xref: /openbsd/gnu/gcc/gcc/cp/parser.c (revision 26cf605a)
1 /* C++ Parser.
2    Copyright (C) 2000, 2001, 2002, 2003, 2004,
3    2005  Free Software Foundation, Inc.
4    Written by Mark Mitchell <mark@codesourcery.com>.
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2, or (at your option)
11    any later version.
12 
13    GCC is distributed in the hope that it will be useful, but
14    WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16    General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING.  If not, write to the Free
20    Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21    02110-1301, USA.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "dyn-string.h"
28 #include "varray.h"
29 #include "cpplib.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "c-pragma.h"
33 #include "decl.h"
34 #include "flags.h"
35 #include "diagnostic.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "target.h"
39 #include "cgraph.h"
40 #include "c-common.h"
41 
42 
43 /* The lexer.  */
44 
45 /* The cp_lexer_* routines mediate between the lexer proper (in libcpp
46    and c-lex.c) and the C++ parser.  */
47 
48 /* A token's value and its associated deferred access checks and
49    qualifying scope.  */
50 
51 struct tree_check GTY(())
52 {
53   /* The value associated with the token.  */
54   tree value;
55   /* The checks that have been associated with value.  */
56   VEC (deferred_access_check, gc)* checks;
57   /* The token's qualifying scope (used when it is a
58      CPP_NESTED_NAME_SPECIFIER).  */
59   tree qualifying_scope;
60 };
61 
62 /* A C++ token.  */
63 
64 typedef struct cp_token GTY (())
65 {
66   /* The kind of token.  */
67   ENUM_BITFIELD (cpp_ttype) type : 8;
68   /* If this token is a keyword, this value indicates which keyword.
69      Otherwise, this value is RID_MAX.  */
70   ENUM_BITFIELD (rid) keyword : 8;
71   /* Token flags.  */
72   unsigned char flags;
73   /* Identifier for the pragma.  */
74   ENUM_BITFIELD (pragma_kind) pragma_kind : 6;
75   /* True if this token is from a system header.  */
76   BOOL_BITFIELD in_system_header : 1;
77   /* True if this token is from a context where it is implicitly extern "C" */
78   BOOL_BITFIELD implicit_extern_c : 1;
79   /* True for a CPP_NAME token that is not a keyword (i.e., for which
80      KEYWORD is RID_MAX) iff this name was looked up and found to be
81      ambiguous.  An error has already been reported.  */
82   BOOL_BITFIELD ambiguous_p : 1;
83   /* The input file stack index at which this token was found.  */
84   unsigned input_file_stack_index : INPUT_FILE_STACK_BITS;
85   /* The value associated with this token, if any.  */
86   union cp_token_value {
87     /* Used for CPP_NESTED_NAME_SPECIFIER and CPP_TEMPLATE_ID.  */
88     struct tree_check* GTY((tag ("1"))) tree_check_value;
89     /* Use for all other tokens.  */
90     tree GTY((tag ("0"))) value;
91   } GTY((desc ("(%1.type == CPP_TEMPLATE_ID) || (%1.type == CPP_NESTED_NAME_SPECIFIER)"))) u;
92   /* The location at which this token was found.  */
93   location_t location;
94 } cp_token;
95 
96 /* We use a stack of token pointer for saving token sets.  */
97 typedef struct cp_token *cp_token_position;
98 DEF_VEC_P (cp_token_position);
99 DEF_VEC_ALLOC_P (cp_token_position,heap);
100 
101 static const cp_token eof_token =
102 {
103   CPP_EOF, RID_MAX, 0, PRAGMA_NONE, 0, 0, false, 0, { NULL },
104 #if USE_MAPPED_LOCATION
105   0
106 #else
107   {0, 0}
108 #endif
109 };
110 
111 /* The cp_lexer structure represents the C++ lexer.  It is responsible
112    for managing the token stream from the preprocessor and supplying
113    it to the parser.  Tokens are never added to the cp_lexer after
114    it is created.  */
115 
116 typedef struct cp_lexer GTY (())
117 {
