1 /* Definitions of target machine for GNU compiler, for ARM. 2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 3 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. 4 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl) 5 and Martin Simmons (@harleqn.co.uk). 6 More major hacks by Richard Earnshaw (rearnsha@arm.com) 7 Minor hacks by Nick Clifton (nickc@cygnus.com) 8 9 This file is part of GCC. 10 11 GCC is free software; you can redistribute it and/or modify it 12 under the terms of the GNU General Public License as published 13 by the Free Software Foundation; either version 2, or (at your 14 option) any later version. 15 16 GCC is distributed in the hope that it will be useful, but WITHOUT 17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 18 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 19 License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with GCC; see the file COPYING. If not, write to 23 the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, 24 MA 02110-1301, USA. */ 25 26 #ifndef GCC_ARM_H 27 #define GCC_ARM_H 28 29 /* The architecture define. */ 30 extern char arm_arch_name[]; 31 32 /* Target CPU builtins. */ 33 #define TARGET_CPU_CPP_BUILTINS() \ 34 do \ 35 { \ 36 /* Define __arm__ even when in thumb mode, for \ 37 consistency with armcc. */ \ 38 builtin_define ("__arm__"); \ 39 builtin_define ("__APCS_32__"); \ 40 if (TARGET_THUMB) \ 41 builtin_define ("__thumb__"); \ 42 \ 43 if (TARGET_BIG_END) \ 44 { \ 45 builtin_define ("__ARMEB__"); \ 46 if (TARGET_THUMB) \ 47 builtin_define ("__THUMBEB__"); \ 48 if (TARGET_LITTLE_WORDS) \ 49 builtin_define ("__ARMWEL__"); \ 50 } \ 51 else \ 52 { \ 53 builtin_define ("__ARMEL__"); \ 54 if (TARGET_THUMB) \ 55 builtin_define ("__THUMBEL__"); \ 56 } \ 57 \ 58 if (TARGET_SOFT_FLOAT) \ 59 builtin_define ("__SOFTFP__"); \ 60 \ 61 if (TARGET_VFP) \ 62 builtin_define ("__VFP_FP__"); \ 63 \ 64 /* Add a define for interworking. \ 65 Needed when building libgcc.a. */ \ 66 if (arm_cpp_interwork) \ 67 builtin_define ("__THUMB_INTERWORK__"); \ 68 \ 69 builtin_assert ("cpu=arm"); \ 70 builtin_assert ("machine=arm"); \ 71 \ 72 builtin_define (arm_arch_name); \ 73 if (arm_arch_cirrus) \ 74 builtin_define ("__MAVERICK__"); \ 75 if (arm_arch_xscale) \ 76 builtin_define ("__XSCALE__"); \ 77 if (arm_arch_iwmmxt) \ 78 builtin_define ("__IWMMXT__"); \ 79 if (TARGET_AAPCS_BASED) \ 80 builtin_define ("__ARM_EABI__"); \ 81 } while (0) 82 83 /* The various ARM cores. */ 84 enum processor_type 85 { 86 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \ 87 IDENT, 88 #include "arm-cores.def" 89 #undef ARM_CORE 90 /* Used to indicate that no processor has been specified. */ 91 arm_none 92 }; 93 94 enum target_cpus 95 { 96 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \ 97 TARGET_CPU_##IDENT, 98 #include "arm-cores.def" 99 #undef ARM_CORE 100 TARGET_CPU_generic 101 }; 102 103 /* The processor for which instructions should be scheduled. */ 104 extern enum processor_type arm_tune; 105 106 typedef enum arm_cond_code 107 { 108 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC, 109 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV 110 } 111 arm_cc; 112 113 extern arm_cc arm_current_cc; 114 115 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1)) 116 117 extern int arm_target_label; 118 extern int arm_ccfsm_state; 119 extern GTY(()) rtx arm_target_insn; 120 /* Define the information needed to generate branch insns. This is 121 stored from the compare operation. */ 122 extern GTY(()) rtx arm_compare_op0; 123 extern GTY(()) rtx arm_compare_op1; 124 /* The label of the current constant pool. */ 125 extern rtx pool_vector_label; 126 /* Set to 1 when a return insn is output, this means that the epilogue 127 is not needed. */ 128 extern int return_used_this_function; 129 /* Used to produce AOF syntax assembler. */ 130 extern GTY(()) rtx aof_pic_label; 131 132 /* Just in case configure has failed to define anything. */ 133 #ifndef TARGET_CPU_DEFAULT 134 #define TARGET_CPU_DEFAULT TARGET_CPU_generic 135 #endif 136 137 138 #undef CPP_SPEC 139 #define CPP_SPEC "%(subtarget_cpp_spec) \ 140 %{msoft-float:%{mhard-float: \ 141 %e-msoft-float and -mhard_float may not be used together}} \ 142 %{mbig-endian:%{mlittle-endian: \ 143 %e-mbig-endian and -mlittle-endian may not be used together}}" 144 145 #ifndef CC1_SPEC 146 #define CC1_SPEC "" 147 #endif 148 149 /* This macro defines names of additional specifications to put in the specs 150 that can be used in various specifications like CC1_SPEC. Its definition 151 is an initializer with a subgrouping for each command option. 152 153 Each subgrouping contains a string constant, that defines the 154 specification name, and a string constant that used by the GCC driver 155 program. 156 157 Do not define this macro if it does not need to do anything. */ 158 #define EXTRA_SPECS \ 159 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \ 160 SUBTARGET_EXTRA_SPECS 161 162 #ifndef SUBTARGET_EXTRA_SPECS 163 #define SUBTARGET_EXTRA_SPECS 164 #endif 165 166 #ifndef SUBTARGET_CPP_SPEC 167 #define SUBTARGET_CPP_SPEC "" 168 #endif 169 170 /* Run-time Target Specification. */ 171 #ifndef TARGET_VERSION 172 #define TARGET_VERSION fputs (" (ARM/generic)", stderr); 173 #endif 174 175 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT) 176 /* Use hardware floating point instructions. */ 177 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT) 178 /* Use hardware floating point calling convention. */ 179 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD) 180 #define TARGET_FPA (arm_fp_model == ARM_FP_MODEL_FPA) 181 #define TARGET_MAVERICK (arm_fp_model == ARM_FP_MODEL_MAVERICK) 182 #define TARGET_VFP (arm_fp_model == ARM_FP_MODEL_VFP) 183 #define TARGET_IWMMXT (arm_arch_iwmmxt) 184 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_ARM) 185 #define TARGET_IWMMXT_ABI (TARGET_ARM && arm_abi == ARM_ABI_IWMMXT) 186 #define TARGET_ARM (! TARGET_THUMB) 187 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */ 188 #define TARGET_BACKTRACE (leaf_function_p () \ 189 ? TARGET_TPCS_LEAF_FRAME \ 190 : TARGET_TPCS_FRAME) 191 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN) 192 #define TARGET_AAPCS_BASED \ 193 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS) 194 195 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15) 196 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT) 197 198 /* True iff the full BPABI is being used. If TARGET_BPABI is true, 199 then TARGET_AAPCS_BASED must be true -- but the converse does not 200 hold. TARGET_BPABI implies the use of the BPABI runtime library, 201 etc., in addition to just the AAPCS calling conventions. */ 202 #ifndef TARGET_BPABI 203 #define TARGET_BPABI false 204 #endif 205 206 /* Support for a compile-time default CPU, et cetera. The rules are: 207 --with-arch is ignored if -march or -mcpu are specified. 208 --with-cpu is ignored if -march or -mcpu are specified, and is overridden 209 by --with-arch. 210 --with-tune is ignored if -mtune or -mcpu are specified (but not affected 211 by -march). 212 --with-float is ignored if -mhard-float, -msoft-float or -mfloat-abi are 213 specified. 214 --with-fpu is ignored if -mfpu is specified. 215 --with-abi is ignored is -mabi is specified. */ 216 #define OPTION_DEFAULT_SPECS \ 217 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \ 218 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \ 219 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \ 220 {"float", \ 221 "%{!msoft-float:%{!mhard-float:%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}}}" }, \ 222 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \ 223 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \ 224 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, 225 226 /* Which floating point model to use. */ 227 enum arm_fp_model 228 { 229 ARM_FP_MODEL_UNKNOWN, 230 /* FPA model (Hardware or software). */ 231 ARM_FP_MODEL_FPA, 232 /* Cirrus Maverick floating point model. */ 233 ARM_FP_MODEL_MAVERICK, 234 /* VFP floating point model. */ 235 ARM_FP_MODEL_VFP 236 }; 237 238 extern enum arm_fp_model arm_fp_model; 239 240 /* Which floating point hardware is available. Also update 241 fp_model_for_fpu in arm.c when adding entries to this list. */ 242 enum fputype 243 { 244 /* No FP hardware. */ 245 FPUTYPE_NONE, 246 /* Full FPA support. */ 247 FPUTYPE_FPA, 248 /* Emulated FPA hardware, Issue 2 emulator (no LFM/SFM). */ 249 FPUTYPE_FPA_EMU2, 250 /* Emulated FPA hardware, Issue 3 emulator. */ 251 FPUTYPE_FPA_EMU3, 252 /* Cirrus Maverick floating point co-processor. */ 253 FPUTYPE_MAVERICK, 254 /* VFP. */ 255 FPUTYPE_VFP 256 }; 257 258 /* Recast the floating point class to be the floating point attribute. */ 259 #define arm_fpu_attr ((enum attr_fpu) arm_fpu_tune) 260 261 /* What type of floating point to tune for */ 262 extern enum fputype arm_fpu_tune; 263 264 /* What type of floating point instructions are available */ 265 extern enum fputype arm_fpu_arch; 266 267 enum float_abi_type 268 { 269 ARM_FLOAT_ABI_SOFT, 270 ARM_FLOAT_ABI_SOFTFP, 271 ARM_FLOAT_ABI_HARD 272 }; 273 274 extern enum float_abi_type arm_float_abi; 275 276 #ifndef TARGET_DEFAULT_FLOAT_ABI 277 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT 278 #endif 279 280 /* Which ABI to use. */ 281 enum arm_abi_type 282 { 283 ARM_ABI_APCS, 284 ARM_ABI_ATPCS, 285 ARM_ABI_AAPCS, 286 ARM_ABI_IWMMXT, 287 ARM_ABI_AAPCS_LINUX 288 }; 289 290 extern enum arm_abi_type arm_abi; 291 292 #ifndef ARM_DEFAULT_ABI 293 #define ARM_DEFAULT_ABI ARM_ABI_APCS 294 #endif 295 296 /* Which thread pointer access sequence to use. */ 297 enum arm_tp_type { 298 TP_AUTO, 299 TP_SOFT, 300 TP_CP15 301 }; 302 303 extern enum arm_tp_type target_thread_pointer; 304 305 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */ 306 extern int arm_arch3m; 307 308 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */ 309 extern int arm_arch4; 310 311 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */ 312 extern int arm_arch4t; 313 314 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */ 315 extern int arm_arch5; 316 317 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */ 318 extern int arm_arch5e; 319 320 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */ 321 extern int arm_arch6; 322 323 /* Nonzero if this chip can benefit from load scheduling. */ 324 extern int arm_ld_sched; 325 326 /* Nonzero if generating thumb code. */ 327 extern int thumb_code; 328 329 /* Nonzero if this chip is a StrongARM. */ 330 extern int arm_tune_strongarm; 331 332 /* Nonzero if this chip is a Cirrus variant. */ 333 extern int arm_arch_cirrus; 334 335 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */ 336 extern int arm_arch_iwmmxt; 337 338 /* Nonzero if this chip is an XScale. */ 339 extern int arm_arch_xscale; 340 341 /* Nonzero if tuning for XScale. */ 342 extern int arm_tune_xscale; 343 344 /* Nonzero if tuning for stores via the write buffer. */ 345 extern int arm_tune_wbuf; 346 347 /* Nonzero if we should define __THUMB_INTERWORK__ in the 348 preprocessor. 349 XXX This is a bit of a hack, it's intended to help work around 350 problems in GLD which doesn't understand that armv5t code is 351 interworking clean. */ 352 extern int arm_cpp_interwork; 353 354 #ifndef TARGET_DEFAULT 355 #define TARGET_DEFAULT (MASK_APCS_FRAME) 356 #endif 357 358 /* The frame pointer register used in gcc has nothing to do with debugging; 359 that is controlled by the APCS-FRAME option. */ 360 #define CAN_DEBUG_WITHOUT_FP 361 362 #define OVERRIDE_OPTIONS arm_override_options () 363 364 /* Nonzero if PIC code requires explicit qualifiers to generate 365 PLT and GOT relocs rather than the assembler doing so implicitly. 