1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2 *
3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 * See https://llvm.org/LICENSE.txt for license information.
5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 *
7 *===-----------------------------------------------------------------------===
8 */
9
10 #ifndef __IMMINTRIN_H
11 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
12 #endif
13
14 #ifndef __AVXINTRIN_H
15 #define __AVXINTRIN_H
16
17 typedef double __v4df __attribute__ ((__vector_size__ (32)));
18 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
19 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
20 typedef int __v8si __attribute__ ((__vector_size__ (32)));
21 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
22 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
23
24 /* Unsigned types */
25 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
26 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
27 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
28 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
29
30 /* We need an explicitly signed variant for char. Note that this shouldn't
31 * appear in the interface though. */
32 typedef signed char __v32qs __attribute__((__vector_size__(32)));
33
34 typedef float __m256 __attribute__ ((__vector_size__ (32), __aligned__(32)));
35 typedef double __m256d __attribute__((__vector_size__(32), __aligned__(32)));
36 typedef long long __m256i __attribute__((__vector_size__(32), __aligned__(32)));
37
38 typedef float __m256_u __attribute__ ((__vector_size__ (32), __aligned__(1)));
39 typedef double __m256d_u __attribute__((__vector_size__(32), __aligned__(1)));
40 typedef long long __m256i_u __attribute__((__vector_size__(32), __aligned__(1)));
41
42 #ifdef __SSE2__
43 /* Both _Float16 and __bf16 require SSE2 being enabled. */
44 typedef _Float16 __v16hf __attribute__((__vector_size__(32), __aligned__(32)));
45 typedef _Float16 __m256h __attribute__((__vector_size__(32), __aligned__(32)));
46 typedef _Float16 __m256h_u __attribute__((__vector_size__(32), __aligned__(1)));
47
48 typedef __bf16 __v16bf __attribute__((__vector_size__(32), __aligned__(32)));
49 typedef __bf16 __m256bh __attribute__((__vector_size__(32), __aligned__(32)));
50 #endif
51
52 /* Define the default attributes for the functions in this file. */
53 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(256)))
54 #define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(128)))
55
56 /* Arithmetic */
57 /// Adds two 256-bit vectors of [4 x double].
58 ///
59 /// \headerfile <x86intrin.h>
60 ///
61 /// This intrinsic corresponds to the <c> VADDPD </c> instruction.
62 ///
63 /// \param __a
64 /// A 256-bit vector of [4 x double] containing one of the source operands.
65 /// \param __b
66 /// A 256-bit vector of [4 x double] containing one of the source operands.
67 /// \returns A 256-bit vector of [4 x double] containing the sums of both
68 /// operands.
69 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_add_pd(__m256d __a,__m256d __b)70 _mm256_add_pd(__m256d __a, __m256d __b)
71 {
72 return (__m256d)((__v4df)__a+(__v4df)__b);
73 }
74
75 /// Adds two 256-bit vectors of [8 x float].
76 ///
77 /// \headerfile <x86intrin.h>
78 ///
79 /// This intrinsic corresponds to the <c> VADDPS </c> instruction.
80 ///
81 /// \param __a
82 /// A 256-bit vector of [8 x float] containing one of the source operands.
83 /// \param __b
84 /// A 256-bit vector of [8 x float] containing one of the source operands.
85 /// \returns A 256-bit vector of [8 x float] containing the sums of both
86 /// operands.
87 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_add_ps(__m256 __a,__m256 __b)88 _mm256_add_ps(__m256 __a, __m256 __b)
89 {
90 return (__m256)((__v8sf)__a+(__v8sf)__b);
91 }
92
93 /// Subtracts two 256-bit vectors of [4 x double].
94 ///
95 /// \headerfile <x86intrin.h>
96 ///
97 /// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
98 ///
99 /// \param __a
100 /// A 256-bit vector of [4 x double] containing the minuend.
101 /// \param __b
102 /// A 256-bit vector of [4 x double] containing the subtrahend.
103 /// \returns A 256-bit vector of [4 x double] containing the differences between
104 /// both operands.
105 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sub_pd(__m256d __a,__m256d __b)106 _mm256_sub_pd(__m256d __a, __m256d __b)
107 {
108 return (__m256d)((__v4df)__a-(__v4df)__b);
109 }
110
111 /// Subtracts two 256-bit vectors of [8 x float].
112 ///
113 /// \headerfile <x86intrin.h>
114 ///
115 /// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
116 ///
117 /// \param __a
118 /// A 256-bit vector of [8 x float] containing the minuend.
119 /// \param __b
120 /// A 256-bit vector of [8 x float] containing the subtrahend.
121 /// \returns A 256-bit vector of [8 x float] containing the differences between
122 /// both operands.
123 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a,__m256 __b)124 _mm256_sub_ps(__m256 __a, __m256 __b)
125 {
126 return (__m256)((__v8sf)__a-(__v8sf)__b);
127 }
128
129 /// Adds the even-indexed values and subtracts the odd-indexed values of
130 /// two 256-bit vectors of [4 x double].
131 ///
132 /// \headerfile <x86intrin.h>
133 ///
134 /// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
135 ///
136 /// \param __a
137 /// A 256-bit vector of [4 x double] containing the left source operand.
138 /// \param __b
139 /// A 256-bit vector of [4 x double] containing the right source operand.
140 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
141 /// and differences between both operands.
142 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_addsub_pd(__m256d __a,__m256d __b)143 _mm256_addsub_pd(__m256d __a, __m256d __b)
144 {
145 return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
146 }
147
148 /// Adds the even-indexed values and subtracts the odd-indexed values of
149 /// two 256-bit vectors of [8 x float].
150 ///
151 /// \headerfile <x86intrin.h>
152 ///
153 /// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
154 ///
155 /// \param __a
156 /// A 256-bit vector of [8 x float] containing the left source operand.
157 /// \param __b
158 /// A 256-bit vector of [8 x float] containing the right source operand.
159 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
160 /// differences between both operands.
161 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_addsub_ps(__m256 __a,__m256 __b)162 _mm256_addsub_ps(__m256 __a, __m256 __b)
163 {
164 return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
165 }
166
167 /// Divides two 256-bit vectors of [4 x double].
168 ///
169 /// \headerfile <x86intrin.h>
170 ///
171 /// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
172 ///
173 /// \param __a
174 /// A 256-bit vector of [4 x double] containing the dividend.
175 /// \param __b
176 /// A 256-bit vector of [4 x double] containing the divisor.
177 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
178 /// operands.
179 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_div_pd(__m256d __a,__m256d __b)180 _mm256_div_pd(__m256d __a, __m256d __b)
181 {
182 return (__m256d)((__v4df)__a/(__v4df)__b);
183 }
184
185 /// Divides two 256-bit vectors of [8 x float].
186 ///
187 /// \headerfile <x86intrin.h>
188 ///
189 /// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
190 ///
191 /// \param __a
192 /// A 256-bit vector of [8 x float] containing the dividend.
193 /// \param __b
194 /// A 256-bit vector of [8 x float] containing the divisor.
195 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
196 /// operands.
197 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_div_ps(__m256 __a,__m256 __b)198 _mm256_div_ps(__m256 __a, __m256 __b)
199 {
200 return (__m256)((__v8sf)__a/(__v8sf)__b);
201 }
202
203 /// Compares two 256-bit vectors of [4 x double] and returns the greater
204 /// of each pair of values.
205 ///
206 /// \headerfile <x86intrin.h>
207 ///
208 /// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
209 ///
210 /// \param __a
211 /// A 256-bit vector of [4 x double] containing one of the operands.
212 /// \param __b
213 /// A 256-bit vector of [4 x double] containing one of the operands.
214 /// \returns A 256-bit vector of [4 x double] containing the maximum values
215 /// between both operands.
216 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_max_pd(__m256d __a,__m256d __b)217 _mm256_max_pd(__m256d __a, __m256d __b)
218 {
219 return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
220 }
221
222 /// Compares two 256-bit vectors of [8 x float] and returns the greater
223 /// of each pair of values.
224 ///
225 /// \headerfile <x86intrin.h>
226 ///
227 /// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
228 ///
229 /// \param __a
230 /// A 256-bit vector of [8 x float] containing one of the operands.
231 /// \param __b
232 /// A 256-bit vector of [8 x float] containing one of the operands.
233 /// \returns A 256-bit vector of [8 x float] containing the maximum values
234 /// between both operands.
235 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_max_ps(__m256 __a,__m256 __b)236 _mm256_max_ps(__m256 __a, __m256 __b)
237 {
238 return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
239 }
240
241 /// Compares two 256-bit vectors of [4 x double] and returns the lesser
242 /// of each pair of values.
243 ///
244 /// \headerfile <x86intrin.h>
245 ///
246 /// This intrinsic corresponds to the <c> VMINPD </c> instruction.
247 ///
248 /// \param __a
249 /// A 256-bit vector of [4 x double] containing one of the operands.
250 /// \param __b
251 /// A 256-bit vector of [4 x double] containing one of the operands.
252 /// \returns A 256-bit vector of [4 x double] containing the minimum values
253 /// between both operands.
254 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_min_pd(__m256d __a,__m256d __b)255 _mm256_min_pd(__m256d __a, __m256d __b)
256 {
257 return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
258 }
259
260 /// Compares two 256-bit vectors of [8 x float] and returns the lesser
261 /// of each pair of values.
262 ///
263 /// \headerfile <x86intrin.h>
264 ///
265 /// This intrinsic corresponds to the <c> VMINPS </c> instruction.
266 ///
267 /// \param __a
268 /// A 256-bit vector of [8 x float] containing one of the operands.
269 /// \param __b
270 /// A 256-bit vector of [8 x float] containing one of the operands.
271 /// \returns A 256-bit vector of [8 x float] containing the minimum values
272 /// between both operands.
273 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_min_ps(__m256 __a,__m256 __b)274 _mm256_min_ps(__m256 __a, __m256 __b)
275 {
276 return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
277 }
278
279 /// Multiplies two 256-bit vectors of [4 x double].
280 ///
281 /// \headerfile <x86intrin.h>
282 ///
283 /// This intrinsic corresponds to the <c> VMULPD </c> instruction.
284 ///
285 /// \param __a
286 /// A 256-bit vector of [4 x double] containing one of the operands.
287 /// \param __b
288 /// A 256-bit vector of [4 x double] containing one of the operands.
289 /// \returns A 256-bit vector of [4 x double] containing the products of both
290 /// operands.
291 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_mul_pd(__m256d __a,__m256d __b)292 _mm256_mul_pd(__m256d __a, __m256d __b)
293 {
294 return (__m256d)((__v4df)__a * (__v4df)__b);
295 }
296
297 /// Multiplies two 256-bit vectors of [8 x float].
298 ///
299 /// \headerfile <x86intrin.h>
300 ///
301 /// This intrinsic corresponds to the <c> VMULPS </c> instruction.
302 ///
303 /// \param __a
304 /// A 256-bit vector of [8 x float] containing one of the operands.
305 /// \param __b
306 /// A 256-bit vector of [8 x float] containing one of the operands.
307 /// \returns A 256-bit vector of [8 x float] containing the products of both
308 /// operands.
309 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_mul_ps(__m256 __a,__m256 __b)310 _mm256_mul_ps(__m256 __a, __m256 __b)
311 {
312 return (__m256)((__v8sf)__a * (__v8sf)__b);
313 }
314
315 /// Calculates the square roots of the values in a 256-bit vector of
316 /// [4 x double].
317 ///
318 /// \headerfile <x86intrin.h>
319 ///
320 /// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
321 ///
322 /// \param __a
323 /// A 256-bit vector of [4 x double].
324 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
325 /// values in the operand.
326 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sqrt_pd(__m256d __a)327 _mm256_sqrt_pd(__m256d __a)
328 {
329 return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
330 }
331
332 /// Calculates the square roots of the values in a 256-bit vector of
333 /// [8 x float].
334 ///
335 /// \headerfile <x86intrin.h>
336 ///
337 /// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
338 ///
339 /// \param __a
340 /// A 256-bit vector of [8 x float].
341 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
342 /// values in the operand.
343 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sqrt_ps(__m256 __a)344 _mm256_sqrt_ps(__m256 __a)
345 {
346 return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
347 }
348
349 /// Calculates the reciprocal square roots of the values in a 256-bit
350 /// vector of [8 x float].
351 ///
352 /// \headerfile <x86intrin.h>
353 ///
354 /// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
355 ///
356 /// \param __a
357 /// A 256-bit vector of [8 x float].
358 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
359 /// roots of the values in the operand.
360 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rsqrt_ps(__m256 __a)361 _mm256_rsqrt_ps(__m256 __a)
362 {
363 return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
364 }
365
366 /// Calculates the reciprocals of the values in a 256-bit vector of
367 /// [8 x float].
368 ///
369 /// \headerfile <x86intrin.h>
370 ///
371 /// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
372 ///
373 /// \param __a
374 /// A 256-bit vector of [8 x float].
375 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
376 /// values in the operand.
377 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rcp_ps(__m256 __a)378 _mm256_rcp_ps(__m256 __a)
379 {
380 return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
381 }
382
383 /// Rounds the values in a 256-bit vector of [4 x double] as specified
384 /// by the byte operand. The source values are rounded to integer values and
385 /// returned as 64-bit double-precision floating-point values.
386 ///
387 /// \headerfile <x86intrin.h>
388 ///
389 /// \code
390 /// __m256d _mm256_round_pd(__m256d V, const int M);
391 /// \endcode
392 ///
393 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
394 ///
395 /// \param V
396 /// A 256-bit vector of [4 x double].
397 /// \param M
398 /// An integer value that specifies the rounding operation. \n
399 /// Bits [7:4] are reserved. \n
400 /// Bit [3] is a precision exception value: \n
401 /// 0: A normal PE exception is used. \n
402 /// 1: The PE field is not updated. \n
403 /// Bit [2] is the rounding control source: \n
404 /// 0: Use bits [1:0] of \a M. \n
405 /// 1: Use the current MXCSR setting. \n
406 /// Bits [1:0] contain the rounding control definition: \n
407 /// 00: Nearest. \n
408 /// 01: Downward (toward negative infinity). \n
409 /// 10: Upward (toward positive infinity). \n
410 /// 11: Truncated.
411 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
412 #define _mm256_round_pd(V, M) \
413 ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)))
414
415 /// Rounds the values stored in a 256-bit vector of [8 x float] as
416 /// specified by the byte operand. The source values are rounded to integer
417 /// values and returned as floating-point values.
418 ///
419 /// \headerfile <x86intrin.h>
420 ///
421 /// \code
422 /// __m256 _mm256_round_ps(__m256 V, const int M);
423 /// \endcode
424 ///
425 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
426 ///
427 /// \param V
428 /// A 256-bit vector of [8 x float].
429 /// \param M
430 /// An integer value that specifies the rounding operation. \n
431 /// Bits [7:4] are reserved. \n
432 /// Bit [3] is a precision exception value: \n
433 /// 0: A normal PE exception is used. \n
434 /// 1: The PE field is not updated. \n
435 /// Bit [2] is the rounding control source: \n
436 /// 0: Use bits [1:0] of \a M. \n
437 /// 1: Use the current MXCSR setting. \n
438 /// Bits [1:0] contain the rounding control definition: \n
439 /// 00: Nearest. \n
440 /// 01: Downward (toward negative infinity). \n
441 /// 10: Upward (toward positive infinity). \n
442 /// 11: Truncated.
443 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
444 #define _mm256_round_ps(V, M) \
445 ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)))
446
447 /// Rounds up the values stored in a 256-bit vector of [4 x double]. The
448 /// source values are rounded up to integer values and returned as 64-bit
449 /// double-precision floating-point values.
450 ///
451 /// \headerfile <x86intrin.h>
452 ///
453 /// \code
454 /// __m256d _mm256_ceil_pd(__m256d V);
455 /// \endcode
456 ///
457 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
458 ///
459 /// \param V
460 /// A 256-bit vector of [4 x double].
461 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
462 #define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL)
463
464 /// Rounds down the values stored in a 256-bit vector of [4 x double].
465 /// The source values are rounded down to integer values and returned as
466 /// 64-bit double-precision floating-point values.
467 ///
468 /// \headerfile <x86intrin.h>
469 ///
470 /// \code
471 /// __m256d _mm256_floor_pd(__m256d V);
472 /// \endcode
473 ///
474 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
475 ///
476 /// \param V
477 /// A 256-bit vector of [4 x double].
478 /// \returns A 256-bit vector of [4 x double] containing the rounded down
479 /// values.
480 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
481
482 /// Rounds up the values stored in a 256-bit vector of [8 x float]. The
483 /// source values are rounded up to integer values and returned as
484 /// floating-point values.
485 ///
486 /// \headerfile <x86intrin.h>
487 ///
488 /// \code
489 /// __m256 _mm256_ceil_ps(__m256 V);
490 /// \endcode
491 ///
492 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
493 ///
494 /// \param V
495 /// A 256-bit vector of [8 x float].
496 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
497 #define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL)
498
499 /// Rounds down the values stored in a 256-bit vector of [8 x float]. The
500 /// source values are rounded down to integer values and returned as
501 /// floating-point values.
502 ///
503 /// \headerfile <x86intrin.h>
504 ///
505 /// \code
506 /// __m256 _mm256_floor_ps(__m256 V);
507 /// \endcode
508 ///
509 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
510 ///
511 /// \param V
512 /// A 256-bit vector of [8 x float].
513 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
514 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
515
516 /* Logical */
517 /// Performs a bitwise AND of two 256-bit vectors of [4 x double].
518 ///
519 /// \headerfile <x86intrin.h>
520 ///
521 /// This intrinsic corresponds to the <c> VANDPD </c> instruction.
522 ///
523 /// \param __a
524 /// A 256-bit vector of [4 x double] containing one of the source operands.
525 /// \param __b
526 /// A 256-bit vector of [4 x double] containing one of the source operands.
527 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
528 /// values between both operands.
529 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_and_pd(__m256d __a,__m256d __b)530 _mm256_and_pd(__m256d __a, __m256d __b)
531 {
532 return (__m256d)((__v4du)__a & (__v4du)__b);
533 }
534
535 /// Performs a bitwise AND of two 256-bit vectors of [8 x float].
536 ///
537 /// \headerfile <x86intrin.h>
538 ///
539 /// This intrinsic corresponds to the <c> VANDPS </c> instruction.
540 ///
541 /// \param __a
542 /// A 256-bit vector of [8 x float] containing one of the source operands.
543 /// \param __b
544 /// A 256-bit vector of [8 x float] containing one of the source operands.
545 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
546 /// values between both operands.
547 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_and_ps(__m256 __a,__m256 __b)548 _mm256_and_ps(__m256 __a, __m256 __b)
549 {
550 return (__m256)((__v8su)__a & (__v8su)__b);
551 }
552
553 /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
554 /// the one's complement of the values contained in the first source operand.
555 ///
556 /// \headerfile <x86intrin.h>
557 ///
558 /// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
559 ///
560 /// \param __a
561 /// A 256-bit vector of [4 x double] containing the left source operand. The
562 /// one's complement of this value is used in the bitwise AND.
563 /// \param __b
564 /// A 256-bit vector of [4 x double] containing the right source operand.
565 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
566 /// values of the second operand and the one's complement of the first
567 /// operand.
568 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_andnot_pd(__m256d __a,__m256d __b)569 _mm256_andnot_pd(__m256d __a, __m256d __b)
570 {
571 return (__m256d)(~(__v4du)__a & (__v4du)__b);
572 }
573
574 /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
575 /// the one's complement of the values contained in the first source operand.
576 ///
577 /// \headerfile <x86intrin.h>
578 ///
579 /// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
580 ///
581 /// \param __a
582 /// A 256-bit vector of [8 x float] containing the left source operand. The
583 /// one's complement of this value is used in the bitwise AND.
584 /// \param __b
585 /// A 256-bit vector of [8 x float] containing the right source operand.
586 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
587 /// values of the second operand and the one's complement of the first
588 /// operand.
589 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_andnot_ps(__m256 __a,__m256 __b)590 _mm256_andnot_ps(__m256 __a, __m256 __b)
591 {
592 return (__m256)(~(__v8su)__a & (__v8su)__b);
593 }
594
595 /// Performs a bitwise OR of two 256-bit vectors of [4 x double].
596 ///
597 /// \headerfile <x86intrin.h>
598 ///
599 /// This intrinsic corresponds to the <c> VORPD </c> instruction.
600 ///
601 /// \param __a
602 /// A 256-bit vector of [4 x double] containing one of the source operands.
603 /// \param __b
604 /// A 256-bit vector of [4 x double] containing one of the source operands.
605 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
606 /// values between both operands.
607 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_or_pd(__m256d __a,__m256d __b)608 _mm256_or_pd(__m256d __a, __m256d __b)
609 {
610 return (__m256d)((__v4du)__a | (__v4du)__b);
611 }
612
613 /// Performs a bitwise OR of two 256-bit vectors of [8 x float].
614 ///
615 /// \headerfile <x86intrin.h>
616 ///
617 /// This intrinsic corresponds to the <c> VORPS </c> instruction.
618 ///
619 /// \param __a
620 /// A 256-bit vector of [8 x float] containing one of the source operands.
621 /// \param __b
622 /// A 256-bit vector of [8 x float] containing one of the source operands.
623 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
624 /// values between both operands.
625 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_or_ps(__m256 __a,__m256 __b)626 _mm256_or_ps(__m256 __a, __m256 __b)
627 {
628 return (__m256)((__v8su)__a | (__v8su)__b);
629 }
630
631 /// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
632 ///
633 /// \headerfile <x86intrin.h>
634 ///
635 /// This intrinsic corresponds to the <c> VXORPD </c> instruction.
636 ///
637 /// \param __a
638 /// A 256-bit vector of [4 x double] containing one of the source operands.
639 /// \param __b
640 /// A 256-bit vector of [4 x double] containing one of the source operands.
641 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
642 /// values between both operands.
643 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_xor_pd(__m256d __a,__m256d __b)644 _mm256_xor_pd(__m256d __a, __m256d __b)
645 {
646 return (__m256d)((__v4du)__a ^ (__v4du)__b);
647 }
648
649 /// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
650 ///
651 /// \headerfile <x86intrin.h>
652 ///
653 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
654 ///
655 /// \param __a
656 /// A 256-bit vector of [8 x float] containing one of the source operands.
