xref: /openbsd/gnu/llvm/lld/ELF/Arch/PPC64.cpp (revision 05edf1c1)
1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "SymbolTable.h"
12 #include "Symbols.h"
13 #include "SyntheticSections.h"
14 #include "Target.h"
15 #include "Thunks.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/Support/Endian.h"
18 
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
25 
26 constexpr uint64_t ppc64TocOffset = 0x8000;
27 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
28 
29 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
30 // instructions that can be used as part of the initial exec TLS sequence.
31 enum XFormOpcd {
32   LBZX = 87,
33   LHZX = 279,
34   LWZX = 23,
35   LDX = 21,
36   STBX = 215,
37   STHX = 407,
38   STWX = 151,
39   STDX = 149,
40   ADD = 266,
41 };
42 
43 enum DFormOpcd {
44   LBZ = 34,
45   LBZU = 35,
46   LHZ = 40,
47   LHZU = 41,
48   LHAU = 43,
49   LWZ = 32,
50   LWZU = 33,
51   LFSU = 49,
52   LD = 58,
53   LFDU = 51,
54   STB = 38,
55   STBU = 39,
56   STH = 44,
57   STHU = 45,
58   STW = 36,
59   STWU = 37,
60   STFSU = 53,
61   STFDU = 55,
62   STD = 62,
63   ADDI = 14
64 };
65 
66 constexpr uint32_t NOP = 0x60000000;
67 
68 enum class PPCLegacyInsn : uint32_t {
69   NOINSN = 0,
70   // Loads.
71   LBZ = 0x88000000,
72   LHZ = 0xa0000000,
73   LWZ = 0x80000000,
74   LHA = 0xa8000000,
75   LWA = 0xe8000002,
76   LD = 0xe8000000,
77   LFS = 0xC0000000,
78   LXSSP = 0xe4000003,
79   LFD = 0xc8000000,
80   LXSD = 0xe4000002,
81   LXV = 0xf4000001,
82   LXVP = 0x18000000,
83 
84   // Stores.
85   STB = 0x98000000,
86   STH = 0xb0000000,
87   STW = 0x90000000,
88   STD = 0xf8000000,
89   STFS = 0xd0000000,
90   STXSSP = 0xf4000003,
91   STFD = 0xd8000000,
92   STXSD = 0xf4000002,
93   STXV = 0xf4000005,
94   STXVP = 0x18000001
95 };
96 enum class PPCPrefixedInsn : uint64_t {
97   NOINSN = 0,
98   PREFIX_MLS = 0x0610000000000000,
99   PREFIX_8LS = 0x0410000000000000,
100 
101   // Loads.
102   PLBZ = PREFIX_MLS,
103   PLHZ = PREFIX_MLS,
104   PLWZ = PREFIX_MLS,
105   PLHA = PREFIX_MLS,
106   PLWA = PREFIX_8LS | 0xa4000000,
107   PLD = PREFIX_8LS | 0xe4000000,
108   PLFS = PREFIX_MLS,
109   PLXSSP = PREFIX_8LS | 0xac000000,
110   PLFD = PREFIX_MLS,
111   PLXSD = PREFIX_8LS | 0xa8000000,
112   PLXV = PREFIX_8LS | 0xc8000000,
113   PLXVP = PREFIX_8LS | 0xe8000000,
114 
115   // Stores.
116   PSTB = PREFIX_MLS,
117   PSTH = PREFIX_MLS,
118   PSTW = PREFIX_MLS,
119   PSTD = PREFIX_8LS | 0xf4000000,
120   PSTFS = PREFIX_MLS,
121   PSTXSSP = PREFIX_8LS | 0xbc000000,
122   PSTFD = PREFIX_MLS,
123   PSTXSD = PREFIX_8LS | 0xb8000000,
124   PSTXV = PREFIX_8LS | 0xd8000000,
125   PSTXVP = PREFIX_8LS | 0xf8000000
126 };
checkPPCLegacyInsn(uint32_t encoding)127 static bool checkPPCLegacyInsn(uint32_t encoding) {
128   PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
129   if (insn == PPCLegacyInsn::NOINSN)
130     return false;
131 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
132   if (insn == PPCLegacyInsn::Legacy)                                           \
133     return true;
134 #include "PPCInsns.def"
135 #undef PCREL_OPT
136   return false;
137 }
138 
139 // Masks to apply to legacy instructions when converting them to prefixed,
140 // pc-relative versions. For the most part, the primary opcode is shared
141 // between the legacy instruction and the suffix of its prefixed version.
142 // However, there are some instances where that isn't the case (DS-Form and
143 // DQ-form instructions).
144 enum class LegacyToPrefixMask : uint64_t {
145   NOMASK = 0x0,
146   OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
147   ONLY_RST = 0x3e00000,     // [RS]T (6-10).
148   ST_STX28_TO5 =
149       0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
150 };
151 
152 namespace {
153 class PPC64 final : public TargetInfo {
154 public:
155   PPC64();
156   int getTlsGdRelaxSkip(RelType type) const override;
157   uint32_t calcEFlags() const override;
158   RelExpr getRelExpr(RelType type, const Symbol &s,
159                      const uint8_t *loc) const override;
160   RelType getDynRel(RelType type) const override;
161   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
162   void writePltHeader(uint8_t *buf) const override;
163   void writePlt(uint8_t *buf, const Symbol &sym,
164                 uint64_t pltEntryAddr) const override;
165   void writeIplt(uint8_t *buf, const Symbol &sym,
166                  uint64_t pltEntryAddr) const override;
167   void relocate(uint8_t *loc, const Relocation &rel,
168                 uint64_t val) const override;
169   void writeGotHeader(uint8_t *buf) const override;
170   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
171                   uint64_t branchAddr, const Symbol &s,
172                   int64_t a) const override;
173   uint32_t getThunkSectionSpacing() const override;
174   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
175   RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
176   RelExpr adjustGotPcExpr(RelType type, int64_t addend,
177                           const uint8_t *loc) const override;
178   void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const;
179   void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
180 
181   bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
182                                         uint8_t stOther) const override;
183 
184 private:
185   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
186   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
187   void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
188   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
189 };
190 } // namespace
191 
getPPC64TocBase()192 uint64_t elf::getPPC64TocBase() {
193   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
194   // TOC starts where the first of these sections starts. We always create a
195   // .got when we see a relocation that uses it, so for us the start is always
196   // the .got.
197   uint64_t tocVA = in.got->getVA();
198 
199   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
200   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
201   // code (crt1.o) assumes that you can get from the TOC base to the
202   // start of the .toc section with only a single (signed) 16-bit relocation.
203   return tocVA + ppc64TocOffset;
204 }
205 
getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther)206 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
207   // The offset is encoded into the 3 most significant bits of the st_other
208   // field, with some special values described in section 3.4.1 of the ABI:
209   // 0   --> Zero offset between the GEP and LEP, and the function does NOT use
210   //         the TOC pointer (r2). r2 will hold the same value on returning from
211   //         the function as it did on entering the function.
212   // 1   --> Zero offset between the GEP and LEP, and r2 should be treated as a
213   //         caller-saved register for all callers.
214   // 2-6 --> The  binary logarithm of the offset eg:
215   //         2 --> 2^2 = 4 bytes -->  1 instruction.
216   //         6 --> 2^6 = 64 bytes --> 16 instructions.
217   // 7   --> Reserved.
218   uint8_t gepToLep = (stOther >> 5) & 7;
219   if (gepToLep < 2)
220     return 0;
221 
222   // The value encoded in the st_other bits is the
223   // log-base-2(offset).