366 Subtargets can override these if required. */ 367 #ifndef NEED_GOT_RELOC 368 #define NEED_GOT_RELOC 0 369 #endif 370 #ifndef NEED_PLT_RELOC 371 #define NEED_PLT_RELOC 0 372 #endif 373 374 /* Nonzero if we need to refer to the GOT with a PC-relative 375 offset. In other words, generate 376 377 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)] 378 379 rather than 380 381 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8) 382 383 The default is true, which matches NetBSD. Subtargets can 384 override this if required. */ 385 #ifndef GOT_PCREL 386 #define GOT_PCREL 1 387 #endif 388 389 /* Target machine storage Layout. */ 390 391 392 /* Define this macro if it is advisable to hold scalars in registers 393 in a wider mode than that declared by the program. In such cases, 394 the value is constrained to be within the bounds of the declared 395 type, but kept valid in the wider mode. The signedness of the 396 extension may differ from that of the type. */ 397 398 /* It is far faster to zero extend chars than to sign extend them */ 399 400 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ 401 if (GET_MODE_CLASS (MODE) == MODE_INT \ 402 && GET_MODE_SIZE (MODE) < 4) \ 403 { \ 404 if (MODE == QImode) \ 405 UNSIGNEDP = 1; \ 406 else if (MODE == HImode) \ 407 UNSIGNEDP = 1; \ 408 (MODE) = SImode; \ 409 } 410 411 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \ 412 if ((GET_MODE_CLASS (MODE) == MODE_INT \ 413 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT) \ 414 && GET_MODE_SIZE (MODE) < 4) \ 415 (MODE) = SImode; \ 416 417 /* Define this if most significant bit is lowest numbered 418 in instructions that operate on numbered bit-fields. */ 419 #define BITS_BIG_ENDIAN 0 420 421 /* Define this if most significant byte of a word is the lowest numbered. 422 Most ARM processors are run in little endian mode, so that is the default. 423 If you want to have it run-time selectable, change the definition in a 424 cover file to be TARGET_BIG_ENDIAN. */ 425 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0) 426 427 /* Define this if most significant word of a multiword number is the lowest 428 numbered. 429 This is always false, even when in big-endian mode. */ 430 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS) 431 432 /* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based 433 on processor pre-defineds when compiling libgcc2.c. */ 434 #if defined(__ARMEB__) && !defined(__ARMWEL__) 435 #define LIBGCC2_WORDS_BIG_ENDIAN 1 436 #else 437 #define LIBGCC2_WORDS_BIG_ENDIAN 0 438 #endif 439 440 /* Define this if most significant word of doubles is the lowest numbered. 441 The rules are different based on whether or not we use FPA-format, 442 VFP-format or some other floating point co-processor's format doubles. */ 443 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ()) 444 445 #define UNITS_PER_WORD 4 446 447 /* True if natural alignment is used for doubleword types. */ 448 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED 449 450 #define DOUBLEWORD_ALIGNMENT 64 451 452 #define PARM_BOUNDARY 32 453 454 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32) 455 456 #define PREFERRED_STACK_BOUNDARY \ 457 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY) 458 459 #define FUNCTION_BOUNDARY 32 460 461 /* The lowest bit is used to indicate Thumb-mode functions, so the 462 vbit must go into the delta field of pointers to member 463 functions. */ 464 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta 465 466 #define EMPTY_FIELD_BOUNDARY 32 467 468 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32) 469 470 /* XXX Blah -- this macro is used directly by libobjc. Since it 471 supports no vector modes, cut out the complexity and fall back 472 on BIGGEST_FIELD_ALIGNMENT. */ 473 #ifdef IN_TARGET_LIBS 474 #define BIGGEST_FIELD_ALIGNMENT 64 475 #endif 476 477 /* Make strings word-aligned so strcpy from constants will be faster. */ 478 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2) 479 480 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ 481 ((TREE_CODE (EXP) == STRING_CST \ 482 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \ 483 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN)) 484 485 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the 486 value set in previous versions of this toolchain was 8, which produces more 487 compact structures. The command line option -mstructure_size_boundary=<n> 488 can be used to change this value. For compatibility with the ARM SDK 489 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI 490 0020D) page 2-20 says "Structures are aligned on word boundaries". 491 The AAPCS specifies a value of 8. */ 492 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary 493 extern int arm_structure_size_boundary; 494 495 /* This is the value used to initialize arm_structure_size_boundary. If a 496 particular arm target wants to change the default value it should change 497 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h 498 for an example of this. */ 499 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY 500 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32 501 #endif 502 503 /* Nonzero if move instructions will actually fail to work 504 when given unaligned data. */ 505 #define STRICT_ALIGNMENT 1 506 507 /* wchar_t is unsigned under the AAPCS. */ 508 #ifndef WCHAR_TYPE 509 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int") 510 511 #define WCHAR_TYPE_SIZE BITS_PER_WORD 512 #endif 513 514 #ifndef SIZE_TYPE 515 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int") 516 #endif 517 518 #ifndef PTRDIFF_TYPE 519 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int") 520 #endif 521 522 /* AAPCS requires that structure alignment is affected by bitfields. */ 523 #ifndef PCC_BITFIELD_TYPE_MATTERS 524 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED 525 #endif 526 527 528 /* Standard register usage. */ 529 530 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX): 531 (S - saved over call). 532 533 r0 * argument word/integer result 534 r1-r3 argument word 535 536 r4-r8 S register variable 537 r9 S (rfp) register variable (real frame pointer) 538 539 r10 F S (sl) stack limit (used by -mapcs-stack-check) 540 r11 F S (fp) argument pointer 541 r12 (ip) temp workspace 542 r13 F S (sp) lower end of current stack frame 543 r14 (lr) link address/workspace 544 r15 F (pc) program counter 545 546 f0 floating point result 547 f1-f3 floating point scratch 548 549 f4-f7 S floating point variable 550 551 cc This is NOT a real register, but is used internally 552 to represent things that use or set the condition 553 codes. 554 sfp This isn't either. It is used during rtl generation 555 since the offset between the frame pointer and the 556 auto's isn't known until after register allocation. 557 afp Nor this, we only need this because of non-local 558 goto. Without it fp appears to be used and the 559 elimination code won't get rid of sfp. It tracks 560 fp exactly at all times. 561 562 *: See CONDITIONAL_REGISTER_USAGE */ 563 564 /* 565 mvf0 Cirrus floating point result 566 mvf1-mvf3 Cirrus floating point scratch 567 mvf4-mvf15 S Cirrus floating point variable. */ 568 569 /* s0-s15 VFP scratch (aka d0-d7). 570 s16-s31 S VFP variable (aka d8-d15). 571 vfpcc Not a real register. Represents the VFP condition 572 code flags. */ 573 574 /* The stack backtrace structure is as follows: 575 fp points to here: | save code pointer | [fp] 576 | return link value | [fp, #-4] 577 | return sp value | [fp, #-8] 578 | return fp value | [fp, #-12] 579 [| saved r10 value |] 580 [| saved r9 value |] 581 [| saved r8 value |] 582 [| saved r7 value |] 583 [| saved r6 value |] 584 [| saved r5 value |] 585 [| saved r4 value |] 586 [| saved r3 value |] 587 [| saved r2 value |] 588 [| saved r1 value |] 589 [| saved r0 value |] 590 [| saved f7 value |] three words 591 [| saved f6 value |] three words 592 [| saved f5 value |] three words 593 [| saved f4 value |] three words 594 r0-r3 are not normally saved in a C function. */ 595 596 /* 1 for registers that have pervasive standard uses 597 and are not available for the register allocator. */ 598 #define FIXED_REGISTERS \ 599 { \ 600 0,0,0,0,0,0,0,0, \ 601 0,0,0,0,0,1,0,1, \ 602 0,0,0,0,0,0,0,0, \ 603 1,1,1, \ 604 1,1,1,1,1,1,1,1, \ 605 1,1,1,1,1,1,1,1, \ 606 1,1,1,1,1,1,1,1, \ 607 1,1,1,1,1,1,1,1, \ 608 1,1,1,1, \ 609 1,1,1,1,1,1,1,1, \ 610 1,1,1,1,1,1,1,1, \ 611 1,1,1,1,1,1,1,1, \ 612 1,1,1,1,1,1,1,1, \ 613 1 \ 614 } 615 616 /* 1 for registers not available across function calls. 617 These must include the FIXED_REGISTERS and also any 618 registers that can be used without being saved. 619 The latter must include the registers where values are returned 620 and the register where structure-value addresses are passed. 621 Aside from that, you can include as many other registers as you like. 622 The CC is not preserved over function calls on the ARM 6, so it is 623 easier to assume this for all. SFP is preserved, since FP is. */ 624 #define CALL_USED_REGISTERS \ 625 { \ 626 1,1,1,1,0,0,0,0, \ 627 0,0,0,0,1,1,1,1, \ 628 1,1,1,1,0,0,0,0, \ 629 1,1,1, \ 630 1,1,1,1,1,1,1,1, \ 631 1,1,1,1,1,1,1,1, \ 632 1,1,1,1,1,1,1,1, \ 633 1,1,1,1,1,1,1,1, \ 634 1,1,1,1, \ 635 1,1,1,1,1,1,1,1, \ 636 1,1,1,1,1,1,1,1, \ 637 1,1,1,1,1,1,1,1, \ 638 1,1,1,1,1,1,1,1, \ 639 1 \ 640 } 641 642 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE 643 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE 644 #endif 645 646 #define CONDITIONAL_REGISTER_USAGE \ 647 { \ 648 int regno; \ 649 \ 650 if (TARGET_SOFT_FLOAT || TARGET_THUMB || !TARGET_FPA) \ 651 { \ 652 for (regno = FIRST_FPA_REGNUM; \ 653 regno <= LAST_FPA_REGNUM; ++regno) \ 654 fixed_regs[regno] = call_used_regs[regno] = 1; \ 655 } \ 656 \ 657 if (TARGET_THUMB && optimize_size) \ 658 { \ 659 /* When optimizing for size, it's better not to use \ 660 the HI regs, because of the overhead of stacking \ 661 them. */ \ 662 for (regno = FIRST_HI_REGNUM; \ 663 regno <= LAST_HI_REGNUM; ++regno) \ 664 fixed_regs[regno] = call_used_regs[regno] = 1; \ 665 } \ 666 \ 667 /* The link register can be clobbered by any branch insn, \ 668 but we have no way to track that at present, so mark \ 669 it as unavailable. */ \ 670 if (TARGET_THUMB) \ 671 fixed_regs[LR_REGNUM] = call_used_regs[LR_REGNUM] = 1; \ 672 \ 673 if (TARGET_ARM && TARGET_HARD_FLOAT) \ 674 { \ 675 if (TARGET_MAVERICK) \ 676 { \ 677 for (regno = FIRST_FPA_REGNUM; \ 678 regno <= LAST_FPA_REGNUM; ++ regno) \ 679 fixed_regs[regno] = call_used_regs[regno] = 1; \ 680 for (regno = FIRST_CIRRUS_FP_REGNUM; \ 681 regno <= LAST_CIRRUS_FP_REGNUM; ++ regno) \ 682 { \ 683 fixed_regs[regno] = 0; \ 684 call_used_regs[regno] = regno < FIRST_CIRRUS_FP_REGNUM + 4; \ 685 } \ 686 } \ 687 if (TARGET_VFP) \ 688 { \ 689 for (regno = FIRST_VFP_REGNUM; \ 690 regno <= LAST_VFP_REGNUM; ++ regno) \ 691 { \ 692 fixed_regs[regno] = 0; \ 693 call_used_regs[regno] = regno < FIRST_VFP_REGNUM + 16; \ 694 } \ 695 } \ 696 } \ 697 \ 698 if (TARGET_REALLY_IWMMXT) \ 699 { \ 700 regno = FIRST_IWMMXT_GR_REGNUM; \ 701 /* The 2002/10/09 revision of the XScale ABI has wCG0 \ 702 and wCG1 as call-preserved registers. The 2002/11/21 \ 703 revision changed this so that all wCG registers are \ 704 scratch registers. */ \ 705 for (regno = FIRST_IWMMXT_GR_REGNUM; \ 706 regno <= LAST_IWMMXT_GR_REGNUM; ++ regno) \ 707 fixed_regs[regno] = 0; \ 708 /* The XScale ABI has wR0 - wR9 as scratch registers, \ 709 the rest as call-preserved registers. */ \ 710 for (regno = FIRST_IWMMXT_REGNUM; \ 711 regno <= LAST_IWMMXT_REGNUM; ++ regno) \ 712 { \ 713 fixed_regs[regno] = 0; \ 714 call_used_regs[regno] = regno < FIRST_IWMMXT_REGNUM + 10; \ 715 } \ 716 } \ 717 \ 718 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \ 719 { \ 720 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ 721 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ 722 } \ 723 else if (TARGET_APCS_STACK) \ 724 { \ 725 fixed_regs[10] = 1; \ 726 call_used_regs[10] = 1; \ 727 } \ 728 /* -mcaller-super-interworking reserves r11 for calls to \ 729 _interwork_r11_call_via_rN(). Making the register global \ 730 is an easy way of ensuring that it remains valid for all \ 731 calls. */ \ 732 if (TARGET_APCS_FRAME || TARGET_CALLER_INTERWORKING \ 733 || TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME) \ 734 { \ 735 fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \ 736 call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \ 737 if (TARGET_CALLER_INTERWORKING) \ 738 global_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \ 739 } \ 740 SUBTARGET_CONDITIONAL_REGISTER_USAGE \ 741 } 742 743 /* These are a couple of extensions to the formats accepted 744 by asm_fprintf: 745 %@ prints out ASM_COMMENT_START 746 %r prints out REGISTER_PREFIX reg_names[arg] */ 747 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \ 748 case '@': \ 749 fputs (ASM_COMMENT_START, FILE); \ 750 break; \ 751 \ 752 case 'r': \ 753 fputs (REGISTER_PREFIX, FILE); \ 754 fputs (reg_names [va_arg (ARGS, int)], FILE); \ 755 break; 756 757 /* Round X up to the nearest word. */ 758 #define ROUND_UP_WORD(X) (((X) + 3) & ~3) 759 760 /* Convert fron bytes to ints. */ 761 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 762 763 /* The number of (integer) registers required to hold a quantity of type MODE. 764 Also used for VFP registers. */ 765 #define ARM_NUM_REGS(MODE) \ 766 ARM_NUM_INTS (GET_MODE_SIZE (MODE)) 767 768 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */ 769 #define ARM_NUM_REGS2(MODE, TYPE) \ 770 ARM_NUM_INTS ((MODE) == BLKmode ? \ 771 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) 772 773 /* The number of (integer) argument register available. */ 774 #define NUM_ARG_REGS 4 775 776 /* Return the register number of the N'th (integer) argument. */ 777 #define ARG_REGISTER(N) (N - 1) 778 779 /* Specify the registers used for certain standard purposes. 