET_UNLOCK(ifp);
375 	if_detach(ifp);
376 
377 	psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
378 	kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
379 	pserialize_destroy(ifv->ifv_psz);
380 	mutex_destroy(&ifv->ifv_lock);
381 	free(ifv, M_DEVBUF);
382 
383 	return 0;
384 }
385 
386 /*
387  * Configure a VLAN interface.
388  */
389 static int
vlan_config(struct ifvlan * ifv,struct ifnet * p,uint16_t tag)390 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
391 {
392 	struct ifnet *ifp = &ifv->ifv_if;
393 	struct ifvlan_linkmib *nmib = NULL;
394 	struct ifvlan_linkmib *omib = NULL;
395 	struct ifvlan_linkmib *checkmib;
396 	struct psref_target *nmib_psref = NULL;
397 	const uint16_t vid = EVL_VLANOFTAG(tag);
398 	int error = 0;
399 	int idx;
400 	bool omib_cleanup = false;
401 	struct psref psref;
402 
403 	/* VLAN ID 0 and 4095 are reserved in the spec */
404 	if ((vid == 0) || (vid == 0xfff))
405 		return EINVAL;
406 
407 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
408 	mutex_enter(&ifv->ifv_lock);
409 	omib = ifv->ifv_mib;
410 
411 	if (omib->ifvm_p != NULL) {
412 		error = EBUSY;
413 		goto done;
414 	}
415 
416 	/* Duplicate check */
417 	checkmib = vlan_lookup_tag_psref(p, vid, &psref);
418 	if (checkmib != NULL) {
419 		vlan_putref_linkmib(checkmib, &psref);
420 		error = EEXIST;
421 		goto done;
422 	}
423 
424 	*nmib = *omib;
425 	nmib_psref = &nmib->ifvm_psref;
426 
427 	psref_target_init(nmib_psref, ifvm_psref_class);
428 
429 	switch (p->if_type) {
430 	case IFT_ETHER:
431 	    {
432 		struct ethercom *ec = (void *)p;
433 
434 		nmib->ifvm_msw = &vlan_ether_multisw;
435 		nmib->ifvm_mintu = ETHERMIN;
436 
437 		error = ether_add_vlantag(p, tag, NULL);
438 		if (error != 0)
439 			goto done;
440 
441 		if (ec->ec_capenable & ETHERCAP_VLAN_MTU) {
442 			nmib->ifvm_mtufudge = 0;
443 		} else {
444 			/*
445 			 * Fudge the MTU by the encapsulation size. This
446 			 * makes us incompatible with strictly compliant
447 			 * 802.1Q implementations, but allows us to use
448 			 * the feature with other NetBSD
449 			 * implementations, which might still be useful.
450 			 */
451 			nmib->ifvm_mtufudge = ETHER_VLAN_ENCAP_LEN;
452 		}
453 
454 		/*
455 		 * If the parent interface can do hardware-assisted
456 		 * VLAN encapsulation, then propagate its hardware-
457 		 * assisted checksumming flags and tcp segmentation
458 		 * offload.
459 		 */
460 		if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
461 			ifp->if_capabilities = p->if_capabilities &
462 			    (IFCAP_TSOv4 | IFCAP_TSOv6 |
463 				IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx |
464 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
465 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
466 				IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
467 				IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
468 		}
469 
470 		/*
471 		 * We inherit the parent's Ethernet address.
472 		 */
473 		ether_ifattach(ifp, CLLADDR(p->if_sadl));
474 		ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
475 		break;
476 	    }
477 
478 	default:
479 		error = EPROTONOSUPPORT;
480 		goto done;
481 	}
482 
483 	nmib->ifvm_p = p;
484 	nmib->ifvm_tag = vid;
485 	ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
486 	ifv->ifv_if.if_flags = p->if_flags &
487 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
488 
489 	/*
490 	 * Inherit the if_type from the parent.  This allows us
491 	 * to participate in bridges of that type.
492 	 */
493 	ifv->ifv_if.if_type = p->if_type;
494 
495 	PSLIST_ENTRY_INIT(ifv, ifv_hash);
496 	idx = vlan_tag_hash(vid, ifv_hash.mask);
497 
498 	mutex_enter(&ifv_hash.lock);
499 	PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
500 	mutex_exit(&ifv_hash.lock);
501 
502 	vlan_linkmib_update(ifv, nmib);
503 	nmib = NULL;
504 	nmib_psref = NULL;
505 	omib_cleanup = true;
506 
507 	ifv->ifv_ifdetach_hook = ether_ifdetachhook_establish(p,
508 	    vlan_ifdetach, ifp);
509 
510 	/*
511 	 * We inherit the parents link state.