224   if (gepToLep < 7)
225     return 1 << gepToLep;
226 
227   error("reserved value of 7 in the 3 most-significant-bits of st_other");
228   return 0;
229 }
230 
writePrefixedInstruction(uint8_t * loc,uint64_t insn)231 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
232   insn = config->isLE ? insn << 32 | insn >> 32 : insn;
233   write64(loc, insn);
234 }
235 
addOptional(StringRef name,uint64_t value,std::vector<Defined * > & defined)236 static bool addOptional(StringRef name, uint64_t value,
237                         std::vector<Defined *> &defined) {
238   Symbol *sym = symtab.find(name);
239   if (!sym || sym->isDefined())
240     return false;
241   sym->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
242                        STT_FUNC, value,
243                        /*size=*/0, /*section=*/nullptr});
244   defined.push_back(cast<Defined>(sym));
245   return true;
246 }
247 
248 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
249 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
250 // The labels are defined only if they exist in the symbol table.
writeSequence(MutableArrayRef<uint32_t> buf,const char * prefix,int from,uint32_t firstInsn,ArrayRef<uint32_t> tail)251 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
252                           int from, uint32_t firstInsn,
253                           ArrayRef<uint32_t> tail) {
254   std::vector<Defined *> defined;
255   char name[16];
256   int first;
257   uint32_t *ptr = buf.data();
258   for (int r = from; r < 32; ++r) {
259     format("%s%d", prefix, r).snprint(name, sizeof(name));
260     if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
261       first = r - from;
262     write32(ptr++, firstInsn + 0x200008 * (r - from));
263   }
264   for (uint32_t insn : tail)
265     write32(ptr++, insn);
266   assert(ptr == &*buf.end());
267 
268   if (defined.empty())
269     return;
270   // The full section content has the extent of [begin, end). We drop unused
271   // instructions and write [first,end).
272   auto *sec = make<InputSection>(
273       nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
274       ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
275                4 * (buf.size() - first)),
276       ".text");
277   ctx.inputSections.push_back(sec);
278   for (Defined *sym : defined) {
279     sym->section = sec;
280     sym->value -= 4 * first;
281   }
282 }
283 
284 // Implements some save and restore functions as described by ELF V2 ABI to be
285 // compatible with GCC. With GCC -Os, when the number of call-saved registers
286 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
287 // expects the linker to define them. See
288 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
289 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
290 // weird because libgcc.a would be the natural place. The linker generation
291 // approach has the advantage that the linker can generate multiple copies to
292 // avoid long branch thunks. However, we don't consider the advantage
293 // significant enough to complicate our trunk implementation, so we take the
294 // simple approach and synthesize .text sections providing the implementation.
addPPC64SaveRestore()295 void elf::addPPC64SaveRestore() {
296   static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
297   constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
298 
299   // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
300   // Tail: ld 0, 16(1); mtlr 0; blr
301   writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
302                 {0xe8010010, mtlr_0, blr});
303   // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
304   // Tail: blr
305   writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
306   // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
307   // Tail: std 0, 16(1); blr
308   writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
309   // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
310   // Tail: blr
311   writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
312 }
313 
314 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
315 template <typename ELFT>
316 static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase * tocSec,uint64_t offset)317 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
318   // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
319   // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
320   // relocation index in most cases.
321   //
322   // In rare cases a TOC entry may store a constant that doesn't need an
323   // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
324   // points to a relocation with larger r_offset. Do a linear probe then.
325   // Constants are extremely uncommon in .toc and the extra number of array
326   // accesses can be seen as a small constant.
327   ArrayRef<typename ELFT::Rela> relas =
328       tocSec->template relsOrRelas<ELFT>().relas;
329   if (relas.empty())
330     return {};
331   uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
332   for (;;) {
333     if (relas[index].r_offset == offset) {
334       Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
335       return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
336     }
337     if (relas[index].r_offset < offset || index == 0)
338       break;
339     --index;
340   }
341   return {};
342 }
343 
344 // When accessing a symbol defined in another translation unit, compilers
345 // reserve a .toc entry, allocate a local label and generate toc-indirect
346 // instructions:
347 //
348 //   addis 3, 2, .LC0@toc@ha  # R_PPC64_TOC16_HA
349 //   ld    3, .LC0@toc@l(3)   # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
350 //   ld/lwa 3, 0(3)           # load the value from the address
351 //
352 //   .section .toc,"aw",@progbits
353 //   .LC0: .tc var[TC],var
354 //
355 // If var is defined, non-preemptable and addressable with a 32-bit signed
356 // offset from the toc base, the address of var can be computed by adding an
357 // offset to the toc base, saving a load.
358 //
359 //   addis 3,2,var@toc@ha     # this may be relaxed to a nop,
360 //   addi  3,3,var@toc@l      # then this becomes addi 3,2,var@toc
361 //   ld/lwa 3, 0(3)           # load the value from the address
362 //
363 // Returns true if the relaxation is performed.
tryRelaxPPC64TocIndirection(const Relocation & rel,uint8_t * bufLoc)364 static bool tryRelaxPPC64TocIndirection(const Relocation &rel,
365                                         uint8_t *bufLoc) {
366   assert(config->tocOptimize);
367   if (rel.addend < 0)
368     return false;
369 
370   // If the symbol is not the .toc section, this isn't a toc-indirection.
371   Defined *defSym = dyn_cast<Defined>(rel.sym);
372   if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
373     return false;
374 
375   Defined *d;
376   int64_t addend;
377   auto *tocISB = cast<InputSectionBase>(defSym->section);
378   std::tie(d, addend) =
379       config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
380                    : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
381 
382   // Only non-preemptable defined symbols can be relaxed.
383   if (!d || d->isPreemptible)
384     return false;
385 
386   // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
387   // ifunc and changed its type to STT_FUNC.
388   assert(!d->isGnuIFunc());
389 
390   // Two instructions can materialize a 32-bit signed offset from the toc base.
391   uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
392   if (!isInt<32>(tocRelative))
393     return false;
394 
395   // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
396   static_cast<const PPC64 &>(*target).relaxGot(bufLoc, rel,
397                                                tocRelative + ppc64TocOffset);
398   return true;
399 }
400 
401 // Relocation masks following the #lo(value), #hi(value), #ha(value),
402 // #higher(value), #highera(value), #highest(value), and #highesta(value)
403 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
404 // document.
lo(uint64_t v)405 static uint16_t lo(uint64_t v) { return v; }
hi(uint64_t v)406 static uint16_t hi(uint64_t v) { return v >> 16; }
ha(uint64_t v)407 static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
higher(uint64_t v)408 static uint16_t higher(uint64_t v) { return v >> 32; }
highera(uint64_t v)409 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
highest(uint64_t v)410 static uint16_t highest(uint64_t v) { return v >> 48; }
highesta(uint64_t v)411 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
412 
413 // Extracts the 'PO' field of an instruction encoding.
getPrimaryOpCode(uint32_t encoding)414 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
415 
isDQFormInstruction(uint32_t encoding)416 static bool isDQFormInstruction(uint32_t encoding) {
417   switch (getPrimaryOpCode(encoding)) {
418   default:
419     return false;
420   case 6: // Power10 paired loads/stores (lxvp, stxvp).
421   case 56:
422     // The only instruction with a primary opcode of 56 is `lq`.
423     return true;
424   case 61:
425     // There are both DS and DQ instruction forms with this primary opcode.
426     // Namely `lxv` and `stxv` are the DQ-forms that use it.
427     // The DS 'XO' bits being set to 01 is restricted to DQ form.
428     return (encoding & 3) == 0x1;
429   }
430 }
431 
isDSFormInstruction(PPCLegacyInsn insn)432 static bool isDSFormInstruction(PPCLegacyInsn insn) {
433   switch (insn) {
434   default:
435     return false;
436   case PPCLegacyInsn::LWA:
437   case PPCLegacyInsn::LD:
438   case PPCLegacyInsn::LXSD:
439   case PPCLegacyInsn::LXSSP:
440   case PPCLegacyInsn::STD:
441   case PPCLegacyInsn::STXSD:
442   case PPCLegacyInsn::STXSSP:
443     return true;
444   }
445 }
446 
getPPCLegacyInsn(uint32_t encoding)447 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
448   uint32_t opc = encoding & 0xfc000000;
449 
450   // If the primary opcode is shared between multiple instructions, we need to
451   // fix it up to match the actual instruction we are after.
452   if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
453        opc == 0xf8000000) &&
454       !isDQFormInstruction(encoding))
455     opc = encoding & 0xfc000003;
456   else if (opc == 0xf4000000)
457     opc = encoding & 0xfc000007;
458   else if (opc == 0x18000000)
459     opc = encoding & 0xfc00000f;
460 
461   // If the value is not one of the enumerators in PPCLegacyInsn, we want to
462   // return PPCLegacyInsn::NOINSN.