780 The values of these macros are register numbers. */ 781 782 /* The number of the last argument register. */ 783 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS) 784 785 /* The numbers of the Thumb register ranges. */ 786 #define FIRST_LO_REGNUM 0 787 #define LAST_LO_REGNUM 7 788 #define FIRST_HI_REGNUM 8 789 #define LAST_HI_REGNUM 11 790 791 #ifndef TARGET_UNWIND_INFO 792 /* We use sjlj exceptions for backwards compatibility. */ 793 #define MUST_USE_SJLJ_EXCEPTIONS 1 794 #endif 795 796 /* We can generate DWARF2 Unwind info, even though we don't use it. */ 797 #define DWARF2_UNWIND_INFO 1 798 799 /* Use r0 and r1 to pass exception handling information. */ 800 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM) 801 802 /* The register that holds the return address in exception handlers. */ 803 #define ARM_EH_STACKADJ_REGNUM 2 804 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM) 805 806 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain 807 as an invisible last argument (possible since varargs don't exist in 808 Pascal), so the following is not true. */ 809 #define STATIC_CHAIN_REGNUM (TARGET_ARM ? 12 : 9) 810 811 /* Define this to be where the real frame pointer is if it is not possible to 812 work out the offset between the frame pointer and the automatic variables 813 until after register allocation has taken place. FRAME_POINTER_REGNUM 814 should point to a special register that we will make sure is eliminated. 815 816 For the Thumb we have another problem. The TPCS defines the frame pointer 817 as r11, and GCC believes that it is always possible to use the frame pointer 818 as base register for addressing purposes. (See comments in 819 find_reloads_address()). But - the Thumb does not allow high registers, 820 including r11, to be used as base address registers. Hence our problem. 821 822 The solution used here, and in the old thumb port is to use r7 instead of 823 r11 as the hard frame pointer and to have special code to generate 824 backtrace structures on the stack (if required to do so via a command line 825 option) using r11. This is the only 'user visible' use of r11 as a frame 826 pointer. */ 827 #define ARM_HARD_FRAME_POINTER_REGNUM 11 828 #define THUMB_HARD_FRAME_POINTER_REGNUM 7 829 830 #define HARD_FRAME_POINTER_REGNUM \ 831 (TARGET_ARM \ 832 ? ARM_HARD_FRAME_POINTER_REGNUM \ 833 : THUMB_HARD_FRAME_POINTER_REGNUM) 834 835 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM 836 837 /* Register to use for pushing function arguments. */ 838 #define STACK_POINTER_REGNUM SP_REGNUM 839 840 /* ARM floating pointer registers. */ 841 #define FIRST_FPA_REGNUM 16 842 #define LAST_FPA_REGNUM 23 843 #define IS_FPA_REGNUM(REGNUM) \ 844 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM)) 845 846 #define FIRST_IWMMXT_GR_REGNUM 43 847 #define LAST_IWMMXT_GR_REGNUM 46 848 #define FIRST_IWMMXT_REGNUM 47 849 #define LAST_IWMMXT_REGNUM 62 850 #define IS_IWMMXT_REGNUM(REGNUM) \ 851 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM)) 852 #define IS_IWMMXT_GR_REGNUM(REGNUM) \ 853 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM)) 854 855 /* Base register for access to local variables of the function. */ 856 #define FRAME_POINTER_REGNUM 25 857 858 /* Base register for access to arguments of the function. */ 859 #define ARG_POINTER_REGNUM 26 860 861 #define FIRST_CIRRUS_FP_REGNUM 27 862 #define LAST_CIRRUS_FP_REGNUM 42 863 #define IS_CIRRUS_REGNUM(REGNUM) \ 864 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM)) 865 866 #define FIRST_VFP_REGNUM 63 867 #define LAST_VFP_REGNUM 94 868 #define IS_VFP_REGNUM(REGNUM) \ 869 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM)) 870 871 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */ 872 /* + 16 Cirrus registers take us up to 43. */ 873 /* Intel Wireless MMX Technology registers add 16 + 4 more. */ 874 /* VFP adds 32 + 1 more. */ 875 #define FIRST_PSEUDO_REGISTER 96 876 877 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO) 878 879 /* Value should be nonzero if functions must have frame pointers. 880 Zero means the frame pointer need not be set up (and parms may be accessed 881 via the stack pointer) in functions that seem suitable. 882 If we have to have a frame pointer we might as well make use of it. 883 APCS says that the frame pointer does not need to be pushed in leaf 884 functions, or simple tail call functions. */ 885 886 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED 887 #define SUBTARGET_FRAME_POINTER_REQUIRED 0 888 #endif 889 890 #define FRAME_POINTER_REQUIRED \ 891 (current_function_has_nonlocal_label \ 892 || SUBTARGET_FRAME_POINTER_REQUIRED \ 893 || (TARGET_ARM && TARGET_APCS_FRAME && ! leaf_function_p ())) 894 895 /* Return number of consecutive hard regs needed starting at reg REGNO 896 to hold something of mode MODE. 897 This is ordinarily the length in words of a value of mode MODE 898 but can be less for certain modes in special long registers. 899 900 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP 901 mode. */ 902 #define HARD_REGNO_NREGS(REGNO, MODE) \ 903 ((TARGET_ARM \ 904 && REGNO >= FIRST_FPA_REGNUM \ 905 && REGNO != FRAME_POINTER_REGNUM \ 906 && REGNO != ARG_POINTER_REGNUM) \ 907 && !IS_VFP_REGNUM (REGNO) \ 908 ? 1 : ARM_NUM_REGS (MODE)) 909 910 /* Return true if REGNO is suitable for holding a quantity of type MODE. */ 911 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 912 arm_hard_regno_mode_ok ((REGNO), (MODE)) 913 914 /* Value is 1 if it is a good idea to tie two pseudo registers 915 when one has mode MODE1 and one has mode MODE2. 916 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, 917 for any hard reg, then this must be 0 for correct output. */ 918 #define MODES_TIEABLE_P(MODE1, MODE2) \ 919 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) 920 921 #define VALID_IWMMXT_REG_MODE(MODE) \ 922 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode) 923 924 /* The order in which register should be allocated. It is good to use ip 925 since no saving is required (though calls clobber it) and it never contains 926 function parameters. It is quite good to use lr since other calls may 927 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is 928 least likely to contain a function parameter; in addition results are 929 returned in r0. */ 930 931 #define REG_ALLOC_ORDER \ 932 { \ 933 3, 2, 1, 0, 12, 14, 4, 5, \ 934 6, 7, 8, 10, 9, 11, 13, 15, \ 935 16, 17, 18, 19, 20, 21, 22, 23, \ 936 27, 28, 29, 30, 31, 32, 33, 34, \ 937 35, 36, 37, 38, 39, 40, 41, 42, \ 938 43, 44, 45, 46, 47, 48, 49, 50, \ 939 51, 52, 53, 54, 55, 56, 57, 58, \ 940 59, 60, 61, 62, \ 941 24, 25, 26, \ 942 78, 77, 76, 75, 74, 73, 72, 71, \ 943 70, 69, 68, 67, 66, 65, 64, 63, \ 944 79, 80, 81, 82, 83, 84, 85, 86, \ 945 87, 88, 89, 90, 91, 92, 93, 94, \ 946 95 \ 947 } 948 949 /* Interrupt functions can only use registers that have already been 950 saved by the prologue, even if they would normally be 951 call-clobbered. */ 952 #define HARD_REGNO_RENAME_OK(SRC, DST) \ 953 (! IS_INTERRUPT (cfun->machine->func_type) || \ 954 regs_ever_live[DST]) 955 956 /* Register and constant classes. */ 957 958 /* Register classes: used to be simple, just all ARM regs or all FPA regs 959 Now that the Thumb is involved it has become more complicated. */ 960 enum reg_class 961 { 962 NO_REGS, 963 FPA_REGS, 964 CIRRUS_REGS, 965 VFP_REGS, 966 IWMMXT_GR_REGS, 967 IWMMXT_REGS, 968 LO_REGS, 969 STACK_REG, 970 BASE_REGS, 971 HI_REGS, 972 CC_REG, 973 VFPCC_REG, 974 GENERAL_REGS, 975 ALL_REGS, 976 LIM_REG_CLASSES 977 }; 978 979 #define N_REG_CLASSES (int) LIM_REG_CLASSES 980 981 /* Give names of register classes as strings for dump file. */ 982 #define REG_CLASS_NAMES \ 983 { \ 984 "NO_REGS", \ 985 "FPA_REGS", \ 986 "CIRRUS_REGS", \ 987 "VFP_REGS", \ 988 "IWMMXT_GR_REGS", \ 989 "IWMMXT_REGS", \ 990 "LO_REGS", \ 991 "STACK_REG", \ 992 "BASE_REGS", \ 993 "HI_REGS", \ 994 "CC_REG", \ 995 "VFPCC_REG", \ 996 "GENERAL_REGS", \ 997 "ALL_REGS", \ 998 } 999 1000 /* Define which registers fit in which classes. 1001 This is an initializer for a vector of HARD_REG_SET 1002 of length N_REG_CLASSES. */ 1003 #define REG_CLASS_CONTENTS \ 1004 { \ 1005 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ 1006 { 0x00FF0000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \ 1007 { 0xF8000000, 0x000007FF, 0x00000000 }, /* CIRRUS_REGS */ \ 1008 { 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_REGS */ \ 1009 { 0x00000000, 0x00007800, 0x00000000 }, /* IWMMXT_GR_REGS */ \ 1010 { 0x00000000, 0x7FFF8000, 0x00000000 }, /* IWMMXT_REGS */ \ 1011 { 0x000000FF, 0x00000000, 0x00000000 }, /* LO_REGS */ \ 1012 { 0x00002000, 0x00000000, 0x00000000 }, /* STACK_REG */ \ 1013 { 0x000020FF, 0x00000000, 0x00000000 }, /* BASE_REGS */ \ 1014 { 0x0000FF00, 0x00000000, 0x00000000 }, /* HI_REGS */ \ 1015 { 0x01000000, 0x00000000, 0x00000000 }, /* CC_REG */ \ 1016 { 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \ 1017 { 0x0200FFFF, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \ 1018 { 0xFAFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \ 1019 } 1020 1021 /* The same information, inverted: 1022 Return the class number of the smallest class containing 1023 reg number REGNO. This could be a conditional expression 1024 or could index an array. */ 1025 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO) 1026 1027 /* FPA registers can't do subreg as all values are reformatted to internal 1028 precision. VFP registers may only be accessed in the mode they 1029 were set. */ 1030 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ 1031 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \ 1032 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \ 1033 || reg_classes_intersect_p (VFP_REGS, (CLASS)) \ 1034 : 0) 1035 1036 /* We need to define this for LO_REGS on thumb. Otherwise we can end up 1037 using r0-r4 for function arguments, r7 for the stack frame and don't 1038 have enough left over to do doubleword arithmetic. */ 1039 #define CLASS_LIKELY_SPILLED_P(CLASS) \ 1040 ((TARGET_THUMB && (CLASS) == LO_REGS) \ 1041 || (CLASS) == CC_REG) 1042 1043 /* The class value for index registers, and the one for base regs. */ 1044 #define INDEX_REG_CLASS (TARGET_THUMB ? LO_REGS : GENERAL_REGS) 