512 	 */
513 	ifv->ifv_linkstate_hook = if_linkstate_change_establish(p,
514 	    vlan_link_state_changed, ifv);
515 	if_link_state_change(&ifv->ifv_if, p->if_link_state);
516 
517 done:
518 	mutex_exit(&ifv->ifv_lock);
519 
520 	if (nmib_psref)
521 		psref_target_destroy(nmib_psref, ifvm_psref_class);
522 	if (nmib)
523 		kmem_free(nmib, sizeof(*nmib));
524 	if (omib_cleanup)
525 		kmem_free(omib, sizeof(*omib));
526 
527 	return error;
528 }
529 
530 /*
531  * Unconfigure a VLAN interface.
532  */
533 static void
vlan_unconfig(struct ifnet * ifp)534 vlan_unconfig(struct ifnet *ifp)
535 {
536 	struct ifvlan *ifv = ifp->if_softc;
537 	struct ifvlan_linkmib *nmib = NULL;
538 	int error;
539 
540 	KASSERT(IFNET_LOCKED(ifp));
541 
542 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
543 
544 	mutex_enter(&ifv->ifv_lock);
545 	error = vlan_unconfig_locked(ifv, nmib);
546 	mutex_exit(&ifv->ifv_lock);
547 
548 	if (error)
549 		kmem_free(nmib, sizeof(*nmib));
550 }
551 static int
vlan_unconfig_locked(struct ifvlan * ifv,struct ifvlan_linkmib * nmib)552 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
553 {
554 	struct ifnet *p;
555 	struct ifnet *ifp = &ifv->ifv_if;
556 	struct psref_target *nmib_psref = NULL;
557 	struct ifvlan_linkmib *omib;
558 	int error = 0;
559 
560 	KASSERT(IFNET_LOCKED(ifp));
561 	KASSERT(mutex_owned(&ifv->ifv_lock));
562 
563 	if (ifv->ifv_stopping) {
564 		error = -1;
565 		goto done;
566 	}
567 
568 	ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
569 
570 	omib = ifv->ifv_mib;
571 	p = omib->ifvm_p;
572 
573 	if (p == NULL) {
574 		error = -1;
575 		goto done;
576 	}
577 
578 	*nmib = *omib;
579 	nmib_psref = &nmib->ifvm_psref;
580 	psref_target_init(nmib_psref, ifvm_psref_class);
581 
582 	/*
583 	 * Since the interface is being unconfigured, we need to empty the
584 	 * list of multicast groups that we may have joined while we were
585 	 * alive and remove them from the parent's list also.
586 	 */
587 	(*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
588 
589 	/* Disconnect from parent. */
590 	switch (p->if_type) {
591 	case IFT_ETHER:
592 	    {
593 		(void)ether_del_vlantag(p, nmib->ifvm_tag);
594 
595 		/* XXX ether_ifdetach must not be called with IFNET_LOCK */
596 		ifv->ifv_stopping = true;
597 		mutex_exit(&ifv->ifv_lock);
598 		IFNET_UNLOCK(ifp);
599 		ether_ifdetach(ifp);
600 		IFNET_LOCK(ifp);
601 		mutex_enter(&ifv->ifv_lock);
602 		ifv->ifv_stopping = false;
603 
604 		/* if_free_sadl must be called with IFNET_LOCK */
605 		if_free_sadl(ifp, 1);
606 
607 		/* Restore vlan_ioctl overwritten by ether_ifdetach */
608 		ifp->if_ioctl = vlan_ioctl;
609 		vlan_reset_linkname(ifp);
610 		break;
611 	    }
612 
613 	default:
614 		panic("%s: impossible", __func__);
615 	}
616 
617 	nmib->ifvm_p = NULL;
618 	ifv->ifv_if.if_mtu = 0;
619 	ifv->ifv_flags = 0;
620 
621 	mutex_enter(&ifv_hash.lock);
622 	PSLIST_WRITER_REMOVE(ifv, ifv_hash);
623 	pserialize_perform(vlan_psz);
624 	mutex_exit(&ifv_hash.lock);
625 	PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
626 	if_linkstate_change_disestablish(p,
627 	    ifv->ifv_linkstate_hook, NULL);
628 
629 	vlan_linkmib_update(ifv, nmib);
630 	if_link_state_change(ifp, LINK_STATE_DOWN);
631 
632 	/*XXX ether_ifdetachhook_disestablish must not called with IFNET_LOCK */
633 	IFNET_UNLOCK(ifp);
634 	ether_ifdetachhook_disestablish(p, ifv->ifv_ifdetach_hook,
635 	    &ifv->ifv_lock);
636 	mutex_exit(&ifv->ifv_lock);
637 	IFNET_LOCK(ifp);
638 
639 	nmib_psref = NULL;
640 	kmem_free(omib, sizeof(*omib));