463   if (!checkPPCLegacyInsn(opc))
464     return PPCLegacyInsn::NOINSN;
465   return static_cast<PPCLegacyInsn>(opc);
466 }
467 
getPCRelativeForm(PPCLegacyInsn insn)468 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
469   switch (insn) {
470 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
471   case PPCLegacyInsn::Legacy:                                                  \
472     return PPCPrefixedInsn::PCRel
473 #include "PPCInsns.def"
474 #undef PCREL_OPT
475   }
476   return PPCPrefixedInsn::NOINSN;
477 }
478 
getInsnMask(PPCLegacyInsn insn)479 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
480   switch (insn) {
481 #define PCREL_OPT(Legacy, PCRel, InsnMask)                                     \
482   case PPCLegacyInsn::Legacy:                                                  \
483     return LegacyToPrefixMask::InsnMask
484 #include "PPCInsns.def"
485 #undef PCREL_OPT
486   }
487   return LegacyToPrefixMask::NOMASK;
488 }
getPCRelativeForm(uint32_t encoding)489 static uint64_t getPCRelativeForm(uint32_t encoding) {
490   PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
491   PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
492   if (pcrelInsn == PPCPrefixedInsn::NOINSN)
493     return UINT64_C(-1);
494   LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
495   uint64_t pcrelEncoding =
496       (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
497 
498   // If the mask requires moving bit 28 to bit 5, do that now.
499   if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
500     pcrelEncoding |= (encoding & 0x8) << 23;
501   return pcrelEncoding;
502 }
503 
isInstructionUpdateForm(uint32_t encoding)504 static bool isInstructionUpdateForm(uint32_t encoding) {
505   switch (getPrimaryOpCode(encoding)) {
506   default:
507     return false;
508   case LBZU:
509   case LHAU:
510   case LHZU:
511   case LWZU:
512   case LFSU:
513   case LFDU:
514   case STBU:
515   case STHU:
516   case STWU:
517   case STFSU:
518   case STFDU:
519     return true;
520     // LWA has the same opcode as LD, and the DS bits is what differentiates
521     // between LD/LDU/LWA
522   case LD:
523   case STD:
524     return (encoding & 3) == 1;
525   }
526 }
527 
528 // Compute the total displacement between the prefixed instruction that gets
529 // to the start of the data and the load/store instruction that has the offset
530 // into the data structure.
531 // For example:
532 // paddi 3, 0, 1000, 1
533 // lwz 3, 20(3)
534 // Should add up to 1020 for total displacement.
getTotalDisp(uint64_t prefixedInsn,uint32_t accessInsn)535 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
536   int64_t disp34 = llvm::SignExtend64(
537       ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
538   int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
539   // For DS and DQ form instructions, we need to mask out the XO bits.
540   if (isDQFormInstruction(accessInsn))
541     disp16 &= ~0xf;
542   else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
543     disp16 &= ~0x3;
544   return disp34 + disp16;
545 }
546 
547 // There are a number of places when we either want to read or write an
548 // instruction when handling a half16 relocation type. On big-endian the buffer
549 // pointer is pointing into the middle of the word we want to extract, and on
550 // little-endian it is pointing to the start of the word. These 2 helpers are to
551 // simplify reading and writing in that context.
writeFromHalf16(uint8_t * loc,uint32_t insn)552 static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
553   write32(config->isLE ? loc : loc - 2, insn);
554 }
555 
readFromHalf16(const uint8_t * loc)556 static uint32_t readFromHalf16(const uint8_t *loc) {
557   return read32(config->isLE ? loc : loc - 2);
558 }
559 
readPrefixedInstruction(const uint8_t * loc)560 static uint64_t readPrefixedInstruction(const uint8_t *loc) {
561   uint64_t fullInstr = read64(loc);
562   return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
563 }
564 
PPC64()565 PPC64::PPC64() {
566   copyRel = R_PPC64_COPY;
567   gotRel = R_PPC64_GLOB_DAT;
568   pltRel = R_PPC64_JMP_SLOT;
569   relativeRel = R_PPC64_RELATIVE;
570   iRelativeRel = R_PPC64_IRELATIVE;
571   symbolicRel = R_PPC64_ADDR64;
572 #ifdef __OpenBSD__
573   pltHeaderSize = 52;
574 #else
575   pltHeaderSize = 60;
576 #endif
577   pltEntrySize = 4;
578   ipltEntrySize = 16; // PPC64PltCallStub::size
579   gotHeaderEntriesNum = 1;
580   gotPltHeaderEntriesNum = 2;
581   needsThunks = true;
582 
583   tlsModuleIndexRel = R_PPC64_DTPMOD64;
584   tlsOffsetRel = R_PPC64_DTPREL64;
585 
586   tlsGotRel = R_PPC64_TPREL64;
587 
588   needsMoreStackNonSplit = false;
589 
590   // We need 64K pages (at least under glibc/Linux, the loader won't
591   // set different permissions on a finer granularity than that).
592   defaultMaxPageSize = 65536;
593 
594   // The PPC64 ELF ABI v1 spec, says:
595   //
596   //   It is normally desirable to put segments with different characteristics
597   //   in separate 256 Mbyte portions of the address space, to give the
598   //   operating system full paging flexibility in the 64-bit address space.
599   //
600   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
601   // use 0x10000000 as the starting address.
602   defaultImageBase = 0x10000000;
603 
604   write32(trapInstr.data(), 0x7fe00008);
605 }
606 
getTlsGdRelaxSkip(RelType type) const607 int PPC64::getTlsGdRelaxSkip(RelType type) const {
608   // A __tls_get_addr call instruction is marked with 2 relocations:
609   //
610   //   R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
611   //   R_PPC64_REL24: __tls_get_addr
612   //
613   // After the relaxation we no longer call __tls_get_addr and should skip both
614   // relocations to not create a false dependence on __tls_get_addr being
615   // defined.
616   if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
617     return 2;
618   return 1;
619 }
620 
getEFlags(InputFile * file)621 static uint32_t getEFlags(InputFile *file) {
622   if (file->ekind == ELF64BEKind)
623     return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
624   return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
625 }
626 
627 // This file implements v2 ABI. This function makes sure that all
628 // object files have v2 or an unspecified version as an ABI version.
calcEFlags() const629 uint32_t PPC64::calcEFlags() const {
630   for (InputFile *f : ctx.objectFiles) {
631     uint32_t flag = getEFlags(f);
632     if (flag == 1)
633       error(toString(f) + ": ABI version 1 is not supported");
634     else if (flag > 2)
635       error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
636   }
637   return 2;
638 }
639 
relaxGot(uint8_t * loc,const Relocation & rel,uint64_t val) const640 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
641   switch (rel.type) {
642   case R_PPC64_TOC16_HA:
643     // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
644     relocate(loc, rel, val);
645     break;
646   case R_PPC64_TOC16_LO_DS: {
647     // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
648     // "addi reg, 2, var@toc".
649     uint32_t insn = readFromHalf16(loc);
650     if (getPrimaryOpCode(insn) != LD)
651       error("expected a 'ld' for got-indirect to toc-relative relaxing");
652     writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
653     relocateNoSym(loc, R_PPC64_TOC16_LO, val);
654     break;
655   }
656   case R_PPC64_GOT_PCREL34: {
657     // Clear the first 8 bits of the prefix and the first 6 bits of the
658     // instruction (the primary opcode).
659     uint64_t insn = readPrefixedInstruction(loc);
660     if ((insn & 0xfc000000) != 0xe4000000)
661       error("expected a 'pld' for got-indirect to pc-relative relaxing");
662     insn &= ~0xff000000fc000000;
663 
664     // Replace the cleared bits with the values for PADDI (0x600000038000000);
665     insn |= 0x600000038000000;
666     writePrefixedInstruction(loc, insn);
667     relocate(loc, rel, val);
668     break;
669   }
670   case R_PPC64_PCREL_OPT: {
671     // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
672     // be relaxed. The eligibility for the relaxation needs to be determined
673     // on that relocation since this one does not relocate a symbol.
674     uint64_t insn = readPrefixedInstruction(loc);
675     uint32_t accessInsn = read32(loc + rel.addend);
676     uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
677 
678     // This error is not necessary for correctness but is emitted for now
679     // to ensure we don't miss these opportunities in real code. It can be
680     // removed at a later date.