1045 #define BASE_REG_CLASS (TARGET_THUMB ? LO_REGS : GENERAL_REGS) 1046 1047 /* For the Thumb the high registers cannot be used as base registers 1048 when addressing quantities in QI or HI mode; if we don't know the 1049 mode, then we must be conservative. */ 1050 #define MODE_BASE_REG_CLASS(MODE) \ 1051 (TARGET_ARM ? GENERAL_REGS : \ 1052 (((MODE) == SImode) ? BASE_REGS : LO_REGS)) 1053 1054 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS 1055 instead of BASE_REGS. */ 1056 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS 1057 1058 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows 1059 registers explicitly used in the rtl to be used as spill registers 1060 but prevents the compiler from extending the lifetime of these 1061 registers. */ 1062 #define SMALL_REGISTER_CLASSES TARGET_THUMB 1063 1064 /* Given an rtx X being reloaded into a reg required to be 1065 in class CLASS, return the class of reg to actually use. 1066 In general this is just CLASS, but for the Thumb we prefer 1067 a LO_REGS class or a subset. */ 1068 #define PREFERRED_RELOAD_CLASS(X, CLASS) \ 1069 (TARGET_ARM ? (CLASS) : \ 1070 ((CLASS) == BASE_REGS ? (CLASS) : LO_REGS)) 1071 1072 /* Must leave BASE_REGS reloads alone */ 1073 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \ 1074 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \ 1075 ? ((true_regnum (X) == -1 ? LO_REGS \ 1076 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \ 1077 : NO_REGS)) \ 1078 : NO_REGS) 1079 1080 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \ 1081 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \ 1082 ? ((true_regnum (X) == -1 ? LO_REGS \ 1083 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \ 1084 : NO_REGS)) \ 1085 : NO_REGS) 1086 1087 /* Return the register class of a scratch register needed to copy IN into 1088 or out of a register in CLASS in MODE. If it can be done directly, 1089 NO_REGS is returned. */ 1090 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \ 1091 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \ 1092 ((TARGET_VFP && TARGET_HARD_FLOAT \ 1093 && (CLASS) == VFP_REGS) \ 1094 ? coproc_secondary_reload_class (MODE, X, FALSE) \ 1095 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \ 1096 ? coproc_secondary_reload_class (MODE, X, TRUE) \ 1097 : TARGET_ARM \ 1098 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \ 1099 ? GENERAL_REGS : NO_REGS) \ 1100 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X)) 1101 1102 /* If we need to load shorts byte-at-a-time, then we need a scratch. */ 1103 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \ 1104 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \ 1105 ((TARGET_VFP && TARGET_HARD_FLOAT \ 1106 && (CLASS) == VFP_REGS) \ 1107 ? coproc_secondary_reload_class (MODE, X, FALSE) : \ 1108 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \ 1109 coproc_secondary_reload_class (MODE, X, TRUE) : \ 1110 /* Cannot load constants into Cirrus registers. */ \ 1111 (TARGET_MAVERICK && TARGET_HARD_FLOAT \ 1112 && (CLASS) == CIRRUS_REGS \ 1113 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \ 1114 ? GENERAL_REGS : \ 1115 (TARGET_ARM ? \ 1116 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \ 1117 && CONSTANT_P (X)) \ 1118 ? GENERAL_REGS : \ 1119 (((MODE) == HImode && ! arm_arch4 \ 1120 && (GET_CODE (X) == MEM \ 1121 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \ 1122 && true_regnum (X) == -1))) \ 1123 ? GENERAL_REGS : NO_REGS) \ 1124 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X))) 1125 1126 /* Try a machine-dependent way of reloading an illegitimate address 1127 operand. If we find one, push the reload and jump to WIN. This 1128 macro is used in only one place: `find_reloads_address' in reload.c. 1129 1130 For the ARM, we wish to handle large displacements off a base 1131 register by splitting the addend across a MOV and the mem insn. 1132 This can cut the number of reloads needed. */ 1133 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \ 1134 do \ 1135 { \ 1136 if (GET_CODE (X) == PLUS \ 1137 && GET_CODE (XEXP (X, 0)) == REG \ 1138 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \ 1139 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \ 1140 && GET_CODE (XEXP (X, 1)) == CONST_INT) \ 1141 { \ 1142 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \ 1143 HOST_WIDE_INT low, high; \ 1144 \ 1145 if (MODE == DImode || (MODE == DFmode && TARGET_SOFT_FLOAT)) \ 1146 low = ((val & 0xf) ^ 0x8) - 0x8; \ 1147 else if (TARGET_MAVERICK && TARGET_HARD_FLOAT) \ 1148 /* Need to be careful, -256 is not a valid offset. */ \ 1149 low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \ 1150 else if (MODE == SImode \ 1151 || (MODE == SFmode && TARGET_SOFT_FLOAT) \ 1152 || ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \ 1153 /* Need to be careful, -4096 is not a valid offset. */ \ 1154 low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff); \ 1155 else if ((MODE == HImode || MODE == QImode) && arm_arch4) \ 1156 /* Need to be careful, -256 is not a valid offset. */ \ 1157 low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \ 1158 else if (GET_MODE_CLASS (MODE) == MODE_FLOAT \ 1159 && TARGET_HARD_FLOAT && TARGET_FPA) \ 1160 /* Need to be careful, -1024 is not a valid offset. */ \ 1161 low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff); \ 1162 else \ 1163 break; \ 1164 \ 1165 high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff) \ 1166 ^ (unsigned HOST_WIDE_INT) 0x80000000) \ 1167 - (unsigned HOST_WIDE_INT) 0x80000000); \ 1168 /* Check for overflow or zero */ \ 1169 if (low == 0 || high == 0 || (high + low != val)) \ 1170 break; \ 1171 \ 1172 /* Reload the high part into a base reg; leave the low part \ 1173 in the mem. */ \ 1174 X = gen_rtx_PLUS (GET_MODE (X), \ 1175 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \ 1176 GEN_INT (high)), \ 1177 GEN_INT (low)); \ 1178 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \ 1179 MODE_BASE_REG_CLASS (MODE), GET_MODE (X), \ 1180 VOIDmode, 0, 0, OPNUM, TYPE); \ 1181 goto WIN; \ 1182 } \ 1183 } \ 1184 while (0) 1185 1186 /* XXX If an HImode FP+large_offset address is converted to an HImode 1187 SP+large_offset address, then reload won't know how to fix it. It sees 1188 only that SP isn't valid for HImode, and so reloads the SP into an index 1189 register, but the resulting address is still invalid because the offset 1190 is too big. We fix it here instead by reloading the entire address. */ 1191 /* We could probably achieve better results by defining PROMOTE_MODE to help 1192 cope with the variances between the Thumb's signed and unsigned byte and 1193 halfword load instructions. */ 1194 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \ 1195 do { \ 1196 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \ 1197 if (new_x) \ 1198 { \ 1199 X = new_x; \ 1200 goto WIN; \ 1201 } \ 1202 } while (0) 1203 1204 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \ 1205 if (TARGET_ARM) \ 1206 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \ 1207 else \ 1208 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) 1209 1210 /* Return the maximum number of consecutive registers 1211 needed to represent mode MODE in a register of class CLASS. 1212 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */ 1213 #define CLASS_MAX_NREGS(CLASS, MODE) \ 1214 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE)) 1215 1216 /* If defined, gives a class of registers that cannot be used as the 1217 operand of a SUBREG that changes the mode of the object illegally. */ 1218 1219 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns. */ 1220 #define REGISTER_MOVE_COST(MODE, FROM, TO) \ 1221 (TARGET_ARM ? \ 1222 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \ 1223 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \ 1224 (FROM) == VFP_REGS && (TO) != VFP_REGS ? 10 : \ 1225 (FROM) != VFP_REGS && (TO) == VFP_REGS ? 10 : \ 1226 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \ 1227 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \ 1228 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \ 1229 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \ 1230 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \ 1231 2) \ 1232 : \ 1233 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2) 1234 1235 /* Stack layout; function entry, exit and calling. */ 1236 1237 /* Define this if pushing a word on the stack 1238 makes the stack pointer a smaller address. */ 1239 #define STACK_GROWS_DOWNWARD 1 1240 1241 /* Define this to nonzero if the nominal address of the stack frame 1242 is at the high-address end of the local variables; 1243 that is, each additional local variable allocated 1244 goes at a more negative offset in the frame. */ 1245 #define FRAME_GROWS_DOWNWARD 1 1246 1247 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN(). 1248 When present, it is one word in size, and sits at the top of the frame, 1249 between the soft frame pointer and either r7 or r11. 1250 1251 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking, 1252 and only then if some outgoing arguments are passed on the stack. It would 1253 be tempting to also check whether the stack arguments are passed by indirect 1254 calls, but there seems to be no reason in principle why a post-reload pass 1255 couldn't convert a direct call into an indirect one. */ 1256 #define CALLER_INTERWORKING_SLOT_SIZE \ 1257 (TARGET_CALLER_INTERWORKING \ 1258 && current_function_outgoing_args_size != 0 \ 1259 ? UNITS_PER_WORD : 0) 1260 1261 /* Offset within stack frame to start allocating local variables at. 1262 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the 1263 first local allocated. Otherwise, it is the offset to the BEGINNING 1264 of the first local allocated. */ 1265 #define STARTING_FRAME_OFFSET 0 1266 1267 /* If we generate an insn to push BYTES bytes, 1268 this says how many the stack pointer really advances by. */ 1269 /* The push insns do not do this rounding implicitly. 1270 So don't define this. */ 1271 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */ 1272 1273 /* Define this if the maximum size of all the outgoing args is to be 1274 accumulated and pushed during the prologue. The amount can be 1275 found in the variable current_function_outgoing_args_size. */ 1276 #define ACCUMULATE_OUTGOING_ARGS 1 1277 1278 /* Offset of first parameter from the argument pointer register value. */ 1279 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0) 1280 1281 /* Value is the number of byte of arguments automatically 1282 popped when returning from a subroutine call. 1283 FUNDECL is the declaration node of the function (as a tree), 1284 FUNTYPE is the data type of the function (as a tree), 1285 or for a library call it is an identifier node for the subroutine name. 1286 SIZE is the number of bytes of arguments passed on the stack. 1287 1288 On the ARM, the caller does not pop any of its arguments that were passed 1289 on the stack. */ 1290 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0 1291 1292 /* Define how to find the value returned by a library function 1293 assuming the value has mode MODE. */ 1294 #define LIBCALL_VALUE(MODE) \ 1295 (TARGET_ARM && TARGET_HARD_FLOAT_ABI && TARGET_FPA \ 1296 && GET_MODE_CLASS (MODE) == MODE_FLOAT \ 1297 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \ 1298 : TARGET_ARM && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \ 1299 && GET_MODE_CLASS (MODE) == MODE_FLOAT \ 1300 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \ 1301 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \ 1302 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \ 1303 : gen_rtx_REG (MODE, ARG_REGISTER (1))) 1304 1305 /* Define how to find the value returned by a function. 1306 VALTYPE is the data type of the value (as a tree). 1307 If the precise function being called is known, FUNC is its FUNCTION_DECL; 1308 otherwise, FUNC is 0. */ 1309 #define FUNCTION_VALUE(VALTYPE, FUNC) \ 1310 arm_function_value (VALTYPE, FUNC); 1311 1312 /* 1 if N is a possible register number for a function value. 