641 
642 #ifdef INET6
643 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
644 	/* To delete v6 link local addresses */
645 	if (in6_present)
646 		in6_ifdetach(ifp);
647 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
648 #endif
649 
650 	if_down_locked(ifp);
651 	ifp->if_capabilities = 0;
652 	mutex_enter(&ifv->ifv_lock);
653 done:
654 	if (nmib_psref)
655 		psref_target_destroy(nmib_psref, ifvm_psref_class);
656 
657 	return error;
658 }
659 
660 static void
vlan_hash_init(void)661 vlan_hash_init(void)
662 {
663 
664 	ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
665 	    &ifv_hash.mask);
666 }
667 
668 static int
vlan_hash_fini(void)669 vlan_hash_fini(void)
670 {
671 	int i;
672 
673 	mutex_enter(&ifv_hash.lock);
674 
675 	for (i = 0; i < ifv_hash.mask + 1; i++) {
676 		if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
677 		    ifv_hash) != NULL) {
678 			mutex_exit(&ifv_hash.lock);
679 			return EBUSY;
680 		}
681 	}
682 
683 	for (i = 0; i < ifv_hash.mask + 1; i++)
684 		PSLIST_DESTROY(&ifv_hash.lists[i]);
685 
686 	mutex_exit(&ifv_hash.lock);
687 
688 	hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
689 
690 	ifv_hash.lists = NULL;
691 	ifv_hash.mask = 0;
692 
693 	return 0;
694 }
695 
696 static int
vlan_tag_hash(uint16_t tag,u_long mask)697 vlan_tag_hash(uint16_t tag, u_long mask)
698 {
699 	uint32_t hash;
700 
701 	hash = (tag >> 8) ^ tag;
702 	hash = (hash >> 2) ^ hash;
703 
704 	return hash & mask;
705 }
706 
707 static struct ifvlan_linkmib *
vlan_getref_linkmib(struct ifvlan * sc,struct psref * psref)708 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
709 {
710 	struct ifvlan_linkmib *mib;
711 	int s;
712 
713 	s = pserialize_read_enter();
714 	mib = atomic_load_consume(&sc->ifv_mib);
715 	if (mib == NULL) {
716 		pserialize_read_exit(s);
717 		return NULL;
718 	}
719 	psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
720 	pserialize_read_exit(s);
721 
722 	return mib;
723 }
724 
725 static void
vlan_putref_linkmib(struct ifvlan_linkmib * mib,struct psref * psref)726 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
727 {
728 	if (mib == NULL)
729 		return;
730 	psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
731 }
732 
733 static struct ifvlan_linkmib *
vlan_lookup_tag_psref(struct ifnet * ifp,uint16_t tag,struct psref * psref)734 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
735 {
736 	int idx;
737 	int s;
738 	struct ifvlan *sc;
739 
740 	idx = vlan_tag_hash(tag, ifv_hash.mask);
741 
742 	s = pserialize_read_enter();
743 	PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
744 	    ifv_hash) {
745 		struct ifvlan_linkmib *mib = atomic_load_consume(&sc->ifv_mib);
746 		if (mib == NULL)
747 			continue;
748 		if (mib->ifvm_tag != tag)
749 			continue;
750 		if (mib->ifvm_p != ifp)
751 			continue;
752 
753 		psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
754 		pserialize_read_exit(s);
755 		return mib;
756 	}
757 	pserialize_read_exit(s);
758 	return NULL;
759 }
760 
761 static void
vlan_linkmib_update(struct ifvlan * ifv,struct ifvlan_linkmib * nmib)762 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
763 {
764 	struct ifvlan_linkmib *omib = ifv->ifv_mib;
765 
766 	KASSERT(mutex_owned(&ifv->ifv_lock));
767 
768 	atomic_store_release(&ifv->ifv_mib, nmib);
769 
770 	pserialize_perform(ifv->ifv_psz);
771 	psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
772 }
773 
774 /*
775  * Called when a parent interface is detaching; destroy any VLAN
776  * configuration for the parent interface.