681     if (pcRelInsn == UINT64_C(-1)) {
682       errorOrWarn(
683           "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
684           Twine::utohexstr(accessInsn));
685       break;
686     }
687 
688     int64_t totalDisp = getTotalDisp(insn, accessInsn);
689     if (!isInt<34>(totalDisp))
690       break; // Displacement doesn't fit.
691     // Convert the PADDI to the prefixed version of accessInsn and convert
692     // accessInsn to a nop.
693     writePrefixedInstruction(loc, pcRelInsn |
694                                       ((totalDisp & 0x3ffff0000) << 16) |
695                                       (totalDisp & 0xffff));
696     write32(loc + rel.addend, NOP); // nop accessInsn.
697     break;
698   }
699   default:
700     llvm_unreachable("unexpected relocation type");
701   }
702 }
703 
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const704 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
705                            uint64_t val) const {
706   // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
707   // The general dynamic code sequence for a global `x` will look like:
708   // Instruction                    Relocation                Symbol
709   // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
710   // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
711   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
712   //                                R_PPC64_REL24               __tls_get_addr
713   // nop                            None                       None
714 
715   // Relaxing to local exec entails converting:
716   // addis r3, r2, x@got@tlsgd@ha    into      nop
717   // addi  r3, r3, x@got@tlsgd@l     into      addis r3, r13, x@tprel@ha
718   // bl __tls_get_addr(x@tlsgd)      into      nop
719   // nop                             into      addi r3, r3, x@tprel@l
720 
721   switch (rel.type) {
722   case R_PPC64_GOT_TLSGD16_HA:
723     writeFromHalf16(loc, NOP);
724     break;
725   case R_PPC64_GOT_TLSGD16:
726   case R_PPC64_GOT_TLSGD16_LO:
727     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
728     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
729     break;
730   case R_PPC64_GOT_TLSGD_PCREL34:
731     // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
732     //            paddi r3, r13, x@tprel, 0
733     writePrefixedInstruction(loc, 0x06000000386d0000);
734     relocateNoSym(loc, R_PPC64_TPREL34, val);
735     break;
736   case R_PPC64_TLSGD: {
737     // PC Relative Relaxation:
738     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
739     //            nop
740     // TOC Relaxation:
741     // Relax from bl __tls_get_addr(x@tlsgd)
742     //            nop
743     // to
744     //            nop
745     //            addi r3, r3, x@tprel@l
746     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
747     if (locAsInt % 4 == 0) {
748       write32(loc, NOP);            // nop
749       write32(loc + 4, 0x38630000); // addi r3, r3
750       // Since we are relocating a half16 type relocation and Loc + 4 points to
751       // the start of an instruction we need to advance the buffer by an extra
752       // 2 bytes on BE.
753       relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
754                     R_PPC64_TPREL16_LO, val);
755     } else if (locAsInt % 4 == 1) {
756       write32(loc - 1, NOP);
757     } else {
758       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
759     }
760     break;
761   }
762   default:
763     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
764   }
765 }
766 
relaxTlsLdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const767 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
768                            uint64_t val) const {
769   // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
770   // The local dynamic code sequence for a global `x` will look like:
771   // Instruction                    Relocation                Symbol
772   // addis r3, r2, x@got@tlsld@ha   R_PPC64_GOT_TLSLD16_HA      x
773   // addi  r3, r3, x@got@tlsld@l    R_PPC64_GOT_TLSLD16_LO      x
774   // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSLD               x
775   //                                R_PPC64_REL24               __tls_get_addr
776   // nop                            None                       None
777 
778   // Relaxing to local exec entails converting:
779   // addis r3, r2, x@got@tlsld@ha   into      nop
780   // addi  r3, r3, x@got@tlsld@l    into      addis r3, r13, 0
781   // bl __tls_get_addr(x@tlsgd)     into      nop
782   // nop                            into      addi r3, r3, 4096
783 
784   switch (rel.type) {
785   case R_PPC64_GOT_TLSLD16_HA:
786     writeFromHalf16(loc, NOP);
787     break;
788   case R_PPC64_GOT_TLSLD16_LO:
789     writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
790     break;
791   case R_PPC64_GOT_TLSLD_PCREL34:
792     // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
793     //            paddi r3, r13, 0x1000, 0
794     writePrefixedInstruction(loc, 0x06000000386d1000);
795     break;
796   case R_PPC64_TLSLD: {
797     // PC Relative Relaxation:
798     // Relax from bl __tls_get_addr@notoc(x@tlsld)
799     // to
800     //            nop
801     // TOC Relaxation:
802     // Relax from bl __tls_get_addr(x@tlsld)
803     //            nop
804     // to
805     //            nop
806     //            addi r3, r3, 4096
807     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
808     if (locAsInt % 4 == 0) {
809       write32(loc, NOP);
810       write32(loc + 4, 0x38631000); // addi r3, r3, 4096
811     } else if (locAsInt % 4 == 1) {
812       write32(loc - 1, NOP);
813     } else {
814       errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
815     }
816     break;
817   }
818   case R_PPC64_DTPREL16:
819   case R_PPC64_DTPREL16_HA:
820   case R_PPC64_DTPREL16_HI:
821   case R_PPC64_DTPREL16_DS:
822   case R_PPC64_DTPREL16_LO:
823   case R_PPC64_DTPREL16_LO_DS:
824   case R_PPC64_DTPREL34:
825     relocate(loc, rel, val);
826     break;
827   default:
828     llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
829   }
830 }
831 
getPPCDFormOp(unsigned secondaryOp)832 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
833   switch (secondaryOp) {
834   case LBZX:
835     return LBZ;
836   case LHZX:
837     return LHZ;
838   case LWZX:
839     return LWZ;
840   case LDX:
841     return LD;
842   case STBX:
843     return STB;
844   case STHX:
845     return STH;
846   case STWX:
847     return STW;
848   case STDX:
849     return STD;
850   case ADD:
851     return ADDI;
852   default:
853     return 0;
854   }
855 }
856 
relaxTlsIeToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const857 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
858                            uint64_t val) const {
859   // The initial exec code sequence for a global `x` will look like:
860   // Instruction                    Relocation                Symbol
861   // addis r9, r2, x@got@tprel@ha   R_PPC64_GOT_TPREL16_HA      x
862   // ld    r9, x@got@tprel@l(r9)    R_PPC64_GOT_TPREL16_LO_DS   x
863   // add r9, r9, x@tls              R_PPC64_TLS                 x
864 
865   // Relaxing to local exec entails converting:
866   // addis r9, r2, x@got@tprel@ha       into        nop
867   // ld r9, x@got@tprel@l(r9)           into        addis r9, r13, x@tprel@ha
868   // add r9, r9, x@tls                  into        addi r9, r9, x@tprel@l
869 
870   // x@tls R_PPC64_TLS is a relocation which does not compute anything,
871   // it is replaced with r13 (thread pointer).
872 
873   // The add instruction in the initial exec sequence has multiple variations
874   // that need to be handled. If we are building an address it will use an add
875   // instruction, if we are accessing memory it will use any of the X-form
876   // indexed load or store instructions.
877 
878   unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
879   switch (rel.type) {
880   case R_PPC64_GOT_TPREL16_HA:
881     write32(loc - offset, NOP);
882     break;
883   case R_PPC64_GOT_TPREL16_LO_DS:
884   case R_PPC64_GOT_TPREL16_DS: {
885     uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
886     write32(loc - offset, 0x3C0D0000 | regNo);          // addis RegNo, r13
887     relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
888     break;
889   }
890   case R_PPC64_GOT_TPREL_PCREL34: {
891     const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
892     // paddi RT(from pld), r13, symbol@tprel, 0
893     writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
894     relocateNoSym(loc, R_PPC64_TPREL34, val);
895     break;
896   }
897   case R_PPC64_TLS: {
898     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
899     if (locAsInt % 4 == 0) {
900       uint32_t primaryOp = getPrimaryOpCode(read32(loc));
901       if (primaryOp != 31)
902         error("unrecognized instruction for IE to LE R_PPC64_TLS");
903       uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
904       uint32_t dFormOp = getPPCDFormOp(secondaryOp);
905       if (dFormOp == 0)
906         error("unrecognized instruction for IE to LE R_PPC64_TLS");
907       write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
908       relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
909     } else if (locAsInt % 4 == 1) {
910       // If the offset is not 4 byte aligned then we have a PCRel type reloc.