1313 On the ARM, only r0 and f0 can return results. */ 1314 /* On a Cirrus chip, mvf0 can return results. */ 1315 #define FUNCTION_VALUE_REGNO_P(REGNO) \ 1316 ((REGNO) == ARG_REGISTER (1) \ 1317 || (TARGET_ARM && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \ 1318 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \ 1319 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \ 1320 || (TARGET_ARM && ((REGNO) == FIRST_FPA_REGNUM) \ 1321 && TARGET_HARD_FLOAT_ABI && TARGET_FPA)) 1322 1323 /* Amount of memory needed for an untyped call to save all possible return 1324 registers. */ 1325 #define APPLY_RESULT_SIZE arm_apply_result_size() 1326 1327 /* How large values are returned */ 1328 /* A C expression which can inhibit the returning of certain function values 1329 in registers, based on the type of value. */ 1330 #define RETURN_IN_MEMORY(TYPE) arm_return_in_memory (TYPE) 1331 1332 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return 1333 values must be in memory. On the ARM, they need only do so if larger 1334 than a word, or if they contain elements offset from zero in the struct. */ 1335 #define DEFAULT_PCC_STRUCT_RETURN 0 1336 1337 /* Flags for the call/call_value rtl operations set up by function_arg. */ 1338 #define CALL_NORMAL 0x00000000 /* No special processing. */ 1339 #define CALL_LONG 0x00000001 /* Always call indirect. */ 1340 #define CALL_SHORT 0x00000002 /* Never call indirect. */ 1341 1342 /* These bits describe the different types of function supported 1343 by the ARM backend. They are exclusive. i.e. a function cannot be both a 1344 normal function and an interworked function, for example. Knowing the 1345 type of a function is important for determining its prologue and 1346 epilogue sequences. 1347 Note value 7 is currently unassigned. Also note that the interrupt 1348 function types all have bit 2 set, so that they can be tested for easily. 1349 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the 1350 machine_function structure is initialized (to zero) func_type will 1351 default to unknown. This will force the first use of arm_current_func_type 1352 to call arm_compute_func_type. */ 1353 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */ 1354 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */ 1355 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */ 1356 #define ARM_FT_ISR 4 /* An interrupt service routine. */ 1357 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */ 1358 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */ 1359 1360 #define ARM_FT_TYPE_MASK ((1 << 3) - 1) 1361 1362 /* In addition functions can have several type modifiers, 1363 outlined by these bit masks: */ 1364 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */ 1365 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */ 1366 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */ 1367 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */ 1368 1369 /* Some macros to test these flags. */ 1370 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK) 1371 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT) 1372 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE) 1373 #define IS_NAKED(t) (t & ARM_FT_NAKED) 1374 #define IS_NESTED(t) (t & ARM_FT_NESTED) 1375 1376 1377 /* Structure used to hold the function stack frame layout. Offsets are 1378 relative to the stack pointer on function entry. Positive offsets are 1379 in the direction of stack growth. 1380 Only soft_frame is used in thumb mode. */ 1381 1382 typedef struct arm_stack_offsets GTY(()) 1383 { 1384 int saved_args; /* ARG_POINTER_REGNUM. */ 1385 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */ 1386 int saved_regs; 1387 int soft_frame; /* FRAME_POINTER_REGNUM. */ 1388 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */ 1389 int outgoing_args; /* STACK_POINTER_REGNUM. */ 1390 } 1391 arm_stack_offsets; 1392 1393 /* A C structure for machine-specific, per-function data. 1394 This is added to the cfun structure. */ 1395 typedef struct machine_function GTY(()) 1396 { 1397 /* Additional stack adjustment in __builtin_eh_throw. */ 1398 rtx eh_epilogue_sp_ofs; 1399 /* Records if LR has to be saved for far jumps. */ 1400 int far_jump_used; 1401 /* Records if ARG_POINTER was ever live. */ 1402 int arg_pointer_live; 1403 /* Records if the save of LR has been eliminated. */ 1404 int lr_save_eliminated; 1405 /* The size of the stack frame. Only valid after reload. */ 1406 arm_stack_offsets stack_offsets; 1407 /* Records the type of the current function. */ 1408 unsigned long func_type; 1409 /* Record if the function has a variable argument list. */ 1410 int uses_anonymous_args; 1411 /* Records if sibcalls are blocked because an argument 1412 register is needed to preserve stack alignment. */ 1413 int sibcall_blocked; 1414 /* The PIC register for this function. This might be a pseudo. */ 1415 rtx pic_reg; 1416 /* Labels for per-function Thumb call-via stubs. One per potential calling 1417 register. We can never call via LR or PC. We can call via SP if a 1418 trampoline happens to be on the top of the stack. */ 1419 rtx call_via[14]; 1420 } 1421 machine_function; 1422 1423 /* As in the machine_function, a global set of call-via labels, for code 1424 that is in text_section. */ 1425 extern GTY(()) rtx thumb_call_via_label[14]; 1426 1427 /* A C type for declaring a variable that is used as the first argument of 1428 `FUNCTION_ARG' and other related values. For some target machines, the 1429 type `int' suffices and can hold the number of bytes of argument so far. */ 1430 typedef struct 1431 { 1432 /* This is the number of registers of arguments scanned so far. */ 1433 int nregs; 1434 /* This is the number of iWMMXt register arguments scanned so far. */ 1435 int iwmmxt_nregs; 1436 int named_count; 1437 int nargs; 1438 /* One of CALL_NORMAL, CALL_LONG or CALL_SHORT. */ 1439 int call_cookie; 1440 int can_split; 1441 } CUMULATIVE_ARGS; 1442 1443 /* Define where to put the arguments to a function. 1444 Value is zero to push the argument on the stack, 1445 or a hard register in which to store the argument. 1446 1447 MODE is the argument's machine mode. 1448 TYPE is the data type of the argument (as a tree). 1449 This is null for libcalls where that information may 1450 not be available. 1451 CUM is a variable of type CUMULATIVE_ARGS which gives info about 1452 the preceding args and about the function being called. 1453 NAMED is nonzero if this argument is a named parameter 1454 (otherwise it is an extra parameter matching an ellipsis). 1455 1456 On the ARM, normally the first 16 bytes are passed in registers r0-r3; all 1457 other arguments are passed on the stack. If (NAMED == 0) (which happens 1458 only in assign_parms, since TARGET_SETUP_INCOMING_VARARGS is 1459 defined), say it is passed in the stack (function_prologue will 1460 indeed make it pass in the stack if necessary). */ 1461 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ 1462 arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED)) 1463 1464 #define FUNCTION_ARG_PADDING(MODE, TYPE) \ 1465 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward) 1466 1467 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ 1468 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward) 1469 1470 /* For AAPCS, padding should never be below the argument. For other ABIs, 1471 * mimic the default. */ 1472 #define PAD_VARARGS_DOWN \ 1473 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN) 1474 1475 /* Initialize a variable CUM of type CUMULATIVE_ARGS 1476 for a call to a function whose data type is FNTYPE. 1477 For a library call, FNTYPE is 0. 1478 On the ARM, the offset starts at 0. */ 1479 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ 1480 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL)) 1481 1482 /* Update the data in CUM to advance over an argument 1483 of mode MODE and data type TYPE. 1484 (TYPE is null for libcalls where that information may not be available.) */ 1485 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ 1486 (CUM).nargs += 1; \ 1487 if (arm_vector_mode_supported_p (MODE) \ 1488 && (CUM).named_count > (CUM).nargs) \ 1489 (CUM).iwmmxt_nregs += 1; \ 1490 else \ 1491 (CUM).nregs += ARM_NUM_REGS2 (MODE, TYPE) 1492 1493 /* If defined, a C expression that gives the alignment boundary, in bits, of an 1494 argument with the specified mode and type. If it is not defined, 1495 `PARM_BOUNDARY' is used for all arguments. */ 1496 #define FUNCTION_ARG_BOUNDARY(MODE,TYPE) \ 1497 ((ARM_DOUBLEWORD_ALIGN && arm_needs_doubleword_align (MODE, TYPE)) \ 1498 ? DOUBLEWORD_ALIGNMENT \ 1499 : PARM_BOUNDARY ) 1500 1501 /* 1 if N is a possible register number for function argument passing. 1502 On the ARM, r0-r3 are used to pass args. */ 1503 #define FUNCTION_ARG_REGNO_P(REGNO) \ 1504 (IN_RANGE ((REGNO), 0, 3) \ 1505 || (TARGET_IWMMXT_ABI \ 1506 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9))) 1507 1508 1509 /* If your target environment doesn't prefix user functions with an 1510 underscore, you may wish to re-define this to prevent any conflicts. 1511 e.g. AOF may prefix mcount with an underscore. */ 1512 #ifndef ARM_MCOUNT_NAME 1513 #define ARM_MCOUNT_NAME "*mcount" 1514 #endif 1515 1516 /* Call the function profiler with a given profile label. The Acorn 1517 compiler puts this BEFORE the prolog but gcc puts it afterwards. 1518 On the ARM the full profile code will look like: 1519 .data 1520 LP1 1521 .word 0 1522 .text 1523 mov ip, lr 1524 bl mcount 1525 .word LP1 1526 1527 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER 1528 will output the .text section. 1529 1530 The ``mov ip,lr'' seems like a good idea to stick with cc convention. 1531 ``prof'' doesn't seem to mind about this! 1532 1533 Note - this version of the code is designed to work in both ARM and 1534 Thumb modes. */ 1535 #ifndef ARM_FUNCTION_PROFILER 1536 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \ 1537 { \ 1538 char temp[20]; \ 1539 rtx sym; \ 1540 \ 1541 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \ 1542 IP_REGNUM, LR_REGNUM); \ 1543 assemble_name (STREAM, ARM_MCOUNT_NAME); \ 1544 fputc ('\n', STREAM); \ 1545 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \ 1546 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \ 1547 assemble_aligned_integer (UNITS_PER_WORD, sym); \ 1548 } 1549 #endif 1550 1551 #ifdef THUMB_FUNCTION_PROFILER 1552 #define FUNCTION_PROFILER(STREAM, LABELNO) \ 1553 if (TARGET_ARM) \ 1554 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \ 1555 else \ 1556 THUMB_FUNCTION_PROFILER (STREAM, LABELNO) 1557 #else 1558 #define FUNCTION_PROFILER(STREAM, LABELNO) \ 1559 ARM_FUNCTION_PROFILER (STREAM, LABELNO) 1560 #endif 1561 1562 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 1563 the stack pointer does not matter. The value is tested only in 1564 functions that have frame pointers. 1565 No definition is equivalent to always zero. 1566 1567 On the ARM, the function epilogue recovers the stack pointer from the 1568 frame. */ 1569 #define EXIT_IGNORE_STACK 1 1570 1571 #define EPILOGUE_USES(REGNO) (reload_completed && (REGNO) == LR_REGNUM) 1572 1573 /* Determine if the epilogue should be output as RTL. 1574 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */ 1575 #define USE_RETURN_INSN(ISCOND) \ 1576 (TARGET_ARM ? use_return_insn (ISCOND, NULL) : 0) 1577 1578 /* Definitions for register eliminations. 1579 1580 This is an array of structures. Each structure initializes one pair 1581 of eliminable registers. The "from" register number is given first, 1582 followed by "to". Eliminations of the same "from" register are listed 1583 in order of preference. 