777  */
778 static void
vlan_ifdetach(void * xifp)779 vlan_ifdetach(void *xifp)
780 {
781 	struct ifnet *ifp;
782 
783 	ifp = (struct ifnet *)xifp;
784 
785 	/* IFNET_LOCK must be held before ifv_lock. */
786 	IFNET_LOCK(ifp);
787 	vlan_unconfig(ifp);
788 	IFNET_UNLOCK(ifp);
789 }
790 
791 static int
vlan_set_promisc(struct ifnet * ifp)792 vlan_set_promisc(struct ifnet *ifp)
793 {
794 	struct ifvlan *ifv = ifp->if_softc;
795 	struct ifvlan_linkmib *mib;
796 	struct psref psref;
797 	int error = 0;
798 	int bound;
799 
800 	bound = curlwp_bind();
801 	mib = vlan_getref_linkmib(ifv, &psref);
802 	if (mib == NULL) {
803 		curlwp_bindx(bound);
804 		return EBUSY;
805 	}
806 
807 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
808 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
809 			error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
810 			if (error == 0)
811 				ifv->ifv_flags |= IFVF_PROMISC;
812 		}
813 	} else {
814 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
815 			error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
816 			if (error == 0)
817 				ifv->ifv_flags &= ~IFVF_PROMISC;
818 		}
819 	}
820 	vlan_putref_linkmib(mib, &psref);
821 	curlwp_bindx(bound);
822 
823 	return error;
824 }
825 
826 static int
vlan_ioctl(struct ifnet * ifp,u_long cmd,void * data)827 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
828 {
829 	struct lwp *l = curlwp;
830 	struct ifvlan *ifv = ifp->if_softc;
831 	struct ifaddr *ifa = (struct ifaddr *) data;
832 	struct ifreq *ifr = (struct ifreq *) data;
833 	struct ifnet *pr;
834 	struct ifcapreq *ifcr;
835 	struct vlanreq vlr;
836 	struct ifvlan_linkmib *mib;
837 	struct psref psref;
838 	int error = 0;
839 	int bound;
840 
841 	switch (cmd) {
842 	case SIOCSIFMTU:
843 		bound = curlwp_bind();
844 		mib = vlan_getref_linkmib(ifv, &psref);
845 		if (mib == NULL) {
846 			curlwp_bindx(bound);
847 			error = EBUSY;
848 			break;
849 		}
850 
851 		if (mib->ifvm_p == NULL) {
852 			vlan_putref_linkmib(mib, &psref);
853 			curlwp_bindx(bound);
854 			error = EINVAL;
855 		} else if (
856 		    ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
857 		    ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
858 			vlan_putref_linkmib(mib, &psref);
859 			curlwp_bindx(bound);
860 			error = EINVAL;
861 		} else {
862 			vlan_putref_linkmib(mib, &psref);
863 			curlwp_bindx(bound);
864 
865 			error = ifioctl_common(ifp, cmd, data);
866 			if (error == ENETRESET)
867 				error = 0;
868 		}
869 
870 		break;
871 
872 	case SIOCSETVLAN:
873 		if ((error = kauth_authorize_network(l->l_cred,
874 		    KAUTH_NETWORK_INTERFACE,
875 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
876 		    NULL)) != 0)
877 			break;
878 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
879 			break;
880 
881 		if (vlr.vlr_parent[0] == '\0') {
882 			bound = curlwp_bind();
883 			mib = vlan_getref_linkmib(ifv, &psref);
884 			if (mib == NULL) {
885 				curlwp_bindx(bound);
886 				error = EBUSY;
887 				break;
888 			}
889 
890 			if (mib->ifvm_p != NULL &&
891 			    (ifp->if_flags & IFF_PROMISC) != 0)
892 				error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
893 
894 			vlan_putref_linkmib(mib, &psref);
895 			curlwp_bindx(bound);
896 
897 			vlan_unconfig(ifp);
898 			break;
899 		}
900 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
901 			error = EINVAL;		 /* check for valid tag */
902 			break;
903 		}
904 		if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
905 			error = ENOENT;
906 			break;
907 		}
908 
909 		error = vlan_config(ifv, pr, vlr.vlr_tag);
910 		if (error != 0)
911 			break;
912 
913 		/* Update promiscuous mode, if necessary. */
914 		vlan_set_promisc(ifp);
915 
916 		ifp->if_flags |= IFF_RUNNING;
917 		break;
918 
919 	case SIOCGETVLAN:
920 		memset(&vlr, 0, sizeof(vlr));
921 		bound = curlwp_bind();
922 		mib = vlan_getref_linkmib(ifv, &psref);
923 		if (mib == NULL) {
924 			curlwp_bindx(bound);
925 			error = EBUSY;
926 			break;
927 		}
928 		if (mib->ifvm_p != NULL) {
929 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
930 			    mib->ifvm_p->if_xname);
931 			vlr.vlr_tag = mib->ifvm_tag;
932 		}
933 		vlan_putref_linkmib(mib, &psref);
934 		curlwp_bindx(bound);
935 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
936 		break;
937 
938 	case SIOCSIFFLAGS:
939 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
940 			break;
941 		/*
942 		 * For promiscuous mode, we enable promiscuous mode on
943 		 * the parent if we need promiscuous on the VLAN interface.
944 		 */
945 		bound = curlwp_bind();
946 		mib = vlan_getref_linkmib(ifv, &psref);
947 		if (mib == NULL) {
948 			curlwp_bindx(bound);
949 			error = EBUSY;
950 			break;
951 		}
952 
953 		if (mib->ifvm_p != NULL)
954 			error = vlan_set_promisc(ifp);
955 		vlan_putref_linkmib(mib, &psref);
956 		curlwp_bindx(bound);
957 		break;
958 
959 	case SIOCADDMULTI:
960 		mutex_enter(&ifv->ifv_lock);
961 		mib = ifv->ifv_mib;
962 		if (mib == NULL) {
963 			error = EBUSY;
964 			mutex_exit(&ifv->ifv_lock);
965 			break;
966 		}
967 
968 		error = (mib->ifvm_p != NULL) ?