657 /// \param __b
658 /// A 256-bit vector of [8 x float] containing one of the source operands.
659 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
660 /// values between both operands.
661 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_xor_ps(__m256 __a,__m256 __b)662 _mm256_xor_ps(__m256 __a, __m256 __b)
663 {
664 return (__m256)((__v8su)__a ^ (__v8su)__b);
665 }
666
667 /* Horizontal arithmetic */
668 /// Horizontally adds the adjacent pairs of values contained in two
669 /// 256-bit vectors of [4 x double].
670 ///
671 /// \headerfile <x86intrin.h>
672 ///
673 /// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
674 ///
675 /// \param __a
676 /// A 256-bit vector of [4 x double] containing one of the source operands.
677 /// The horizontal sums of the values are returned in the even-indexed
678 /// elements of a vector of [4 x double].
679 /// \param __b
680 /// A 256-bit vector of [4 x double] containing one of the source operands.
681 /// The horizontal sums of the values are returned in the odd-indexed
682 /// elements of a vector of [4 x double].
683 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
684 /// both operands.
685 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hadd_pd(__m256d __a,__m256d __b)686 _mm256_hadd_pd(__m256d __a, __m256d __b)
687 {
688 return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
689 }
690
691 /// Horizontally adds the adjacent pairs of values contained in two
692 /// 256-bit vectors of [8 x float].
693 ///
694 /// \headerfile <x86intrin.h>
695 ///
696 /// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
697 ///
698 /// \param __a
699 /// A 256-bit vector of [8 x float] containing one of the source operands.
700 /// The horizontal sums of the values are returned in the elements with
701 /// index 0, 1, 4, 5 of a vector of [8 x float].
702 /// \param __b
703 /// A 256-bit vector of [8 x float] containing one of the source operands.
704 /// The horizontal sums of the values are returned in the elements with
705 /// index 2, 3, 6, 7 of a vector of [8 x float].
706 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
707 /// both operands.
708 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hadd_ps(__m256 __a,__m256 __b)709 _mm256_hadd_ps(__m256 __a, __m256 __b)
710 {
711 return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
712 }
713
714 /// Horizontally subtracts the adjacent pairs of values contained in two
715 /// 256-bit vectors of [4 x double].
716 ///
717 /// \headerfile <x86intrin.h>
718 ///
719 /// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
720 ///
721 /// \param __a
722 /// A 256-bit vector of [4 x double] containing one of the source operands.
723 /// The horizontal differences between the values are returned in the
724 /// even-indexed elements of a vector of [4 x double].
725 /// \param __b
726 /// A 256-bit vector of [4 x double] containing one of the source operands.
727 /// The horizontal differences between the values are returned in the
728 /// odd-indexed elements of a vector of [4 x double].
729 /// \returns A 256-bit vector of [4 x double] containing the horizontal
730 /// differences of both operands.
731 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hsub_pd(__m256d __a,__m256d __b)732 _mm256_hsub_pd(__m256d __a, __m256d __b)
733 {
734 return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
735 }
736
737 /// Horizontally subtracts the adjacent pairs of values contained in two
738 /// 256-bit vectors of [8 x float].
739 ///
740 /// \headerfile <x86intrin.h>
741 ///
742 /// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
743 ///
744 /// \param __a
745 /// A 256-bit vector of [8 x float] containing one of the source operands.
746 /// The horizontal differences between the values are returned in the
747 /// elements with index 0, 1, 4, 5 of a vector of [8 x float].
748 /// \param __b
749 /// A 256-bit vector of [8 x float] containing one of the source operands.
750 /// The horizontal differences between the values are returned in the
751 /// elements with index 2, 3, 6, 7 of a vector of [8 x float].
752 /// \returns A 256-bit vector of [8 x float] containing the horizontal
753 /// differences of both operands.
754 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hsub_ps(__m256 __a,__m256 __b)755 _mm256_hsub_ps(__m256 __a, __m256 __b)
756 {
757 return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
758 }
759
760 /* Vector permutations */
761 /// Copies the values in a 128-bit vector of [2 x double] as specified
762 /// by the 128-bit integer vector operand.
763 ///
764 /// \headerfile <x86intrin.h>
765 ///
766 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
767 ///
768 /// \param __a
769 /// A 128-bit vector of [2 x double].
770 /// \param __c
771 /// A 128-bit integer vector operand specifying how the values are to be
772 /// copied. \n
773 /// Bit [1]: \n
774 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
775 /// vector. \n
776 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
777 /// returned vector. \n
778 /// Bit [65]: \n
779 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
780 /// returned vector. \n
781 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
782 /// returned vector.
783 /// \returns A 128-bit vector of [2 x double] containing the copied values.
784 static __inline __m128d __DEFAULT_FN_ATTRS128
_mm_permutevar_pd(__m128d __a,__m128i __c)785 _mm_permutevar_pd(__m128d __a, __m128i __c)
786 {
787 return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
788 }
789
790 /// Copies the values in a 256-bit vector of [4 x double] as specified
791 /// by the 256-bit integer vector operand.
792 ///
793 /// \headerfile <x86intrin.h>
794 ///
795 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
796 ///
797 /// \param __a
798 /// A 256-bit vector of [4 x double].
799 /// \param __c
800 /// A 256-bit integer vector operand specifying how the values are to be
801 /// copied. \n
802 /// Bit [1]: \n
803 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
804 /// vector. \n
805 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
806 /// returned vector. \n
807 /// Bit [65]: \n
808 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
809 /// returned vector. \n
810 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
811 /// returned vector. \n
812 /// Bit [129]: \n
813 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
814 /// returned vector. \n
815 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
816 /// returned vector. \n
817 /// Bit [193]: \n
818 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
819 /// returned vector. \n
820 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
821 /// returned vector.
822 /// \returns A 256-bit vector of [4 x double] containing the copied values.
823 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_permutevar_pd(__m256d __a,__m256i __c)824 _mm256_permutevar_pd(__m256d __a, __m256i __c)
825 {
826 return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
827 }
828
829 /// Copies the values stored in a 128-bit vector of [4 x float] as
830 /// specified by the 128-bit integer vector operand.
831 /// \headerfile <x86intrin.h>
832 ///
833 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
834 ///
835 /// \param __a
836 /// A 128-bit vector of [4 x float].
837 /// \param __c
838 /// A 128-bit integer vector operand specifying how the values are to be
839 /// copied. \n
840 /// Bits [1:0]: \n
841 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
842 /// returned vector. \n
843 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
844 /// returned vector. \n
845 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
846 /// returned vector. \n
847 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
848 /// returned vector. \n
849 /// Bits [33:32]: \n
850 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
851 /// returned vector. \n
852 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
853 /// returned vector. \n
854 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
855 /// returned vector. \n
856 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
857 /// returned vector. \n
858 /// Bits [65:64]: \n
859 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
860 /// returned vector. \n
861 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
862 /// returned vector. \n
863 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
864 /// returned vector. \n
865 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
866 /// returned vector. \n
867 /// Bits [97:96]: \n
868 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
869 /// returned vector. \n
870 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
871 /// returned vector. \n
872 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
873 /// returned vector. \n
874 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
875 /// returned vector.
876 /// \returns A 128-bit vector of [4 x float] containing the copied values.
877 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_permutevar_ps(__m128 __a,__m128i __c)878 _mm_permutevar_ps(__m128 __a, __m128i __c)
879 {
880 return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
881 }
882
883 /// Copies the values stored in a 256-bit vector of [8 x float] as
884 /// specified by the 256-bit integer vector operand.
885 ///
886 /// \headerfile <x86intrin.h>
887 ///
888 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
889 ///
890 /// \param __a
891 /// A 256-bit vector of [8 x float].
892 /// \param __c
893 /// A 256-bit integer vector operand specifying how the values are to be
894 /// copied. \n
895 /// Bits [1:0]: \n
896 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
897 /// returned vector. \n
898 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
899 /// returned vector. \n
900 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
901 /// returned vector. \n
902 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
903 /// returned vector. \n
904 /// Bits [33:32]: \n
905 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
906 /// returned vector. \n
907 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
908 /// returned vector. \n
909 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
910 /// returned vector. \n
911 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
912 /// returned vector. \n
913 /// Bits [65:64]: \n
914 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
915 /// returned vector. \n
916 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
917 /// returned vector. \n
918 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
919 /// returned vector. \n
920 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
921 /// returned vector. \n
922 /// Bits [97:96]: \n
923 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
924 /// returned vector. \n
925 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
926 /// returned vector. \n
927 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
928 /// returned vector. \n
929 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
930 /// returned vector. \n
931 /// Bits [129:128]: \n
932 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
933 /// returned vector. \n
934 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
935 /// returned vector. \n
936 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
937 /// returned vector. \n
938 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
939 /// returned vector. \n
940 /// Bits [161:160]: \n
941 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
942 /// returned vector. \n
943 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
944 /// returned vector. \n
945 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
946 /// returned vector. \n
947 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
948 /// returned vector. \n
949 /// Bits [193:192]: \n
950 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
951 /// returned vector. \n
952 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
953 /// returned vector. \n
954 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
955 /// returned vector. \n
956 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
957 /// returned vector. \n
958 /// Bits [225:224]: \n
959 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
960 /// returned vector. \n
961 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
962 /// returned vector. \n
963 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
964 /// returned vector. \n
965 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
966 /// returned vector.
967 /// \returns A 256-bit vector of [8 x float] containing the copied values.
968 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_permutevar_ps(__m256 __a,__m256i __c)969 _mm256_permutevar_ps(__m256 __a, __m256i __c)
970 {
971 return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
972 }
973
974 /// Copies the values in a 128-bit vector of [2 x double] as specified
975 /// by the immediate integer operand.
976 ///
977 /// \headerfile <x86intrin.h>
978 ///
979 /// \code
980 /// __m128d _mm_permute_pd(__m128d A, const int C);
981 /// \endcode
982 ///
983 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
984 ///
985 /// \param A
986 /// A 128-bit vector of [2 x double].
987 /// \param C
988 /// An immediate integer operand specifying how the values are to be
989 /// copied. \n
990 /// Bit [0]: \n
991 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
992 /// vector. \n
993 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
994 /// returned vector. \n
995 /// Bit [1]: \n
996 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
997 /// returned vector. \n
998 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
999 /// returned vector.
1000 /// \returns A 128-bit vector of [2 x double] containing the copied values.
1001 #define _mm_permute_pd(A, C) \
1002 ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C)))
1003
1004 /// Copies the values in a 256-bit vector of [4 x double] as specified by
1005 /// the immediate integer operand.
1006 ///
1007 /// \headerfile <x86intrin.h>
1008 ///
1009 /// \code
1010 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1011 /// \endcode
1012 ///
1013 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1014 ///
1015 /// \param A
1016 /// A 256-bit vector of [4 x double].
1017 /// \param C
1018 /// An immediate integer operand specifying how the values are to be
1019 /// copied. \n
1020 /// Bit [0]: \n
1021 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1022 /// vector. \n
1023 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1024 /// returned vector. \n
1025 /// Bit [1]: \n
1026 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1027 /// returned vector. \n
1028 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1029 /// returned vector. \n
1030 /// Bit [2]: \n
1031 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
1032 /// returned vector. \n
1033 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
1034 /// returned vector. \n
1035 /// Bit [3]: \n
1036 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
1037 /// returned vector. \n
1038 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
1039 /// returned vector.
1040 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1041 #define _mm256_permute_pd(A, C) \
1042 ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C)))
1043
1044 /// Copies the values in a 128-bit vector of [4 x float] as specified by
1045 /// the immediate integer operand.
1046 ///
1047 /// \headerfile <x86intrin.h>
1048 ///
1049 /// \code
1050 /// __m128 _mm_permute_ps(__m128 A, const int C);
1051 /// \endcode
1052 ///
1053 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1054 ///
1055 /// \param A
1056 /// A 128-bit vector of [4 x float].
1057 /// \param C
1058 /// An immediate integer operand specifying how the values are to be
1059 /// copied. \n
1060 /// Bits [1:0]: \n
1061 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1062 /// returned vector. \n
1063 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1064 /// returned vector. \n
1065 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1066 /// returned vector. \n
1067 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1068 /// returned vector. \n
1069 /// Bits [3:2]: \n
1070 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1071 /// returned vector. \n
1072 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1073 /// returned vector. \n
1074 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1075 /// returned vector. \n
1076 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1077 /// returned vector. \n
1078 /// Bits [5:4]: \n
1079 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1080 /// returned vector. \n
1081 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1082 /// returned vector. \n
1083 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1084 /// returned vector. \n
1085 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1086 /// returned vector. \n
1087 /// Bits [7:6]: \n
1088 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1089 /// returned vector. \n
1090 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1091 /// returned vector. \n
1092 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1093 /// returned vector. \n
1094 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1095 /// returned vector.
1096 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1097 #define _mm_permute_ps(A, C) \
1098 ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C)))
1099
1100 /// Copies the values in a 256-bit vector of [8 x float] as specified by
1101 /// the immediate integer operand.
1102 ///
1103 /// \headerfile <x86intrin.h>
1104 ///
1105 /// \code
1106 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1107 /// \endcode
1108 ///
1109 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1110 ///
1111 /// \param A
1112 /// A 256-bit vector of [8 x float].
1113 /// \param C
1114 /// An immediate integer operand specifying how the values are to be
1115 /// copied. \n
1116 /// Bits [1:0]: \n
1117 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1118 /// returned vector. \n
1119 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1120 /// returned vector. \n
1121 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1122 /// returned vector. \n
1123 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1124 /// returned vector. \n
1125 /// Bits [3:2]: \n
1126 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1127 /// returned vector. \n
1128 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1129 /// returned vector. \n
1130 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1131 /// returned vector. \n
1132 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1133 /// returned vector. \n
1134 /// Bits [5:4]: \n
1135 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1136 /// returned vector. \n
1137 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1138 /// returned vector. \n
1139 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1140 /// returned vector. \n
1141 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1142 /// returned vector. \n
1143 /// Bits [7:6]: \n
1144 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1145 /// returned vector. \n
1146 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1147 /// returned vector. \n
1148 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1149 /// returned vector. \n
1150 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1151 /// returned vector. \n
1152 /// Bits [1:0]: \n
1153 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
1154 /// returned vector. \n
1155 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
1156 /// returned vector. \n
1157 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
1158 /// returned vector. \n
1159 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
1160 /// returned vector. \n
1161 /// Bits [3:2]: \n
1162 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
1163 /// returned vector. \n
1164 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
1165 /// returned vector. \n
1166 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
1167 /// returned vector. \n
1168 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
1169 /// returned vector. \n
1170 /// Bits [5:4]: \n
1171 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
1172 /// returned vector. \n
1173 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
1174 /// returned vector. \n
1175 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
1176 /// returned vector. \n
1177 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
1178 /// returned vector. \n
1179 /// Bits [7:6]: \n
1180 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
1181 /// returned vector. \n
1182 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
1183 /// returned vector. \n
1184 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
1185 /// returned vector. \n
1186 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
1187 /// returned vector.
1188 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1189 #define _mm256_permute_ps(A, C) \
1190 ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C)))
1191
1192 /// Permutes 128-bit data values stored in two 256-bit vectors of
1193 /// [4 x double], as specified by the immediate integer operand.
1194 ///
1195 /// \headerfile <x86intrin.h>
1196 ///
1197 /// \code
1198 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1199 /// \endcode
1200 ///
1201 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1202 ///
1203 /// \param V1
1204 /// A 256-bit vector of [4 x double].
1205 /// \param V2
1206 /// A 256-bit vector of [4 x double.
1207 /// \param M
1208 /// An immediate integer operand specifying how the values are to be
1209 /// permuted. \n
1210 /// Bits [1:0]: \n
1211 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1212 /// destination. \n
1213 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1214 /// destination. \n
1215 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1216 /// destination. \n
1217 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1218 /// destination. \n
1219 /// Bits [5:4]: \n
1220 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1221 /// destination. \n
1222 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1223 /// destination. \n
1224 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1225 /// destination. \n
1226 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1227 /// destination.
1228 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1229 #define _mm256_permute2f128_pd(V1, V2, M) \
1230 ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1231 (__v4df)(__m256d)(V2), (int)(M)))
1232
1233 /// Permutes 128-bit data values stored in two 256-bit vectors of
1234 /// [8 x float], as specified by the immediate integer operand.
1235 ///
1236 /// \headerfile <x86intrin.h>
1237 ///
1238 /// \code
1239 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1240 /// \endcode
1241 ///
1242 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1243 ///
1244 /// \param V1
1245 /// A 256-bit vector of [8 x float].
1246 /// \param V2
1247 /// A 256-bit vector of [8 x float].
1248 /// \param M
1249 /// An immediate integer operand specifying how the values are to be
1250 /// permuted. \n
1251 /// Bits [1:0]: \n
1252 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1253 /// destination. \n
1254 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1255 /// destination. \n
1256 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1257 /// destination. \n
1258 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1259 /// destination. \n
1260 /// Bits [5:4]: \n
1261 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1262 /// destination. \n
1263 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1264 /// destination. \n
1265 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1266 /// destination. \n
1267 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1268 /// destination.
1269 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1270 #define _mm256_permute2f128_ps(V1, V2, M) \
1271 ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1272 (__v8sf)(__m256)(V2), (int)(M)))
1273
1274 /// Permutes 128-bit data values stored in two 256-bit integer vectors,
1275 /// as specified by the immediate integer operand.
1276 ///
1277 /// \headerfile <x86intrin.h>
1278 ///
1279 /// \code
1280 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1281 /// \endcode
1282 ///
1283 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1284 ///
1285 /// \param V1
1286 /// A 256-bit integer vector.
1287 /// \param V2
1288 /// A 256-bit integer vector.
1289 /// \param M
1290 /// An immediate integer operand specifying how the values are to be copied.
1291 /// Bits [1:0]: \n
1292 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1293 /// destination. \n
1294 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1295 /// destination. \n
1296 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1297 /// destination. \n
1298 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1299 /// destination. \n
1300 /// Bits [5:4]: \n
1301 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1302 /// destination. \n
1303 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1304 /// destination. \n
1305 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1306 /// destination. \n
1307 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1308 /// destination.
1309 /// \returns A 256-bit integer vector containing the copied values.
1310 #define _mm256_permute2f128_si256(V1, V2, M) \
1311 ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1312 (__v8si)(__m256i)(V2), (int)(M)))
1313
1314 /* Vector Blend */
1315 /// Merges 64-bit double-precision data values stored in either of the
1316 /// two 256-bit vectors of [4 x double], as specified by the immediate
1317 /// integer operand.
1318 ///
1319 /// \headerfile <x86intrin.h>
1320 ///
1321 /// \code
1322 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1323 /// \endcode
1324 ///
1325 /// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1326 ///
1327 /// \param V1
1328 /// A 256-bit vector of [4 x double].
1329 /// \param V2
1330 /// A 256-bit vector of [4 x double].
1331 /// \param M
1332 /// An immediate integer operand, with mask bits [3:0] specifying how the
1333 /// values are to be copied. The position of the mask bit corresponds to the
1334 /// index of a copied value. When a mask bit is 0, the corresponding 64-bit
1335 /// element in operand \a V1 is copied to the same position in the
1336 /// destination. When a mask bit is 1, the corresponding 64-bit element in
1337 /// operand \a V2 is copied to the same position in the destination.
1338 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1339 #define _mm256_blend_pd(V1, V2, M) \
1340 ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1341 (__v4df)(__m256d)(V2), (int)(M)))
1342
1343 /// Merges 32-bit single-precision data values stored in either of the
1344 /// two 256-bit vectors of [8 x float], as specified by the immediate
1345 /// integer operand.
1346 ///
1347 /// \headerfile <x86intrin.h>
1348 ///
1349 /// \code
1350 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1351 /// \endcode
1352 ///
1353 /// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1354 ///
1355 /// \param V1
1356 /// A 256-bit vector of [8 x float].
1357 /// \param V2
1358 /// A 256-bit vector of [8 x float].
1359 /// \param M
1360 /// An immediate integer operand, with mask bits [7:0] specifying how the
1361 /// values are to be copied. The position of the mask bit corresponds to the
1362 /// index of a copied value. When a mask bit is 0, the corresponding 32-bit
1363 /// element in operand \a V1 is copied to the same position in the
1364 /// destination. When a mask bit is 1, the corresponding 32-bit element in
1365 /// operand \a V2 is copied to the same position in the destination.
1366 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1367 #define _mm256_blend_ps(V1, V2, M) \
1368 ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1369 (__v8sf)(__m256)(V2), (int)(M)))
1370
1371 /// Merges 64-bit double-precision data values stored in either of the
1372 /// two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1373 /// operand.
1374 ///
1375 /// \headerfile <x86intrin.h>
1376 ///
1377 /// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1378 ///
1379 /// \param __a
1380 /// A 256-bit vector of [4 x double].
1381 /// \param __b
1382 /// A 256-bit vector of [4 x double].
1383 /// \param __c
1384 /// A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1385 /// how the values are to be copied. The position of the mask bit corresponds
1386 /// to the most significant bit of a copied value. When a mask bit is 0, the
1387 /// corresponding 64-bit element in operand \a __a is copied to the same
1388 /// position in the destination. When a mask bit is 1, the corresponding
1389 /// 64-bit element in operand \a __b is copied to the same position in the
1390 /// destination.
1391 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1392 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_blendv_pd(__m256d __a,__m256d __b,__m256d __c)1393 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1394 {
1395 return (__m256d)__builtin_ia32_blendvpd256(
1396 (__v4df)__a, (__v4df)__b, (__v4df)__c);
1397 }
1398
1399 /// Merges 32-bit single-precision data values stored in either of the
1400 /// two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1401 /// operand.
1402 ///
1403 /// \headerfile <x86intrin.h>
1404 ///
1405 /// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1406 ///
1407 /// \param __a
1408 /// A 256-bit vector of [8 x float].
1409 /// \param __b
1410 /// A 256-bit vector of [8 x float].
1411 /// \param __c
1412 /// A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1413 /// and 31 specifying how the values are to be copied. The position of the
1414 /// mask bit corresponds to the most significant bit of a copied value. When
1415 /// a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1416 /// copied to the same position in the destination. When a mask bit is 1, the
1417 /// corresponding 32-bit element in operand \a __b is copied to the same
1418 /// position in the destination.