911       // This version of the relocation is offset by one byte from the
912       // instruction it references.
913       uint32_t tlsInstr = read32(loc - 1);
914       uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
915       if (primaryOp != 31)
916         errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
917       uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
918       // The add is a special case and should be turned into a nop. The paddi
919       // that comes before it will already have computed the address of the
920       // symbol.
921       if (secondaryOp == 266) {
922         // Check if the add uses the same result register as the input register.
923         uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
924         uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
925         if (ra == rt) {
926           write32(loc - 1, NOP);
927         } else {
928           // mr rt, ra
929           write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
930         }
931       } else {
932         uint32_t dFormOp = getPPCDFormOp(secondaryOp);
933         if (dFormOp == 0)
934           errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
935         write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
936       }
937     } else {
938       errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
939                   "offset from 4 byte aligned");
940     }
941     break;
942   }
943   default:
944     llvm_unreachable("unknown relocation for IE to LE");
945     break;
946   }
947 }
948 
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const949 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
950                           const uint8_t *loc) const {
951   switch (type) {
952   case R_PPC64_NONE:
953     return R_NONE;
954   case R_PPC64_ADDR16:
955   case R_PPC64_ADDR16_DS:
956   case R_PPC64_ADDR16_HA:
957   case R_PPC64_ADDR16_HI:
958   case R_PPC64_ADDR16_HIGH:
959   case R_PPC64_ADDR16_HIGHER:
960   case R_PPC64_ADDR16_HIGHERA:
961   case R_PPC64_ADDR16_HIGHEST:
962   case R_PPC64_ADDR16_HIGHESTA:
963   case R_PPC64_ADDR16_LO:
964   case R_PPC64_ADDR16_LO_DS:
965   case R_PPC64_ADDR32:
966   case R_PPC64_ADDR64:
967     return R_ABS;
968   case R_PPC64_GOT16:
969   case R_PPC64_GOT16_DS:
970   case R_PPC64_GOT16_HA:
971   case R_PPC64_GOT16_HI:
972   case R_PPC64_GOT16_LO:
973   case R_PPC64_GOT16_LO_DS:
974     return R_GOT_OFF;
975   case R_PPC64_TOC16:
976   case R_PPC64_TOC16_DS:
977   case R_PPC64_TOC16_HI:
978   case R_PPC64_TOC16_LO:
979     return R_GOTREL;
980   case R_PPC64_GOT_PCREL34:
981   case R_PPC64_GOT_TPREL_PCREL34:
982   case R_PPC64_PCREL_OPT:
983     return R_GOT_PC;
984   case R_PPC64_TOC16_HA:
985   case R_PPC64_TOC16_LO_DS:
986     return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
987   case R_PPC64_TOC:
988     return R_PPC64_TOCBASE;
989   case R_PPC64_REL14:
990   case R_PPC64_REL24:
991     return R_PPC64_CALL_PLT;
992   case R_PPC64_REL24_NOTOC:
993     return R_PLT_PC;
994   case R_PPC64_REL16_LO:
995   case R_PPC64_REL16_HA:
996   case R_PPC64_REL16_HI:
997   case R_PPC64_REL32:
998   case R_PPC64_REL64:
999   case R_PPC64_PCREL34:
1000     return R_PC;
1001   case R_PPC64_GOT_TLSGD16:
1002   case R_PPC64_GOT_TLSGD16_HA:
1003   case R_PPC64_GOT_TLSGD16_HI:
1004   case R_PPC64_GOT_TLSGD16_LO:
1005     return R_TLSGD_GOT;
1006   case R_PPC64_GOT_TLSGD_PCREL34:
1007     return R_TLSGD_PC;
1008   case R_PPC64_GOT_TLSLD16:
1009   case R_PPC64_GOT_TLSLD16_HA:
1010   case R_PPC64_GOT_TLSLD16_HI:
1011   case R_PPC64_GOT_TLSLD16_LO:
1012     return R_TLSLD_GOT;
1013   case R_PPC64_GOT_TLSLD_PCREL34:
1014     return R_TLSLD_PC;
1015   case R_PPC64_GOT_TPREL16_HA:
1016   case R_PPC64_GOT_TPREL16_LO_DS:
1017   case R_PPC64_GOT_TPREL16_DS:
1018   case R_PPC64_GOT_TPREL16_HI:
1019     return R_GOT_OFF;
1020   case R_PPC64_GOT_DTPREL16_HA:
1021   case R_PPC64_GOT_DTPREL16_LO_DS:
1022   case R_PPC64_GOT_DTPREL16_DS:
1023   case R_PPC64_GOT_DTPREL16_HI:
1024     return R_TLSLD_GOT_OFF;
1025   case R_PPC64_TPREL16:
1026   case R_PPC64_TPREL16_HA:
1027   case R_PPC64_TPREL16_LO:
1028   case R_PPC64_TPREL16_HI:
1029   case R_PPC64_TPREL16_DS:
1030   case R_PPC64_TPREL16_LO_DS:
1031   case R_PPC64_TPREL16_HIGHER:
1032   case R_PPC64_TPREL16_HIGHERA:
1033   case R_PPC64_TPREL16_HIGHEST:
1034   case R_PPC64_TPREL16_HIGHESTA:
1035   case R_PPC64_TPREL34:
1036     return R_TPREL;
1037   case R_PPC64_DTPREL16:
1038   case R_PPC64_DTPREL16_DS:
1039   case R_PPC64_DTPREL16_HA:
1040   case R_PPC64_DTPREL16_HI:
1041   case R_PPC64_DTPREL16_HIGHER:
1042   case R_PPC64_DTPREL16_HIGHERA:
1043   case R_PPC64_DTPREL16_HIGHEST:
1044   case R_PPC64_DTPREL16_HIGHESTA:
1045   case R_PPC64_DTPREL16_LO:
1046   case R_PPC64_DTPREL16_LO_DS:
1047   case R_PPC64_DTPREL64:
1048   case R_PPC64_DTPREL34:
1049     return R_DTPREL;
1050   case R_PPC64_TLSGD:
1051     return R_TLSDESC_CALL;
1052   case R_PPC64_TLSLD:
1053     return R_TLSLD_HINT;
1054   case R_PPC64_TLS:
1055     return R_TLSIE_HINT;
1056   default:
1057     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1058           ") against symbol " + toString(s));
1059     return R_NONE;
1060   }
1061 }
1062 
getDynRel(RelType type) const1063 RelType PPC64::getDynRel(RelType type) const {
1064   if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1065     return R_PPC64_ADDR64;
1066   return R_PPC64_NONE;
1067 }
1068 
getImplicitAddend(const uint8_t * buf,RelType type) const1069 int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1070   switch (type) {
1071   case R_PPC64_NONE:
1072   case R_PPC64_GLOB_DAT:
1073   case R_PPC64_JMP_SLOT:
1074     return 0;
1075   case R_PPC64_REL32:
1076     return SignExtend64<32>(read32(buf));
1077   case R_PPC64_ADDR64:
1078   case R_PPC64_REL64:
1079   case R_PPC64_RELATIVE:
1080   case R_PPC64_IRELATIVE:
1081   case R_PPC64_DTPMOD64:
1082   case R_PPC64_DTPREL64:
1083   case R_PPC64_TPREL64:
1084     return read64(buf);
1085   default:
1086     internalLinkerError(getErrorLocation(buf),
1087                         "cannot read addend for relocation " + toString(type));
1088     return 0;
1089   }
1090 }
1091 
writeGotHeader(uint8_t * buf) const1092 void PPC64::writeGotHeader(uint8_t *buf) const {
1093   write64(buf, getPPC64TocBase());
1094 }
1095 
writePltHeader(uint8_t * buf) const1096 void PPC64::writePltHeader(uint8_t *buf) const {
1097   int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1098 
1099   // The generic resolver stub goes first.