969 		    (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
970 		mib = NULL;
971 		mutex_exit(&ifv->ifv_lock);
972 		break;
973 
974 	case SIOCDELMULTI:
975 		mutex_enter(&ifv->ifv_lock);
976 		mib = ifv->ifv_mib;
977 		if (mib == NULL) {
978 			error = EBUSY;
979 			mutex_exit(&ifv->ifv_lock);
980 			break;
981 		}
982 		error = (mib->ifvm_p != NULL) ?
983 		    (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
984 		mib = NULL;
985 		mutex_exit(&ifv->ifv_lock);
986 		break;
987 
988 	case SIOCSIFCAP:
989 		ifcr = data;
990 		/* make sure caps are enabled on parent */
991 		bound = curlwp_bind();
992 		mib = vlan_getref_linkmib(ifv, &psref);
993 		if (mib == NULL) {
994 			curlwp_bindx(bound);
995 			error = EBUSY;
996 			break;
997 		}
998 
999 		if (mib->ifvm_p == NULL) {
1000 			vlan_putref_linkmib(mib, &psref);
1001 			curlwp_bindx(bound);
1002 			error = EINVAL;
1003 			break;
1004 		}
1005 		if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1006 		    ifcr->ifcr_capenable) {
1007 			vlan_putref_linkmib(mib, &psref);
1008 			curlwp_bindx(bound);
1009 			error = EINVAL;
1010 			break;
1011 		}
1012 
1013 		vlan_putref_linkmib(mib, &psref);
1014 		curlwp_bindx(bound);
1015 
1016 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1017 			error = 0;
1018 		break;
1019 	case SIOCINITIFADDR:
1020 		bound = curlwp_bind();
1021 		mib = vlan_getref_linkmib(ifv, &psref);
1022 		if (mib == NULL) {
1023 			curlwp_bindx(bound);
1024 			error = EBUSY;
1025 			break;
1026 		}
1027 
1028 		if (mib->ifvm_p == NULL) {
1029 			error = EINVAL;
1030 			vlan_putref_linkmib(mib, &psref);
1031 			curlwp_bindx(bound);
1032 			break;
1033 		}
1034 		vlan_putref_linkmib(mib, &psref);
1035 		curlwp_bindx(bound);
1036 
1037 		ifp->if_flags |= IFF_UP;
1038 #ifdef INET
1039 		if (ifa->ifa_addr->sa_family == AF_INET)
1040 			arp_ifinit(ifp, ifa);
1041 #endif
1042 		break;
1043 
1044 	default:
1045 		error = ether_ioctl(ifp, cmd, data);
1046 	}
1047 
1048 	return error;
1049 }
1050 
1051 static int
vlan_ether_addmulti(struct ifvlan * ifv,struct ifreq * ifr)1052 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1053 {
1054 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1055 	struct vlan_mc_entry *mc;
1056 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1057 	struct ifvlan_linkmib *mib;
1058 	int error;
1059 
1060 	KASSERT(mutex_owned(&ifv->ifv_lock));
1061 
1062 	if (sa->sa_len > sizeof(struct sockaddr_storage))
1063 		return EINVAL;
1064 
1065 	error = ether_addmulti(sa, &ifv->ifv_ec);
1066 	if (error != ENETRESET)
1067 		return error;
1068 
1069 	/*
1070 	 * This is a new multicast address.  We have to tell parent
1071 	 * about it.  Also, remember this multicast address so that
1072 	 * we can delete it on unconfigure.
1073 	 */
1074 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1075 	if (mc == NULL) {
1076 		error = ENOMEM;
1077 		goto alloc_failed;
1078 	}
1079 
1080 	/*
1081 	 * Since ether_addmulti() returned ENETRESET, the following two
1082 	 * statements shouldn't fail. Here ifv_ec is implicitly protected
1083 	 * by the ifv_lock lock.