1419 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1420 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_blendv_ps(__m256 __a,__m256 __b,__m256 __c)1421 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1422 {
1423 return (__m256)__builtin_ia32_blendvps256(
1424 (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1425 }
1426
1427 /* Vector Dot Product */
1428 /// Computes two dot products in parallel, using the lower and upper
1429 /// halves of two [8 x float] vectors as input to the two computations, and
1430 /// returning the two dot products in the lower and upper halves of the
1431 /// [8 x float] result.
1432 ///
1433 /// The immediate integer operand controls which input elements will
1434 /// contribute to the dot product, and where the final results are returned.
1435 /// In general, for each dot product, the four corresponding elements of the
1436 /// input vectors are multiplied; the first two and second two products are
1437 /// summed, then the two sums are added to form the final result.
1438 ///
1439 /// \headerfile <x86intrin.h>
1440 ///
1441 /// \code
1442 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1443 /// \endcode
1444 ///
1445 /// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1446 ///
1447 /// \param V1
1448 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1449 /// \param V2
1450 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1451 /// \param M
1452 /// An immediate integer argument. Bits [7:4] determine which elements of
1453 /// the input vectors are used, with bit [4] corresponding to the lowest
1454 /// element and bit [7] corresponding to the highest element of each [4 x
1455 /// float] subvector. If a bit is set, the corresponding elements from the
1456 /// two input vectors are used as an input for dot product; otherwise that
1457 /// input is treated as zero. Bits [3:0] determine which elements of the
1458 /// result will receive a copy of the final dot product, with bit [0]
1459 /// corresponding to the lowest element and bit [3] corresponding to the
1460 /// highest element of each [4 x float] subvector. If a bit is set, the dot
1461 /// product is returned in the corresponding element; otherwise that element
1462 /// is set to zero. The bitmask is applied in the same way to each of the
1463 /// two parallel dot product computations.
1464 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1465 #define _mm256_dp_ps(V1, V2, M) \
1466 ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1467 (__v8sf)(__m256)(V2), (M)))
1468
1469 /* Vector shuffle */
1470 /// Selects 8 float values from the 256-bit operands of [8 x float], as
1471 /// specified by the immediate value operand.
1472 ///
1473 /// The four selected elements in each operand are copied to the destination
1474 /// according to the bits specified in the immediate operand. The selected
1475 /// elements from the first 256-bit operand are copied to bits [63:0] and
1476 /// bits [191:128] of the destination, and the selected elements from the
1477 /// second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1478 /// the destination. For example, if bits [7:0] of the immediate operand
1479 /// contain a value of 0xFF, the 256-bit destination vector would contain the
1480 /// following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1481 ///
1482 /// \headerfile <x86intrin.h>
1483 ///
1484 /// \code
1485 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1486 /// \endcode
1487 ///
1488 /// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1489 ///
1490 /// \param a
1491 /// A 256-bit vector of [8 x float]. The four selected elements in this
1492 /// operand are copied to bits [63:0] and bits [191:128] in the destination,
1493 /// according to the bits specified in the immediate operand.
1494 /// \param b
1495 /// A 256-bit vector of [8 x float]. The four selected elements in this
1496 /// operand are copied to bits [127:64] and bits [255:192] in the
1497 /// destination, according to the bits specified in the immediate operand.
1498 /// \param mask
1499 /// An immediate value containing an 8-bit value specifying which elements to
1500 /// copy from \a a and \a b \n.
1501 /// Bits [3:0] specify the values copied from operand \a a. \n
1502 /// Bits [7:4] specify the values copied from operand \a b. \n
1503 /// The destinations within the 256-bit destination are assigned values as
1504 /// follows, according to the bit value assignments described below: \n
1505 /// Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1506 /// destination. \n
1507 /// Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1508 /// destination. \n
1509 /// Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1510 /// destination. \n
1511 /// Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1512 /// the destination. \n
1513 /// Bit value assignments: \n
1514 /// 00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1515 /// 01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1516 /// 10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1517 /// 11: Bits [127:96] and [255:224] are copied from the selected operand. \n
1518 /// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
1519 /// <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
1520 /// <c>[b6, b4, b2, b0]</c>.
1521 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1522 #define _mm256_shuffle_ps(a, b, mask) \
1523 ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1524 (__v8sf)(__m256)(b), (int)(mask)))
1525
1526 /// Selects four double-precision values from the 256-bit operands of
1527 /// [4 x double], as specified by the immediate value operand.
1528 ///
1529 /// The selected elements from the first 256-bit operand are copied to bits
1530 /// [63:0] and bits [191:128] in the destination, and the selected elements
1531 /// from the second 256-bit operand are copied to bits [127:64] and bits
1532 /// [255:192] in the destination. For example, if bits [3:0] of the immediate
1533 /// operand contain a value of 0xF, the 256-bit destination vector would
1534 /// contain the following values: b[3], a[3], b[1], a[1].
1535 ///
1536 /// \headerfile <x86intrin.h>
1537 ///
1538 /// \code
1539 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1540 /// \endcode
1541 ///
1542 /// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1543 ///
1544 /// \param a
1545 /// A 256-bit vector of [4 x double].
1546 /// \param b
1547 /// A 256-bit vector of [4 x double].
1548 /// \param mask
1549 /// An immediate value containing 8-bit values specifying which elements to
1550 /// copy from \a a and \a b: \n
1551 /// Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1552 /// destination. \n
1553 /// Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1554 /// destination. \n
1555 /// Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1556 /// destination. \n
1557 /// Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1558 /// destination. \n
1559 /// Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1560 /// destination. \n
1561 /// Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1562 /// destination. \n
1563 /// Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1564 /// destination. \n
1565 /// Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1566 /// destination.
1567 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1568 #define _mm256_shuffle_pd(a, b, mask) \
1569 ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1570 (__v4df)(__m256d)(b), (int)(mask)))
1571
1572 /* Compare */
1573 #define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */
1574 #define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */
1575 #define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */
1576 #define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */
1577 #define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */
1578 #define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */
1579 #define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */
1580 #define _CMP_ORD_Q 0x07 /* Ordered (non-signaling) */
1581 #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
1582 #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unordered, signaling) */
1583 #define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */
1584 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */
1585 #define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */
1586 #define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */
1587 #define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */
1588 #define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */
1589 #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
1590 #define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */
1591 #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */
1592 #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
1593 #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
1594 #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */
1595 #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unordered, non-signaling) */
1596 #define _CMP_ORD_S 0x17 /* Ordered (signaling) */
1597 #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
1598 #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unordered, non-signaling) */
1599 #define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */
1600 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */
1601 #define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */
1602 #define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */
1603 #define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */
1604 #define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */
1605
1606 /// Compares each of the corresponding double-precision values of two
1607 /// 128-bit vectors of [2 x double], using the operation specified by the
1608 /// immediate integer operand.
1609 ///
1610 /// Returns a [2 x double] vector consisting of two doubles corresponding to
1611 /// the two comparison results: zero if the comparison is false, and all 1's
1612 /// if the comparison is true.
1613 ///
1614 /// \headerfile <x86intrin.h>
1615 ///
1616 /// \code
1617 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1618 /// \endcode
1619 ///
1620 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1621 ///
1622 /// \param a
1623 /// A 128-bit vector of [2 x double].
1624 /// \param b
1625 /// A 128-bit vector of [2 x double].
1626 /// \param c
1627 /// An immediate integer operand, with bits [4:0] specifying which comparison
1628 /// operation to use: \n
1629 /// 0x00: Equal (ordered, non-signaling) \n
1630 /// 0x01: Less-than (ordered, signaling) \n
1631 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1632 /// 0x03: Unordered (non-signaling) \n
1633 /// 0x04: Not-equal (unordered, non-signaling) \n
1634 /// 0x05: Not-less-than (unordered, signaling) \n
1635 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1636 /// 0x07: Ordered (non-signaling) \n
1637 /// 0x08: Equal (unordered, non-signaling) \n
1638 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1639 /// 0x0A: Not-greater-than (unordered, signaling) \n
1640 /// 0x0B: False (ordered, non-signaling) \n
1641 /// 0x0C: Not-equal (ordered, non-signaling) \n
1642 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1643 /// 0x0E: Greater-than (ordered, signaling) \n
1644 /// 0x0F: True (unordered, non-signaling) \n
1645 /// 0x10: Equal (ordered, signaling) \n
1646 /// 0x11: Less-than (ordered, non-signaling) \n
1647 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1648 /// 0x13: Unordered (signaling) \n
1649 /// 0x14: Not-equal (unordered, signaling) \n
1650 /// 0x15: Not-less-than (unordered, non-signaling) \n
1651 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1652 /// 0x17: Ordered (signaling) \n
1653 /// 0x18: Equal (unordered, signaling) \n
1654 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1655 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1656 /// 0x1B: False (ordered, signaling) \n
1657 /// 0x1C: Not-equal (ordered, signaling) \n
1658 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1659 /// 0x1E: Greater-than (ordered, non-signaling) \n
1660 /// 0x1F: True (unordered, signaling)
1661 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1662 #define _mm_cmp_pd(a, b, c) \
1663 ((__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1664 (__v2df)(__m128d)(b), (c)))
1665
1666 /// Compares each of the corresponding values of two 128-bit vectors of
1667 /// [4 x float], using the operation specified by the immediate integer
1668 /// operand.
1669 ///
1670 /// Returns a [4 x float] vector consisting of four floats corresponding to
1671 /// the four comparison results: zero if the comparison is false, and all 1's
1672 /// if the comparison is true.
1673 ///
1674 /// \headerfile <x86intrin.h>
1675 ///
1676 /// \code
1677 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1678 /// \endcode
1679 ///
1680 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1681 ///
1682 /// \param a
1683 /// A 128-bit vector of [4 x float].
1684 /// \param b
1685 /// A 128-bit vector of [4 x float].
1686 /// \param c
1687 /// An immediate integer operand, with bits [4:0] specifying which comparison
1688 /// operation to use: \n
1689 /// 0x00: Equal (ordered, non-signaling) \n
1690 /// 0x01: Less-than (ordered, signaling) \n
1691 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1692 /// 0x03: Unordered (non-signaling) \n
1693 /// 0x04: Not-equal (unordered, non-signaling) \n
1694 /// 0x05: Not-less-than (unordered, signaling) \n
1695 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1696 /// 0x07: Ordered (non-signaling) \n
1697 /// 0x08: Equal (unordered, non-signaling) \n
1698 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1699 /// 0x0A: Not-greater-than (unordered, signaling) \n
1700 /// 0x0B: False (ordered, non-signaling) \n
1701 /// 0x0C: Not-equal (ordered, non-signaling) \n
1702 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1703 /// 0x0E: Greater-than (ordered, signaling) \n
1704 /// 0x0F: True (unordered, non-signaling) \n
1705 /// 0x10: Equal (ordered, signaling) \n
1706 /// 0x11: Less-than (ordered, non-signaling) \n
1707 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1708 /// 0x13: Unordered (signaling) \n
1709 /// 0x14: Not-equal (unordered, signaling) \n
1710 /// 0x15: Not-less-than (unordered, non-signaling) \n
1711 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1712 /// 0x17: Ordered (signaling) \n
1713 /// 0x18: Equal (unordered, signaling) \n
1714 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1715 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1716 /// 0x1B: False (ordered, signaling) \n
1717 /// 0x1C: Not-equal (ordered, signaling) \n
1718 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1719 /// 0x1E: Greater-than (ordered, non-signaling) \n
1720 /// 0x1F: True (unordered, signaling)
1721 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1722 #define _mm_cmp_ps(a, b, c) \
1723 ((__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1724 (__v4sf)(__m128)(b), (c)))
1725
1726 /// Compares each of the corresponding double-precision values of two
1727 /// 256-bit vectors of [4 x double], using the operation specified by the
1728 /// immediate integer operand.
1729 ///
1730 /// Returns a [4 x double] vector consisting of four doubles corresponding to
1731 /// the four comparison results: zero if the comparison is false, and all 1's
1732 /// if the comparison is true.
1733 ///
1734 /// \headerfile <x86intrin.h>
1735 ///
1736 /// \code
1737 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1738 /// \endcode
1739 ///
1740 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1741 ///
1742 /// \param a
1743 /// A 256-bit vector of [4 x double].
1744 /// \param b
1745 /// A 256-bit vector of [4 x double].
1746 /// \param c
1747 /// An immediate integer operand, with bits [4:0] specifying which comparison
1748 /// operation to use: \n
1749 /// 0x00: Equal (ordered, non-signaling) \n
1750 /// 0x01: Less-than (ordered, signaling) \n
1751 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1752 /// 0x03: Unordered (non-signaling) \n
1753 /// 0x04: Not-equal (unordered, non-signaling) \n
1754 /// 0x05: Not-less-than (unordered, signaling) \n
1755 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1756 /// 0x07: Ordered (non-signaling) \n
1757 /// 0x08: Equal (unordered, non-signaling) \n
1758 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1759 /// 0x0A: Not-greater-than (unordered, signaling) \n
1760 /// 0x0B: False (ordered, non-signaling) \n
1761 /// 0x0C: Not-equal (ordered, non-signaling) \n
1762 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1763 /// 0x0E: Greater-than (ordered, signaling) \n
1764 /// 0x0F: True (unordered, non-signaling) \n
1765 /// 0x10: Equal (ordered, signaling) \n
1766 /// 0x11: Less-than (ordered, non-signaling) \n
1767 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1768 /// 0x13: Unordered (signaling) \n
1769 /// 0x14: Not-equal (unordered, signaling) \n
1770 /// 0x15: Not-less-than (unordered, non-signaling) \n
1771 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1772 /// 0x17: Ordered (signaling) \n
1773 /// 0x18: Equal (unordered, signaling) \n
1774 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1775 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1776 /// 0x1B: False (ordered, signaling) \n
1777 /// 0x1C: Not-equal (ordered, signaling) \n
1778 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1779 /// 0x1E: Greater-than (ordered, non-signaling) \n
1780 /// 0x1F: True (unordered, signaling)
1781 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1782 #define _mm256_cmp_pd(a, b, c) \
1783 ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1784 (__v4df)(__m256d)(b), (c)))
1785
1786 /// Compares each of the corresponding values of two 256-bit vectors of
1787 /// [8 x float], using the operation specified by the immediate integer
1788 /// operand.
1789 ///
1790 /// Returns a [8 x float] vector consisting of eight floats corresponding to
1791 /// the eight comparison results: zero if the comparison is false, and all
1792 /// 1's if the comparison is true.
1793 ///
1794 /// \headerfile <x86intrin.h>
1795 ///
1796 /// \code
1797 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1798 /// \endcode
1799 ///
1800 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1801 ///
1802 /// \param a
1803 /// A 256-bit vector of [8 x float].
1804 /// \param b
1805 /// A 256-bit vector of [8 x float].
1806 /// \param c
1807 /// An immediate integer operand, with bits [4:0] specifying which comparison
1808 /// operation to use: \n
1809 /// 0x00: Equal (ordered, non-signaling) \n
1810 /// 0x01: Less-than (ordered, signaling) \n
1811 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1812 /// 0x03: Unordered (non-signaling) \n
1813 /// 0x04: Not-equal (unordered, non-signaling) \n
1814 /// 0x05: Not-less-than (unordered, signaling) \n
1815 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1816 /// 0x07: Ordered (non-signaling) \n
1817 /// 0x08: Equal (unordered, non-signaling) \n
1818 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1819 /// 0x0A: Not-greater-than (unordered, signaling) \n
1820 /// 0x0B: False (ordered, non-signaling) \n
1821 /// 0x0C: Not-equal (ordered, non-signaling) \n
1822 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1823 /// 0x0E: Greater-than (ordered, signaling) \n
1824 /// 0x0F: True (unordered, non-signaling) \n
1825 /// 0x10: Equal (ordered, signaling) \n
1826 /// 0x11: Less-than (ordered, non-signaling) \n
1827 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1828 /// 0x13: Unordered (signaling) \n
1829 /// 0x14: Not-equal (unordered, signaling) \n
1830 /// 0x15: Not-less-than (unordered, non-signaling) \n
1831 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1832 /// 0x17: Ordered (signaling) \n
1833 /// 0x18: Equal (unordered, signaling) \n
1834 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1835 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1836 /// 0x1B: False (ordered, signaling) \n
1837 /// 0x1C: Not-equal (ordered, signaling) \n
1838 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1839 /// 0x1E: Greater-than (ordered, non-signaling) \n
1840 /// 0x1F: True (unordered, signaling)
1841 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1842 #define _mm256_cmp_ps(a, b, c) \
1843 ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1844 (__v8sf)(__m256)(b), (c)))
1845
1846 /// Compares each of the corresponding scalar double-precision values of
1847 /// two 128-bit vectors of [2 x double], using the operation specified by the
1848 /// immediate integer operand.
1849 ///
1850 /// If the result is true, all 64 bits of the destination vector are set;
1851 /// otherwise they are cleared.
1852 ///
1853 /// \headerfile <x86intrin.h>
1854 ///
1855 /// \code
1856 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1857 /// \endcode
1858 ///
1859 /// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1860 ///
1861 /// \param a
1862 /// A 128-bit vector of [2 x double].
1863 /// \param b
1864 /// A 128-bit vector of [2 x double].
1865 /// \param c
1866 /// An immediate integer operand, with bits [4:0] specifying which comparison
1867 /// operation to use: \n
1868 /// 0x00: Equal (ordered, non-signaling) \n
1869 /// 0x01: Less-than (ordered, signaling) \n
1870 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1871 /// 0x03: Unordered (non-signaling) \n
1872 /// 0x04: Not-equal (unordered, non-signaling) \n
1873 /// 0x05: Not-less-than (unordered, signaling) \n
1874 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1875 /// 0x07: Ordered (non-signaling) \n
1876 /// 0x08: Equal (unordered, non-signaling) \n
1877 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1878 /// 0x0A: Not-greater-than (unordered, signaling) \n
1879 /// 0x0B: False (ordered, non-signaling) \n
1880 /// 0x0C: Not-equal (ordered, non-signaling) \n
1881 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1882 /// 0x0E: Greater-than (ordered, signaling) \n
1883 /// 0x0F: True (unordered, non-signaling) \n
1884 /// 0x10: Equal (ordered, signaling) \n
1885 /// 0x11: Less-than (ordered, non-signaling) \n
1886 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1887 /// 0x13: Unordered (signaling) \n
1888 /// 0x14: Not-equal (unordered, signaling) \n
1889 /// 0x15: Not-less-than (unordered, non-signaling) \n
1890 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1891 /// 0x17: Ordered (signaling) \n
1892 /// 0x18: Equal (unordered, signaling) \n
1893 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1894 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1895 /// 0x1B: False (ordered, signaling) \n
1896 /// 0x1C: Not-equal (ordered, signaling) \n
1897 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1898 /// 0x1E: Greater-than (ordered, non-signaling) \n
1899 /// 0x1F: True (unordered, signaling)
1900 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1901 #define _mm_cmp_sd(a, b, c) \
1902 ((__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1903 (__v2df)(__m128d)(b), (c)))
1904
1905 /// Compares each of the corresponding scalar values of two 128-bit
1906 /// vectors of [4 x float], using the operation specified by the immediate
1907 /// integer operand.
1908 ///
1909 /// If the result is true, all 32 bits of the destination vector are set;
1910 /// otherwise they are cleared.
1911 ///
1912 /// \headerfile <x86intrin.h>
1913 ///
1914 /// \code
1915 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1916 /// \endcode
1917 ///
1918 /// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1919 ///
1920 /// \param a
1921 /// A 128-bit vector of [4 x float].
1922 /// \param b
1923 /// A 128-bit vector of [4 x float].
1924 /// \param c
1925 /// An immediate integer operand, with bits [4:0] specifying which comparison
1926 /// operation to use: \n
1927 /// 0x00: Equal (ordered, non-signaling) \n
1928 /// 0x01: Less-than (ordered, signaling) \n
1929 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1930 /// 0x03: Unordered (non-signaling) \n
1931 /// 0x04: Not-equal (unordered, non-signaling) \n
1932 /// 0x05: Not-less-than (unordered, signaling) \n
1933 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1934 /// 0x07: Ordered (non-signaling) \n
1935 /// 0x08: Equal (unordered, non-signaling) \n
1936 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1937 /// 0x0A: Not-greater-than (unordered, signaling) \n
1938 /// 0x0B: False (ordered, non-signaling) \n
1939 /// 0x0C: Not-equal (ordered, non-signaling) \n
1940 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1941 /// 0x0E: Greater-than (ordered, signaling) \n
1942 /// 0x0F: True (unordered, non-signaling) \n
1943 /// 0x10: Equal (ordered, signaling) \n
1944 /// 0x11: Less-than (ordered, non-signaling) \n
1945 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1946 /// 0x13: Unordered (signaling) \n
1947 /// 0x14: Not-equal (unordered, signaling) \n
1948 /// 0x15: Not-less-than (unordered, non-signaling) \n
1949 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1950 /// 0x17: Ordered (signaling) \n
1951 /// 0x18: Equal (unordered, signaling) \n
1952 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1953 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1954 /// 0x1B: False (ordered, signaling) \n
1955 /// 0x1C: Not-equal (ordered, signaling) \n
1956 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1957 /// 0x1E: Greater-than (ordered, non-signaling) \n
1958 /// 0x1F: True (unordered, signaling)
1959 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1960 #define _mm_cmp_ss(a, b, c) \
1961 ((__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1962 (__v4sf)(__m128)(b), (c)))
1963
1964 /// Takes a [8 x i32] vector and returns the vector element value
1965 /// indexed by the immediate constant operand.
1966 ///
1967 /// \headerfile <x86intrin.h>
1968 ///
1969 /// \code
1970 /// int _mm256_extract_epi32(__m256i X, const int N);
1971 /// \endcode
1972 ///
1973 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1974 /// instruction.
1975 ///
1976 /// \param X
1977 /// A 256-bit vector of [8 x i32].
1978 /// \param N
1979 /// An immediate integer operand with bits [2:0] determining which vector
1980 /// element is extracted and returned.
1981 /// \returns A 32-bit integer containing the extracted 32 bits of extended
1982 /// packed data.
1983 #define _mm256_extract_epi32(X, N) \
1984 ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N)))
1985
1986 /// Takes a [16 x i16] vector and returns the vector element value
1987 /// indexed by the immediate constant operand.