1584 1585 We have two registers that can be eliminated on the ARM. First, the 1586 arg pointer register can often be eliminated in favor of the stack 1587 pointer register. Secondly, the pseudo frame pointer register can always 1588 be eliminated; it is replaced with either the stack or the real frame 1589 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM 1590 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */ 1591 1592 #define ELIMINABLE_REGS \ 1593 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\ 1594 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\ 1595 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\ 1596 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\ 1597 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\ 1598 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\ 1599 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }} 1600 1601 /* Given FROM and TO register numbers, say whether this elimination is 1602 allowed. Frame pointer elimination is automatically handled. 1603 1604 All eliminations are permissible. Note that ARG_POINTER_REGNUM and 1605 HARD_FRAME_POINTER_REGNUM are in fact the same thing. If we need a frame 1606 pointer, we must eliminate FRAME_POINTER_REGNUM into 1607 HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM or 1608 ARG_POINTER_REGNUM. */ 1609 #define CAN_ELIMINATE(FROM, TO) \ 1610 (((TO) == FRAME_POINTER_REGNUM && (FROM) == ARG_POINTER_REGNUM) ? 0 : \ 1611 ((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : \ 1612 ((TO) == ARM_HARD_FRAME_POINTER_REGNUM && TARGET_THUMB) ? 0 : \ 1613 ((TO) == THUMB_HARD_FRAME_POINTER_REGNUM && TARGET_ARM) ? 0 : \ 1614 1) 1615 1616 /* Define the offset between two registers, one to be eliminated, and the 1617 other its replacement, at the start of a routine. */ 1618 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 1619 if (TARGET_ARM) \ 1620 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \ 1621 else \ 1622 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO) 1623 1624 /* Special case handling of the location of arguments passed on the stack. */ 1625 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr) 1626 1627 /* Initialize data used by insn expanders. This is called from insn_emit, 1628 once for every function before code is generated. */ 1629 #define INIT_EXPANDERS arm_init_expanders () 1630 1631 /* Output assembler code for a block containing the constant parts 1632 of a trampoline, leaving space for the variable parts. 1633 1634 On the ARM, (if r8 is the static chain regnum, and remembering that 1635 referencing pc adds an offset of 8) the trampoline looks like: 1636 ldr r8, [pc, #0] 1637 ldr pc, [pc] 1638 .word static chain value 1639 .word function's address 1640 XXX FIXME: When the trampoline returns, r8 will be clobbered. */ 1641 #define ARM_TRAMPOLINE_TEMPLATE(FILE) \ 1642 { \ 1643 asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \ 1644 STATIC_CHAIN_REGNUM, PC_REGNUM); \ 1645 asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \ 1646 PC_REGNUM, PC_REGNUM); \ 1647 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \ 1648 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \ 1649 } 1650 1651 /* On the Thumb we always switch into ARM mode to execute the trampoline. 1652 Why - because it is easier. This code will always be branched to via 1653 a BX instruction and since the compiler magically generates the address 1654 of the function the linker has no opportunity to ensure that the 1655 bottom bit is set. Thus the processor will be in ARM mode when it 1656 reaches this code. So we duplicate the ARM trampoline code and add 1657 a switch into Thumb mode as well. */ 1658 #define THUMB_TRAMPOLINE_TEMPLATE(FILE) \ 1659 { \ 1660 fprintf (FILE, "\t.code 32\n"); \ 1661 fprintf (FILE, ".Ltrampoline_start:\n"); \ 1662 asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \ 1663 STATIC_CHAIN_REGNUM, PC_REGNUM); \ 1664 asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \ 1665 IP_REGNUM, PC_REGNUM); \ 1666 asm_fprintf (FILE, "\torr\t%r, %r, #1\n", \ 1667 IP_REGNUM, IP_REGNUM); \ 1668 asm_fprintf (FILE, "\tbx\t%r\n", IP_REGNUM); \ 1669 fprintf (FILE, "\t.word\t0\n"); \ 1670 fprintf (FILE, "\t.word\t0\n"); \ 1671 fprintf (FILE, "\t.code 16\n"); \ 1672 } 1673 1674 #define TRAMPOLINE_TEMPLATE(FILE) \ 1675 if (TARGET_ARM) \ 1676 ARM_TRAMPOLINE_TEMPLATE (FILE) \ 1677 else \ 1678 THUMB_TRAMPOLINE_TEMPLATE (FILE) 1679 1680 /* Length in units of the trampoline for entering a nested function. */ 1681 #define TRAMPOLINE_SIZE (TARGET_ARM ? 16 : 24) 1682 1683 /* Alignment required for a trampoline in bits. */ 1684 #define TRAMPOLINE_ALIGNMENT 32 1685 1686 1687 /* Emit RTL insns to initialize the variable parts of a trampoline. 1688 FNADDR is an RTX for the address of the function's pure code. 1689 CXT is an RTX for the static chain value for the function. */ 1690 #ifndef INITIALIZE_TRAMPOLINE 1691 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ 1692 { \ 1693 emit_move_insn (gen_rtx_MEM (SImode, \ 1694 plus_constant (TRAMP, \ 1695 TARGET_ARM ? 8 : 16)), \ 1696 CXT); \ 1697 emit_move_insn (gen_rtx_MEM (SImode, \ 1698 plus_constant (TRAMP, \ 1699 TARGET_ARM ? 12 : 20)), \ 1700 FNADDR); \ 1701 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"), \ 1702 0, VOIDmode, 2, TRAMP, Pmode, \ 1703 plus_constant (TRAMP, TRAMPOLINE_SIZE), Pmode); \ 1704 } 1705 #endif 1706 1707 1708 /* Addressing modes, and classification of registers for them. */ 1709 #define HAVE_POST_INCREMENT 1 1710 #define HAVE_PRE_INCREMENT TARGET_ARM 1711 #define HAVE_POST_DECREMENT TARGET_ARM 1712 #define HAVE_PRE_DECREMENT TARGET_ARM 1713 #define HAVE_PRE_MODIFY_DISP TARGET_ARM 1714 #define HAVE_POST_MODIFY_DISP TARGET_ARM 1715 #define HAVE_PRE_MODIFY_REG TARGET_ARM 1716 #define HAVE_POST_MODIFY_REG TARGET_ARM 1717 1718 /* Macros to check register numbers against specific register classes. */ 1719 1720 /* These assume that REGNO is a hard or pseudo reg number. 1721 They give nonzero only if REGNO is a hard reg of the suitable class 1722 or a pseudo reg currently allocated to a suitable hard reg. 1723 Since they use reg_renumber, they are safe only once reg_renumber 1724 has been allocated, which happens in local-alloc.c. */ 1725 #define TEST_REGNO(R, TEST, VALUE) \ 1726 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE)) 1727 1728 /* On the ARM, don't allow the pc to be used. */ 1729 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \ 1730 (TEST_REGNO (REGNO, <, PC_REGNUM) \ 1731 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \ 1732 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM)) 1733 1734 #define THUMB_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \ 1735 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \ 1736 || (GET_MODE_SIZE (MODE) >= 4 \ 1737 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))) 1738 1739 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \ 1740 (TARGET_THUMB \ 1741 ? THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \ 1742 : ARM_REGNO_OK_FOR_BASE_P (REGNO)) 1743 1744 /* Nonzero if X can be the base register in a reg+reg addressing mode. 1745 For Thumb, we can not use SP + reg, so reject SP. */ 1746 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \ 1747 REGNO_OK_FOR_INDEX_P (X) 1748 1749 /* For ARM code, we don't care about the mode, but for Thumb, the index 1750 must be suitable for use in a QImode load. */ 1751 #define REGNO_OK_FOR_INDEX_P(REGNO) \ 1752 REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) 1753 1754 /* Maximum number of registers that can appear in a valid memory address. 1755 Shifts in addresses can't be by a register. */ 1756 #define MAX_REGS_PER_ADDRESS 2 1757 1758 /* Recognize any constant value that is a valid address. */ 1759 /* XXX We can address any constant, eventually... */ 1760 1761 #ifdef AOF_ASSEMBLER 1762 1763 #define CONSTANT_ADDRESS_P(X) \ 1764 (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)) 1765 1766 #else 1767 1768 #define CONSTANT_ADDRESS_P(X) \ 1769 (GET_CODE (X) == SYMBOL_REF \ 1770 && (CONSTANT_POOL_ADDRESS_P (X) \ 1771 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X)))) 1772 1773 #endif /* AOF_ASSEMBLER */ 1774 1775 /* Nonzero if the constant value X is a legitimate general operand. 1776 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. 1777 1778 On the ARM, allow any integer (invalid ones are removed later by insn 1779 patterns), nice doubles and symbol_refs which refer to the function's 1780 constant pool XXX. 1781 1782 When generating pic allow anything. */ 1783 #define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X)) 1784 1785 #define THUMB_LEGITIMATE_CONSTANT_P(X) \ 1786 ( GET_CODE (X) == CONST_INT \ 1787 || GET_CODE (X) == CONST_DOUBLE \ 1788 || CONSTANT_ADDRESS_P (X) \ 1789 || flag_pic) 1790 1791 #define LEGITIMATE_CONSTANT_P(X) \ 1792 (!arm_tls_referenced_p (X) \ 1793 && (TARGET_ARM ? ARM_LEGITIMATE_CONSTANT_P (X) \ 1794 : THUMB_LEGITIMATE_CONSTANT_P (X))) 1795 1796 /* Special characters prefixed to function names 1797 in order to encode attribute like information. 1798 Note, '@' and '*' have already been taken. */ 1799 #define SHORT_CALL_FLAG_CHAR '^' 1800 #define LONG_CALL_FLAG_CHAR '#' 1801 1802 #define ENCODED_SHORT_CALL_ATTR_P(SYMBOL_NAME) \ 1803 (*(SYMBOL_NAME) == SHORT_CALL_FLAG_CHAR) 1804 1805 #define ENCODED_LONG_CALL_ATTR_P(SYMBOL_NAME) \ 1806 (*(SYMBOL_NAME) == LONG_CALL_FLAG_CHAR) 1807 1808 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS 1809 #define SUBTARGET_NAME_ENCODING_LENGTHS 1810 #endif 1811 1812 /* This is a C fragment for the inside of a switch statement. 1813 Each case label should return the number of characters to 1814 be stripped from the start of a function's name, if that 1815 name starts with the indicated character. */ 1816 #define ARM_NAME_ENCODING_LENGTHS \ 1817 case SHORT_CALL_FLAG_CHAR: return 1; \ 1818 case LONG_CALL_FLAG_CHAR: return 1; \ 1819 case '*': return 1; \ 1820 SUBTARGET_NAME_ENCODING_LENGTHS 1821 1822 /* This is how to output a reference to a user-level label named NAME. 1823 `assemble_name' uses this. */ 1824 #undef ASM_OUTPUT_LABELREF 1825 #define ASM_OUTPUT_LABELREF(FILE, NAME) \ 1826 arm_asm_output_labelref (FILE, NAME) 1827 1828 /* The EABI specifies that constructors should go in .init_array. 1829 Other targets use .ctors for compatibility. */ 1830 #ifndef ARM_EABI_CTORS_SECTION_OP 1831 #define ARM_EABI_CTORS_SECTION_OP \ 1832 "\t.section\t.init_array,\"aw\",%init_array" 1833 #endif 1834 #ifndef ARM_EABI_DTORS_SECTION_OP 1835 #define ARM_EABI_DTORS_SECTION_OP \ 1836 "\t.section\t.fini_array,\"aw\",%fini_array" 1837 #endif 1838 #define ARM_CTORS_SECTION_OP \ 1839 "\t.section\t.ctors,\"aw\",%progbits" 1840 #define ARM_DTORS_SECTION_OP \ 1841 "\t.section\t.dtors,\"aw\",%progbits" 1842 1843 /* Define CTORS_SECTION_ASM_OP. */ 1844 #undef CTORS_SECTION_ASM_OP 1845 #undef DTORS_SECTION_ASM_OP 1846 #ifndef IN_LIBGCC2 1847 # define CTORS_SECTION_ASM_OP \ 1848 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP) 1849 # define DTORS_SECTION_ASM_OP \ 1850 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP) 1851 #else /* !defined (IN_LIBGCC2) */ 1852 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant, 1853 so we cannot use the definition above. */ 1854 # ifdef __ARM_EABI__ 1855 /* The .ctors section is not part of the EABI, so we do not define 1856 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff 1857 from trying to use it. We do define it when doing normal 1858 compilation, as .init_array can be used instead of .ctors. */ 1859 /* There is no need to emit begin or end markers when using 1860 init_array; the dynamic linker will compute the size of the 1861 array itself based on special symbols created by the static 1862 linker. However, we do need to arrange to set up 1863 exception-handling here. */ 1864 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP) 1865 # define CTOR_LIST_END /* empty */ 1866 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP) 1867 # define DTOR_LIST_END /* empty */ 1868 # else /* !defined (__ARM_EABI__) */ 1869 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP 1870 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP 1871 # endif /* !defined (__ARM_EABI__) */ 1872 #endif /* !defined (IN_LIBCC2) */ 1873 1874 /* True if the operating system can merge entities with vague linkage 1875 (e.g., symbols in COMDAT group) during dynamic linking. */ 1876 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P 1877 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true 1878 #endif 1879 1880 /* Set the short-call flag for any function compiled in the current 1881 compilation unit. We skip this for functions with the section 1882 attribute when long-calls are in effect as this tells the compiler 1883 that the section might be placed a long way from the caller. 