1084 	 */
1085 	error = ether_multiaddr(sa, addrlo, addrhi);
1086 	KASSERT(error == 0);
1087 
1088 	ETHER_LOCK(&ifv->ifv_ec);
1089 	mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1090 	ETHER_UNLOCK(&ifv->ifv_ec);
1091 
1092 	KASSERT(mc->mc_enm != NULL);
1093 
1094 	memcpy(&mc->mc_addr, sa, sa->sa_len);
1095 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1096 
1097 	mib = ifv->ifv_mib;
1098 
1099 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1100 	error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1101 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1102 
1103 	if (error != 0)
1104 		goto ioctl_failed;
1105 	return error;
1106 
1107 ioctl_failed:
1108 	LIST_REMOVE(mc, mc_entries);
1109 	free(mc, M_DEVBUF);
1110 
1111 alloc_failed:
1112 	(void)ether_delmulti(sa, &ifv->ifv_ec);
1113 	return error;
1114 }
1115 
1116 static int
vlan_ether_delmulti(struct ifvlan * ifv,struct ifreq * ifr)1117 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1118 {
1119 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1120 	struct ether_multi *enm;
1121 	struct vlan_mc_entry *mc;
1122 	struct ifvlan_linkmib *mib;
1123 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1124 	int error;
1125 
1126 	KASSERT(mutex_owned(&ifv->ifv_lock));
1127 
1128 	/*
1129 	 * Find a key to lookup vlan_mc_entry.  We have to do this
1130 	 * before calling ether_delmulti for obvious reasons.
1131 	 */
1132 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1133 		return error;
1134 
1135 	ETHER_LOCK(&ifv->ifv_ec);
1136 	enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1137 	ETHER_UNLOCK(&ifv->ifv_ec);
1138 	if (enm == NULL)
1139 		return EINVAL;
1140 
1141 	LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1142 		if (mc->mc_enm == enm)
1143 			break;
1144 	}
1145 
1146 	/* We woun't delete entries we didn't add */
1147 	if (mc == NULL)
1148 		return EINVAL;
1149 
1150 	error = ether_delmulti(sa, &ifv->ifv_ec);
1151 	if (error != ENETRESET)
1152 		return error;
1153 
1154 	/* We no longer use this multicast address.  Tell parent so. */
1155 	mib = ifv->ifv_mib;
1156 	error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1157 
1158 	if (error == 0) {
1159 		/* And forget about this address. */
1160 		LIST_REMOVE(mc, mc_entries);
1161 		free(mc, M_DEVBUF);
1162 	} else {
1163 		(void)ether_addmulti(sa, &ifv->ifv_ec);
1164 	}
1165 
1166 	return error;
1167 }
1168 
1169 /*
1170  * Delete any multicast address we have asked to add from parent
1171  * interface.  Called when the vlan is being unconfigured.
1172  */
1173 static void
vlan_ether_purgemulti(struct ifvlan * ifv)1174 vlan_ether_purgemulti(struct ifvlan *ifv)
1175 {
1176 	struct vlan_mc_entry *mc;
1177 	struct ifvlan_linkmib *mib;
1178 
1179 	KASSERT(mutex_owned(&ifv->ifv_lock));
1180 	mib = ifv->ifv_mib;
1181 	if (mib == NULL) {
1182 		return;
1183 	}
1184 
1185 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1186 		(void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1187 		    sstocsa(&mc->mc_addr));
1188 		LIST_REMOVE(mc, mc_entries);
1189 		free(mc, M_DEVBUF);
1190 	}
1191 }
1192 
1193 static void
vlan_start(struct ifnet * ifp)1194 vlan_start(struct ifnet *ifp)
1195 {
1196 	struct ifvlan *ifv = ifp->if_softc;
1197 	struct ifnet *p;
1198 	struct ethercom *ec;
1199 	struct mbuf *m;
1200 	struct ifvlan_linkmib *mib;
1201 	struct psref psref;
1202 	struct ether_header *eh;
1203 	int error, bound;
1204 
1205 	bound = curlwp_bind();
1206 	mib = vlan_getref_linkmib(ifv, &psref);
1207 	if (mib == NULL) {
1208 		curlwp_bindx(bound);
1209 		return;
1210 	}
1211 
1212 	if (__predict_false(mib->ifvm_p == NULL)) {
1213 		vlan_putref_linkmib(mib, &psref);
1214 		curlwp_bindx(bound);
1215 		return;
1216 	}
1217 
1218 	p = mib->ifvm_p;
1219 	ec = (void *)mib->ifvm_p;
1220 
1221 	ifp->if_flags |= IFF_OACTIVE;
1222 
1223 	for (;;) {
1224 		IFQ_DEQUEUE(&ifp->if_snd, m);
1225 		if (m == NULL)
1226 			break;
1227 
1228 		if (m->m_len < sizeof(*eh)) {
1229 			m = m_pullup(m, sizeof(*eh));
1230 			if (m == NULL) {
1231 				if_statinc(ifp, if_oerrors);
1232 				continue;
1233 			}
1234 		}
1235 
1236 		eh = mtod(m, struct ether_header *);
1237 		if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
1238 			m_freem(m);
1239 			if_statinc(ifp, if_noproto);
1240 			continue;
1241 		}
1242 
1243 #ifdef ALTQ
1244 		/*
1245 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1246 		 * defined.
1247 		 */
1248 		KERNEL_LOCK(1, NULL);
1249 		/*
1250 		 * If ALTQ is enabled on the parent interface, do
1251 		 * classification; the queueing discipline might
1252 		 * not require classification, but might require
1253 		 * the address family/header pointer in the pktattr.