1988 ///
1989 /// \headerfile <x86intrin.h>
1990 ///
1991 /// \code
1992 /// int _mm256_extract_epi16(__m256i X, const int N);
1993 /// \endcode
1994 ///
1995 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1996 /// instruction.
1997 ///
1998 /// \param X
1999 /// A 256-bit integer vector of [16 x i16].
2000 /// \param N
2001 /// An immediate integer operand with bits [3:0] determining which vector
2002 /// element is extracted and returned.
2003 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
2004 /// packed data.
2005 #define _mm256_extract_epi16(X, N) \
2006 ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
2007 (int)(N)))
2008
2009 /// Takes a [32 x i8] vector and returns the vector element value
2010 /// indexed by the immediate constant operand.
2011 ///
2012 /// \headerfile <x86intrin.h>
2013 ///
2014 /// \code
2015 /// int _mm256_extract_epi8(__m256i X, const int N);
2016 /// \endcode
2017 ///
2018 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2019 /// instruction.
2020 ///
2021 /// \param X
2022 /// A 256-bit integer vector of [32 x i8].
2023 /// \param N
2024 /// An immediate integer operand with bits [4:0] determining which vector
2025 /// element is extracted and returned.
2026 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2027 /// packed data.
2028 #define _mm256_extract_epi8(X, N) \
2029 ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2030 (int)(N)))
2031
2032 #ifdef __x86_64__
2033 /// Takes a [4 x i64] vector and returns the vector element value
2034 /// indexed by the immediate constant operand.
2035 ///
2036 /// \headerfile <x86intrin.h>
2037 ///
2038 /// \code
2039 /// long long _mm256_extract_epi64(__m256i X, const int N);
2040 /// \endcode
2041 ///
2042 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2043 /// instruction.
2044 ///
2045 /// \param X
2046 /// A 256-bit integer vector of [4 x i64].
2047 /// \param N
2048 /// An immediate integer operand with bits [1:0] determining which vector
2049 /// element is extracted and returned.
2050 /// \returns A 64-bit integer containing the extracted 64 bits of extended
2051 /// packed data.
2052 #define _mm256_extract_epi64(X, N) \
2053 ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N)))
2054 #endif
2055
2056 /// Takes a [8 x i32] vector and replaces the vector element value
2057 /// indexed by the immediate constant operand by a new value. Returns the
2058 /// modified vector.
2059 ///
2060 /// \headerfile <x86intrin.h>
2061 ///
2062 /// \code
2063 /// __m256i _mm256_insert_epi32(__m256i X, int I, const int N);
2064 /// \endcode
2065 ///
2066 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2067 /// instruction.
2068 ///
2069 /// \param X
2070 /// A vector of [8 x i32] to be used by the insert operation.
2071 /// \param I
2072 /// An integer value. The replacement value for the insert operation.
2073 /// \param N
2074 /// An immediate integer specifying the index of the vector element to be
2075 /// replaced.
2076 /// \returns A copy of vector \a X, after replacing its element indexed by
2077 /// \a N with \a I.
2078 #define _mm256_insert_epi32(X, I, N) \
2079 ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2080 (int)(I), (int)(N)))
2081
2082
2083 /// Takes a [16 x i16] vector and replaces the vector element value
2084 /// indexed by the immediate constant operand with a new value. Returns the
2085 /// modified vector.
2086 ///
2087 /// \headerfile <x86intrin.h>
2088 ///
2089 /// \code
2090 /// __m256i _mm256_insert_epi16(__m256i X, int I, const int N);
2091 /// \endcode
2092 ///
2093 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2094 /// instruction.
2095 ///
2096 /// \param X
2097 /// A vector of [16 x i16] to be used by the insert operation.
2098 /// \param I
2099 /// An i16 integer value. The replacement value for the insert operation.
2100 /// \param N
2101 /// An immediate integer specifying the index of the vector element to be
2102 /// replaced.
2103 /// \returns A copy of vector \a X, after replacing its element indexed by
2104 /// \a N with \a I.
2105 #define _mm256_insert_epi16(X, I, N) \
2106 ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2107 (int)(I), (int)(N)))
2108
2109 /// Takes a [32 x i8] vector and replaces the vector element value
2110 /// indexed by the immediate constant operand with a new value. Returns the
2111 /// modified vector.
2112 ///
2113 /// \headerfile <x86intrin.h>
2114 ///
2115 /// \code
2116 /// __m256i _mm256_insert_epi8(__m256i X, int I, const int N);
2117 /// \endcode
2118 ///
2119 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2120 /// instruction.
2121 ///
2122 /// \param X
2123 /// A vector of [32 x i8] to be used by the insert operation.
2124 /// \param I
2125 /// An i8 integer value. The replacement value for the insert operation.
2126 /// \param N
2127 /// An immediate integer specifying the index of the vector element to be
2128 /// replaced.
2129 /// \returns A copy of vector \a X, after replacing its element indexed by
2130 /// \a N with \a I.
2131 #define _mm256_insert_epi8(X, I, N) \
2132 ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2133 (int)(I), (int)(N)))
2134
2135 #ifdef __x86_64__
2136 /// Takes a [4 x i64] vector and replaces the vector element value
2137 /// indexed by the immediate constant operand with a new value. Returns the
2138 /// modified vector.
2139 ///
2140 /// \headerfile <x86intrin.h>
2141 ///
2142 /// \code
2143 /// __m256i _mm256_insert_epi64(__m256i X, int I, const int N);
2144 /// \endcode
2145 ///
2146 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2147 /// instruction.
2148 ///
2149 /// \param X
2150 /// A vector of [4 x i64] to be used by the insert operation.
2151 /// \param I
2152 /// A 64-bit integer value. The replacement value for the insert operation.
2153 /// \param N
2154 /// An immediate integer specifying the index of the vector element to be
2155 /// replaced.
2156 /// \returns A copy of vector \a X, after replacing its element indexed by
2157 /// \a N with \a I.
2158 #define _mm256_insert_epi64(X, I, N) \
2159 ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2160 (long long)(I), (int)(N)))
2161 #endif
2162
2163 /* Conversion */
2164 /// Converts a vector of [4 x i32] into a vector of [4 x double].
2165 ///
2166 /// \headerfile <x86intrin.h>
2167 ///
2168 /// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2169 ///
2170 /// \param __a
2171 /// A 128-bit integer vector of [4 x i32].
2172 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2173 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtepi32_pd(__m128i __a)2174 _mm256_cvtepi32_pd(__m128i __a)
2175 {
2176 return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2177 }
2178
2179 /// Converts a vector of [8 x i32] into a vector of [8 x float].
2180 ///
2181 /// \headerfile <x86intrin.h>
2182 ///
2183 /// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2184 ///
2185 /// \param __a
2186 /// A 256-bit integer vector.
2187 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2188 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_cvtepi32_ps(__m256i __a)2189 _mm256_cvtepi32_ps(__m256i __a)
2190 {
2191 return (__m256)__builtin_convertvector((__v8si)__a, __v8sf);
2192 }
2193
2194 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2195 /// [4 x float].
2196 ///
2197 /// \headerfile <x86intrin.h>
2198 ///
2199 /// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2200 ///
2201 /// \param __a
2202 /// A 256-bit vector of [4 x double].
2203 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2204 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_cvtpd_ps(__m256d __a)2205 _mm256_cvtpd_ps(__m256d __a)
2206 {
2207 return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2208 }
2209
2210 /// Converts a vector of [8 x float] into a vector of [8 x i32].
2211 ///
2212 /// \headerfile <x86intrin.h>
2213 ///
2214 /// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2215 ///
2216 /// \param __a
2217 /// A 256-bit vector of [8 x float].
2218 /// \returns A 256-bit integer vector containing the converted values.
2219 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvtps_epi32(__m256 __a)2220 _mm256_cvtps_epi32(__m256 __a)
2221 {
2222 return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2223 }
2224
2225 /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2226 /// x double].
2227 ///
2228 /// \headerfile <x86intrin.h>
2229 ///
2230 /// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2231 ///
2232 /// \param __a
2233 /// A 128-bit vector of [4 x float].
2234 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2235 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtps_pd(__m128 __a)2236 _mm256_cvtps_pd(__m128 __a)
2237 {
2238 return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2239 }
2240
2241 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2242 /// x i32], truncating the result by rounding towards zero when it is
2243 /// inexact.
2244 ///
2245 /// \headerfile <x86intrin.h>
2246 ///
2247 /// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2248 ///
2249 /// \param __a
2250 /// A 256-bit vector of [4 x double].
2251 /// \returns A 128-bit integer vector containing the converted values.
2252 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvttpd_epi32(__m256d __a)2253 _mm256_cvttpd_epi32(__m256d __a)
2254 {
2255 return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2256 }
2257
2258 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2259 /// x i32]. When a conversion is inexact, the value returned is rounded
2260 /// according to the rounding control bits in the MXCSR register.
2261 ///
2262 /// \headerfile <x86intrin.h>
2263 ///
2264 /// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2265 ///
2266 /// \param __a
2267 /// A 256-bit vector of [4 x double].
2268 /// \returns A 128-bit integer vector containing the converted values.
2269 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvtpd_epi32(__m256d __a)2270 _mm256_cvtpd_epi32(__m256d __a)
2271 {
2272 return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2273 }
2274
2275 /// Converts a vector of [8 x float] into a vector of [8 x i32],
2276 /// truncating the result by rounding towards zero when it is inexact.
2277 ///
2278 /// \headerfile <x86intrin.h>
2279 ///
2280 /// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2281 ///
2282 /// \param __a
2283 /// A 256-bit vector of [8 x float].
2284 /// \returns A 256-bit integer vector containing the converted values.
2285 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvttps_epi32(__m256 __a)2286 _mm256_cvttps_epi32(__m256 __a)
2287 {
2288 return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2289 }
2290
2291 /// Returns the first element of the input vector of [4 x double].
2292 ///
2293 /// \headerfile <x86intrin.h>
2294 ///
2295 /// This intrinsic is a utility function and does not correspond to a specific
2296 /// instruction.
2297 ///
2298 /// \param __a
2299 /// A 256-bit vector of [4 x double].
2300 /// \returns A 64 bit double containing the first element of the input vector.
2301 static __inline double __DEFAULT_FN_ATTRS
_mm256_cvtsd_f64(__m256d __a)2302 _mm256_cvtsd_f64(__m256d __a)
2303 {
2304 return __a[0];
2305 }
2306
2307 /// Returns the first element of the input vector of [8 x i32].
2308 ///
2309 /// \headerfile <x86intrin.h>
2310 ///
2311 /// This intrinsic is a utility function and does not correspond to a specific
2312 /// instruction.
2313 ///
2314 /// \param __a
2315 /// A 256-bit vector of [8 x i32].
2316 /// \returns A 32 bit integer containing the first element of the input vector.
2317 static __inline int __DEFAULT_FN_ATTRS
_mm256_cvtsi256_si32(__m256i __a)2318 _mm256_cvtsi256_si32(__m256i __a)
2319 {
2320 __v8si __b = (__v8si)__a;
2321 return __b[0];
2322 }
2323
2324 /// Returns the first element of the input vector of [8 x float].
2325 ///
2326 /// \headerfile <x86intrin.h>
2327 ///
2328 /// This intrinsic is a utility function and does not correspond to a specific
2329 /// instruction.
2330 ///
2331 /// \param __a
2332 /// A 256-bit vector of [8 x float].
2333 /// \returns A 32 bit float containing the first element of the input vector.
2334 static __inline float __DEFAULT_FN_ATTRS
_mm256_cvtss_f32(__m256 __a)2335 _mm256_cvtss_f32(__m256 __a)
2336 {
2337 return __a[0];
2338 }
2339
2340 /* Vector replicate */
2341 /// Moves and duplicates odd-indexed values from a 256-bit vector of
2342 /// [8 x float] to float values in a 256-bit vector of [8 x float].
2343 ///
2344 /// \headerfile <x86intrin.h>
2345 ///
2346 /// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2347 ///
2348 /// \param __a
2349 /// A 256-bit vector of [8 x float]. \n
2350 /// Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2351 /// the return value. \n
2352 /// Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2353 /// the return value. \n
2354 /// Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2355 /// return value. \n
2356 /// Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2357 /// return value.
2358 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2359 /// values.
2360 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 __a)2361 _mm256_movehdup_ps(__m256 __a)
2362 {
2363 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2364 }
2365
2366 /// Moves and duplicates even-indexed values from a 256-bit vector of
2367 /// [8 x float] to float values in a 256-bit vector of [8 x float].
2368 ///
2369 /// \headerfile <x86intrin.h>
2370 ///
2371 /// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2372 ///
2373 /// \param __a
2374 /// A 256-bit vector of [8 x float]. \n
2375 /// Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2376 /// the return value. \n
2377 /// Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2378 /// the return value. \n
2379 /// Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2380 /// return value. \n
2381 /// Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2382 /// return value.
2383 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2384 /// values.
2385 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_moveldup_ps(__m256 __a)2386 _mm256_moveldup_ps(__m256 __a)
2387 {
2388 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2389 }
2390
2391 /// Moves and duplicates double-precision floating point values from a
2392 /// 256-bit vector of [4 x double] to double-precision values in a 256-bit
2393 /// vector of [4 x double].
2394 ///
2395 /// \headerfile <x86intrin.h>
2396 ///
2397 /// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2398 ///
2399 /// \param __a
2400 /// A 256-bit vector of [4 x double]. \n
2401 /// Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2402 /// return value. \n
2403 /// Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2404 /// the return value.
2405 /// \returns A 256-bit vector of [4 x double] containing the moved and
2406 /// duplicated values.
2407 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_movedup_pd(__m256d __a)2408 _mm256_movedup_pd(__m256d __a)
2409 {
2410 return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2411 }
2412
2413 /* Unpack and Interleave */
2414 /// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2415 /// [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2416 ///
2417 /// \headerfile <x86intrin.h>
2418 ///
2419 /// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2420 ///
2421 /// \param __a
2422 /// A 256-bit floating-point vector of [4 x double]. \n
2423 /// Bits [127:64] are written to bits [63:0] of the return value. \n
2424 /// Bits [255:192] are written to bits [191:128] of the return value. \n
2425 /// \param __b
2426 /// A 256-bit floating-point vector of [4 x double]. \n
2427 /// Bits [127:64] are written to bits [127:64] of the return value. \n
2428 /// Bits [255:192] are written to bits [255:192] of the return value. \n
2429 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2430 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpackhi_pd(__m256d __a,__m256d __b)2431 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
2432 {
2433 return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2434 }
2435
2436 /// Unpacks the even-indexed vector elements from two 256-bit vectors of
2437 /// [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2438 ///
2439 /// \headerfile <x86intrin.h>
2440 ///
2441 /// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2442 ///
2443 /// \param __a
2444 /// A 256-bit floating-point vector of [4 x double]. \n
2445 /// Bits [63:0] are written to bits [63:0] of the return value. \n
2446 /// Bits [191:128] are written to bits [191:128] of the return value.
2447 /// \param __b
2448 /// A 256-bit floating-point vector of [4 x double]. \n
2449 /// Bits [63:0] are written to bits [127:64] of the return value. \n
2450 /// Bits [191:128] are written to bits [255:192] of the return value. \n
2451 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2452 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpacklo_pd(__m256d __a,__m256d __b)2453 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
2454 {
2455 return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2456 }
2457
2458 /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2459 /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2460 /// vector of [8 x float].
2461 ///
2462 /// \headerfile <x86intrin.h>
2463 ///
2464 /// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2465 ///
2466 /// \param __a
2467 /// A 256-bit vector of [8 x float]. \n
2468 /// Bits [95:64] are written to bits [31:0] of the return value. \n
2469 /// Bits [127:96] are written to bits [95:64] of the return value. \n
2470 /// Bits [223:192] are written to bits [159:128] of the return value. \n
2471 /// Bits [255:224] are written to bits [223:192] of the return value.
2472 /// \param __b
2473 /// A 256-bit vector of [8 x float]. \n
2474 /// Bits [95:64] are written to bits [63:32] of the return value. \n
2475 /// Bits [127:96] are written to bits [127:96] of the return value. \n
2476 /// Bits [223:192] are written to bits [191:160] of the return value. \n
2477 /// Bits [255:224] are written to bits [255:224] of the return value.
2478 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2479 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpackhi_ps(__m256 __a,__m256 __b)2480 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
2481 {
2482 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2483 }
2484
2485 /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2486 /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2487 /// vector of [8 x float].
2488 ///
2489 /// \headerfile <x86intrin.h>
2490 ///
2491 /// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2492 ///
2493 /// \param __a
2494 /// A 256-bit vector of [8 x float]. \n
2495 /// Bits [31:0] are written to bits [31:0] of the return value. \n
2496 /// Bits [63:32] are written to bits [95:64] of the return value. \n
2497 /// Bits [159:128] are written to bits [159:128] of the return value. \n
2498 /// Bits [191:160] are written to bits [223:192] of the return value.
2499 /// \param __b
2500 /// A 256-bit vector of [8 x float]. \n
2501 /// Bits [31:0] are written to bits [63:32] of the return value. \n
2502 /// Bits [63:32] are written to bits [127:96] of the return value. \n
2503 /// Bits [159:128] are written to bits [191:160] of the return value. \n
2504 /// Bits [191:160] are written to bits [255:224] of the return value.
2505 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2506 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpacklo_ps(__m256 __a,__m256 __b)2507 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
2508 {
2509 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2510 }
2511
2512 /* Bit Test */
2513 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2514 /// element-by-element comparison of the double-precision element in the
2515 /// first source vector and the corresponding element in the second source
2516 /// vector.
2517 ///
2518 /// The EFLAGS register is updated as follows: \n
2519 /// If there is at least one pair of double-precision elements where the
2520 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2521 /// ZF flag is set to 1. \n
2522 /// If there is at least one pair of double-precision elements where the
2523 /// sign-bit of the first element is 0 and the sign-bit of the second element
2524 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2525 /// This intrinsic returns the value of the ZF flag.
2526 ///
2527 /// \headerfile <x86intrin.h>
2528 ///
2529 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2530 ///
2531 /// \param __a
2532 /// A 128-bit vector of [2 x double].
2533 /// \param __b
2534 /// A 128-bit vector of [2 x double].
2535 /// \returns the ZF flag in the EFLAGS register.
2536 static __inline int __DEFAULT_FN_ATTRS128
_mm_testz_pd(__m128d __a,__m128d __b)2537 _mm_testz_pd(__m128d __a, __m128d __b)
2538 {
2539 return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2540 }
2541
2542 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2543 /// element-by-element comparison of the double-precision element in the
2544 /// first source vector and the corresponding element in the second source
2545 /// vector.
2546 ///
2547 /// The EFLAGS register is updated as follows: \n
2548 /// If there is at least one pair of double-precision elements where the
2549 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2550 /// ZF flag is set to 1. \n
2551 /// If there is at least one pair of double-precision elements where the
2552 /// sign-bit of the first element is 0 and the sign-bit of the second element
2553 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2554 /// This intrinsic returns the value of the CF flag.
2555 ///
2556 /// \headerfile <x86intrin.h>
2557 ///
2558 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2559 ///
2560 /// \param __a
2561 /// A 128-bit vector of [2 x double].
2562 /// \param __b
2563 /// A 128-bit vector of [2 x double].
2564 /// \returns the CF flag in the EFLAGS register.
2565 static __inline int __DEFAULT_FN_ATTRS128
_mm_testc_pd(__m128d __a,__m128d __b)2566 _mm_testc_pd(__m128d __a, __m128d __b)
2567 {
2568 return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2569 }
2570
2571 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2572 /// element-by-element comparison of the double-precision element in the
2573 /// first source vector and the corresponding element in the second source
2574 /// vector.
2575 ///
2576 /// The EFLAGS register is updated as follows: \n
2577 /// If there is at least one pair of double-precision elements where the
2578 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2579 /// ZF flag is set to 1. \n
2580 /// If there is at least one pair of double-precision elements where the
2581 /// sign-bit of the first element is 0 and the sign-bit of the second element
2582 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2583 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2584 /// otherwise it returns 0.
2585 ///
2586 /// \headerfile <x86intrin.h>
2587 ///
2588 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2589 ///
2590 /// \param __a
2591 /// A 128-bit vector of [2 x double].
2592 /// \param __b
2593 /// A 128-bit vector of [2 x double].
2594 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2595 static __inline int __DEFAULT_FN_ATTRS128
_mm_testnzc_pd(__m128d __a,__m128d __b)2596 _mm_testnzc_pd(__m128d __a, __m128d __b)
2597 {
2598 return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2599 }
2600
2601 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2602 /// element-by-element comparison of the single-precision element in the
2603 /// first source vector and the corresponding element in the second source
2604 /// vector.
2605 ///
2606 /// The EFLAGS register is updated as follows: \n
2607 /// If there is at least one pair of single-precision elements where the
2608 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2609 /// ZF flag is set to 1. \n
2610 /// If there is at least one pair of single-precision elements where the
2611 /// sign-bit of the first element is 0 and the sign-bit of the second element
2612 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2613 /// This intrinsic returns the value of the ZF flag.
2614 ///
2615 /// \headerfile <x86intrin.h>
2616 ///
2617 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2618 ///
2619 /// \param __a
2620 /// A 128-bit vector of [4 x float].
2621 /// \param __b
2622 /// A 128-bit vector of [4 x float].
2623 /// \returns the ZF flag.
2624 static __inline int __DEFAULT_FN_ATTRS128
_mm_testz_ps(__m128 __a,__m128 __b)2625 _mm_testz_ps(__m128 __a, __m128 __b)
2626 {
2627 return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2628 }
2629
2630 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2631 /// element-by-element comparison of the single-precision element in the
2632 /// first source vector and the corresponding element in the second source
2633 /// vector.
2634 ///
2635 /// The EFLAGS register is updated as follows: \n
2636 /// If there is at least one pair of single-precision elements where the
2637 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2638 /// ZF flag is set to 1. \n
2639 /// If there is at least one pair of single-precision elements where the
2640 /// sign-bit of the first element is 0 and the sign-bit of the second element
2641 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2642 /// This intrinsic returns the value of the CF flag.
2643 ///
2644 /// \headerfile <x86intrin.h>
2645 ///
2646 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2647 ///
2648 /// \param __a
2649 /// A 128-bit vector of [4 x float].