118   /* The memory allocated for the buffer.  NULL if this lexer does not
119      own the token buffer.  */
120   cp_token * GTY ((length ("%h.buffer_length"))) buffer;
121   /* If the lexer owns the buffer, this is the number of tokens in the
122      buffer.  */
123   size_t buffer_length;
124 
125   /* A pointer just past the last available token.  The tokens
126      in this lexer are [buffer, last_token).  */
127   cp_token_position GTY ((skip)) last_token;
128 
129   /* The next available token.  If NEXT_TOKEN is &eof_token, then there are
130      no more available tokens.  */
131   cp_token_position GTY ((skip)) next_token;
132 
133   /* A stack indicating positions at which cp_lexer_save_tokens was
134      called.  The top entry is the most recent position at which we
135      began saving tokens.  If the stack is non-empty, we are saving
136      tokens.  */
137   VEC(cp_token_position,heap) *GTY ((skip)) saved_tokens;
138 
139   /* The next lexer in a linked list of lexers.  */
140   struct cp_lexer *next;
141 
142   /* True if we should output debugging information.  */
143   bool debugging_p;
144 
145   /* True if we're in the context of parsing a pragma, and should not
146      increment past the end-of-line marker.  */
147   bool in_pragma;
148 } cp_lexer;
149 
150 /* cp_token_cache is a range of tokens.  There is no need to represent
151    allocate heap memory for it, since tokens are never removed from the
152    lexer's array.  There is also no need for the GC to walk through
153    a cp_token_cache, since everything in here is referenced through
154    a lexer.  */
155 
156 typedef struct cp_token_cache GTY(())
157 {
158   /* The beginning of the token range.  */
159   cp_token * GTY((skip)) first;
160 
161   /* Points immediately after the last token in the range.  */
162   cp_token * GTY ((skip)) last;
163 } cp_token_cache;
164 
165 /* Prototypes.  */
166 
167 static cp_lexer *cp_lexer_new_main
168   (void);
169 static cp_lexer *cp_lexer_new_from_tokens
170   (cp_token_cache *tokens);
171 static void cp_lexer_destroy
172   (cp_lexer *);
173 static int cp_lexer_saving_tokens
174   (const cp_lexer *);
175 static cp_token_position cp_lexer_token_position
176   (cp_lexer *, bool);
177 static cp_token *cp_lexer_token_at
178   (cp_lexer *, cp_token_position);
179 static void cp_lexer_get_preprocessor_token
180   (cp_lexer *, cp_token *);
181 static inline cp_token *cp_lexer_peek_token
182   (cp_lexer *);
183 static cp_token *cp_lexer_peek_nth_token
184   (cp_lexer *, size_t);
185 static inline bool cp_lexer_next_token_is
186   (cp_lexer *, enum cpp_ttype);
187 static bool cp_lexer_next_token_is_not
188   (cp_lexer *, enum cpp_ttype);
189 static bool cp_lexer_next_token_is_keyword
190   (cp_lexer *, enum rid);
191 static cp_token *cp_lexer_consume_token
192   (cp_lexer *);
193 static void cp_lexer_purge_token
194   (cp_lexer *);
195 static void cp_lexer_purge_tokens_after
196   (cp_lexer *, cp_token_position);
197 static void cp_lexer_save_tokens
198   (cp_lexer *);
199 static void cp_lexer_commit_tokens
200   (cp_lexer *);
201 static void cp_lexer_rollback_tokens
202   (cp_lexer *);
203 #ifdef ENABLE_CHECKING
204 static void cp_lexer_print_token
205   (FILE *, cp_token *);
206 static inline bool cp_lexer_debugging_p
207   (cp_lexer *);
208 static void cp_lexer_start_debugging
209   (cp_lexer *) ATTRIBUTE_UNUSED;
210 static void cp_lexer_stop_debugging
211   (cp_lexer *) ATTRIBUTE_UNUSED;
212 #else
213 /* If we define cp_lexer_debug_stream to NULL it will provoke warnings
214    about passing NULL to functions that require non-NULL arguments
215    (fputs, fprintf).  It will never be used, so all we need is a value
216    of the right type that's guaranteed not to be NULL.  */
217 #define cp_lexer_debug_stream stdout