1100   write32(buf +  0, 0x7c0802a6); // mflr r0
1101   write32(buf +  4, 0x429f0005); // bcl  20,4*cr7+so,8 <_glink+0x8>
1102   write32(buf +  8, 0x7d6802a6); // mflr r11
1103   write32(buf + 12, 0x7c0803a6); // mtlr r0
1104   write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1105 #ifdef __OpenBSD__
1106   write32(buf + 20, 0x380cffd4); // subi r0,r12,44
1107 #else
1108   write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1109 #endif
1110   write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1111 #ifdef __OpenBSD__
1112   write32(buf + 28, 0x3d6b0000 | ha(gotPltOffset)); // addis r11,r11,offset@ha
1113   write32(buf + 32, 0x396b0000 | lo(gotPltOffset)); // addi  r11,r11,offset@l
1114 #else
1115   write32(buf + 28, 0xe98b002c); // ld   r12,44(r11)
1116   write32(buf + 32, 0x7d6c5a14); // add  r11,r12,r11
1117 #endif
1118   write32(buf + 36, 0xe98b0000); // ld   r12,0(r11)
1119   write32(buf + 40, 0xe96b0008); // ld   r11,8(r11)
1120   write32(buf + 44, 0x7d8903a6); // mtctr   r12
1121   write32(buf + 48, 0x4e800420); // bctr
1122 
1123 #ifndef __OpenBSD__
1124   // The 'bcl' instruction will set the link register to the address of the
1125   // following instruction ('mflr r11'). Here we store the offset from that
1126   // instruction  to the first entry in the GotPlt section.
1127   write64(buf + 52, gotPltOffset);
1128 #endif
1129 }
1130 
writePlt(uint8_t * buf,const Symbol & sym,uint64_t) const1131 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1132                      uint64_t /*pltEntryAddr*/) const {
1133   int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize;
1134   // bl __glink_PLTresolve
1135   write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1136 }
1137 
writeIplt(uint8_t * buf,const Symbol & sym,uint64_t) const1138 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1139                       uint64_t /*pltEntryAddr*/) const {
1140   writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1141 }
1142 
toAddr16Rel(RelType type,uint64_t val)1143 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1144   // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1145   uint64_t tocBiasedVal = val - ppc64TocOffset;
1146   // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1147   uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1148 
1149   switch (type) {
1150   // TOC biased relocation.
1151   case R_PPC64_GOT16:
1152   case R_PPC64_GOT_TLSGD16:
1153   case R_PPC64_GOT_TLSLD16:
1154   case R_PPC64_TOC16:
1155     return {R_PPC64_ADDR16, tocBiasedVal};
1156   case R_PPC64_GOT16_DS:
1157   case R_PPC64_TOC16_DS:
1158   case R_PPC64_GOT_TPREL16_DS:
1159   case R_PPC64_GOT_DTPREL16_DS:
1160     return {R_PPC64_ADDR16_DS, tocBiasedVal};
1161   case R_PPC64_GOT16_HA:
1162   case R_PPC64_GOT_TLSGD16_HA:
1163   case R_PPC64_GOT_TLSLD16_HA:
1164   case R_PPC64_GOT_TPREL16_HA:
1165   case R_PPC64_GOT_DTPREL16_HA:
1166   case R_PPC64_TOC16_HA:
1167     return {R_PPC64_ADDR16_HA, tocBiasedVal};
1168   case R_PPC64_GOT16_HI:
1169   case R_PPC64_GOT_TLSGD16_HI:
1170   case R_PPC64_GOT_TLSLD16_HI:
1171   case R_PPC64_GOT_TPREL16_HI:
1172   case R_PPC64_GOT_DTPREL16_HI:
1173   case R_PPC64_TOC16_HI:
1174     return {R_PPC64_ADDR16_HI, tocBiasedVal};
1175   case R_PPC64_GOT16_LO:
1176   case R_PPC64_GOT_TLSGD16_LO:
1177   case R_PPC64_GOT_TLSLD16_LO:
1178   case R_PPC64_TOC16_LO:
1179     return {R_PPC64_ADDR16_LO, tocBiasedVal};
1180   case R_PPC64_GOT16_LO_DS:
1181   case R_PPC64_TOC16_LO_DS:
1182   case R_PPC64_GOT_TPREL16_LO_DS:
1183   case R_PPC64_GOT_DTPREL16_LO_DS:
1184     return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1185 
1186   // Dynamic Thread pointer biased relocation types.
1187   case R_PPC64_DTPREL16:
1188     return {R_PPC64_ADDR16, dtpBiasedVal};
1189   case R_PPC64_DTPREL16_DS:
1190     return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1191   case R_PPC64_DTPREL16_HA:
1192     return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1193   case R_PPC64_DTPREL16_HI:
1194     return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1195   case R_PPC64_DTPREL16_HIGHER:
1196     return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1197   case R_PPC64_DTPREL16_HIGHERA:
1198     return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1199   case R_PPC64_DTPREL16_HIGHEST:
1200     return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1201   case R_PPC64_DTPREL16_HIGHESTA:
1202     return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1203   case R_PPC64_DTPREL16_LO:
1204     return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1205   case R_PPC64_DTPREL16_LO_DS:
1206     return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1207   case R_PPC64_DTPREL64:
1208     return {R_PPC64_ADDR64, dtpBiasedVal};
1209 
1210   default:
1211     return {type, val};
1212   }
1213 }
1214 
isTocOptType(RelType type)1215 static bool isTocOptType(RelType type) {
1216   switch (type) {
1217   case R_PPC64_GOT16_HA:
1218   case R_PPC64_GOT16_LO_DS:
1219   case R_PPC64_TOC16_HA:
1220   case R_PPC64_TOC16_LO_DS:
1221   case R_PPC64_TOC16_LO:
1222     return true;
1223   default:
1224     return false;
1225   }
1226 }
1227 
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const1228 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1229   RelType type = rel.type;
1230   bool shouldTocOptimize =  isTocOptType(type);
1231   // For dynamic thread pointer relative, toc-relative, and got-indirect
1232   // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1233   std::tie(type, val) = toAddr16Rel(type, val);
1234 
1235   switch (type) {
1236   case R_PPC64_ADDR14: {
1237     checkAlignment(loc, val, 4, rel);
1238     // Preserve the AA/LK bits in the branch instruction
1239     uint8_t aalk = loc[3];
1240     write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1241     break;
1242   }
1243   case R_PPC64_ADDR16:
1244     checkIntUInt(loc, val, 16, rel);
1245     write16(loc, val);
1246     break;
1247   case R_PPC64_ADDR32:
1248     checkIntUInt(loc, val, 32, rel);
1249     write32(loc, val);
1250     break;
1251   case R_PPC64_ADDR16_DS:
1252   case R_PPC64_TPREL16_DS: {
1253     checkInt(loc, val, 16, rel);
1254     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1255     // DS-form instructions only use bits 30-31.
1256     uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1257     checkAlignment(loc, lo(val), mask + 1, rel);
1258     write16(loc, (read16(loc) & mask) | lo(val));
1259   } break;
1260   case R_PPC64_ADDR16_HA:
1261   case R_PPC64_REL16_HA:
1262   case R_PPC64_TPREL16_HA:
1263     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1264       writeFromHalf16(loc, NOP);
1265     else {
1266       checkInt(loc, val + 0x8000, 32, rel);
1267       write16(loc, ha(val));
1268     }
1269     break;
1270   case R_PPC64_ADDR16_HI:
1271   case R_PPC64_REL16_HI:
1272   case R_PPC64_TPREL16_HI:
1273     checkInt(loc, val, 32, rel);
1274     write16(loc, hi(val));
1275     break;
1276   case R_PPC64_ADDR16_HIGH:
1277     write16(loc, hi(val));
1278     break;
1279   case R_PPC64_ADDR16_HIGHER:
1280   case R_PPC64_TPREL16_HIGHER:
1281     write16(loc, higher(val));
1282     break;
1283   case R_PPC64_ADDR16_HIGHERA:
1284   case R_PPC64_TPREL16_HIGHERA:
1285     write16(loc, highera(val));
1286     break;
1287   case R_PPC64_ADDR16_HIGHEST:
1288   case R_PPC64_TPREL16_HIGHEST:
1289     write16(loc, highest(val));
1290     break;
1291   case R_PPC64_ADDR16_HIGHESTA:
1292   case R_PPC64_TPREL16_HIGHESTA:
1293     write16(loc, highesta(val));
1294     break;
1295   case R_PPC64_ADDR16_LO:
1296   case R_PPC64_REL16_LO:
1297   case R_PPC64_TPREL16_LO:
1298     // When the high-adjusted part of a toc relocation evaluates to 0, it is
1299     // changed into a nop. The lo part then needs to be updated to use the
1300     // toc-pointer register r2, as the base register.