2650 /// \param __b
2651 /// A 128-bit vector of [4 x float].
2652 /// \returns the CF flag.
2653 static __inline int __DEFAULT_FN_ATTRS128
_mm_testc_ps(__m128 __a,__m128 __b)2654 _mm_testc_ps(__m128 __a, __m128 __b)
2655 {
2656 return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2657 }
2658
2659 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2660 /// element-by-element comparison of the single-precision element in the
2661 /// first source vector and the corresponding element in the second source
2662 /// vector.
2663 ///
2664 /// The EFLAGS register is updated as follows: \n
2665 /// If there is at least one pair of single-precision elements where the
2666 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2667 /// ZF flag is set to 1. \n
2668 /// If there is at least one pair of single-precision elements where the
2669 /// sign-bit of the first element is 0 and the sign-bit of the second element
2670 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2671 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2672 /// otherwise it returns 0.
2673 ///
2674 /// \headerfile <x86intrin.h>
2675 ///
2676 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2677 ///
2678 /// \param __a
2679 /// A 128-bit vector of [4 x float].
2680 /// \param __b
2681 /// A 128-bit vector of [4 x float].
2682 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2683 static __inline int __DEFAULT_FN_ATTRS128
_mm_testnzc_ps(__m128 __a,__m128 __b)2684 _mm_testnzc_ps(__m128 __a, __m128 __b)
2685 {
2686 return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2687 }
2688
2689 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2690 /// element-by-element comparison of the double-precision elements in the
2691 /// first source vector and the corresponding elements in the second source
2692 /// vector.
2693 ///
2694 /// The EFLAGS register is updated as follows: \n
2695 /// If there is at least one pair of double-precision elements where the
2696 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2697 /// ZF flag is set to 1. \n
2698 /// If there is at least one pair of double-precision elements where the
2699 /// sign-bit of the first element is 0 and the sign-bit of the second element
2700 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2701 /// This intrinsic returns the value of the ZF flag.
2702 ///
2703 /// \headerfile <x86intrin.h>
2704 ///
2705 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2706 ///
2707 /// \param __a
2708 /// A 256-bit vector of [4 x double].
2709 /// \param __b
2710 /// A 256-bit vector of [4 x double].
2711 /// \returns the ZF flag.
2712 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_pd(__m256d __a,__m256d __b)2713 _mm256_testz_pd(__m256d __a, __m256d __b)
2714 {
2715 return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2716 }
2717
2718 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2719 /// element-by-element comparison of the double-precision elements in the
2720 /// first source vector and the corresponding elements in the second source
2721 /// vector.
2722 ///
2723 /// The EFLAGS register is updated as follows: \n
2724 /// If there is at least one pair of double-precision elements where the
2725 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2726 /// ZF flag is set to 1. \n
2727 /// If there is at least one pair of double-precision elements where the
2728 /// sign-bit of the first element is 0 and the sign-bit of the second element
2729 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2730 /// This intrinsic returns the value of the CF flag.
2731 ///
2732 /// \headerfile <x86intrin.h>
2733 ///
2734 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2735 ///
2736 /// \param __a
2737 /// A 256-bit vector of [4 x double].
2738 /// \param __b
2739 /// A 256-bit vector of [4 x double].
2740 /// \returns the CF flag.
2741 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_pd(__m256d __a,__m256d __b)2742 _mm256_testc_pd(__m256d __a, __m256d __b)
2743 {
2744 return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2745 }
2746
2747 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2748 /// element-by-element comparison of the double-precision elements in the
2749 /// first source vector and the corresponding elements in the second source
2750 /// vector.
2751 ///
2752 /// The EFLAGS register is updated as follows: \n
2753 /// If there is at least one pair of double-precision elements where the
2754 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2755 /// ZF flag is set to 1. \n
2756 /// If there is at least one pair of double-precision elements where the
2757 /// sign-bit of the first element is 0 and the sign-bit of the second element
2758 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2759 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2760 /// otherwise it returns 0.
2761 ///
2762 /// \headerfile <x86intrin.h>
2763 ///
2764 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2765 ///
2766 /// \param __a
2767 /// A 256-bit vector of [4 x double].
2768 /// \param __b
2769 /// A 256-bit vector of [4 x double].
2770 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2771 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_pd(__m256d __a,__m256d __b)2772 _mm256_testnzc_pd(__m256d __a, __m256d __b)
2773 {
2774 return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2775 }
2776
2777 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2778 /// element-by-element comparison of the single-precision element in the
2779 /// first source vector and the corresponding element in the second source
2780 /// vector.
2781 ///
2782 /// The EFLAGS register is updated as follows: \n
2783 /// If there is at least one pair of single-precision elements where the
2784 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2785 /// ZF flag is set to 1. \n
2786 /// If there is at least one pair of single-precision elements where the
2787 /// sign-bit of the first element is 0 and the sign-bit of the second element
2788 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2789 /// This intrinsic returns the value of the ZF flag.
2790 ///
2791 /// \headerfile <x86intrin.h>
2792 ///
2793 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2794 ///
2795 /// \param __a
2796 /// A 256-bit vector of [8 x float].
2797 /// \param __b
2798 /// A 256-bit vector of [8 x float].
2799 /// \returns the ZF flag.
2800 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_ps(__m256 __a,__m256 __b)2801 _mm256_testz_ps(__m256 __a, __m256 __b)
2802 {
2803 return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2804 }
2805
2806 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2807 /// element-by-element comparison of the single-precision element in the
2808 /// first source vector and the corresponding element in the second source
2809 /// vector.
2810 ///
2811 /// The EFLAGS register is updated as follows: \n
2812 /// If there is at least one pair of single-precision elements where the
2813 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2814 /// ZF flag is set to 1. \n
2815 /// If there is at least one pair of single-precision elements where the
2816 /// sign-bit of the first element is 0 and the sign-bit of the second element
2817 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2818 /// This intrinsic returns the value of the CF flag.
2819 ///
2820 /// \headerfile <x86intrin.h>
2821 ///
2822 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2823 ///
2824 /// \param __a
2825 /// A 256-bit vector of [8 x float].
2826 /// \param __b
2827 /// A 256-bit vector of [8 x float].
2828 /// \returns the CF flag.
2829 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_ps(__m256 __a,__m256 __b)2830 _mm256_testc_ps(__m256 __a, __m256 __b)
2831 {
2832 return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2833 }
2834
2835 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2836 /// element-by-element comparison of the single-precision elements in the
2837 /// first source vector and the corresponding elements in the second source
2838 /// vector.
2839 ///
2840 /// The EFLAGS register is updated as follows: \n
2841 /// If there is at least one pair of single-precision elements where the
2842 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2843 /// ZF flag is set to 1. \n
2844 /// If there is at least one pair of single-precision elements where the
2845 /// sign-bit of the first element is 0 and the sign-bit of the second element
2846 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2847 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2848 /// otherwise it returns 0.
2849 ///
2850 /// \headerfile <x86intrin.h>
2851 ///
2852 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2853 ///
2854 /// \param __a
2855 /// A 256-bit vector of [8 x float].
2856 /// \param __b
2857 /// A 256-bit vector of [8 x float].
2858 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2859 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_ps(__m256 __a,__m256 __b)2860 _mm256_testnzc_ps(__m256 __a, __m256 __b)
2861 {
2862 return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2863 }
2864
2865 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2866 /// of the two source vectors.
2867 ///
2868 /// The EFLAGS register is updated as follows: \n
2869 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2870 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2871 /// If there is at least one pair of bits where the bit from the first source
2872 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2873 /// is set to 0. Otherwise the CF flag is set to 1. \n
2874 /// This intrinsic returns the value of the ZF flag.
2875 ///
2876 /// \headerfile <x86intrin.h>
2877 ///
2878 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2879 ///
2880 /// \param __a
2881 /// A 256-bit integer vector.
2882 /// \param __b
2883 /// A 256-bit integer vector.
2884 /// \returns the ZF flag.
2885 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_si256(__m256i __a,__m256i __b)2886 _mm256_testz_si256(__m256i __a, __m256i __b)
2887 {
2888 return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2889 }
2890
2891 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2892 /// of the two source vectors.
2893 ///
2894 /// The EFLAGS register is updated as follows: \n
2895 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2896 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2897 /// If there is at least one pair of bits where the bit from the first source
2898 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2899 /// is set to 0. Otherwise the CF flag is set to 1. \n
2900 /// This intrinsic returns the value of the CF flag.
2901 ///
2902 /// \headerfile <x86intrin.h>
2903 ///
2904 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2905 ///
2906 /// \param __a
2907 /// A 256-bit integer vector.
2908 /// \param __b
2909 /// A 256-bit integer vector.
2910 /// \returns the CF flag.
2911 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_si256(__m256i __a,__m256i __b)2912 _mm256_testc_si256(__m256i __a, __m256i __b)
2913 {
2914 return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2915 }
2916
2917 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2918 /// of the two source vectors.
2919 ///
2920 /// The EFLAGS register is updated as follows: \n
2921 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2922 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2923 /// If there is at least one pair of bits where the bit from the first source
2924 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2925 /// is set to 0. Otherwise the CF flag is set to 1. \n
2926 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2927 /// otherwise it returns 0.
2928 ///
2929 /// \headerfile <x86intrin.h>
2930 ///
2931 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2932 ///
2933 /// \param __a
2934 /// A 256-bit integer vector.
2935 /// \param __b
2936 /// A 256-bit integer vector.
2937 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2938 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_si256(__m256i __a,__m256i __b)2939 _mm256_testnzc_si256(__m256i __a, __m256i __b)
2940 {
2941 return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2942 }
2943
2944 /* Vector extract sign mask */
2945 /// Extracts the sign bits of double-precision floating point elements
2946 /// in a 256-bit vector of [4 x double] and writes them to the lower order
2947 /// bits of the return value.
2948 ///
2949 /// \headerfile <x86intrin.h>
2950 ///
2951 /// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2952 ///
2953 /// \param __a
2954 /// A 256-bit vector of [4 x double] containing the double-precision
2955 /// floating point values with sign bits to be extracted.
2956 /// \returns The sign bits from the operand, written to bits [3:0].
2957 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_pd(__m256d __a)2958 _mm256_movemask_pd(__m256d __a)
2959 {
2960 return __builtin_ia32_movmskpd256((__v4df)__a);
2961 }
2962
2963 /// Extracts the sign bits of single-precision floating point elements
2964 /// in a 256-bit vector of [8 x float] and writes them to the lower order
2965 /// bits of the return value.
2966 ///
2967 /// \headerfile <x86intrin.h>
2968 ///
2969 /// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
2970 ///
2971 /// \param __a
2972 /// A 256-bit vector of [8 x float] containing the single-precision floating
2973 /// point values with sign bits to be extracted.
2974 /// \returns The sign bits from the operand, written to bits [7:0].
2975 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_ps(__m256 __a)2976 _mm256_movemask_ps(__m256 __a)
2977 {
2978 return __builtin_ia32_movmskps256((__v8sf)__a);
2979 }
2980
2981 /* Vector __zero */
2982 /// Zeroes the contents of all XMM or YMM registers.
2983 ///
2984 /// \headerfile <x86intrin.h>
2985 ///
2986 /// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
2987 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
_mm256_zeroall(void)2988 _mm256_zeroall(void)
2989 {
2990 __builtin_ia32_vzeroall();
2991 }
2992
2993 /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
2994 ///
2995 /// \headerfile <x86intrin.h>
2996 ///
2997 /// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
2998 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
_mm256_zeroupper(void)2999 _mm256_zeroupper(void)
3000 {
3001 __builtin_ia32_vzeroupper();
3002 }
3003
3004 /* Vector load with broadcast */
3005 /// Loads a scalar single-precision floating point value from the
3006 /// specified address pointed to by \a __a and broadcasts it to the elements
3007 /// of a [4 x float] vector.
3008 ///
3009 /// \headerfile <x86intrin.h>
3010 ///
3011 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3012 ///
3013 /// \param __a
3014 /// The single-precision floating point value to be broadcast.
3015 /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
3016 /// equal to the broadcast value.
3017 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_broadcast_ss(float const * __a)3018 _mm_broadcast_ss(float const *__a)
3019 {
3020 float __f = *__a;
3021 return __extension__ (__m128)(__v4sf){ __f, __f, __f, __f };
3022 }
3023
3024 /// Loads a scalar double-precision floating point value from the
3025 /// specified address pointed to by \a __a and broadcasts it to the elements
3026 /// of a [4 x double] vector.
3027 ///
3028 /// \headerfile <x86intrin.h>
3029 ///
3030 /// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
3031 ///
3032 /// \param __a
3033 /// The double-precision floating point value to be broadcast.
3034 /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3035 /// equal to the broadcast value.
3036 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_sd(double const * __a)3037 _mm256_broadcast_sd(double const *__a)
3038 {
3039 double __d = *__a;
3040 return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d };
3041 }
3042
3043 /// Loads a scalar single-precision floating point value from the
3044 /// specified address pointed to by \a __a and broadcasts it to the elements
3045 /// of a [8 x float] vector.
3046 ///
3047 /// \headerfile <x86intrin.h>
3048 ///
3049 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3050 ///
3051 /// \param __a
3052 /// The single-precision floating point value to be broadcast.
3053 /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3054 /// equal to the broadcast value.
3055 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ss(float const * __a)3056 _mm256_broadcast_ss(float const *__a)
3057 {
3058 float __f = *__a;
3059 return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
3060 }
3061
3062 /// Loads the data from a 128-bit vector of [2 x double] from the
3063 /// specified address pointed to by \a __a and broadcasts it to 128-bit
3064 /// elements in a 256-bit vector of [4 x double].
3065 ///
3066 /// \headerfile <x86intrin.h>
3067 ///
3068 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3069 ///
3070 /// \param __a
3071 /// The 128-bit vector of [2 x double] to be broadcast.
3072 /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3073 /// equal to the broadcast value.
3074 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_pd(__m128d const * __a)3075 _mm256_broadcast_pd(__m128d const *__a)
3076 {
3077 __m128d __b = _mm_loadu_pd((const double *)__a);
3078 return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b,
3079 0, 1, 0, 1);
3080 }
3081
3082 /// Loads the data from a 128-bit vector of [4 x float] from the
3083 /// specified address pointed to by \a __a and broadcasts it to 128-bit
3084 /// elements in a 256-bit vector of [8 x float].
3085 ///
3086 /// \headerfile <x86intrin.h>
3087 ///
3088 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3089 ///
3090 /// \param __a
3091 /// The 128-bit vector of [4 x float] to be broadcast.
3092 /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3093 /// equal to the broadcast value.
3094 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ps(__m128 const * __a)3095 _mm256_broadcast_ps(__m128 const *__a)
3096 {
3097 __m128 __b = _mm_loadu_ps((const float *)__a);
3098 return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b,
3099 0, 1, 2, 3, 0, 1, 2, 3);
3100 }
3101
3102 /* SIMD load ops */
3103 /// Loads 4 double-precision floating point values from a 32-byte aligned
3104 /// memory location pointed to by \a __p into a vector of [4 x double].
3105 ///
3106 /// \headerfile <x86intrin.h>
3107 ///
3108 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3109 ///
3110 /// \param __p
3111 /// A 32-byte aligned pointer to a memory location containing
3112 /// double-precision floating point values.
3113 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3114 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_load_pd(double const * __p)3115 _mm256_load_pd(double const *__p)
3116 {
3117 return *(const __m256d *)__p;
3118 }
3119
3120 /// Loads 8 single-precision floating point values from a 32-byte aligned
3121 /// memory location pointed to by \a __p into a vector of [8 x float].
3122 ///
3123 /// \headerfile <x86intrin.h>
3124 ///
3125 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3126 ///
3127 /// \param __p
3128 /// A 32-byte aligned pointer to a memory location containing float values.
3129 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3130 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_load_ps(float const * __p)3131 _mm256_load_ps(float const *__p)
3132 {
3133 return *(const __m256 *)__p;
3134 }
3135
3136 /// Loads 4 double-precision floating point values from an unaligned
3137 /// memory location pointed to by \a __p into a vector of [4 x double].
3138 ///
3139 /// \headerfile <x86intrin.h>
3140 ///
3141 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3142 ///
3143 /// \param __p
3144 /// A pointer to a memory location containing double-precision floating
3145 /// point values.
3146 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3147 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu_pd(double const * __p)3148 _mm256_loadu_pd(double const *__p)
3149 {
3150 struct __loadu_pd {
3151 __m256d_u __v;
3152 } __attribute__((__packed__, __may_alias__));
3153 return ((const struct __loadu_pd*)__p)->__v;
3154 }
3155
3156 /// Loads 8 single-precision floating point values from an unaligned
3157 /// memory location pointed to by \a __p into a vector of [8 x float].
3158 ///
3159 /// \headerfile <x86intrin.h>
3160 ///
3161 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3162 ///
3163 /// \param __p
3164 /// A pointer to a memory location containing single-precision floating
3165 /// point values.
3166 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3167 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu_ps(float const * __p)3168 _mm256_loadu_ps(float const *__p)
3169 {
3170 struct __loadu_ps {
3171 __m256_u __v;
3172 } __attribute__((__packed__, __may_alias__));
3173 return ((const struct __loadu_ps*)__p)->__v;
3174 }
3175
3176 /// Loads 256 bits of integer data from a 32-byte aligned memory
3177 /// location pointed to by \a __p into elements of a 256-bit integer vector.
3178 ///
3179 /// \headerfile <x86intrin.h>
3180 ///
3181 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3182 ///
3183 /// \param __p
3184 /// A 32-byte aligned pointer to a 256-bit integer vector containing integer
3185 /// values.
3186 /// \returns A 256-bit integer vector containing the moved values.
3187 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_load_si256(__m256i const * __p)3188 _mm256_load_si256(__m256i const *__p)
3189 {
3190 return *__p;
3191 }
3192
3193 /// Loads 256 bits of integer data from an unaligned memory location
3194 /// pointed to by \a __p into a 256-bit integer vector.
3195 ///
3196 /// \headerfile <x86intrin.h>
3197 ///
3198 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3199 ///
3200 /// \param __p
3201 /// A pointer to a 256-bit integer vector containing integer values.
3202 /// \returns A 256-bit integer vector containing the moved values.
3203 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu_si256(__m256i_u const * __p)3204 _mm256_loadu_si256(__m256i_u const *__p)
3205 {
3206 struct __loadu_si256 {
3207 __m256i_u __v;
3208 } __attribute__((__packed__, __may_alias__));
3209 return ((const struct __loadu_si256*)__p)->__v;
3210 }
3211
3212 /// Loads 256 bits of integer data from an unaligned memory location
3213 /// pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3214 /// perform better than \c _mm256_loadu_si256 when the data crosses a cache
3215 /// line boundary.
3216 ///
3217 /// \headerfile <x86intrin.h>
3218 ///
3219 /// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3220 ///
3221 /// \param __p
3222 /// A pointer to a 256-bit integer vector containing integer values.
3223 /// \returns A 256-bit integer vector containing the moved values.
3224 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_lddqu_si256(__m256i_u const * __p)3225 _mm256_lddqu_si256(__m256i_u const *__p)
3226 {
3227 return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
3228 }
3229
3230 /* SIMD store ops */
3231 /// Stores double-precision floating point values from a 256-bit vector
3232 /// of [4 x double] to a 32-byte aligned memory location pointed to by
3233 /// \a __p.
3234 ///
3235 /// \headerfile <x86intrin.h>
3236 ///
3237 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3238 ///
3239 /// \param __p
3240 /// A 32-byte aligned pointer to a memory location that will receive the
3241 /// double-precision floaing point values.
3242 /// \param __a
3243 /// A 256-bit vector of [4 x double] containing the values to be moved.
3244 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_pd(double * __p,__m256d __a)3245 _mm256_store_pd(double *__p, __m256d __a)
3246 {
3247 *(__m256d *)__p = __a;
3248 }
3249
3250 /// Stores single-precision floating point values from a 256-bit vector
3251 /// of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3252 ///
3253 /// \headerfile <x86intrin.h>
3254 ///
3255 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3256 ///
3257 /// \param __p
3258 /// A 32-byte aligned pointer to a memory location that will receive the
3259 /// float values.
3260 /// \param __a
3261 /// A 256-bit vector of [8 x float] containing the values to be moved.
3262 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_ps(float * __p,__m256 __a)3263 _mm256_store_ps(float *__p, __m256 __a)
3264 {
3265 *(__m256 *)__p = __a;
3266 }
3267
3268 /// Stores double-precision floating point values from a 256-bit vector
3269 /// of [4 x double] to an unaligned memory location pointed to by \a __p.
3270 ///
3271 /// \headerfile <x86intrin.h>
3272 ///
3273 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3274 ///
3275 /// \param __p
3276 /// A pointer to a memory location that will receive the double-precision
3277 /// floating point values.
3278 /// \param __a
3279 /// A 256-bit vector of [4 x double] containing the values to be moved.
3280 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_pd(double * __p,__m256d __a)3281 _mm256_storeu_pd(double *__p, __m256d __a)
3282 {
3283 struct __storeu_pd {
3284 __m256d_u __v;
3285 } __attribute__((__packed__, __may_alias__));
3286 ((struct __storeu_pd*)__p)->__v = __a;
3287 }
3288
3289 /// Stores single-precision floating point values from a 256-bit vector
3290 /// of [8 x float] to an unaligned memory location pointed to by \a __p.
3291 ///
3292 /// \headerfile <x86intrin.h>
3293 ///
3294 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3295 ///
3296 /// \param __p
3297 /// A pointer to a memory location that will receive the float values.
3298 /// \param __a
3299 /// A 256-bit vector of [8 x float] containing the values to be moved.
3300 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_ps(float * __p,__m256 __a)3301 _mm256_storeu_ps(float *__p, __m256 __a)
3302 {
3303 struct __storeu_ps {
3304 __m256_u __v;
3305 } __attribute__((__packed__, __may_alias__));
3306 ((struct __storeu_ps*)__p)->__v = __a;
3307 }
3308
3309 /// Stores integer values from a 256-bit integer vector to a 32-byte
3310 /// aligned memory location pointed to by \a __p.
3311 ///
3312 /// \headerfile <x86intrin.h>
3313 ///
3314 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3315 ///
3316 /// \param __p
3317 /// A 32-byte aligned pointer to a memory location that will receive the
3318 /// integer values.