218 #define cp_lexer_print_token(str, tok) (void) 0
219 #define cp_lexer_debugging_p(lexer) 0
220 #endif /* ENABLE_CHECKING */
221 
222 static cp_token_cache *cp_token_cache_new
223   (cp_token *, cp_token *);
224 
225 static void cp_parser_initial_pragma
226   (cp_token *);
227 
228 /* Manifest constants.  */
229 #define CP_LEXER_BUFFER_SIZE ((256 * 1024) / sizeof (cp_token))
230 #define CP_SAVED_TOKEN_STACK 5
231 
232 /* A token type for keywords, as opposed to ordinary identifiers.  */
233 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
234 
235 /* A token type for template-ids.  If a template-id is processed while
236    parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
237    the value of the CPP_TEMPLATE_ID is whatever was returned by
238    cp_parser_template_id.  */
239 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
240 
241 /* A token type for nested-name-specifiers.  If a
242    nested-name-specifier is processed while parsing tentatively, it is
243    replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
244    CPP_NESTED_NAME_SPECIFIER is whatever was returned by
245    cp_parser_nested_name_specifier_opt.  */
246 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
247 
248 /* A token type for tokens that are not tokens at all; these are used
249    to represent slots in the array where there used to be a token
250    that has now been deleted.  */
251 #define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
252 
253 /* The number of token types, including C++-specific ones.  */
254 #define N_CP_TTYPES ((int) (CPP_PURGED + 1))
255 
256 /* Variables.  */
257 
258 #ifdef ENABLE_CHECKING
259 /* The stream to which debugging output should be written.  */
260 static FILE *cp_lexer_debug_stream;
261 #endif /* ENABLE_CHECKING */
262 
263 /* Create a new main C++ lexer, the lexer that gets tokens from the
264    preprocessor.  */
265 
266 static cp_lexer *
cp_lexer_new_main(void)267 cp_lexer_new_main (void)
268 {
269   cp_token first_token;
270   cp_lexer *lexer;
271   cp_token *pos;
272   size_t alloc;
273   size_t space;
274   cp_token *buffer;
275 
276   /* It's possible that parsing the first pragma will load a PCH file,
277      which is a GC collection point.  So we have to do that before
278      allocating any memory.  */
279   cp_parser_initial_pragma (&first_token);
280 
281   /* Tell c_lex_with_flags not to merge string constants.  */
282   c_lex_return_raw_strings = true;
283 
284   c_common_no_more_pch ();
285 
286   /* Allocate the memory.  */
287   lexer = GGC_CNEW (cp_lexer);
288 
289 #ifdef ENABLE_CHECKING
290   /* Initially we are not debugging.  */
291   lexer->debugging_p = false;
292 #endif /* ENABLE_CHECKING */
293   lexer->saved_tokens = VEC_alloc (cp_token_position, heap,
294 				   CP_SAVED_TOKEN_STACK);
295 
296   /* Create the buffer.  */
297   alloc = CP_LEXER_BUFFER_SIZE;
298   buffer = GGC_NEWVEC (cp_token, alloc);
299 
300   /* Put the first token in the buffer.  */
301   space = alloc;
302   pos = buffer;
303   *pos = first_token;
304 
305   /* Get the remaining tokens from the preprocessor.  */
306   while (pos->type != CPP_EOF)
307     {
308       pos++;
309       if (!--space)
310 	{
311 	  space = alloc;
312 	  alloc *= 2;
313 	  buffer = GGC_RESIZEVEC (cp_token, buffer, alloc);
314 	  pos = buffer + space;
315 	}
316       cp_lexer_get_preprocessor_token (lexer, pos);
317     }
318   lexer->buffer = buffer;
319   lexer->buffer_length = alloc - space;
320   lexer->last_token = pos;
321   lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
322 
323   /* Subsequent preprocessor diagnostics should use compiler
324      diagnostic functions to get the compiler source location.  */
325   cpp_get_options (parse_in)->client_diagnostic = true;
326   cpp_get_callbacks (parse_in)->error = cp_cpp_error;