1884 See arm_is_longcall_p() for more information. */ 1885 #define ARM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \ 1886 if (!TARGET_LONG_CALLS || ! DECL_SECTION_NAME (DECL)) \ 1887 arm_encode_call_attribute (DECL, SHORT_CALL_FLAG_CHAR) 1888 1889 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE) 1890 1891 #ifdef TARGET_UNWIND_INFO 1892 #define ARM_EABI_UNWIND_TABLES \ 1893 ((!USING_SJLJ_EXCEPTIONS && flag_exceptions) || flag_unwind_tables) 1894 #else 1895 #define ARM_EABI_UNWIND_TABLES 0 1896 #endif 1897 1898 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 1899 and check its validity for a certain class. 1900 We have two alternate definitions for each of them. 1901 The usual definition accepts all pseudo regs; the other rejects 1902 them unless they have been allocated suitable hard regs. 1903 The symbol REG_OK_STRICT causes the latter definition to be used. */ 1904 #ifndef REG_OK_STRICT 1905 1906 #define ARM_REG_OK_FOR_BASE_P(X) \ 1907 (REGNO (X) <= LAST_ARM_REGNUM \ 1908 || REGNO (X) >= FIRST_PSEUDO_REGISTER \ 1909 || REGNO (X) == FRAME_POINTER_REGNUM \ 1910 || REGNO (X) == ARG_POINTER_REGNUM) 1911 1912 #define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \ 1913 (REGNO (X) <= LAST_LO_REGNUM \ 1914 || REGNO (X) >= FIRST_PSEUDO_REGISTER \ 1915 || (GET_MODE_SIZE (MODE) >= 4 \ 1916 && (REGNO (X) == STACK_POINTER_REGNUM \ 1917 || (X) == hard_frame_pointer_rtx \ 1918 || (X) == arg_pointer_rtx))) 1919 1920 #define REG_STRICT_P 0 1921 1922 #else /* REG_OK_STRICT */ 1923 1924 #define ARM_REG_OK_FOR_BASE_P(X) \ 1925 ARM_REGNO_OK_FOR_BASE_P (REGNO (X)) 1926 1927 #define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \ 1928 THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE) 1929 1930 #define REG_STRICT_P 1 1931 1932 #endif /* REG_OK_STRICT */ 1933 1934 /* Now define some helpers in terms of the above. */ 1935 1936 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \ 1937 (TARGET_THUMB \ 1938 ? THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE) \ 1939 : ARM_REG_OK_FOR_BASE_P (X)) 1940 1941 #define ARM_REG_OK_FOR_INDEX_P(X) ARM_REG_OK_FOR_BASE_P (X) 1942 1943 /* For Thumb, a valid index register is anything that can be used in 1944 a byte load instruction. */ 1945 #define THUMB_REG_OK_FOR_INDEX_P(X) THUMB_REG_MODE_OK_FOR_BASE_P (X, QImode) 1946 1947 /* Nonzero if X is a hard reg that can be used as an index 1948 or if it is a pseudo reg. On the Thumb, the stack pointer 1949 is not suitable. */ 1950 #define REG_OK_FOR_INDEX_P(X) \ 1951 (TARGET_THUMB \ 1952 ? THUMB_REG_OK_FOR_INDEX_P (X) \ 1953 : ARM_REG_OK_FOR_INDEX_P (X)) 1954 1955 /* Nonzero if X can be the base register in a reg+reg addressing mode. 1956 For Thumb, we can not use SP + reg, so reject SP. */ 1957 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \ 1958 REG_OK_FOR_INDEX_P (X) 1959 1960 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression 1961 that is a valid memory address for an instruction. 1962 The MODE argument is the machine mode for the MEM expression 1963 that wants to use this address. */ 1964 1965 #define ARM_BASE_REGISTER_RTX_P(X) \ 1966 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X)) 1967 1968 #define ARM_INDEX_REGISTER_RTX_P(X) \ 1969 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X)) 1970 1971 #define ARM_GO_IF_LEGITIMATE_ADDRESS(MODE,X,WIN) \ 1972 { \ 1973 if (arm_legitimate_address_p (MODE, X, SET, REG_STRICT_P)) \ 1974 goto WIN; \ 1975 } 1976 1977 #define THUMB_GO_IF_LEGITIMATE_ADDRESS(MODE,X,WIN) \ 1978 { \ 1979 if (thumb_legitimate_address_p (MODE, X, REG_STRICT_P)) \ 1980 goto WIN; \ 1981 } 1982 1983 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \ 1984 if (TARGET_ARM) \ 1985 ARM_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN) \ 1986 else /* if (TARGET_THUMB) */ \ 1987 THUMB_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN) 1988 1989 1990 /* Try machine-dependent ways of modifying an illegitimate address 1991 to be legitimate. If we find one, return the new, valid address. */ 1992 #define ARM_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ 1993 do { \ 1994 X = arm_legitimize_address (X, OLDX, MODE); \ 1995 } while (0) 1996 1997 #define THUMB_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ 1998 do { \ 1999 X = thumb_legitimize_address (X, OLDX, MODE); \ 2000 } while (0) 2001 2002 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ 2003 do { \ 2004 if (TARGET_ARM) \ 2005 ARM_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN); \ 2006 else \ 2007 THUMB_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN); \ 2008 \ 2009 if (memory_address_p (MODE, X)) \ 2010 goto WIN; \ 2011 } while (0) 2012 2013 /* Go to LABEL if ADDR (a legitimate address expression) 2014 has an effect that depends on the machine mode it is used for. */ 2015 #define ARM_GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ 2016 { \ 2017 if ( GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \ 2018 || GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \ 2019 goto LABEL; \ 2020 } 2021 2022 /* Nothing helpful to do for the Thumb */ 2023 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ 2024 if (TARGET_ARM) \ 2025 ARM_GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL) 2026 2027 2028 /* Specify the machine mode that this machine uses 2029 for the index in the tablejump instruction. */ 2030 #define CASE_VECTOR_MODE Pmode 2031 2032 /* signed 'char' is most compatible, but RISC OS wants it unsigned. 2033 unsigned is probably best, but may break some code. */ 2034 #ifndef DEFAULT_SIGNED_CHAR 2035 #define DEFAULT_SIGNED_CHAR 0 2036 #endif 2037 2038 /* Max number of bytes we can move from memory to memory 2039 in one reasonably fast instruction. */ 2040 #define MOVE_MAX 4 2041 2042 #undef MOVE_RATIO 2043 #define MOVE_RATIO (arm_tune_xscale ? 4 : 2) 2044 2045 /* Define if operations between registers always perform the operation 2046 on the full register even if a narrower mode is specified. */ 2047 #define WORD_REGISTER_OPERATIONS 2048 2049 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD 2050 will either zero-extend or sign-extend. The value of this macro should 2051 be the code that says which one of the two operations is implicitly 2052 done, UNKNOWN if none. */ 2053 #define LOAD_EXTEND_OP(MODE) \ 2054 (TARGET_THUMB ? ZERO_EXTEND : \ 2055 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \ 2056 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN))) 2057 2058 /* Nonzero if access to memory by bytes is slow and undesirable. */ 2059 #define SLOW_BYTE_ACCESS 0 2060 2061 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1 2062 2063 /* Immediate shift counts are truncated by the output routines (or was it 2064 the assembler?). Shift counts in a register are truncated by ARM. Note 2065 that the native compiler puts too large (> 32) immediate shift counts 2066 into a register and shifts by the register, letting the ARM decide what 2067 to do instead of doing that itself. */ 2068 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that 2069 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y). 2070 On the arm, Y in a register is used modulo 256 for the shift. Only for 2071 rotates is modulo 32 used. */ 2072 /* #define SHIFT_COUNT_TRUNCATED 1 */ 2073 2074 /* All integers have the same format so truncation is easy. */ 2075 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 2076 2077 /* Calling from registers is a massive pain. */ 2078 #define NO_FUNCTION_CSE 1 2079 2080 /* The machine modes of pointers and functions */ 2081 #define Pmode SImode 2082 #define FUNCTION_MODE Pmode 2083 2084 #define ARM_FRAME_RTX(X) \ 2085 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \ 2086 || (X) == arg_pointer_rtx) 2087 2088 /* Moves to and from memory are quite expensive */ 2089 #define MEMORY_MOVE_COST(M, CLASS, IN) \ 2090 (TARGET_ARM ? 10 : \ 2091 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \ 2092 * (CLASS == LO_REGS ? 1 : 2))) 2093 2094 /* Try to generate sequences that don't involve branches, we can then use 2095 conditional instructions */ 2096 #define BRANCH_COST \ 2097 (TARGET_ARM ? 4 : (optimize > 1 ? 1 : 0)) 2098 2099 /* Position Independent Code. */ 2100 /* We decide which register to use based on the compilation options and 2101 the assembler in use; this is more general than the APCS restriction of 2102 using sb (r9) all the time. */ 2103 extern unsigned arm_pic_register; 2104 2105 /* The register number of the register used to address a table of static 2106 data addresses in memory. */ 2107 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register 2108 2109 /* We can't directly access anything that contains a symbol, 2110 nor can we indirect via the constant pool. One exception is 2111 UNSPEC_TLS, which is always PIC. */ 2112 #define LEGITIMATE_PIC_OPERAND_P(X) \ 2113 (!(symbol_mentioned_p (X) \ 2114 || label_mentioned_p (X) \ 2115 || (GET_CODE (X) == SYMBOL_REF \ 2116 && CONSTANT_POOL_ADDRESS_P (X) \ 2117 && (symbol_mentioned_p (get_pool_constant (X)) \ 2118 || label_mentioned_p (get_pool_constant (X))))) \ 2119 || tls_mentioned_p (X)) 2120 2121 /* We need to know when we are making a constant pool; this determines 2122 whether data needs to be in the GOT or can be referenced via a GOT 2123 offset. */ 2124 extern int making_const_table; 2125 2126 /* Handle pragmas for compatibility with Intel's compilers. */ 2127 #define REGISTER_TARGET_PRAGMAS() do { \ 2128 c_register_pragma (0, "long_calls", arm_pr_long_calls); \ 2129 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \ 2130 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \ 2131 } while (0) 2132 2133 /* Condition code information. */ 2134 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, 2135 return the mode to be used for the comparison. */ 2136 2137 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y) 2138 2139 #define REVERSIBLE_CC_MODE(MODE) 1 2140 2141 #define REVERSE_CONDITION(CODE,MODE) \ 2142 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \ 2143 ? reverse_condition_maybe_unordered (code) \ 2144 : reverse_condition (code)) 2145 2146 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \ 2147 do \ 2148 { \ 2149 if (GET_CODE (OP1) == CONST_INT \ 2150 && ! (const_ok_for_arm (INTVAL (OP1)) \ 2151 || (const_ok_for_arm (- INTVAL (OP1))))) \ 2152 { \ 2153 rtx const_op = OP1; \ 2154 CODE = arm_canonicalize_comparison ((CODE), GET_MODE (OP0), \ 2155 &const_op); \ 2156 OP1 = const_op; \ 2157 } \ 2158 } \ 2159 while (0) 2160 2161 /* The arm5 clz instruction returns 32. */ 2162 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1) 2163 2164 #undef ASM_APP_OFF 2165 #define ASM_APP_OFF (TARGET_THUMB ? "\t.code\t16\n" : "") 2166 2167 /* Output a push or a pop instruction (only used when profiling). */ 2168 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \ 2169 do \ 2170 { \ 2171 if (TARGET_ARM) \ 2172 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \ 2173 STACK_POINTER_REGNUM, REGNO); \ 2174 else \ 2175 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \ 2176 } while (0) 2177 2178 2179 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \ 2180 do \ 2181 { \ 2182 if (TARGET_ARM) \ 2183 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \ 2184 STACK_POINTER_REGNUM, REGNO); \ 2185 