1254 		 */
1255 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
1256 			switch (p->if_type) {
1257 			case IFT_ETHER:
1258 				altq_etherclassify(&p->if_snd, m);
1259 				break;
1260 			default:
1261 				panic("%s: impossible (altq)", __func__);
1262 			}
1263 		}
1264 		KERNEL_UNLOCK_ONE(NULL);
1265 #endif /* ALTQ */
1266 
1267 		bpf_mtap(ifp, m, BPF_D_OUT);
1268 		/*
1269 		 * If the parent can insert the tag itself, just mark
1270 		 * the tag in the mbuf header.
1271 		 */
1272 		if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1273 			vlan_set_tag(m, mib->ifvm_tag);
1274 		} else {
1275 			/*
1276 			 * insert the tag ourselves
1277 			 */
1278 
1279 			switch (p->if_type) {
1280 			case IFT_ETHER:
1281 				(void)ether_inject_vlantag(&m,
1282 				    ETHERTYPE_VLAN, mib->ifvm_tag);
1283 				if (m == NULL) {
1284 					printf("%s: unable to inject VLAN tag",
1285 					    p->if_xname);
1286 					continue;
1287 				}
1288 				break;
1289 
1290 			default:
1291 				panic("%s: impossible", __func__);
1292 			}
1293 		}
1294 
1295 		if ((p->if_flags & IFF_RUNNING) == 0) {
1296 			m_freem(m);
1297 			continue;
1298 		}
1299 
1300 		error = if_transmit_lock(p, m);
1301 		if (error) {
1302 			/* mbuf is already freed */
1303 			if_statinc(ifp, if_oerrors);
1304 			continue;
1305 		}
1306 		if_statinc(ifp, if_opackets);
1307 	}
1308 
1309 	ifp->if_flags &= ~IFF_OACTIVE;
1310 
1311 	/* Remove reference to mib before release */
1312 	vlan_putref_linkmib(mib, &psref);
1313 	curlwp_bindx(bound);
1314 }
1315 
1316 static int
vlan_transmit(struct ifnet * ifp,struct mbuf * m)1317 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1318 {
1319 	struct ifvlan *ifv = ifp->if_softc;
1320 	struct ifnet *p;
1321 	struct ethercom *ec;
1322 	struct ifvlan_linkmib *mib;
1323 	struct psref psref;
1324 	struct ether_header *eh;
1325 	int error, bound;
1326 	size_t pktlen = m->m_pkthdr.len;
1327 	bool mcast = (m->m_flags & M_MCAST) != 0;
1328 
1329 	if (m->m_len < sizeof(*eh)) {
1330 		m = m_pullup(m, sizeof(*eh));
1331 		if (m == NULL) {
1332 			if_statinc(ifp, if_oerrors);
1333 			return ENOBUFS;
1334 		}
1335 	}
1336 
1337 	eh = mtod(m, struct ether_header *);
1338 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
1339 		m_freem(m);
1340 		if_statinc(ifp, if_noproto);
1341 		return EPROTONOSUPPORT;
1342 	}
1343 
1344 	bound = curlwp_bind();
1345 	mib = vlan_getref_linkmib(ifv, &psref);
1346 	if (mib == NULL) {
1347 		curlwp_bindx(bound);
1348 		m_freem(m);
1349 		return ENETDOWN;
1350 	}
1351 
1352 	if (__predict_false(mib->ifvm_p == NULL)) {
1353 		vlan_putref_linkmib(mib, &psref);
1354 		curlwp_bindx(bound);
1355 		m_freem(m);
1356 		return ENETDOWN;
1357 	}
1358 
1359 	p = mib->ifvm_p;
1360 	ec = (void *)mib->ifvm_p;
1361 
1362 	bpf_mtap(ifp, m, BPF_D_OUT);
1363 
1364 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1365 		goto out;
1366 	if (m == NULL)
1367 		goto out;
1368 
1369 	/*
1370 	 * If the parent can insert the tag itself, just mark
1371 	 * the tag in the mbuf header.