327 
328   gcc_assert (lexer->next_token->type != CPP_PURGED);
329   return lexer;
330 }
331 
332 /* Create a new lexer whose token stream is primed with the tokens in
333    CACHE.  When these tokens are exhausted, no new tokens will be read.  */
334 
335 static cp_lexer *
cp_lexer_new_from_tokens(cp_token_cache * cache)336 cp_lexer_new_from_tokens (cp_token_cache *cache)
337 {
338   cp_token *first = cache->first;
339   cp_token *last = cache->last;
340   cp_lexer *lexer = GGC_CNEW (cp_lexer);
341 
342   /* We do not own the buffer.  */
343   lexer->buffer = NULL;
344   lexer->buffer_length = 0;
345   lexer->next_token = first == last ? (cp_token *)&eof_token : first;
346   lexer->last_token = last;
347 
348   lexer->saved_tokens = VEC_alloc (cp_token_position, heap,
349 				   CP_SAVED_TOKEN_STACK);
350 
351 #ifdef ENABLE_CHECKING
352   /* Initially we are not debugging.  */
353   lexer->debugging_p = false;
354 #endif
355 
356   gcc_assert (lexer->next_token->type != CPP_PURGED);
357   return lexer;
358 }
359 
360 /* Frees all resources associated with LEXER.  */
361 
362 static void
cp_lexer_destroy(cp_lexer * lexer)363 cp_lexer_destroy (cp_lexer *lexer)
364 {
365   if (lexer->buffer)
366     ggc_free (lexer->buffer);
367   VEC_free (cp_token_position, heap, lexer->saved_tokens);
368   ggc_free (lexer);
369 }
370 
371 /* Returns nonzero if debugging information should be output.  */
372 
373 #ifdef ENABLE_CHECKING
374 
375 static inline bool
cp_lexer_debugging_p(cp_lexer * lexer)376 cp_lexer_debugging_p (cp_lexer *lexer)
377 {
378   return lexer->debugging_p;
379 }
380 
381 #endif /* ENABLE_CHECKING */
382 
383 static inline cp_token_position
cp_lexer_token_position(cp_lexer * lexer,bool previous_p)384 cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
385 {
386   gcc_assert (!previous_p || lexer->next_token != &eof_token);
387 
388   return lexer->next_token - previous_p;
389 }
390 
391 static inline cp_token *
cp_lexer_token_at(cp_lexer * lexer ATTRIBUTE_UNUSED,cp_token_position pos)392 cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
393 {
394   return pos;
395 }
396 
397 /* nonzero if we are presently saving tokens.  */
398 
399 static inline int
cp_lexer_saving_tokens(const cp_lexer * lexer)400 cp_lexer_saving_tokens (const cp_lexer* lexer)
401 {
402   return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
403 }
404 
405 /* Store the next token from the preprocessor in *TOKEN.  Return true
406    if we reach EOF.  */
407 
408 static void
cp_lexer_get_preprocessor_token(cp_lexer * lexer ATTRIBUTE_UNUSED,cp_token * token)409 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
410 				 cp_token *token)
411 {
412   static int is_extern_c = 0;
413 
414    /* Get a new token from the preprocessor.  */
415   token->type
416     = c_lex_with_flags (&token->u.value, &token->location, &token->flags);
417   token->input_file_stack_index = input_file_stack_tick;
418   token->keyword = RID_MAX;
419   token->pragma_kind = PRAGMA_NONE;
420   token->in_system_header = in_system_header;
421 
422   /* On some systems, some header files are surrounded by an
423      implicit extern "C" block.  Set a flag in the token if it
424      comes from such a header.  */
425   is_extern_c += pending_lang_change;
426   pending_lang_change = 0;
427   token->implicit_extern_c = is_extern_c > 0;
428 
429   /* Check to see if this token is a keyword.  */
430   if (token->type == CPP_NAME)
431     {
432       if (C_IS_RESERVED_WORD (token->u.value))
433 	{
434 	  /* Mark this token as a keyword.  */
435 	  token->type = CPP_KEYWORD;
436 	  /* Record which keyword.  */
437 	  token->keyword = C_RID_CODE (token->u.value);
438 	  /* Update the value.  Some keywords are mapped to particular