3319 /// \param __a
3320 /// A 256-bit integer vector containing the values to be moved.
3321 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_si256(__m256i * __p,__m256i __a)3322 _mm256_store_si256(__m256i *__p, __m256i __a)
3323 {
3324 *__p = __a;
3325 }
3326
3327 /// Stores integer values from a 256-bit integer vector to an unaligned
3328 /// memory location pointed to by \a __p.
3329 ///
3330 /// \headerfile <x86intrin.h>
3331 ///
3332 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3333 ///
3334 /// \param __p
3335 /// A pointer to a memory location that will receive the integer values.
3336 /// \param __a
3337 /// A 256-bit integer vector containing the values to be moved.
3338 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_si256(__m256i_u * __p,__m256i __a)3339 _mm256_storeu_si256(__m256i_u *__p, __m256i __a)
3340 {
3341 struct __storeu_si256 {
3342 __m256i_u __v;
3343 } __attribute__((__packed__, __may_alias__));
3344 ((struct __storeu_si256*)__p)->__v = __a;
3345 }
3346
3347 /* Conditional load ops */
3348 /// Conditionally loads double-precision floating point elements from a
3349 /// memory location pointed to by \a __p into a 128-bit vector of
3350 /// [2 x double], depending on the mask bits associated with each data
3351 /// element.
3352 ///
3353 /// \headerfile <x86intrin.h>
3354 ///
3355 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3356 ///
3357 /// \param __p
3358 /// A pointer to a memory location that contains the double-precision
3359 /// floating point values.
3360 /// \param __m
3361 /// A 128-bit integer vector containing the mask. The most significant bit of
3362 /// each data element represents the mask bits. If a mask bit is zero, the
3363 /// corresponding value in the memory location is not loaded and the
3364 /// corresponding field in the return value is set to zero.
3365 /// \returns A 128-bit vector of [2 x double] containing the loaded values.
3366 static __inline __m128d __DEFAULT_FN_ATTRS128
_mm_maskload_pd(double const * __p,__m128i __m)3367 _mm_maskload_pd(double const *__p, __m128i __m)
3368 {
3369 return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
3370 }
3371
3372 /// Conditionally loads double-precision floating point elements from a
3373 /// memory location pointed to by \a __p into a 256-bit vector of
3374 /// [4 x double], depending on the mask bits associated with each data
3375 /// element.
3376 ///
3377 /// \headerfile <x86intrin.h>
3378 ///
3379 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3380 ///
3381 /// \param __p
3382 /// A pointer to a memory location that contains the double-precision
3383 /// floating point values.
3384 /// \param __m
3385 /// A 256-bit integer vector of [4 x quadword] containing the mask. The most
3386 /// significant bit of each quadword element represents the mask bits. If a
3387 /// mask bit is zero, the corresponding value in the memory location is not
3388 /// loaded and the corresponding field in the return value is set to zero.
3389 /// \returns A 256-bit vector of [4 x double] containing the loaded values.
3390 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_maskload_pd(double const * __p,__m256i __m)3391 _mm256_maskload_pd(double const *__p, __m256i __m)
3392 {
3393 return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
3394 (__v4di)__m);
3395 }
3396
3397 /// Conditionally loads single-precision floating point elements from a
3398 /// memory location pointed to by \a __p into a 128-bit vector of
3399 /// [4 x float], depending on the mask bits associated with each data
3400 /// element.
3401 ///
3402 /// \headerfile <x86intrin.h>
3403 ///
3404 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3405 ///
3406 /// \param __p
3407 /// A pointer to a memory location that contains the single-precision
3408 /// floating point values.
3409 /// \param __m
3410 /// A 128-bit integer vector containing the mask. The most significant bit of
3411 /// each data element represents the mask bits. If a mask bit is zero, the
3412 /// corresponding value in the memory location is not loaded and the
3413 /// corresponding field in the return value is set to zero.
3414 /// \returns A 128-bit vector of [4 x float] containing the loaded values.
3415 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_maskload_ps(float const * __p,__m128i __m)3416 _mm_maskload_ps(float const *__p, __m128i __m)
3417 {
3418 return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
3419 }
3420
3421 /// Conditionally loads single-precision floating point elements from a
3422 /// memory location pointed to by \a __p into a 256-bit vector of
3423 /// [8 x float], depending on the mask bits associated with each data
3424 /// element.
3425 ///
3426 /// \headerfile <x86intrin.h>
3427 ///
3428 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3429 ///
3430 /// \param __p
3431 /// A pointer to a memory location that contains the single-precision
3432 /// floating point values.
3433 /// \param __m
3434 /// A 256-bit integer vector of [8 x dword] containing the mask. The most
3435 /// significant bit of each dword element represents the mask bits. If a mask
3436 /// bit is zero, the corresponding value in the memory location is not loaded
3437 /// and the corresponding field in the return value is set to zero.
3438 /// \returns A 256-bit vector of [8 x float] containing the loaded values.
3439 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_maskload_ps(float const * __p,__m256i __m)3440 _mm256_maskload_ps(float const *__p, __m256i __m)
3441 {
3442 return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
3443 }
3444
3445 /* Conditional store ops */
3446 /// Moves single-precision floating point values from a 256-bit vector
3447 /// of [8 x float] to a memory location pointed to by \a __p, according to
3448 /// the specified mask.
3449 ///
3450 /// \headerfile <x86intrin.h>
3451 ///
3452 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3453 ///
3454 /// \param __p
3455 /// A pointer to a memory location that will receive the float values.
3456 /// \param __m
3457 /// A 256-bit integer vector of [8 x dword] containing the mask. The most
3458 /// significant bit of each dword element in the mask vector represents the
3459 /// mask bits. If a mask bit is zero, the corresponding value from vector
3460 /// \a __a is not stored and the corresponding field in the memory location
3461 /// pointed to by \a __p is not changed.
3462 /// \param __a
3463 /// A 256-bit vector of [8 x float] containing the values to be stored.
3464 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_ps(float * __p,__m256i __m,__m256 __a)3465 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
3466 {
3467 __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
3468 }
3469
3470 /// Moves double-precision values from a 128-bit vector of [2 x double]
3471 /// to a memory location pointed to by \a __p, according to the specified
3472 /// mask.
3473 ///
3474 /// \headerfile <x86intrin.h>
3475 ///
3476 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3477 ///
3478 /// \param __p
3479 /// A pointer to a memory location that will receive the float values.
3480 /// \param __m
3481 /// A 128-bit integer vector containing the mask. The most significant bit of
3482 /// each field in the mask vector represents the mask bits. If a mask bit is
3483 /// zero, the corresponding value from vector \a __a is not stored and the
3484 /// corresponding field in the memory location pointed to by \a __p is not
3485 /// changed.
3486 /// \param __a
3487 /// A 128-bit vector of [2 x double] containing the values to be stored.
3488 static __inline void __DEFAULT_FN_ATTRS128
_mm_maskstore_pd(double * __p,__m128i __m,__m128d __a)3489 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
3490 {
3491 __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
3492 }
3493
3494 /// Moves double-precision values from a 256-bit vector of [4 x double]
3495 /// to a memory location pointed to by \a __p, according to the specified
3496 /// mask.
3497 ///
3498 /// \headerfile <x86intrin.h>
3499 ///
3500 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3501 ///
3502 /// \param __p
3503 /// A pointer to a memory location that will receive the float values.
3504 /// \param __m
3505 /// A 256-bit integer vector of [4 x quadword] containing the mask. The most
3506 /// significant bit of each quadword element in the mask vector represents
3507 /// the mask bits. If a mask bit is zero, the corresponding value from vector
3508 /// __a is not stored and the corresponding field in the memory location
3509 /// pointed to by \a __p is not changed.
3510 /// \param __a
3511 /// A 256-bit vector of [4 x double] containing the values to be stored.
3512 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_pd(double * __p,__m256i __m,__m256d __a)3513 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
3514 {
3515 __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
3516 }
3517
3518 /// Moves single-precision floating point values from a 128-bit vector
3519 /// of [4 x float] to a memory location pointed to by \a __p, according to
3520 /// the specified mask.
3521 ///
3522 /// \headerfile <x86intrin.h>
3523 ///
3524 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3525 ///
3526 /// \param __p
3527 /// A pointer to a memory location that will receive the float values.
3528 /// \param __m
3529 /// A 128-bit integer vector containing the mask. The most significant bit of
3530 /// each field in the mask vector represents the mask bits. If a mask bit is
3531 /// zero, the corresponding value from vector __a is not stored and the
3532 /// corresponding field in the memory location pointed to by \a __p is not
3533 /// changed.
3534 /// \param __a
3535 /// A 128-bit vector of [4 x float] containing the values to be stored.
3536 static __inline void __DEFAULT_FN_ATTRS128
_mm_maskstore_ps(float * __p,__m128i __m,__m128 __a)3537 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
3538 {
3539 __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
3540 }
3541
3542 /* Cacheability support ops */
3543 /// Moves integer data from a 256-bit integer vector to a 32-byte
3544 /// aligned memory location. To minimize caching, the data is flagged as
3545 /// non-temporal (unlikely to be used again soon).
3546 ///
3547 /// \headerfile <x86intrin.h>
3548 ///
3549 /// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3550 ///
3551 /// \param __a
3552 /// A pointer to a 32-byte aligned memory location that will receive the
3553 /// integer values.
3554 /// \param __b
3555 /// A 256-bit integer vector containing the values to be moved.
3556 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_si256(__m256i * __a,__m256i __b)3557 _mm256_stream_si256(__m256i *__a, __m256i __b)
3558 {
3559 typedef __v4di __v4di_aligned __attribute__((aligned(32)));
3560 __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a);
3561 }
3562
3563 /// Moves double-precision values from a 256-bit vector of [4 x double]
3564 /// to a 32-byte aligned memory location. To minimize caching, the data is
3565 /// flagged as non-temporal (unlikely to be used again soon).
3566 ///
3567 /// \headerfile <x86intrin.h>
3568 ///
3569 /// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3570 ///
3571 /// \param __a
3572 /// A pointer to a 32-byte aligned memory location that will receive the
3573 /// double-precision floating-point values.
3574 /// \param __b
3575 /// A 256-bit vector of [4 x double] containing the values to be moved.
3576 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_pd(double * __a,__m256d __b)3577 _mm256_stream_pd(double *__a, __m256d __b)
3578 {
3579 typedef __v4df __v4df_aligned __attribute__((aligned(32)));
3580 __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a);
3581 }
3582
3583 /// Moves single-precision floating point values from a 256-bit vector
3584 /// of [8 x float] to a 32-byte aligned memory location. To minimize
3585 /// caching, the data is flagged as non-temporal (unlikely to be used again
3586 /// soon).
3587 ///
3588 /// \headerfile <x86intrin.h>
3589 ///
3590 /// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3591 ///
3592 /// \param __p
3593 /// A pointer to a 32-byte aligned memory location that will receive the
3594 /// single-precision floating point values.
3595 /// \param __a
3596 /// A 256-bit vector of [8 x float] containing the values to be moved.
3597 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_ps(float * __p,__m256 __a)3598 _mm256_stream_ps(float *__p, __m256 __a)
3599 {
3600 typedef __v8sf __v8sf_aligned __attribute__((aligned(32)));
3601 __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p);
3602 }
3603
3604 /* Create vectors */
3605 /// Create a 256-bit vector of [4 x double] with undefined values.
3606 ///
3607 /// \headerfile <x86intrin.h>
3608 ///
3609 /// This intrinsic has no corresponding instruction.
3610 ///
3611 /// \returns A 256-bit vector of [4 x double] containing undefined values.
3612 static __inline__ __m256d __DEFAULT_FN_ATTRS
_mm256_undefined_pd(void)3613 _mm256_undefined_pd(void)
3614 {
3615 return (__m256d)__builtin_ia32_undef256();
3616 }
3617
3618 /// Create a 256-bit vector of [8 x float] with undefined values.
3619 ///
3620 /// \headerfile <x86intrin.h>
3621 ///
3622 /// This intrinsic has no corresponding instruction.
3623 ///
3624 /// \returns A 256-bit vector of [8 x float] containing undefined values.
3625 static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_undefined_ps(void)3626 _mm256_undefined_ps(void)
3627 {
3628 return (__m256)__builtin_ia32_undef256();
3629 }
3630
3631 /// Create a 256-bit integer vector with undefined values.
3632 ///
3633 /// \headerfile <x86intrin.h>
3634 ///
3635 /// This intrinsic has no corresponding instruction.
3636 ///
3637 /// \returns A 256-bit integer vector containing undefined values.
3638 static __inline__ __m256i __DEFAULT_FN_ATTRS
_mm256_undefined_si256(void)3639 _mm256_undefined_si256(void)
3640 {
3641 return (__m256i)__builtin_ia32_undef256();
3642 }
3643
3644 /// Constructs a 256-bit floating-point vector of [4 x double]
3645 /// initialized with the specified double-precision floating-point values.
3646 ///
3647 /// \headerfile <x86intrin.h>
3648 ///
3649 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3650 /// instruction.
3651 ///
3652 /// \param __a
3653 /// A double-precision floating-point value used to initialize bits [255:192]
3654 /// of the result.
3655 /// \param __b
3656 /// A double-precision floating-point value used to initialize bits [191:128]
3657 /// of the result.
3658 /// \param __c
3659 /// A double-precision floating-point value used to initialize bits [127:64]
3660 /// of the result.
3661 /// \param __d
3662 /// A double-precision floating-point value used to initialize bits [63:0]
3663 /// of the result.
3664 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3665 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_pd(double __a,double __b,double __c,double __d)3666 _mm256_set_pd(double __a, double __b, double __c, double __d)
3667 {
3668 return __extension__ (__m256d){ __d, __c, __b, __a };
3669 }
3670
3671 /// Constructs a 256-bit floating-point vector of [8 x float] initialized
3672 /// with the specified single-precision floating-point values.
3673 ///
3674 /// \headerfile <x86intrin.h>
3675 ///
3676 /// This intrinsic is a utility function and does not correspond to a specific
3677 /// instruction.
3678 ///
3679 /// \param __a
3680 /// A single-precision floating-point value used to initialize bits [255:224]
3681 /// of the result.
3682 /// \param __b
3683 /// A single-precision floating-point value used to initialize bits [223:192]
3684 /// of the result.
3685 /// \param __c
3686 /// A single-precision floating-point value used to initialize bits [191:160]
3687 /// of the result.
3688 /// \param __d
3689 /// A single-precision floating-point value used to initialize bits [159:128]
3690 /// of the result.
3691 /// \param __e
3692 /// A single-precision floating-point value used to initialize bits [127:96]
3693 /// of the result.
3694 /// \param __f
3695 /// A single-precision floating-point value used to initialize bits [95:64]
3696 /// of the result.
3697 /// \param __g
3698 /// A single-precision floating-point value used to initialize bits [63:32]
3699 /// of the result.
3700 /// \param __h
3701 /// A single-precision floating-point value used to initialize bits [31:0]
3702 /// of the result.
3703 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3704 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)3705 _mm256_set_ps(float __a, float __b, float __c, float __d,
3706 float __e, float __f, float __g, float __h)
3707 {
3708 return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
3709 }
3710
3711 /// Constructs a 256-bit integer vector initialized with the specified
3712 /// 32-bit integral values.
3713 ///
3714 /// \headerfile <x86intrin.h>
3715 ///
3716 /// This intrinsic is a utility function and does not correspond to a specific
3717 /// instruction.
3718 ///
3719 /// \param __i0
3720 /// A 32-bit integral value used to initialize bits [255:224] of the result.
3721 /// \param __i1
3722 /// A 32-bit integral value used to initialize bits [223:192] of the result.
3723 /// \param __i2
3724 /// A 32-bit integral value used to initialize bits [191:160] of the result.
3725 /// \param __i3
3726 /// A 32-bit integral value used to initialize bits [159:128] of the result.
3727 /// \param __i4
3728 /// A 32-bit integral value used to initialize bits [127:96] of the result.
3729 /// \param __i5
3730 /// A 32-bit integral value used to initialize bits [95:64] of the result.
3731 /// \param __i6
3732 /// A 32-bit integral value used to initialize bits [63:32] of the result.
3733 /// \param __i7
3734 /// A 32-bit integral value used to initialize bits [31:0] of the result.
3735 /// \returns An initialized 256-bit integer vector.
3736 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)3737 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
3738 int __i4, int __i5, int __i6, int __i7)
3739 {
3740 return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
3741 }
3742
3743 /// Constructs a 256-bit integer vector initialized with the specified
3744 /// 16-bit integral values.
3745 ///
3746 /// \headerfile <x86intrin.h>
3747 ///
3748 /// This intrinsic is a utility function and does not correspond to a specific
3749 /// instruction.
3750 ///
3751 /// \param __w15
3752 /// A 16-bit integral value used to initialize bits [255:240] of the result.
3753 /// \param __w14
3754 /// A 16-bit integral value used to initialize bits [239:224] of the result.
3755 /// \param __w13
3756 /// A 16-bit integral value used to initialize bits [223:208] of the result.
3757 /// \param __w12
3758 /// A 16-bit integral value used to initialize bits [207:192] of the result.
3759 /// \param __w11
3760 /// A 16-bit integral value used to initialize bits [191:176] of the result.
3761 /// \param __w10
3762 /// A 16-bit integral value used to initialize bits [175:160] of the result.
3763 /// \param __w09
3764 /// A 16-bit integral value used to initialize bits [159:144] of the result.
3765 /// \param __w08
3766 /// A 16-bit integral value used to initialize bits [143:128] of the result.
3767 /// \param __w07
3768 /// A 16-bit integral value used to initialize bits [127:112] of the result.
3769 /// \param __w06
3770 /// A 16-bit integral value used to initialize bits [111:96] of the result.
3771 /// \param __w05
3772 /// A 16-bit integral value used to initialize bits [95:80] of the result.
3773 /// \param __w04
3774 /// A 16-bit integral value used to initialize bits [79:64] of the result.
3775 /// \param __w03
3776 /// A 16-bit integral value used to initialize bits [63:48] of the result.
3777 /// \param __w02
3778 /// A 16-bit integral value used to initialize bits [47:32] of the result.
3779 /// \param __w01
3780 /// A 16-bit integral value used to initialize bits [31:16] of the result.
3781 /// \param __w00
3782 /// A 16-bit integral value used to initialize bits [15:0] of the result.
3783 /// \returns An initialized 256-bit integer vector.
3784 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)3785 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
3786 short __w11, short __w10, short __w09, short __w08,
3787 short __w07, short __w06, short __w05, short __w04,
3788 short __w03, short __w02, short __w01, short __w00)
3789 {
3790 return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
3791 __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
3792 }
3793
3794 /// Constructs a 256-bit integer vector initialized with the specified
3795 /// 8-bit integral values.
3796 ///
3797 /// \headerfile <x86intrin.h>
3798 ///
3799 /// This intrinsic is a utility function and does not correspond to a specific
3800 /// instruction.
3801 ///
3802 /// \param __b31
3803 /// An 8-bit integral value used to initialize bits [255:248] of the result.
3804 /// \param __b30
3805 /// An 8-bit integral value used to initialize bits [247:240] of the result.
3806 /// \param __b29
3807 /// An 8-bit integral value used to initialize bits [239:232] of the result.
3808 /// \param __b28
3809 /// An 8-bit integral value used to initialize bits [231:224] of the result.
3810 /// \param __b27
3811 /// An 8-bit integral value used to initialize bits [223:216] of the result.
3812 /// \param __b26
3813 /// An 8-bit integral value used to initialize bits [215:208] of the result.
3814 /// \param __b25
3815 /// An 8-bit integral value used to initialize bits [207:200] of the result.
3816 /// \param __b24
3817 /// An 8-bit integral value used to initialize bits [199:192] of the result.
3818 /// \param __b23
3819 /// An 8-bit integral value used to initialize bits [191:184] of the result.
3820 /// \param __b22
3821 /// An 8-bit integral value used to initialize bits [183:176] of the result.
3822 /// \param __b21
3823 /// An 8-bit integral value used to initialize bits [175:168] of the result.
3824 /// \param __b20
3825 /// An 8-bit integral value used to initialize bits [167:160] of the result.
3826 /// \param __b19
3827 /// An 8-bit integral value used to initialize bits [159:152] of the result.
3828 /// \param __b18
3829 /// An 8-bit integral value used to initialize bits [151:144] of the result.
3830 /// \param __b17
3831 /// An 8-bit integral value used to initialize bits [143:136] of the result.
3832 /// \param __b16
3833 /// An 8-bit integral value used to initialize bits [135:128] of the result.
3834 /// \param __b15
3835 /// An 8-bit integral value used to initialize bits [127:120] of the result.
3836 /// \param __b14
3837 /// An 8-bit integral value used to initialize bits [119:112] of the result.
3838 /// \param __b13
3839 /// An 8-bit integral value used to initialize bits [111:104] of the result.
3840 /// \param __b12
3841 /// An 8-bit integral value used to initialize bits [103:96] of the result.
3842 /// \param __b11
3843 /// An 8-bit integral value used to initialize bits [95:88] of the result.
3844 /// \param __b10
3845 /// An 8-bit integral value used to initialize bits [87:80] of the result.
3846 /// \param __b09
3847 /// An 8-bit integral value used to initialize bits [79:72] of the result.
3848 /// \param __b08
3849 /// An 8-bit integral value used to initialize bits [71:64] of the result.
3850 /// \param __b07
3851 /// An 8-bit integral value used to initialize bits [63:56] of the result.
3852 /// \param __b06
3853 /// An 8-bit integral value used to initialize bits [55:48] of the result.
3854 /// \param __b05
3855 /// An 8-bit integral value used to initialize bits [47:40] of the result.
3856 /// \param __b04
3857 /// An 8-bit integral value used to initialize bits [39:32] of the result.
3858 /// \param __b03
3859 /// An 8-bit integral value used to initialize bits [31:24] of the result.
3860 /// \param __b02
3861 /// An 8-bit integral value used to initialize bits [23:16] of the result.
3862 /// \param __b01
3863 /// An 8-bit integral value used to initialize bits [15:8] of the result.
3864 /// \param __b00
3865 /// An 8-bit integral value used to initialize bits [7:0] of the result.
3866 /// \returns An initialized 256-bit integer vector.