1372 	 */
1373 	if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1374 		vlan_set_tag(m, mib->ifvm_tag);
1375 	} else {
1376 		/*
1377 		 * insert the tag ourselves
1378 		 */
1379 		switch (p->if_type) {
1380 		case IFT_ETHER:
1381 			error = ether_inject_vlantag(&m,
1382 			    ETHERTYPE_VLAN, mib->ifvm_tag);
1383 			if (error != 0) {
1384 				KASSERT(m == NULL);
1385 				printf("%s: unable to inject VLAN tag",
1386 				    p->if_xname);
1387 				goto out;
1388 			}
1389 			break;
1390 
1391 		default:
1392 			panic("%s: impossible", __func__);
1393 		}
1394 	}
1395 
1396 	if ((p->if_flags & IFF_RUNNING) == 0) {
1397 		m_freem(m);
1398 		error = ENETDOWN;
1399 		goto out;
1400 	}
1401 
1402 	error = if_transmit_lock(p, m);
1403 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1404 	if (error) {
1405 		/* mbuf is already freed */
1406 		if_statinc_ref(nsr, if_oerrors);
1407 	} else {
1408 		if_statinc_ref(nsr, if_opackets);
1409 		if_statadd_ref(nsr, if_obytes, pktlen);
1410 		if (mcast)
1411 			if_statinc_ref(nsr, if_omcasts);
1412 	}
1413 	IF_STAT_PUTREF(ifp);
1414 
1415 out:
1416 	/* Remove reference to mib before release */
1417 	vlan_putref_linkmib(mib, &psref);
1418 	curlwp_bindx(bound);
1419 
1420 	return error;
1421 }
1422 
1423 /*
1424  * Given an Ethernet frame, find a valid vlan interface corresponding to the
1425  * given source interface and tag, then run the real packet through the
1426  * parent's input routine.
1427  */
1428 struct mbuf *
vlan_input(struct ifnet * ifp,struct mbuf * m)1429 vlan_input(struct ifnet *ifp, struct mbuf *m)
1430 {
1431 	struct ifvlan *ifv;
1432 	uint16_t vid;
1433 	struct ifvlan_linkmib *mib;
1434 	struct psref psref;
1435 
1436 	KASSERT(vlan_has_tag(m));
1437 	vid = EVL_VLANOFTAG(vlan_get_tag(m));
1438 	KASSERT(vid != 0);
1439 
1440 	mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1441 	if (mib == NULL) {
1442 		return m;
1443 	}
1444 
1445 	ifv = mib->ifvm_ifvlan;
1446 	if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1447 	    (IFF_UP | IFF_RUNNING)) {
1448 		m_freem(m);
1449 		if_statinc(ifp, if_noproto);
1450 		goto out;
1451 	}
1452 
1453 	/*
1454 	 * Having found a valid vlan interface corresponding to
1455 	 * the given source interface and vlan tag.
1456 	 * remove the vlan tag.
1457 	 */
1458 	m->m_flags &= ~M_VLANTAG;
1459 
1460 	/*
1461 	 * Drop promiscuously received packets if we are not in
1462 	 * promiscuous mode
1463 	 */
1464 	if ((m->m_flags & (M_BCAST | M_MCAST)) == 0 &&
1465 	    (ifp->if_flags & IFF_PROMISC) &&
1466 	    (ifv->ifv_if.if_flags & IFF_PROMISC) == 0) {
1467 		struct ether_header *eh;
1468 
1469 		eh = mtod(m, struct ether_header *);
1470 		if (memcmp(CLLADDR(ifv->ifv_if.if_sadl),
1471 		    eh->ether_dhost, ETHER_ADDR_LEN) != 0) {
1472 			m_freem(m);
1473 			if_statinc(&ifv->ifv_if, if_ierrors);
1474 			goto out;
1475 		}
1476 	}
1477 
1478 	m_set_rcvif(m, &ifv->ifv_if);
1479 
1480 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1481 		goto out;
1482 	if (m == NULL)
1483 		goto out;
1484 
1485 	m->m_flags &= ~M_PROMISC;
1486 	if_input(&ifv->ifv_if, m);
1487 out:
1488 	vlan_putref_linkmib(mib, &psref);
1489 	return NULL;
1490 }
1491 
1492 /*
1493  * If the parent link state changed, the vlan link state should change also.
1494  */
1495 static void
vlan_link_state_changed(void * xifv)1496 vlan_link_state_changed(void *xifv)
1497 {
1498 	struct ifvlan *ifv = xifv;
1499 	struct ifnet *ifp, *p;
1500 	struct ifvlan_linkmib *mib;
1501 	struct psref psref;
1502 	int bound;
1503 
1504 	bound = curlwp_bind();
1505 	mib = vlan_getref_linkmib(ifv, &psref);
1506 	if (mib == NULL) {
1507 		curlwp_bindx(bound);
1508 		return;
1509 	}
1510 
1511 	if (mib->ifvm_p == NULL) {
1512 		vlan_putref_linkmib(mib, &psref);
1513 		curlwp_bindx(bound);
1514 		return;
1515 	}
1516 
1517 	ifp = &ifv->ifv_if;
1518 	p = mib->ifvm_p;
1519 	if_link_state_change(ifp, p->if_link_state);
1520 
1521 	vlan_putref_linkmib(mib, &psref);
1522 	curlwp_bindx(bound);
1523 }
1524 
1525 /*
1526  * Module infrastructure
1527  */
1528 #include "if_module.h"
1529 
1530 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
1531