439 	     entities, rather than simply having the value of the
440 	     corresponding IDENTIFIER_NODE.  For example, `__const' is
441 	     mapped to `const'.  */
442 	  token->u.value = ridpointers[token->keyword];
443 	}
444       else
445 	{
446 	  token->ambiguous_p = false;
447 	  token->keyword = RID_MAX;
448 	}
449     }
450   /* Handle Objective-C++ keywords.  */
451   else if (token->type == CPP_AT_NAME)
452     {
453       token->type = CPP_KEYWORD;
454       switch (C_RID_CODE (token->u.value))
455 	{
456 	/* Map 'class' to '@class', 'private' to '@private', etc.  */
457 	case RID_CLASS: token->keyword = RID_AT_CLASS; break;
458 	case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break;
459 	case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break;
460 	case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break;
461 	case RID_THROW: token->keyword = RID_AT_THROW; break;
462 	case RID_TRY: token->keyword = RID_AT_TRY; break;
463 	case RID_CATCH: token->keyword = RID_AT_CATCH; break;
464 	default: token->keyword = C_RID_CODE (token->u.value);
465 	}
466     }
467   else if (token->type == CPP_PRAGMA)
468     {
469       /* We smuggled the cpp_token->u.pragma value in an INTEGER_CST.  */
470       token->pragma_kind = TREE_INT_CST_LOW (token->u.value);
471       token->u.value = NULL_TREE;
472     }
473 }
474 
475 /* Update the globals input_location and in_system_header and the
476    input file stack from TOKEN.  */
477 static inline void
cp_lexer_set_source_position_from_token(cp_token * token)478 cp_lexer_set_source_position_from_token (cp_token *token)
479 {
480   if (token->type != CPP_EOF)
481     {
482       input_location = token->location;
483       in_system_header = token->in_system_header;
484       restore_input_file_stack (token->input_file_stack_index);
485     }
486 }
487 
488 /* Return a pointer to the next token in the token stream, but do not
489    consume it.  */
490 
491 static inline cp_token *
cp_lexer_peek_token(cp_lexer * lexer)492 cp_lexer_peek_token (cp_lexer *lexer)
493 {
494   if (cp_lexer_debugging_p (lexer))
495     {
496       fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
497       cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
498       putc ('\n', cp_lexer_debug_stream);
499     }
500   return lexer->next_token;
501 }
502 
503 /* Return true if the next token has the indicated TYPE.  */
504 
505 static inline bool
cp_lexer_next_token_is(cp_lexer * lexer,enum cpp_ttype type)506 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
507 {
508   return cp_lexer_peek_token (lexer)->type == type;
509 }
510 
511 /* Return true if the next token does not have the indicated TYPE.  */
512 
513 static inline bool
cp_lexer_next_token_is_not(cp_lexer * lexer,enum cpp_ttype type)514 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
515 {
516   return !cp_lexer_next_token_is (lexer, type);
517 }
518 
519 /* Return true if the next token is the indicated KEYWORD.  */
520 
521 static inline bool
cp_lexer_next_token_is_keyword(cp_lexer * lexer,enum rid keyword)522 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
523 {
524   return cp_lexer_peek_token (lexer)->keyword == keyword;
525 }
526 
527 /* Return true if the next token is a keyword for a decl-specifier.  */
528 
529 static bool
cp_lexer_next_token_is_decl_specifier_keyword(cp_lexer * lexer)530 cp_lexer_next_token_is_decl_specifier_keyword (cp_lexer *lexer)
531 {
532   cp_token *token;
533 
534   token = cp_lexer_peek_token (lexer);
535   switch (token->keyword)
536     {
537       /* Storage classes.  */
538     case RID_AUTO:
539     case RID_REGISTER:
540     case RID_STATIC:
541     case RID_EXTERN:
542     case RID_MUTABLE:
543     case RID_THREAD:
544       /* Elaborated type specifiers.  */
545     case RID_ENUM:
546     case RID_CLASS:
547     case RID_STRUCT:
548     case RID_UNION:
549     case RID_TYPENAME:
550       /* Simple type specifiers.  */
551     case RID_CHAR:
552     case RID_WCHAR:
553     case RID_BOOL:
554     case RID_SHORT:
555     case RID_INT:
556     case RID_LONG:
557     case RID_SIGNED:
558     case RID_UNSIGNED:
559     case RID_FLOAT:
560     case RID_DOUBLE:
561     case RID_VOID:
562       /* GNU extensions.  */
563     case RID_ATTRIBUTE:
564     case RID_TYPEOF:
565       return true;
566 
567     default:
568       return false;
569     }
570 }
571 
572 /* Return a pointer to the Nth token in the token stream.  If N is 1,
573    then this is precisely equivalent to cp_lexer_peek_token (except
574    that it is not inline).  One would like to disallow that case, but
575    there is one case (cp_parser_nth_token_starts_template_id) where
576    the caller passes a variable for N and it might be 1.  */
577 
578 static cp_token *
cp_lexer_peek_nth_token(cp_lexer * lexer,size_t n)579 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
580 {
581   cp_token *token;
582 
583   /* N is 1-based, not zero-based.  */
584   gcc_assert (n > 0);
585 
586   if (cp_lexer_debugging_p (lexer))
587     fprintf (cp_lexer_debug_stream,
588 	     "cp_lexer: peeking ahead %ld at token: ", (long)n);
589 
590   --n;
591   token = lexer->next_token;
592   gcc_assert (!n || token != &eof_token);
593   while (n != 0)
594     {
595       ++token;
596       if (token == lexer->last_token)
597 	{
598 	  token = (cp_token *)&eof_token;
599 	  break;
600 	}
601 
602       if (token->type != CPP_PURGED)
603 	--n;
604     }
605 
606   if (cp_lexer_debugging_p (lexer))
607     {
608       cp_lexer_print_token (cp_lexer_debug_stream, token);
609       putc ('\n', cp_lexer_debug_stream);
610     }
611 
612   return token;
613 }
614 
615 /* Return the next token, and advance the lexer's next_token pointer
616    to point to the next non-purged token.  */
617 
618 static cp_token *
cp_lexer_consume_token(cp_lexer * lexer)619 cp_lexer_consume_token (cp_lexer* lexer)
620 {
621   cp_token *token = lexer->next_token;
622 
623   gcc_assert (token != &eof_token);
624   gcc_assert (!lexer->in_pragma || token->type != CPP_PRAGMA_EOL);
625 
626   do
627     {
628       lexer->next_token++;
629       if (lexer->next_token == lexer->last_token)
630 	{
631 	  lexer->next_token = (cp_token *)&eof_token;
632 	  break;
633 	}
634 
635     }
636   while (lexer->next_token->type == CPP_PURGED);
637 
638   cp_lexer_set_source_position_from_token (token);
639 
640   /* Provide debugging output.  */
641   if (cp_lexer_debugging_p (lexer))
642     {
643       fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
644       cp_lexer_print_token (cp_lexer_debug_stream, token);
645       putc ('\n', cp_lexer_debug_stream);
646     }
647 
648   return token;
649 }
650 
651 /* Permanently remove the next token from the token stream, and
652    advance the next_token pointer to refer to the next non-purged
653    token.  */
654 
655 static void
cp_lexer_purge_token(cp_lexer * lexer)656 cp_lexer_purge_token (cp_lexer *lexer)
657 {
658   cp_token *tok = lexer->next_token;
659 
660   gcc_assert (tok != &eof_token);
661   tok->type = CPP_PURGED;
662   tok->location = UNKNOWN_LOCATION;
663   tok->u.value = NULL_TREE;
664   tok->keyword = RID_MAX;
665 
666   do
667     {
668       tok++;
669       if (tok == lexer->last_token)
670 	{
671 	  tok = (cp_token *)&eof_token;
672 	  break;
673 	}
674     }
675   while (tok->type == CPP_PURGED);
676   lexer->next_token = tok;
677 }
678 
679 /* Permanently remove all tokens after TOK, up to, but not
680    including, the token that will be returned next by
681    cp_lexer_peek_token.  */
682 
683 static void