3867 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)3868 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
3869 char __b27, char __b26, char __b25, char __b24,
3870 char __b23, char __b22, char __b21, char __b20,
3871 char __b19, char __b18, char __b17, char __b16,
3872 char __b15, char __b14, char __b13, char __b12,
3873 char __b11, char __b10, char __b09, char __b08,
3874 char __b07, char __b06, char __b05, char __b04,
3875 char __b03, char __b02, char __b01, char __b00)
3876 {
3877 return __extension__ (__m256i)(__v32qi){
3878 __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
3879 __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
3880 __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
3881 __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
3882 };
3883 }
3884
3885 /// Constructs a 256-bit integer vector initialized with the specified
3886 /// 64-bit integral values.
3887 ///
3888 /// \headerfile <x86intrin.h>
3889 ///
3890 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3891 /// instruction.
3892 ///
3893 /// \param __a
3894 /// A 64-bit integral value used to initialize bits [255:192] of the result.
3895 /// \param __b
3896 /// A 64-bit integral value used to initialize bits [191:128] of the result.
3897 /// \param __c
3898 /// A 64-bit integral value used to initialize bits [127:64] of the result.
3899 /// \param __d
3900 /// A 64-bit integral value used to initialize bits [63:0] of the result.
3901 /// \returns An initialized 256-bit integer vector.
3902 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi64x(long long __a,long long __b,long long __c,long long __d)3903 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
3904 {
3905 return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a };
3906 }
3907
3908 /* Create vectors with elements in reverse order */
3909 /// Constructs a 256-bit floating-point vector of [4 x double],
3910 /// initialized in reverse order with the specified double-precision
3911 /// floating-point values.
3912 ///
3913 /// \headerfile <x86intrin.h>
3914 ///
3915 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3916 /// instruction.
3917 ///
3918 /// \param __a
3919 /// A double-precision floating-point value used to initialize bits [63:0]
3920 /// of the result.
3921 /// \param __b
3922 /// A double-precision floating-point value used to initialize bits [127:64]
3923 /// of the result.
3924 /// \param __c
3925 /// A double-precision floating-point value used to initialize bits [191:128]
3926 /// of the result.
3927 /// \param __d
3928 /// A double-precision floating-point value used to initialize bits [255:192]
3929 /// of the result.
3930 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3931 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_pd(double __a,double __b,double __c,double __d)3932 _mm256_setr_pd(double __a, double __b, double __c, double __d)
3933 {
3934 return _mm256_set_pd(__d, __c, __b, __a);
3935 }
3936
3937 /// Constructs a 256-bit floating-point vector of [8 x float],
3938 /// initialized in reverse order with the specified single-precision
3939 /// float-point values.
3940 ///
3941 /// \headerfile <x86intrin.h>
3942 ///
3943 /// This intrinsic is a utility function and does not correspond to a specific
3944 /// instruction.
3945 ///
3946 /// \param __a
3947 /// A single-precision floating-point value used to initialize bits [31:0]
3948 /// of the result.
3949 /// \param __b
3950 /// A single-precision floating-point value used to initialize bits [63:32]
3951 /// of the result.
3952 /// \param __c
3953 /// A single-precision floating-point value used to initialize bits [95:64]
3954 /// of the result.
3955 /// \param __d
3956 /// A single-precision floating-point value used to initialize bits [127:96]
3957 /// of the result.
3958 /// \param __e
3959 /// A single-precision floating-point value used to initialize bits [159:128]
3960 /// of the result.
3961 /// \param __f
3962 /// A single-precision floating-point value used to initialize bits [191:160]
3963 /// of the result.
3964 /// \param __g
3965 /// A single-precision floating-point value used to initialize bits [223:192]
3966 /// of the result.
3967 /// \param __h
3968 /// A single-precision floating-point value used to initialize bits [255:224]
3969 /// of the result.
3970 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3971 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)3972 _mm256_setr_ps(float __a, float __b, float __c, float __d,
3973 float __e, float __f, float __g, float __h)
3974 {
3975 return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a);
3976 }
3977
3978 /// Constructs a 256-bit integer vector, initialized in reverse order
3979 /// with the specified 32-bit integral values.
3980 ///
3981 /// \headerfile <x86intrin.h>
3982 ///
3983 /// This intrinsic is a utility function and does not correspond to a specific
3984 /// instruction.
3985 ///
3986 /// \param __i0
3987 /// A 32-bit integral value used to initialize bits [31:0] of the result.
3988 /// \param __i1
3989 /// A 32-bit integral value used to initialize bits [63:32] of the result.
3990 /// \param __i2
3991 /// A 32-bit integral value used to initialize bits [95:64] of the result.
3992 /// \param __i3
3993 /// A 32-bit integral value used to initialize bits [127:96] of the result.
3994 /// \param __i4
3995 /// A 32-bit integral value used to initialize bits [159:128] of the result.
3996 /// \param __i5
3997 /// A 32-bit integral value used to initialize bits [191:160] of the result.
3998 /// \param __i6
3999 /// A 32-bit integral value used to initialize bits [223:192] of the result.
4000 /// \param __i7
4001 /// A 32-bit integral value used to initialize bits [255:224] of the result.
4002 /// \returns An initialized 256-bit integer vector.
4003 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)4004 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
4005 int __i4, int __i5, int __i6, int __i7)
4006 {
4007 return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0);
4008 }
4009
4010 /// Constructs a 256-bit integer vector, initialized in reverse order
4011 /// with the specified 16-bit integral values.
4012 ///
4013 /// \headerfile <x86intrin.h>
4014 ///
4015 /// This intrinsic is a utility function and does not correspond to a specific
4016 /// instruction.
4017 ///
4018 /// \param __w15
4019 /// A 16-bit integral value used to initialize bits [15:0] of the result.
4020 /// \param __w14
4021 /// A 16-bit integral value used to initialize bits [31:16] of the result.
4022 /// \param __w13
4023 /// A 16-bit integral value used to initialize bits [47:32] of the result.
4024 /// \param __w12
4025 /// A 16-bit integral value used to initialize bits [63:48] of the result.
4026 /// \param __w11
4027 /// A 16-bit integral value used to initialize bits [79:64] of the result.
4028 /// \param __w10
4029 /// A 16-bit integral value used to initialize bits [95:80] of the result.
4030 /// \param __w09
4031 /// A 16-bit integral value used to initialize bits [111:96] of the result.
4032 /// \param __w08
4033 /// A 16-bit integral value used to initialize bits [127:112] of the result.
4034 /// \param __w07
4035 /// A 16-bit integral value used to initialize bits [143:128] of the result.
4036 /// \param __w06
4037 /// A 16-bit integral value used to initialize bits [159:144] of the result.
4038 /// \param __w05
4039 /// A 16-bit integral value used to initialize bits [175:160] of the result.
4040 /// \param __w04
4041 /// A 16-bit integral value used to initialize bits [191:176] of the result.
4042 /// \param __w03
4043 /// A 16-bit integral value used to initialize bits [207:192] of the result.
4044 /// \param __w02
4045 /// A 16-bit integral value used to initialize bits [223:208] of the result.
4046 /// \param __w01
4047 /// A 16-bit integral value used to initialize bits [239:224] of the result.
4048 /// \param __w00
4049 /// A 16-bit integral value used to initialize bits [255:240] of the result.
4050 /// \returns An initialized 256-bit integer vector.
4051 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)4052 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
4053 short __w11, short __w10, short __w09, short __w08,
4054 short __w07, short __w06, short __w05, short __w04,
4055 short __w03, short __w02, short __w01, short __w00)
4056 {
4057 return _mm256_set_epi16(__w00, __w01, __w02, __w03,
4058 __w04, __w05, __w06, __w07,
4059 __w08, __w09, __w10, __w11,
4060 __w12, __w13, __w14, __w15);
4061 }
4062
4063 /// Constructs a 256-bit integer vector, initialized in reverse order
4064 /// with the specified 8-bit integral values.
4065 ///
4066 /// \headerfile <x86intrin.h>
4067 ///
4068 /// This intrinsic is a utility function and does not correspond to a specific
4069 /// instruction.
4070 ///
4071 /// \param __b31
4072 /// An 8-bit integral value used to initialize bits [7:0] of the result.
4073 /// \param __b30
4074 /// An 8-bit integral value used to initialize bits [15:8] of the result.
4075 /// \param __b29
4076 /// An 8-bit integral value used to initialize bits [23:16] of the result.
4077 /// \param __b28
4078 /// An 8-bit integral value used to initialize bits [31:24] of the result.
4079 /// \param __b27
4080 /// An 8-bit integral value used to initialize bits [39:32] of the result.
4081 /// \param __b26
4082 /// An 8-bit integral value used to initialize bits [47:40] of the result.
4083 /// \param __b25
4084 /// An 8-bit integral value used to initialize bits [55:48] of the result.
4085 /// \param __b24
4086 /// An 8-bit integral value used to initialize bits [63:56] of the result.
4087 /// \param __b23
4088 /// An 8-bit integral value used to initialize bits [71:64] of the result.
4089 /// \param __b22
4090 /// An 8-bit integral value used to initialize bits [79:72] of the result.
4091 /// \param __b21
4092 /// An 8-bit integral value used to initialize bits [87:80] of the result.
4093 /// \param __b20
4094 /// An 8-bit integral value used to initialize bits [95:88] of the result.
4095 /// \param __b19
4096 /// An 8-bit integral value used to initialize bits [103:96] of the result.
4097 /// \param __b18
4098 /// An 8-bit integral value used to initialize bits [111:104] of the result.
4099 /// \param __b17
4100 /// An 8-bit integral value used to initialize bits [119:112] of the result.
4101 /// \param __b16
4102 /// An 8-bit integral value used to initialize bits [127:120] of the result.
4103 /// \param __b15
4104 /// An 8-bit integral value used to initialize bits [135:128] of the result.
4105 /// \param __b14
4106 /// An 8-bit integral value used to initialize bits [143:136] of the result.
4107 /// \param __b13
4108 /// An 8-bit integral value used to initialize bits [151:144] of the result.
4109 /// \param __b12
4110 /// An 8-bit integral value used to initialize bits [159:152] of the result.
4111 /// \param __b11
4112 /// An 8-bit integral value used to initialize bits [167:160] of the result.
4113 /// \param __b10
4114 /// An 8-bit integral value used to initialize bits [175:168] of the result.
4115 /// \param __b09
4116 /// An 8-bit integral value used to initialize bits [183:176] of the result.
4117 /// \param __b08
4118 /// An 8-bit integral value used to initialize bits [191:184] of the result.
4119 /// \param __b07
4120 /// An 8-bit integral value used to initialize bits [199:192] of the result.
4121 /// \param __b06
4122 /// An 8-bit integral value used to initialize bits [207:200] of the result.
4123 /// \param __b05
4124 /// An 8-bit integral value used to initialize bits [215:208] of the result.
4125 /// \param __b04
4126 /// An 8-bit integral value used to initialize bits [223:216] of the result.
4127 /// \param __b03
4128 /// An 8-bit integral value used to initialize bits [231:224] of the result.
4129 /// \param __b02
4130 /// An 8-bit integral value used to initialize bits [239:232] of the result.
4131 /// \param __b01
4132 /// An 8-bit integral value used to initialize bits [247:240] of the result.
4133 /// \param __b00
4134 /// An 8-bit integral value used to initialize bits [255:248] of the result.
4135 /// \returns An initialized 256-bit integer vector.
4136 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)4137 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
4138 char __b27, char __b26, char __b25, char __b24,
4139 char __b23, char __b22, char __b21, char __b20,
4140 char __b19, char __b18, char __b17, char __b16,
4141 char __b15, char __b14, char __b13, char __b12,
4142 char __b11, char __b10, char __b09, char __b08,
4143 char __b07, char __b06, char __b05, char __b04,
4144 char __b03, char __b02, char __b01, char __b00)
4145 {
4146 return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
4147 __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
4148 __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
4149 __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31);
4150 }
4151
4152 /// Constructs a 256-bit integer vector, initialized in reverse order
4153 /// with the specified 64-bit integral values.
4154 ///
4155 /// \headerfile <x86intrin.h>
4156 ///
4157 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4158 /// instruction.
4159 ///
4160 /// \param __a
4161 /// A 64-bit integral value used to initialize bits [63:0] of the result.
4162 /// \param __b
4163 /// A 64-bit integral value used to initialize bits [127:64] of the result.
4164 /// \param __c
4165 /// A 64-bit integral value used to initialize bits [191:128] of the result.
4166 /// \param __d
4167 /// A 64-bit integral value used to initialize bits [255:192] of the result.
4168 /// \returns An initialized 256-bit integer vector.
4169 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi64x(long long __a,long long __b,long long __c,long long __d)4170 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
4171 {
4172 return _mm256_set_epi64x(__d, __c, __b, __a);
4173 }
4174
4175 /* Create vectors with repeated elements */
4176 /// Constructs a 256-bit floating-point vector of [4 x double], with each
4177 /// of the four double-precision floating-point vector elements set to the
4178 /// specified double-precision floating-point value.
4179 ///
4180 /// \headerfile <x86intrin.h>
4181 ///
4182 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4183 ///
4184 /// \param __w
4185 /// A double-precision floating-point value used to initialize each vector
4186 /// element of the result.
4187 /// \returns An initialized 256-bit floating-point vector of [4 x double].
4188 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set1_pd(double __w)4189 _mm256_set1_pd(double __w)
4190 {
4191 return _mm256_set_pd(__w, __w, __w, __w);
4192 }
4193
4194 /// Constructs a 256-bit floating-point vector of [8 x float], with each
4195 /// of the eight single-precision floating-point vector elements set to the
4196 /// specified single-precision floating-point value.
4197 ///
4198 /// \headerfile <x86intrin.h>
4199 ///
4200 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4201 /// instruction.
4202 ///
4203 /// \param __w
4204 /// A single-precision floating-point value used to initialize each vector
4205 /// element of the result.
4206 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4207 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set1_ps(float __w)4208 _mm256_set1_ps(float __w)
4209 {
4210 return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w);
4211 }
4212
4213 /// Constructs a 256-bit integer vector of [8 x i32], with each of the
4214 /// 32-bit integral vector elements set to the specified 32-bit integral
4215 /// value.
4216 ///
4217 /// \headerfile <x86intrin.h>
4218 ///
4219 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4220 /// instruction.
4221 ///
4222 /// \param __i
4223 /// A 32-bit integral value used to initialize each vector element of the
4224 /// result.
4225 /// \returns An initialized 256-bit integer vector of [8 x i32].
4226 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi32(int __i)4227 _mm256_set1_epi32(int __i)
4228 {
4229 return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i);
4230 }
4231
4232 /// Constructs a 256-bit integer vector of [16 x i16], with each of the
4233 /// 16-bit integral vector elements set to the specified 16-bit integral
4234 /// value.
4235 ///
4236 /// \headerfile <x86intrin.h>
4237 ///
4238 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4239 ///
4240 /// \param __w
4241 /// A 16-bit integral value used to initialize each vector element of the
4242 /// result.
4243 /// \returns An initialized 256-bit integer vector of [16 x i16].
4244 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi16(short __w)4245 _mm256_set1_epi16(short __w)
4246 {
4247 return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w,
4248 __w, __w, __w, __w, __w, __w, __w, __w);
4249 }
4250
4251 /// Constructs a 256-bit integer vector of [32 x i8], with each of the
4252 /// 8-bit integral vector elements set to the specified 8-bit integral value.
4253 ///
4254 /// \headerfile <x86intrin.h>
4255 ///
4256 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4257 ///
4258 /// \param __b
4259 /// An 8-bit integral value used to initialize each vector element of the
4260 /// result.
4261 /// \returns An initialized 256-bit integer vector of [32 x i8].
4262 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi8(char __b)4263 _mm256_set1_epi8(char __b)
4264 {
4265 return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b,
4266 __b, __b, __b, __b, __b, __b, __b, __b,
4267 __b, __b, __b, __b, __b, __b, __b, __b,
4268 __b, __b, __b, __b, __b, __b, __b, __b);
4269 }
4270
4271 /// Constructs a 256-bit integer vector of [4 x i64], with each of the
4272 /// 64-bit integral vector elements set to the specified 64-bit integral
4273 /// value.
4274 ///
4275 /// \headerfile <x86intrin.h>
4276 ///
4277 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4278 ///
4279 /// \param __q
4280 /// A 64-bit integral value used to initialize each vector element of the
4281 /// result.
4282 /// \returns An initialized 256-bit integer vector of [4 x i64].
4283 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi64x(long long __q)4284 _mm256_set1_epi64x(long long __q)
4285 {
4286 return _mm256_set_epi64x(__q, __q, __q, __q);
4287 }
4288
4289 /* Create __zeroed vectors */
4290 /// Constructs a 256-bit floating-point vector of [4 x double] with all
4291 /// vector elements initialized to zero.
4292 ///
4293 /// \headerfile <x86intrin.h>
4294 ///
4295 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4296 ///
4297 /// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4298 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setzero_pd(void)4299 _mm256_setzero_pd(void)
4300 {
4301 return __extension__ (__m256d){ 0.0, 0.0, 0.0, 0.0 };
4302 }
4303
4304 /// Constructs a 256-bit floating-point vector of [8 x float] with all
4305 /// vector elements initialized to zero.
4306 ///
4307 /// \headerfile <x86intrin.h>
4308 ///
4309 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4310 ///
4311 /// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4312 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setzero_ps(void)4313 _mm256_setzero_ps(void)
4314 {
4315 return __extension__ (__m256){ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
4316 }
4317
4318 /// Constructs a 256-bit integer vector initialized to zero.
4319 ///
4320 /// \headerfile <x86intrin.h>
4321 ///
4322 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4323 ///
4324 /// \returns A 256-bit integer vector initialized to zero.
4325 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setzero_si256(void)4326 _mm256_setzero_si256(void)
4327 {
4328 return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 };
4329 }
4330
4331 /* Cast between vector types */
4332 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4333 /// floating-point vector of [8 x float].
4334 ///
4335 /// \headerfile <x86intrin.h>
4336 ///
4337 /// This intrinsic has no corresponding instruction.
4338 ///
4339 /// \param __a
4340 /// A 256-bit floating-point vector of [4 x double].
4341 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4342 /// bitwise pattern as the parameter.
4343 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castpd_ps(__m256d __a)4344 _mm256_castpd_ps(__m256d __a)
4345 {
4346 return (__m256)__a;
4347 }
4348
4349 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4350 /// integer vector.
4351 ///
4352 /// \headerfile <x86intrin.h>
4353 ///
4354 /// This intrinsic has no corresponding instruction.
4355 ///
4356 /// \param __a
4357 /// A 256-bit floating-point vector of [4 x double].
4358 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4359 /// parameter.
4360 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castpd_si256(__m256d __a)4361 _mm256_castpd_si256(__m256d __a)
4362 {
4363 return (__m256i)__a;
4364 }
4365
4366 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4367 /// floating-point vector of [4 x double].
4368 ///
4369 /// \headerfile <x86intrin.h>
4370 ///
4371 /// This intrinsic has no corresponding instruction.
4372 ///
4373 /// \param __a
4374 /// A 256-bit floating-point vector of [8 x float].
4375 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4376 /// bitwise pattern as the parameter.
4377 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castps_pd(__m256 __a)4378 _mm256_castps_pd(__m256 __a)
4379 {
4380 return (__m256d)__a;
4381 }
4382
4383 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4384 /// integer vector.
4385 ///
4386 /// \headerfile <x86intrin.h>
4387 ///
4388 /// This intrinsic has no corresponding instruction.
4389 ///
4390 /// \param __a
4391 /// A 256-bit floating-point vector of [8 x float].
4392 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4393 /// parameter.
4394 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castps_si256(__m256 __a)4395 _mm256_castps_si256(__m256 __a)
4396 {
4397 return (__m256i)__a;
4398 }
4399
4400 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4401 /// of [8 x float].
4402 ///
4403 /// \headerfile <x86intrin.h>
4404 ///
4405 /// This intrinsic has no corresponding instruction.
4406 ///
4407 /// \param __a
4408 /// A 256-bit integer vector.
4409 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4410 /// bitwise pattern as the parameter.
4411 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castsi256_ps(__m256i __a)4412 _mm256_castsi256_ps(__m256i __a)
4413 {
4414 return (__m256)__a;
4415 }
4416
4417 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4418 /// of [4 x double].
4419 ///
4420 /// \headerfile <x86intrin.h>
4421 ///
4422 /// This intrinsic has no corresponding instruction.
4423 ///
4424 /// \param __a
4425 /// A 256-bit integer vector.
4426 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4427 /// bitwise pattern as the parameter.
4428 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castsi256_pd(__m256i __a)4429 _mm256_castsi256_pd(__m256i __a)
4430 {
4431 return (__m256d)__a;
4432 }
4433
4434 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4435 /// [4 x double] as a 128-bit floating-point vector of [2 x double].
4436 ///
4437 /// \headerfile <x86intrin.h>
4438 ///
4439 /// This intrinsic has no corresponding instruction.
4440 ///
4441 /// \param __a
4442 /// A 256-bit floating-point vector of [4 x double].
4443 /// \returns A 128-bit floating-point vector of [2 x double] containing the
4444 /// lower 128 bits of the parameter.
4445 static __inline __m128d __DEFAULT_FN_ATTRS
_mm256_castpd256_pd128(__m256d __a)4446 _mm256_castpd256_pd128(__m256d __a)
4447 {
4448 return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
4449 }
4450
4451 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4452 /// [8 x float] as a 128-bit floating-point vector of [4 x float].
4453 ///
4454 /// \headerfile <x86intrin.h>
4455 ///
4456 /// This intrinsic has no corresponding instruction.
4457 ///
4458 /// \param __a
4459 /// A 256-bit floating-point vector of [8 x float].
4460 /// \returns A 128-bit floating-point vector of [4 x float] containing the
4461 /// lower 128 bits of the parameter.
4462 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_castps256_ps128(__m256 __a)4463 _mm256_castps256_ps128(__m256 __a)
4464 {
4465 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
4466 }
4467
4468 /// Truncates a 256-bit integer vector into a 128-bit integer vector.
4469 ///
4470 /// \headerfile <x86intrin.h>
4471 ///
4472 /// This intrinsic has no corresponding instruction.
4473 ///
4474 /// \param __a
4475 /// A 256-bit integer vector.