else \ 2186 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \ 2187 } while (0) 2188 2189 /* This is how to output a label which precedes a jumptable. Since 2190 Thumb instructions are 2 bytes, we may need explicit alignment here. */ 2191 #undef ASM_OUTPUT_CASE_LABEL 2192 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \ 2193 do \ 2194 { \ 2195 if (TARGET_THUMB) \ 2196 ASM_OUTPUT_ALIGN (FILE, 2); \ 2197 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \ 2198 } \ 2199 while (0) 2200 2201 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \ 2202 do \ 2203 { \ 2204 if (TARGET_THUMB) \ 2205 { \ 2206 if (is_called_in_ARM_mode (DECL) \ 2207 || current_function_is_thunk) \ 2208 fprintf (STREAM, "\t.code 32\n") ; \ 2209 else \ 2210 fprintf (STREAM, "\t.code 16\n\t.thumb_func\n") ; \ 2211 } \ 2212 if (TARGET_POKE_FUNCTION_NAME) \ 2213 arm_poke_function_name (STREAM, (char *) NAME); \ 2214 } \ 2215 while (0) 2216 2217 /* For aliases of functions we use .thumb_set instead. */ 2218 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \ 2219 do \ 2220 { \ 2221 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \ 2222 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \ 2223 \ 2224 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \ 2225 { \ 2226 fprintf (FILE, "\t.thumb_set "); \ 2227 assemble_name (FILE, LABEL1); \ 2228 fprintf (FILE, ","); \ 2229 assemble_name (FILE, LABEL2); \ 2230 fprintf (FILE, "\n"); \ 2231 } \ 2232 else \ 2233 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \ 2234 } \ 2235 while (0) 2236 2237 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN 2238 /* To support -falign-* switches we need to use .p2align so 2239 that alignment directives in code sections will be padded 2240 with no-op instructions, rather than zeroes. */ 2241 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \ 2242 if ((LOG) != 0) \ 2243 { \ 2244 if ((MAX_SKIP) == 0) \ 2245 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \ 2246 else \ 2247 fprintf ((FILE), "\t.p2align %d,,%d\n", \ 2248 (int) (LOG), (int) (MAX_SKIP)); \ 2249 } 2250 #endif 2251 2252 /* Only perform branch elimination (by making instructions conditional) if 2253 we're optimizing. Otherwise it's of no use anyway. */ 2254 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ 2255 if (TARGET_ARM && optimize) \ 2256 arm_final_prescan_insn (INSN); \ 2257 else if (TARGET_THUMB) \ 2258 thumb_final_prescan_insn (INSN) 2259 2260 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ 2261 (CODE == '@' || CODE == '|' \ 2262 || (TARGET_ARM && (CODE == '?')) \ 2263 || (TARGET_THUMB && (CODE == '_'))) 2264 2265 /* Output an operand of an instruction. */ 2266 #define PRINT_OPERAND(STREAM, X, CODE) \ 2267 arm_print_operand (STREAM, X, CODE) 2268 2269 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \ 2270 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \ 2271 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\ 2272 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \ 2273 ? ((~ (unsigned HOST_WIDE_INT) 0) \ 2274 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \ 2275 : 0)))) 2276 2277 /* Output the address of an operand. */ 2278 #define ARM_PRINT_OPERAND_ADDRESS(STREAM, X) \ 2279 { \ 2280 int is_minus = GET_CODE (X) == MINUS; \ 2281 \ 2282 if (GET_CODE (X) == REG) \ 2283 asm_fprintf (STREAM, "[%r, #0]", REGNO (X)); \ 2284 else if (GET_CODE (X) == PLUS || is_minus) \ 2285 { \ 2286 rtx base = XEXP (X, 0); \ 2287 rtx index = XEXP (X, 1); \ 2288 HOST_WIDE_INT offset = 0; \ 2289 if (GET_CODE (base) != REG) \ 2290 { \ 2291 /* Ensure that BASE is a register. */ \ 2292 /* (one of them must be). */ \ 2293 rtx temp = base; \ 2294 base = index; \ 2295 index = temp; \ 2296 } \ 2297 switch (GET_CODE (index)) \ 2298 { \ 2299 case CONST_INT: \ 2300 offset = INTVAL (index); \ 2301 if (is_minus) \ 2302 offset = -offset; \ 2303 asm_fprintf (STREAM, "[%r, #%wd]", \ 2304 REGNO (base), offset); \ 2305 break; \ 2306 \ 2307 case REG: \ 2308 asm_fprintf (STREAM, "[%r, %s%r]", \ 2309 REGNO (base), is_minus ? "-" : "", \ 2310 REGNO (index)); \ 2311 break; \ 2312 \ 2313 case MULT: \ 2314 case ASHIFTRT: \ 2315 case LSHIFTRT: \ 2316 case ASHIFT: \ 2317 case ROTATERT: \ 2318 { \ 2319 asm_fprintf (STREAM, "[%r, %s%r", \ 2320 REGNO (base), is_minus ? "-" : "", \ 2321 REGNO (XEXP (index, 0))); \ 2322 arm_print_operand (STREAM, index, 'S'); \ 2323 fputs ("]", STREAM); \ 2324 break; \ 2325 } \ 2326 \ 2327 default: \ 2328 gcc_unreachable (); \ 2329 } \ 2330 } \ 2331 else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \ 2332 || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \ 2333 { \ 2334 extern enum machine_mode output_memory_reference_mode; \ 2335 \ 2336 gcc_assert (GET_CODE (XEXP (X, 0)) == REG); \ 2337 \ 2338 if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \ 2339 asm_fprintf (STREAM, "[%r, #%s%d]!", \ 2340 REGNO (XEXP (X, 0)), \ 2341 GET_CODE (X) == PRE_DEC ? "-" : "", \ 2342 GET_MODE_SIZE (output_memory_reference_mode)); \ 2343 else \ 2344 asm_fprintf (STREAM, "[%r], #%s%d", \ 2345 REGNO (XEXP (X, 0)), \ 2346 GET_CODE (X) == POST_DEC ? "-" : "", \ 2347 GET_MODE_SIZE (output_memory_reference_mode)); \ 2348 } \ 2349 else if (GET_CODE (X) == PRE_MODIFY) \ 2350 { \ 2351 asm_fprintf (STREAM, "[%r, ", REGNO (XEXP (X, 0))); \ 2352 if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT) \ 2353 asm_fprintf (STREAM, "#%wd]!", \ 2354 INTVAL (XEXP (XEXP (X, 1), 1))); \ 2355 else \ 2356 asm_fprintf (STREAM, "%r]!", \ 2357 REGNO (XEXP (XEXP (X, 1), 1))); \ 2358 } \ 2359 else if (GET_CODE (X) == POST_MODIFY) \ 2360 { \ 2361 asm_fprintf (STREAM, "[%r], ", REGNO (XEXP (X, 0))); \ 2362 if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT) \ 2363 asm_fprintf (STREAM, "#%wd", \ 2364 INTVAL (XEXP (XEXP (X, 1), 1))); \ 2365 else \ 2366 asm_fprintf (STREAM, "%r", \ 2367 REGNO (XEXP (XEXP (X, 1), 1))); \ 2368 } \ 2369 else output_addr_const (STREAM, X); \ 2370 } 2371 2372 #define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X) \ 2373 { \ 2374 if (GET_CODE (X) == REG) \ 2375 asm_fprintf (STREAM, "[%r]", REGNO (X)); \ 2376 else if (GET_CODE (X) == POST_INC) \ 2377 asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0))); \ 2378 else if (GET_CODE (X) == PLUS) \ 2379 { \ 2380 gcc_assert (GET_CODE (XEXP (X, 0)) == REG); \ 2381 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \ 2382 asm_fprintf (STREAM, "[%r, #%wd]", \ 2383 REGNO (XEXP (X, 0)), \ 2384 INTVAL (XEXP (X, 1))); \ 2385 else \ 2386 asm_fprintf (STREAM, "[%r, %r]", \ 2387 REGNO (XEXP (X, 0)), \ 2388 REGNO (XEXP (X, 1))); \ 2389 } \ 2390 else \ 2391 output_addr_const (STREAM, X); \ 2392 } 2393 2394 #define PRINT_OPERAND_ADDRESS(STREAM, X) \ 2395 if (TARGET_ARM) \ 2396 ARM_PRINT_OPERAND_ADDRESS (STREAM, X) \ 2397 else \ 2398 THUMB_PRINT_OPERAND_ADDRESS (STREAM, X) 2399 2400 #define OUTPUT_ADDR_CONST_EXTRA(file, x, fail) \ 2401 if (arm_output_addr_const_extra (file, x) == FALSE) \ 2402 goto fail 2403 2404 /* A C expression whose value is RTL representing the value of the return 2405 address for the frame COUNT steps up from the current frame. */ 2406 2407 #define RETURN_ADDR_RTX(COUNT, FRAME) \ 2408 arm_return_addr (COUNT, FRAME) 2409 2410 /* Mask of the bits in the PC that contain the real return address 2411 when running in 26-bit mode. */ 2412 #define RETURN_ADDR_MASK26 (0x03fffffc) 2413 2414 /* Pick up the return address upon entry to a procedure. Used for 2415 dwarf2 unwind information. This also enables the table driven 2416 mechanism. */ 2417 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM) 2418 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM) 2419 2420 /* Used to mask out junk bits from the return address, such as 2421 processor state, interrupt status, condition codes and the like. */ 2422 #define MASK_RETURN_ADDR \ 2423 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \ 2424 in 26 bit mode, the condition codes must be masked out of the \ 2425 return address. This does not apply to ARM6 and later processors \ 2426 when running in 32 bit mode. */ \ 2427 ((arm_arch4 || TARGET_THUMB) \ 2428 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \ 2429 : arm_gen_return_addr_mask ()) 2430 2431 2432 enum arm_builtins 2433 { 2434 ARM_BUILTIN_GETWCX, 2435 ARM_BUILTIN_SETWCX, 2436 2437 ARM_BUILTIN_WZERO, 2438 2439 ARM_BUILTIN_WAVG2BR, 2440 ARM_BUILTIN_WAVG2HR, 2441 ARM_BUILTIN_WAVG2B, 2442 ARM_BUILTIN_WAVG2H, 2443 2444 ARM_BUILTIN_WACCB, 2445 ARM_BUILTIN_WACCH, 2446 ARM_BUILTIN_WACCW, 2447 2448 ARM_BUILTIN_WMACS, 2449 ARM_BUILTIN_WMACSZ, 2450 ARM_BUILTIN_WMACU, 2451 ARM_BUILTIN_WMACUZ, 2452 2453 ARM_BUILTIN_WSADB, 2454 ARM_BUILTIN_WSADBZ, 2455 ARM_BUILTIN_WSADH, 2456 ARM_BUILTIN_WSADHZ, 2457 2458 ARM_BUILTIN_WALIGN, 2459 2460 ARM_BUILTIN_TMIA, 2461 ARM_BUILTIN_TMIAPH, 2462 ARM_BUILTIN_TMIABB, 2463 ARM_BUILTIN_TMIABT, 2464 ARM_BUILTIN_TMIATB, 2465 ARM_BUILTIN_TMIATT, 2466 2467 ARM_BUILTIN_TMOVMSKB, 2468 ARM_BUILTIN_TMOVMSKH, 2469 ARM_BUILTIN_TMOVMSKW, 2470 2471 ARM_BUILTIN_TBCSTB, 2472 ARM_BUILTIN_TBCSTH, 2473 ARM_BUILTIN_TBCSTW, 2474 2475 ARM_BUILTIN_WMADDS, 2476 ARM_BUILTIN_WMADDU, 2477 2478 ARM_BUILTIN_WPACKHSS, 2479 ARM_BUILTIN_WPACKWSS, 2480 ARM_BUILTIN_WPACKDSS, 2481 ARM_BUILTIN_WPACKHUS, 2482 ARM_BUILTIN_WPACKWUS, 2483 ARM_BUILTIN_WPACKDUS, 2484 2485 ARM_BUILTIN_WADDB, 2486 ARM_BUILTIN_WADDH, 2487 ARM_BUILTIN_WADDW, 2488 ARM_BUILTIN_WADDSSB, 2489 ARM_BUILTIN_WADDSSH, 2490 ARM_BUILTIN_WADDSSW, 2491 ARM_BUILTIN_WADDUSB, 2492 ARM_BUILTIN_WADDUSH, 2493 ARM_BUILTIN_WADDUSW, 2494 ARM_BUILTIN_WSUBB, 2495 ARM_BUILTIN_WSUBH, 2496 ARM_BUILTIN_WSUBW, 2497 ARM_BUILTIN_WSUBSSB, 2498 ARM_BUILTIN_WSUBSSH, 2499 ARM_BUILTIN_WSUBSSW, 2500 ARM_BUILTIN_WSUBUSB, 2501 ARM_BUILTIN_WSUBUSH, 2502 ARM_BUILTIN_WSUBUSW, 2503 2504 ARM_BUILTIN_WAND, 2505 ARM_BUILTIN_WANDN, 2506 ARM_BUILTIN_WOR, 2507 ARM_BUILTIN_WXOR, 2508 2509 ARM_BUILTIN_WCMPEQB, 2510 ARM_BUILTIN_WCMPEQH, 2511 ARM_BUILTIN_WCMPEQW, 2512 ARM_BUILTIN_WCMPGTUB, 2513 ARM_BUILTIN_WCMPGTUH, 2514 ARM_BUILTIN_WCMPGTUW, 2515 ARM_BUILTIN_WCMPGTSB, 2516 ARM_BUILTIN_WCMPGTSH, 2517 ARM_BUILTIN_WCMPGTSW, 2518 2519 ARM_BUILTIN_TEXTRMSB, 2520 ARM_BUILTIN_TEXTRMSH, 2521 ARM_BUILTIN_TEXTRMSW, 2522 ARM_BUILTIN_TEXTRMUB, 2523 ARM_BUILTIN_TEXTRMUH, 2524 ARM_BUILTIN_TEXTRMUW, 2525 ARM_BUILTIN_TINSRB, 2526 ARM_BUILTIN_TINSRH, 2527 ARM_BUILTIN_TINSRW, 2528 2529 ARM_BUILTIN_WMAXSW, 2530 ARM_BUILTIN_WMAXSH, 2531 ARM_BUILTIN_WMAXSB, 2532 ARM_BUILTIN_WMAXUW, 2533 ARM_BUILTIN_WMAXUH, 2534 ARM_BUILTIN_WMAXUB, 2535 ARM_BUILTIN_WMINSW, 2536 ARM_BUILTIN_WMINSH, 2537 ARM_BUILTIN_WMINSB, 2538 ARM_BUILTIN_WMINUW, 2539 ARM_BUILTIN_WMINUH, 2540 ARM_BUILTIN_WMINUB, 2541 2542 ARM_BUILTIN_WMULUM, 2543 ARM_BUILTIN_WMULSM, 2544 ARM_BUILTIN_WMULUL, 2545 2546 ARM_BUILTIN_PSADBH, 2547 ARM_BUILTIN_WSHUFH, 2548 2549 ARM_BUILTIN_WSLLH, 2550 ARM_BUILTIN_WSLLW, 2551 ARM_BUILTIN_WSLLD, 2552 ARM_BUILTIN_WSRAH, 2553 ARM_BUILTIN_WSRAW, 2554 ARM_BUILTIN_WSRAD, 2555 ARM_BUILTIN_WSRLH, 2556 ARM_BUILTIN_WSRLW, 2557 ARM_BUILTIN_WSRLD, 2558 ARM_BUILTIN_WRORH, 2559 ARM_BUILTIN_WRORW, 2560 ARM_BUILTIN_WRORD, 2561 ARM_BUILTIN_WSLLHI, 2562 ARM_BUILTIN_WSLLWI, 2563 ARM_BUILTIN_WSLLDI, 2564 ARM_BUILTIN_WSRAHI, 2565 ARM_BUILTIN_WSRAWI, 2566 ARM_BUILTIN_WSRADI, 2567 ARM_BUILTIN_WSRLHI, 2568 ARM_BUILTIN_WSRLWI, 2569 ARM_BUILTIN_WSRLDI, 2570 ARM_BUILTIN_WRORHI, 2571 ARM_BUILTIN_WRORWI, 2572 ARM_BUILTIN_WRORDI, 2573 2574 ARM_BUILTIN_WUNPCKIHB, 2575 ARM_BUILTIN_WUNPCKIHH, 2576 ARM_BUILTIN_WUNPCKIHW, 2577 ARM_BUILTIN_WUNPCKILB, 2578 ARM_BUILTIN_WUNPCKILH, 2579 ARM_BUILTIN_WUNPCKILW, 2580 2581 ARM_BUILTIN_WUNPCKEHSB, 2582 ARM_BUILTIN_WUNPCKEHSH, 2583 ARM_BUILTIN_WUNPCKEHSW, 2584 ARM_BUILTIN_WUNPCKEHUB, 2585 ARM_BUILTIN_WUNPCKEHUH, 2586 ARM_BUILTIN_WUNPCKEHUW, 2587 ARM_BUILTIN_WUNPCKELSB, 2588 ARM_BUILTIN_WUNPCKELSH, 2589 ARM_BUILTIN_WUNPCKELSW, 2590 ARM_BUILTIN_WUNPCKELUB, 2591 ARM_BUILTIN_WUNPCKELUH, 2592 ARM_BUILTIN_WUNPCKELUW, 2593 2594 ARM_BUILTIN_THREAD_POINTER, 2595 2596 ARM_BUILTIN_MAX 2597 }; 2598 #endif /* ! GCC_ARM_H */ 2599