1301     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1302       uint32_t insn = readFromHalf16(loc);
1303       if (isInstructionUpdateForm(insn))
1304         error(getErrorLocation(loc) +
1305               "can't toc-optimize an update instruction: 0x" +
1306               utohexstr(insn));
1307       writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1308     } else {
1309       write16(loc, lo(val));
1310     }
1311     break;
1312   case R_PPC64_ADDR16_LO_DS:
1313   case R_PPC64_TPREL16_LO_DS: {
1314     // DQ-form instructions use bits 28-31 as part of the instruction encoding
1315     // DS-form instructions only use bits 30-31.
1316     uint32_t insn = readFromHalf16(loc);
1317     uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1318     checkAlignment(loc, lo(val), mask + 1, rel);
1319     if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1320       // When the high-adjusted part of a toc relocation evaluates to 0, it is
1321       // changed into a nop. The lo part then needs to be updated to use the toc
1322       // pointer register r2, as the base register.
1323       if (isInstructionUpdateForm(insn))
1324         error(getErrorLocation(loc) +
1325               "Can't toc-optimize an update instruction: 0x" +
1326               Twine::utohexstr(insn));
1327       insn &= 0xffe00000 | mask;
1328       writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1329     } else {
1330       write16(loc, (read16(loc) & mask) | lo(val));
1331     }
1332   } break;
1333   case R_PPC64_TPREL16:
1334     checkInt(loc, val, 16, rel);
1335     write16(loc, val);
1336     break;
1337   case R_PPC64_REL32:
1338     checkInt(loc, val, 32, rel);
1339     write32(loc, val);
1340     break;
1341   case R_PPC64_ADDR64:
1342   case R_PPC64_REL64:
1343   case R_PPC64_TOC:
1344     write64(loc, val);
1345     break;
1346   case R_PPC64_REL14: {
1347     uint32_t mask = 0x0000FFFC;
1348     checkInt(loc, val, 16, rel);
1349     checkAlignment(loc, val, 4, rel);
1350     write32(loc, (read32(loc) & ~mask) | (val & mask));
1351     break;
1352   }
1353   case R_PPC64_REL24:
1354   case R_PPC64_REL24_NOTOC: {
1355     uint32_t mask = 0x03FFFFFC;
1356     checkInt(loc, val, 26, rel);
1357     checkAlignment(loc, val, 4, rel);
1358     write32(loc, (read32(loc) & ~mask) | (val & mask));
1359     break;
1360   }
1361   case R_PPC64_DTPREL64:
1362     write64(loc, val - dynamicThreadPointerOffset);
1363     break;
1364   case R_PPC64_DTPREL34:
1365     // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1366     // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1367     // need to subtract that value then fallthrough to the general case.
1368     val -= dynamicThreadPointerOffset;
1369     [[fallthrough]];
1370   case R_PPC64_PCREL34:
1371   case R_PPC64_GOT_PCREL34:
1372   case R_PPC64_GOT_TLSGD_PCREL34:
1373   case R_PPC64_GOT_TLSLD_PCREL34:
1374   case R_PPC64_GOT_TPREL_PCREL34:
1375   case R_PPC64_TPREL34: {
1376     const uint64_t si0Mask = 0x00000003ffff0000;
1377     const uint64_t si1Mask = 0x000000000000ffff;
1378     const uint64_t fullMask = 0x0003ffff0000ffff;
1379     checkInt(loc, val, 34, rel);
1380 
1381     uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1382     writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1383                              (val & si1Mask));
1384     break;
1385   }
1386   // If we encounter a PCREL_OPT relocation that we won't optimize.
1387   case R_PPC64_PCREL_OPT:
1388     break;
1389   default:
1390     llvm_unreachable("unknown relocation");
1391   }
1392 }
1393 
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const1394 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1395                        uint64_t branchAddr, const Symbol &s, int64_t a) const {
1396   if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1397       type != R_PPC64_REL24_NOTOC)
1398     return false;
1399 
1400   // If a function is in the Plt it needs to be called with a call-stub.
1401   if (s.isInPlt())
1402     return true;
1403 
1404   // This check looks at the st_other bits of the callee with relocation
1405   // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1406   // clobbers the TOC and we need an R2 save stub.
1407   if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1408     return true;
1409 
1410   if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1411     return true;
1412 
1413   // An undefined weak symbol not in a PLT does not need a thunk. If it is
1414   // hidden, its binding has been converted to local, so we just check
1415   // isUndefined() here. A undefined non-weak symbol has been errored.
1416   if (s.isUndefined())
1417     return false;
1418 
1419   // If the offset exceeds the range of the branch type then it will need
1420   // a range-extending thunk.
1421   // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1422   return !inBranchRange(type, branchAddr,
1423                         s.getVA(a) +
1424                             getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1425 }
1426 
getThunkSectionSpacing() const1427 uint32_t PPC64::getThunkSectionSpacing() const {
1428   // See comment in Arch/ARM.cpp for a more detailed explanation of
1429   // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1430   // R_PPC64_REL24, which is used by unconditional branch instructions.
1431   // 0x2000000 = (1 << 24-1) * 4
1432   return 0x2000000;
1433 }
1434 
inBranchRange(RelType type,uint64_t src,uint64_t dst) const1435 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1436   int64_t offset = dst - src;
1437   if (type == R_PPC64_REL14)
1438     return isInt<16>(offset);
1439   if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1440     return isInt<26>(offset);
1441   llvm_unreachable("unsupported relocation type used in branch");
1442 }
1443 
adjustTlsExpr(RelType type,RelExpr expr) const1444 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1445   if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1446     return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1447   if (expr == R_RELAX_TLS_LD_TO_LE)
1448     return R_RELAX_TLS_LD_TO_LE_ABS;
1449   return expr;
1450 }
1451 
adjustGotPcExpr(RelType type,int64_t addend,const uint8_t * loc) const1452 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1453                                const uint8_t *loc) const {
1454   if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1455       config->pcRelOptimize) {
1456     // It only makes sense to optimize pld since paddi means that the address
1457     // of the object in the GOT is required rather than the object itself.
1458     if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1459       return R_PPC64_RELAX_GOT_PC;
1460   }
1461   return R_GOT_PC;
1462 }
1463 
1464 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1465 // The general dynamic code sequence for a global `x` uses 4 instructions.
1466 // Instruction                    Relocation                Symbol
1467 // addis r3, r2, x@got@tlsgd@ha   R_PPC64_GOT_TLSGD16_HA      x
1468 // addi  r3, r3, x@got@tlsgd@l    R_PPC64_GOT_TLSGD16_LO      x
1469 // bl __tls_get_addr(x@tlsgd)     R_PPC64_TLSGD               x
1470 //                                R_PPC64_REL24               __tls_get_addr
1471 // nop                            None                       None
1472 //
1473 // Relaxing to initial-exec entails:
1474 // 1) Convert the addis/addi pair that builds the address of the tls_index
1475 //    struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1476 // 2) Convert the call to __tls_get_addr to a nop.
1477 // 3) Convert the nop following the call to an add of the loaded offset to the
1478 //    thread pointer.
1479 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1480 // used as the relaxation hint for both steps 2 and 3.
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val) const1481 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1482                            uint64_t val) const {
1483   switch (rel.type) {
1484   case R_PPC64_GOT_TLSGD16_HA:
1485     // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1486     //                      addis rT, r2, sym@got@tprel@ha.