4476 /// \returns A 128-bit integer vector containing the lower 128 bits of the
4477 /// parameter.
4478 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_castsi256_si128(__m256i __a)4479 _mm256_castsi256_si128(__m256i __a)
4480 {
4481 return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
4482 }
4483
4484 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4485 /// 128-bit floating-point vector of [2 x double].
4486 ///
4487 /// The lower 128 bits contain the value of the source vector. The contents
4488 /// of the upper 128 bits are undefined.
4489 ///
4490 /// \headerfile <x86intrin.h>
4491 ///
4492 /// This intrinsic has no corresponding instruction.
4493 ///
4494 /// \param __a
4495 /// A 128-bit vector of [2 x double].
4496 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4497 /// contain the value of the parameter. The contents of the upper 128 bits
4498 /// are undefined.
4499 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castpd128_pd256(__m128d __a)4500 _mm256_castpd128_pd256(__m128d __a)
4501 {
4502 return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
4503 }
4504
4505 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4506 /// 128-bit floating-point vector of [4 x float].
4507 ///
4508 /// The lower 128 bits contain the value of the source vector. The contents
4509 /// of the upper 128 bits are undefined.
4510 ///
4511 /// \headerfile <x86intrin.h>
4512 ///
4513 /// This intrinsic has no corresponding instruction.
4514 ///
4515 /// \param __a
4516 /// A 128-bit vector of [4 x float].
4517 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4518 /// contain the value of the parameter. The contents of the upper 128 bits
4519 /// are undefined.
4520 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castps128_ps256(__m128 __a)4521 _mm256_castps128_ps256(__m128 __a)
4522 {
4523 return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
4524 }
4525
4526 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4527 ///
4528 /// The lower 128 bits contain the value of the source vector. The contents
4529 /// of the upper 128 bits are undefined.
4530 ///
4531 /// \headerfile <x86intrin.h>
4532 ///
4533 /// This intrinsic has no corresponding instruction.
4534 ///
4535 /// \param __a
4536 /// A 128-bit integer vector.
4537 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4538 /// the parameter. The contents of the upper 128 bits are undefined.
4539 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castsi128_si256(__m128i __a)4540 _mm256_castsi128_si256(__m128i __a)
4541 {
4542 return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
4543 }
4544
4545 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4546 /// 128-bit floating-point vector of [2 x double]. The lower 128 bits
4547 /// contain the value of the source vector. The upper 128 bits are set
4548 /// to zero.
4549 ///
4550 /// \headerfile <x86intrin.h>
4551 ///
4552 /// This intrinsic has no corresponding instruction.
4553 ///
4554 /// \param __a
4555 /// A 128-bit vector of [2 x double].
4556 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4557 /// contain the value of the parameter. The upper 128 bits are set to zero.
4558 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_zextpd128_pd256(__m128d __a)4559 _mm256_zextpd128_pd256(__m128d __a)
4560 {
4561 return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3);
4562 }
4563
4564 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4565 /// 128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4566 /// the value of the source vector. The upper 128 bits are set to zero.
4567 ///
4568 /// \headerfile <x86intrin.h>
4569 ///
4570 /// This intrinsic has no corresponding instruction.
4571 ///
4572 /// \param __a
4573 /// A 128-bit vector of [4 x float].
4574 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4575 /// contain the value of the parameter. The upper 128 bits are set to zero.
4576 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_zextps128_ps256(__m128 __a)4577 _mm256_zextps128_ps256(__m128 __a)
4578 {
4579 return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4580 }
4581
4582 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4583 /// The lower 128 bits contain the value of the source vector. The upper
4584 /// 128 bits are set to zero.
4585 ///
4586 /// \headerfile <x86intrin.h>
4587 ///
4588 /// This intrinsic has no corresponding instruction.
4589 ///
4590 /// \param __a
4591 /// A 128-bit integer vector.
4592 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4593 /// the parameter. The upper 128 bits are set to zero.
4594 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_zextsi128_si256(__m128i __a)4595 _mm256_zextsi128_si256(__m128i __a)
4596 {
4597 return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3);
4598 }
4599
4600 /*
4601 Vector insert.
4602 We use macros rather than inlines because we only want to accept
4603 invocations where the immediate M is a constant expression.
4604 */
4605 /// Constructs a new 256-bit vector of [8 x float] by first duplicating
4606 /// a 256-bit vector of [8 x float] given in the first parameter, and then
4607 /// replacing either the upper or the lower 128 bits with the contents of a
4608 /// 128-bit vector of [4 x float] in the second parameter.
4609 ///
4610 /// The immediate integer parameter determines between the upper or the lower
4611 /// 128 bits.
4612 ///
4613 /// \headerfile <x86intrin.h>
4614 ///
4615 /// \code
4616 /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4617 /// \endcode
4618 ///
4619 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4620 ///
4621 /// \param V1
4622 /// A 256-bit vector of [8 x float]. This vector is copied to the result
4623 /// first, and then either the upper or the lower 128 bits of the result will
4624 /// be replaced by the contents of \a V2.
4625 /// \param V2
4626 /// A 128-bit vector of [4 x float]. The contents of this parameter are
4627 /// written to either the upper or the lower 128 bits of the result depending
4628 /// on the value of parameter \a M.
4629 /// \param M
4630 /// An immediate integer. The least significant bit determines how the values
4631 /// from the two parameters are interleaved: \n
4632 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4633 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4634 /// result. \n
4635 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4636 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4637 /// result.
4638 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4639 #define _mm256_insertf128_ps(V1, V2, M) \
4640 ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4641 (__v4sf)(__m128)(V2), (int)(M)))
4642
4643 /// Constructs a new 256-bit vector of [4 x double] by first duplicating
4644 /// a 256-bit vector of [4 x double] given in the first parameter, and then
4645 /// replacing either the upper or the lower 128 bits with the contents of a
4646 /// 128-bit vector of [2 x double] in the second parameter.
4647 ///
4648 /// The immediate integer parameter determines between the upper or the lower
4649 /// 128 bits.
4650 ///
4651 /// \headerfile <x86intrin.h>
4652 ///
4653 /// \code
4654 /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4655 /// \endcode
4656 ///
4657 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4658 ///
4659 /// \param V1
4660 /// A 256-bit vector of [4 x double]. This vector is copied to the result
4661 /// first, and then either the upper or the lower 128 bits of the result will
4662 /// be replaced by the contents of \a V2.
4663 /// \param V2
4664 /// A 128-bit vector of [2 x double]. The contents of this parameter are
4665 /// written to either the upper or the lower 128 bits of the result depending
4666 /// on the value of parameter \a M.
4667 /// \param M
4668 /// An immediate integer. The least significant bit determines how the values
4669 /// from the two parameters are interleaved: \n
4670 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4671 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4672 /// result. \n
4673 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4674 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4675 /// result.
4676 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4677 #define _mm256_insertf128_pd(V1, V2, M) \
4678 ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4679 (__v2df)(__m128d)(V2), (int)(M)))
4680
4681 /// Constructs a new 256-bit integer vector by first duplicating a
4682 /// 256-bit integer vector given in the first parameter, and then replacing
4683 /// either the upper or the lower 128 bits with the contents of a 128-bit
4684 /// integer vector in the second parameter.
4685 ///
4686 /// The immediate integer parameter determines between the upper or the lower
4687 /// 128 bits.
4688 ///
4689 /// \headerfile <x86intrin.h>
4690 ///
4691 /// \code
4692 /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4693 /// \endcode
4694 ///
4695 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4696 ///
4697 /// \param V1
4698 /// A 256-bit integer vector. This vector is copied to the result first, and
4699 /// then either the upper or the lower 128 bits of the result will be
4700 /// replaced by the contents of \a V2.
4701 /// \param V2
4702 /// A 128-bit integer vector. The contents of this parameter are written to
4703 /// either the upper or the lower 128 bits of the result depending on the
4704 /// value of parameter \a M.
4705 /// \param M
4706 /// An immediate integer. The least significant bit determines how the values
4707 /// from the two parameters are interleaved: \n
4708 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4709 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4710 /// result. \n
4711 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4712 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4713 /// result.
4714 /// \returns A 256-bit integer vector containing the interleaved values.
4715 #define _mm256_insertf128_si256(V1, V2, M) \
4716 ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4717 (__v4si)(__m128i)(V2), (int)(M)))
4718
4719 /*
4720 Vector extract.
4721 We use macros rather than inlines because we only want to accept
4722 invocations where the immediate M is a constant expression.
4723 */
4724 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4725 /// of [8 x float], as determined by the immediate integer parameter, and
4726 /// returns the extracted bits as a 128-bit vector of [4 x float].
4727 ///
4728 /// \headerfile <x86intrin.h>
4729 ///
4730 /// \code
4731 /// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4732 /// \endcode
4733 ///
4734 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4735 ///
4736 /// \param V
4737 /// A 256-bit vector of [8 x float].
4738 /// \param M
4739 /// An immediate integer. The least significant bit determines which bits are
4740 /// extracted from the first parameter: \n
4741 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4742 /// result. \n
4743 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4744 /// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4745 #define _mm256_extractf128_ps(V, M) \
4746 ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M)))
4747
4748 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4749 /// of [4 x double], as determined by the immediate integer parameter, and
4750 /// returns the extracted bits as a 128-bit vector of [2 x double].
4751 ///
4752 /// \headerfile <x86intrin.h>
4753 ///
4754 /// \code
4755 /// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4756 /// \endcode
4757 ///
4758 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4759 ///
4760 /// \param V
4761 /// A 256-bit vector of [4 x double].
4762 /// \param M
4763 /// An immediate integer. The least significant bit determines which bits are
4764 /// extracted from the first parameter: \n
4765 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4766 /// result. \n
4767 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4768 /// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4769 #define _mm256_extractf128_pd(V, M) \
4770 ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M)))
4771
4772 /// Extracts either the upper or the lower 128 bits from a 256-bit
4773 /// integer vector, as determined by the immediate integer parameter, and
4774 /// returns the extracted bits as a 128-bit integer vector.
4775 ///
4776 /// \headerfile <x86intrin.h>
4777 ///
4778 /// \code
4779 /// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4780 /// \endcode
4781 ///
4782 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4783 ///
4784 /// \param V
4785 /// A 256-bit integer vector.
4786 /// \param M
4787 /// An immediate integer. The least significant bit determines which bits are
4788 /// extracted from the first parameter: \n
4789 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4790 /// result. \n
4791 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4792 /// \returns A 128-bit integer vector containing the extracted bits.
4793 #define _mm256_extractf128_si256(V, M) \
4794 ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M)))
4795
4796 /// Constructs a 256-bit floating-point vector of [8 x float] by
4797 /// concatenating two 128-bit floating-point vectors of [4 x float].
4798 ///
4799 /// \headerfile <x86intrin.h>
4800 ///
4801 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4802 ///
4803 /// \param __hi
4804 /// A 128-bit floating-point vector of [4 x float] to be copied to the upper
4805 /// 128 bits of the result.
4806 /// \param __lo
4807 /// A 128-bit floating-point vector of [4 x float] to be copied to the lower
4808 /// 128 bits of the result.
4809 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4810 /// concatenated result.
4811 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_m128(__m128 __hi,__m128 __lo)4812 _mm256_set_m128 (__m128 __hi, __m128 __lo)
4813 {
4814 return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
4815 }
4816
4817 /// Constructs a 256-bit floating-point vector of [4 x double] by
4818 /// concatenating two 128-bit floating-point vectors of [2 x double].
4819 ///
4820 /// \headerfile <x86intrin.h>
4821 ///
4822 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4823 ///
4824 /// \param __hi
4825 /// A 128-bit floating-point vector of [2 x double] to be copied to the upper
4826 /// 128 bits of the result.
4827 /// \param __lo
4828 /// A 128-bit floating-point vector of [2 x double] to be copied to the lower
4829 /// 128 bits of the result.
4830 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4831 /// concatenated result.
4832 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_m128d(__m128d __hi,__m128d __lo)4833 _mm256_set_m128d (__m128d __hi, __m128d __lo)
4834 {
4835 return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3);
4836 }
4837
4838 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4839 /// integer vectors.
4840 ///
4841 /// \headerfile <x86intrin.h>
4842 ///
4843 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4844 ///
4845 /// \param __hi
4846 /// A 128-bit integer vector to be copied to the upper 128 bits of the
4847 /// result.
4848 /// \param __lo
4849 /// A 128-bit integer vector to be copied to the lower 128 bits of the
4850 /// result.
4851 /// \returns A 256-bit integer vector containing the concatenated result.
4852 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_m128i(__m128i __hi,__m128i __lo)4853 _mm256_set_m128i (__m128i __hi, __m128i __lo)
4854 {
4855 return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3);
4856 }
4857
4858 /// Constructs a 256-bit floating-point vector of [8 x float] by
4859 /// concatenating two 128-bit floating-point vectors of [4 x float]. This is
4860 /// similar to _mm256_set_m128, but the order of the input parameters is
4861 /// swapped.
4862 ///
4863 /// \headerfile <x86intrin.h>
4864 ///
4865 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4866 ///
4867 /// \param __lo
4868 /// A 128-bit floating-point vector of [4 x float] to be copied to the lower
4869 /// 128 bits of the result.
4870 /// \param __hi
4871 /// A 128-bit floating-point vector of [4 x float] to be copied to the upper
4872 /// 128 bits of the result.
4873 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4874 /// concatenated result.
4875 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_m128(__m128 __lo,__m128 __hi)4876 _mm256_setr_m128 (__m128 __lo, __m128 __hi)
4877 {
4878 return _mm256_set_m128(__hi, __lo);
4879 }
4880
4881 /// Constructs a 256-bit floating-point vector of [4 x double] by
4882 /// concatenating two 128-bit floating-point vectors of [2 x double]. This is
4883 /// similar to _mm256_set_m128d, but the order of the input parameters is
4884 /// swapped.
4885 ///
4886 /// \headerfile <x86intrin.h>
4887 ///
4888 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4889 ///
4890 /// \param __lo
4891 /// A 128-bit floating-point vector of [2 x double] to be copied to the lower
4892 /// 128 bits of the result.
4893 /// \param __hi
4894 /// A 128-bit floating-point vector of [2 x double] to be copied to the upper
4895 /// 128 bits of the result.
4896 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4897 /// concatenated result.
4898 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_m128d(__m128d __lo,__m128d __hi)4899 _mm256_setr_m128d (__m128d __lo, __m128d __hi)
4900 {
4901 return (__m256d)_mm256_set_m128d(__hi, __lo);
4902 }
4903
4904 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4905 /// integer vectors. This is similar to _mm256_set_m128i, but the order of
4906 /// the input parameters is swapped.
4907 ///
4908 /// \headerfile <x86intrin.h>
4909 ///
4910 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4911 ///
4912 /// \param __lo
4913 /// A 128-bit integer vector to be copied to the lower 128 bits of the
4914 /// result.
4915 /// \param __hi
4916 /// A 128-bit integer vector to be copied to the upper 128 bits of the
4917 /// result.
4918 /// \returns A 256-bit integer vector containing the concatenated result.
4919 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_m128i(__m128i __lo,__m128i __hi)4920 _mm256_setr_m128i (__m128i __lo, __m128i __hi)
4921 {
4922 return (__m256i)_mm256_set_m128i(__hi, __lo);
4923 }
4924
4925 /* SIMD load ops (unaligned) */
4926 /// Loads two 128-bit floating-point vectors of [4 x float] from
4927 /// unaligned memory locations and constructs a 256-bit floating-point vector
4928 /// of [8 x float] by concatenating the two 128-bit vectors.
4929 ///
4930 /// \headerfile <x86intrin.h>
4931 ///
4932 /// This intrinsic corresponds to load instructions followed by the
4933 /// <c> VINSERTF128 </c> instruction.
4934 ///
4935 /// \param __addr_hi
4936 /// A pointer to a 128-bit memory location containing 4 consecutive
4937 /// single-precision floating-point values. These values are to be copied to
4938 /// bits[255:128] of the result. The address of the memory location does not
4939 /// have to be aligned.
4940 /// \param __addr_lo
4941 /// A pointer to a 128-bit memory location containing 4 consecutive
4942 /// single-precision floating-point values. These values are to be copied to
4943 /// bits[127:0] of the result. The address of the memory location does not
4944 /// have to be aligned.
4945 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4946 /// concatenated result.
4947 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu2_m128(float const * __addr_hi,float const * __addr_lo)4948 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
4949 {
4950 return _mm256_set_m128(_mm_loadu_ps(__addr_hi), _mm_loadu_ps(__addr_lo));
4951 }
4952
4953 /// Loads two 128-bit floating-point vectors of [2 x double] from
4954 /// unaligned memory locations and constructs a 256-bit floating-point vector
4955 /// of [4 x double] by concatenating the two 128-bit vectors.
4956 ///
4957 /// \headerfile <x86intrin.h>
4958 ///
4959 /// This intrinsic corresponds to load instructions followed by the
4960 /// <c> VINSERTF128 </c> instruction.
4961 ///
4962 /// \param __addr_hi
4963 /// A pointer to a 128-bit memory location containing two consecutive
4964 /// double-precision floating-point values. These values are to be copied to
4965 /// bits[255:128] of the result. The address of the memory location does not
4966 /// have to be aligned.
4967 /// \param __addr_lo
4968 /// A pointer to a 128-bit memory location containing two consecutive
4969 /// double-precision floating-point values. These values are to be copied to
4970 /// bits[127:0] of the result. The address of the memory location does not
4971 /// have to be aligned.
4972 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4973 /// concatenated result.
4974 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu2_m128d(double const * __addr_hi,double const * __addr_lo)4975 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
4976 {
4977 return _mm256_set_m128d(_mm_loadu_pd(__addr_hi), _mm_loadu_pd(__addr_lo));
4978 }
4979
4980 /// Loads two 128-bit integer vectors from unaligned memory locations and
4981 /// constructs a 256-bit integer vector by concatenating the two 128-bit
4982 /// vectors.
4983 ///
4984 /// \headerfile <x86intrin.h>
4985 ///
4986 /// This intrinsic corresponds to load instructions followed by the
4987 /// <c> VINSERTF128 </c> instruction.
4988 ///
4989 /// \param __addr_hi
4990 /// A pointer to a 128-bit memory location containing a 128-bit integer
4991 /// vector. This vector is to be copied to bits[255:128] of the result. The
4992 /// address of the memory location does not have to be aligned.
4993 /// \param __addr_lo
4994 /// A pointer to a 128-bit memory location containing a 128-bit integer
4995 /// vector. This vector is to be copied to bits[127:0] of the result. The
4996 /// address of the memory location does not have to be aligned.
4997 /// \returns A 256-bit integer vector containing the concatenated result.
4998 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu2_m128i(__m128i_u const * __addr_hi,__m128i_u const * __addr_lo)4999 _mm256_loadu2_m128i(__m128i_u const *__addr_hi, __m128i_u const *__addr_lo)
5000 {
5001 return _mm256_set_m128i(_mm_loadu_si128(__addr_hi), _mm_loadu_si128(__addr_lo));
5002 }
5003
5004 /* SIMD store ops (unaligned) */
5005 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5006 /// vector of [8 x float] into two different unaligned memory locations.
5007 ///
5008 /// \headerfile <x86intrin.h>
5009 ///
5010 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5011 /// store instructions.
5012 ///
5013 /// \param __addr_hi
5014 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5015 /// copied to this memory location. The address of this memory location does
5016 /// not have to be aligned.
5017 /// \param __addr_lo
5018 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5019 /// copied to this memory location. The address of this memory location does
5020 /// not have to be aligned.
5021 /// \param __a
5022 /// A 256-bit floating-point vector of [8 x float].
5023 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128(float * __addr_hi,float * __addr_lo,__m256 __a)5024 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
5025 {
5026 __m128 __v128;
5027
5028 __v128 = _mm256_castps256_ps128(__a);
5029 _mm_storeu_ps(__addr_lo, __v128);
5030 __v128 = _mm256_extractf128_ps(__a, 1);
5031 _mm_storeu_ps(__addr_hi, __v128);
5032 }
5033
5034 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5035 /// vector of [4 x double] into two different unaligned memory locations.
5036 ///
5037 /// \headerfile <x86intrin.h>
5038 ///
5039 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5040 /// store instructions.
5041 ///
5042 /// \param __addr_hi
5043 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5044 /// copied to this memory location. The address of this memory location does
5045 /// not have to be aligned.
5046 /// \param __addr_lo
5047 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5048 /// copied to this memory location. The address of this memory location does
5049 /// not have to be aligned.
5050 /// \param __a
5051 /// A 256-bit floating-point vector of [4 x double].
5052 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128d(double * __addr_hi,double * __addr_lo,__m256d __a)5053 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
5054 {
5055 __m128d __v128;
5056
5057 __v128 = _mm256_castpd256_pd128(__a);
5058 _mm_storeu_pd(__addr_lo, __v128);
5059 __v128 = _mm256_extractf128_pd(__a, 1);
5060 _mm_storeu_pd(__addr_hi, __v128);
5061 }
5062
5063 /// Stores the upper and lower 128 bits of a 256-bit integer vector into
5064 /// two different unaligned memory locations.
5065 ///
5066 /// \headerfile <x86intrin.h>
5067 ///
5068 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5069 /// store instructions.
5070 ///
5071 /// \param __addr_hi
5072 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5073 /// copied to this memory location. The address of this memory location does
5074 /// not have to be aligned.
5075 /// \param __addr_lo
5076 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5077 /// copied to this memory location. The address of this memory location does
5078 /// not have to be aligned.
5079 /// \param __a
5080 /// A 256-bit integer vector.
5081 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128i(__m128i_u * __addr_hi,__m128i_u * __addr_lo,__m256i __a)5082 _mm256_storeu2_m128i(__m128i_u *__addr_hi, __m128i_u *__addr_lo, __m256i __a)
5083 {
5084 __m128i __v128;
5085
5086 __v128 = _mm256_castsi256_si128(__a);
5087 _mm_storeu_si128(__addr_lo, __v128);
5088 __v128 = _mm256_extractf128_si256(__a, 1);
5089 _mm_storeu_si128(__addr_hi, __v128);
5090 }
5091
5092 #undef __DEFAULT_FN_ATTRS
5093 #undef __DEFAULT_FN_ATTRS128
5094
5095 #endif /* __AVXINTRIN_H */
5096