1487     relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1488     return;
1489   case R_PPC64_GOT_TLSGD16:
1490   case R_PPC64_GOT_TLSGD16_LO: {
1491     // Relax from addi  r3, rA, sym@got@tlsgd@l to
1492     //            ld r3, sym@got@tprel@l(rA)
1493     uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1494     writeFromHalf16(loc, 0xe8600000 | ra);
1495     relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1496     return;
1497   }
1498   case R_PPC64_GOT_TLSGD_PCREL34: {
1499     // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1500     //            pld r3, sym@got@tprel@pcrel
1501     writePrefixedInstruction(loc, 0x04100000e4600000);
1502     relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1503     return;
1504   }
1505   case R_PPC64_TLSGD: {
1506     // PC Relative Relaxation:
1507     // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1508     //            nop
1509     // TOC Relaxation:
1510     // Relax from bl __tls_get_addr(x@tlsgd)
1511     //            nop
1512     // to
1513     //            nop
1514     //            add r3, r3, r13
1515     const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1516     if (locAsInt % 4 == 0) {
1517       write32(loc, NOP);            // bl __tls_get_addr(sym@tlsgd) --> nop
1518       write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1519     } else if (locAsInt % 4 == 1) {
1520       // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1521       write32(loc - 1, 0x7c636a14);
1522     } else {
1523       errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1524     }
1525     return;
1526   }
1527   default:
1528     llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1529   }
1530 }
1531 
relocateAlloc(InputSectionBase & sec,uint8_t * buf) const1532 void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1533   uint64_t secAddr = sec.getOutputSection()->addr;
1534   if (auto *s = dyn_cast<InputSection>(&sec))
1535     secAddr += s->outSecOff;
1536   uint64_t lastPPCRelaxedRelocOff = -1;
1537   for (const Relocation &rel : sec.relocs()) {
1538     uint8_t *loc = buf + rel.offset;
1539     const uint64_t val =
1540         sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1541                              secAddr + rel.offset, *rel.sym, rel.expr);
1542     switch (rel.expr) {
1543     case R_PPC64_RELAX_GOT_PC: {
1544       // The R_PPC64_PCREL_OPT relocation must appear immediately after
1545       // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1546       // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1547       // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1548       // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1549       // and only relax the other if the saved offset matches.
1550       if (rel.type == R_PPC64_GOT_PCREL34)
1551         lastPPCRelaxedRelocOff = rel.offset;
1552       if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff)
1553         break;
1554       relaxGot(loc, rel, val);
1555       break;
1556     }
1557     case R_PPC64_RELAX_TOC:
1558       // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1559       // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1560       // entry, there may be R_PPC64_TOC16_HA not paired with
1561       // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1562       // opportunities but is safe.
1563       if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1564           !tryRelaxPPC64TocIndirection(rel, loc))
1565         relocate(loc, rel, val);
1566       break;
1567     case R_PPC64_CALL:
1568       // If this is a call to __tls_get_addr, it may be part of a TLS
1569       // sequence that has been relaxed and turned into a nop. In this
1570       // case, we don't want to handle it as a call.
1571       if (read32(loc) == 0x60000000) // nop
1572         break;
1573 
1574       // Patch a nop (0x60000000) to a ld.
1575       if (rel.sym->needsTocRestore) {
1576         // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1577         // recursive calls even if the function is preemptible. This is not
1578         // wrong in the common case where the function is not preempted at
1579         // runtime. Just ignore.
1580         if ((rel.offset + 8 > sec.content().size() ||
1581              read32(loc + 4) != 0x60000000) &&
1582             rel.sym->file != sec.file) {
1583           // Use substr(6) to remove the "__plt_" prefix.
1584           errorOrWarn(getErrorLocation(loc) + "call to " +
1585                       lld::toString(*rel.sym).substr(6) +
1586                       " lacks nop, can't restore toc");
1587           break;
1588         }
1589         write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1)
1590       }
1591       relocate(loc, rel, val);
1592       break;
1593     case R_RELAX_TLS_GD_TO_IE:
1594     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1595       relaxTlsGdToIe(loc, rel, val);
1596       break;
1597     case R_RELAX_TLS_GD_TO_LE:
1598       relaxTlsGdToLe(loc, rel, val);
1599       break;
1600     case R_RELAX_TLS_LD_TO_LE_ABS:
1601       relaxTlsLdToLe(loc, rel, val);
1602       break;
1603     case R_RELAX_TLS_IE_TO_LE:
1604       relaxTlsIeToLe(loc, rel, val);
1605       break;
1606     default:
1607       relocate(loc, rel, val);
1608       break;
1609     }
1610   }
1611 }
1612 
1613 // The prologue for a split-stack function is expected to look roughly
1614 // like this:
1615 //    .Lglobal_entry_point:
1616 //      # TOC pointer initialization.
1617 //      ...
1618 //    .Llocal_entry_point:
1619 //      # load the __private_ss member of the threads tcbhead.
1620 //      ld r0,-0x7000-64(r13)
1621 //      # subtract the functions stack size from the stack pointer.
1622 //      addis r12, r1, ha(-stack-frame size)
1623 //      addi  r12, r12, l(-stack-frame size)
1624 //      # compare needed to actual and branch to allocate_more_stack if more
1625 //      # space is needed, otherwise fallthrough to 'normal' function body.
1626 //      cmpld cr7,r12,r0
1627 //      blt- cr7, .Lallocate_more_stack
1628 //
1629 // -) The allocate_more_stack block might be placed after the split-stack
1630 //    prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1631 //    instead.
1632 // -) If either the addis or addi is not needed due to the stack size being
1633 //    smaller then 32K or a multiple of 64K they will be replaced with a nop,
1634 //    but there will always be 2 instructions the linker can overwrite for the
1635 //    adjusted stack size.
1636 //
1637 // The linkers job here is to increase the stack size used in the addis/addi
1638 // pair by split-stack-size-adjust.
1639 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1640 // addi  r12, r12, l(-stack-frame size - split-stack-adjust-size)
adjustPrologueForCrossSplitStack(uint8_t * loc,uint8_t * end,uint8_t stOther) const1641 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1642                                              uint8_t stOther) const {
1643   // If the caller has a global entry point adjust the buffer past it. The start
1644   // of the split-stack prologue will be at the local entry point.
1645   loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1646 
1647   // At the very least we expect to see a load of some split-stack data from the
1648   // tcb, and 2 instructions that calculate the ending stack address this
1649   // function will require. If there is not enough room for at least 3
1650   // instructions it can't be a split-stack prologue.
1651   if (loc + 12 >= end)
1652     return false;
1653 
1654   // First instruction must be `ld r0, -0x7000-64(r13)`
1655   if (read32(loc) != 0xe80d8fc0)
1656     return false;
1657 
1658   int16_t hiImm = 0;
1659   int16_t loImm = 0;
1660   // First instruction can be either an addis if the frame size is larger then
1661   // 32K, or an addi if the size is less then 32K.
1662   int32_t firstInstr = read32(loc + 4);
1663   if (getPrimaryOpCode(firstInstr) == 15) {
1664     hiImm = firstInstr & 0xFFFF;
1665   } else if (getPrimaryOpCode(firstInstr) == 14) {
1666     loImm = firstInstr & 0xFFFF;
1667   } else {
1668     return false;
1669   }
1670 
1671   // Second instruction is either an addi or a nop. If the first instruction was
1672   // an addi then LoImm is set and the second instruction must be a nop.
1673   uint32_t secondInstr = read32(loc + 8);
1674   if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1675     loImm = secondInstr & 0xFFFF;
1676   } else if (secondInstr != NOP) {
1677     return false;
1678   }
1679 
1680   // The register operands of the first instruction should be the stack-pointer
1681   // (r1) as the input (RA) and r12 as the output (RT). If the second
1682   // instruction is not a nop, then it should use r12 as both input and output.
1683   auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1684                              uint8_t expectedRA) {
1685     return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1686            ((instr & 0x1F0000) >> 16 == expectedRA);
1687   };
1688   if (!checkRegOperands(firstInstr, 12, 1))
1689     return false;
1690   if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1691     return false;
1692 
1693   int32_t stackFrameSize = (hiImm * 65536) + loImm;
1694   // Check that the adjusted size doesn't overflow what we can represent with 2
1695   // instructions.
1696   if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1697     error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1698     return false;
1699   }
1700 
1701   int32_t adjustedStackFrameSize =
1702       stackFrameSize - config->splitStackAdjustSize;
1703 
1704   loImm = adjustedStackFrameSize & 0xFFFF;
1705   hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1706   if (hiImm) {
1707     write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1708     // If the low immediate is zero the second instruction will be a nop.
1709     secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1710     write32(loc + 8, secondInstr);
1711   } else {
1712     // addi r12, r1, imm
1713     write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1714     write32(loc + 8, NOP);
1715   }
1716 
1717   return true;
1718 }
1719 
getPPC64TargetInfo()1720 TargetInfo *elf::getPPC64TargetInfo() {
1721   static PPC64 target;
1722   return &target;
1723 }
1724