cp_lexer_purge_tokens_after(cp_lexer * lexer,cp_token * tok)684 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
685 {
686   cp_token *peek = lexer->next_token;
687 
688   if (peek == &eof_token)
689     peek = lexer->last_token;
690 
691   gcc_assert (tok < peek);
692 
693   for ( tok += 1; tok != peek; tok += 1)
694     {
695       tok->type = CPP_PURGED;
696       tok->location = UNKNOWN_LOCATION;
697       tok->u.value = NULL_TREE;
698       tok->keyword = RID_MAX;
699     }
700 }
701 
702 /* Begin saving tokens.  All tokens consumed after this point will be
703    preserved.  */
704 
705 static void
cp_lexer_save_tokens(cp_lexer * lexer)706 cp_lexer_save_tokens (cp_lexer* lexer)
707 {
708   /* Provide debugging output.  */
709   if (cp_lexer_debugging_p (lexer))
710     fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
711 
712   VEC_safe_push (cp_token_position, heap,
713 		 lexer->saved_tokens, lexer->next_token);
714 }
715 
716 /* Commit to the portion of the token stream most recently saved.  */
717 
718 static void
cp_lexer_commit_tokens(cp_lexer * lexer)719 cp_lexer_commit_tokens (cp_lexer* lexer)
720 {
721   /* Provide debugging output.  */
722   if (cp_lexer_debugging_p (lexer))
723     fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
724 
725   VEC_pop (cp_token_position, lexer->saved_tokens);
726 }
727 
728 /* Return all tokens saved since the last call to cp_lexer_save_tokens
729    to the token stream.  Stop saving tokens.  */
730 
731 static void
cp_lexer_rollback_tokens(cp_lexer * lexer)732 cp_lexer_rollback_tokens (cp_lexer* lexer)
733 {
734   /* Provide debugging output.  */
735   if (cp_lexer_debugging_p (lexer))
736     fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
737 
738   lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
739 }
740 
741 /* Print a representation of the TOKEN on the STREAM.  */
742 
743 #ifdef ENABLE_CHECKING
744 
745 static void
cp_lexer_print_token(FILE * stream,cp_token * token)746 cp_lexer_print_token (FILE * stream, cp_token *token)
747 {
748   /* We don't use cpp_type2name here because the parser defines
749      a few tokens of its own.  */
750   static const char *const token_names[] = {
751     /* cpplib-defined token types */
752 #define OP(e, s) #e,
753 #define TK(e, s) #e,
754     TTYPE_TABLE
755 #undef OP
756 #undef TK
757     /* C++ parser token types - see "Manifest constants", above.  */
758     "KEYWORD",
759     "TEMPLATE_ID",
760     "NESTED_NAME_SPECIFIER",
761     "PURGED"
762   };
763 
764   /* If we have a name for the token, print it out.  Otherwise, we
765      simply give the numeric code.  */
766   gcc_assert (token->type < ARRAY_SIZE(token_names));
767   fputs (token_names[token->type], stream);
768 
769   /* For some tokens, print the associated data.  */
770   switch (token->type)
771     {
772     case CPP_KEYWORD:
773       /* Some keywords have a value that is not an IDENTIFIER_NODE.
774 	 For example, `struct' is mapped to an INTEGER_CST.  */
775       if (TREE_CODE (token->u.value) != IDENTIFIER_NODE)
776 	break;
777       /* else fall through */
778     case CPP_NAME:
779       fputs (IDENTIFIER_POINTER (token->u.value), stream);
780       break;
781 
782     case CPP_STRING:
783     case CPP_WSTRING:
784       fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->u.value));
785       break;
786 
787     default:
788       break;
789     }
790 }
791 
792 /* Start emitting debugging information.  */
793 
794 static void
cp_lexer_start_debugging(cp_lexer * lexer)795 cp_lexer_start_debugging (cp_lexer* lexer)
796 {
797   lexer->debugging_p = true;
798 }
799 
800 /* Stop emitting debugging information.  */
801 
802 static void
cp_lexer_stop_debugging(cp_lexer * lexer)803 cp_lexer_stop_debugging (cp_lexer* lexer)
804 {
805   lexer->debugging_p = false;
806 }
807 
808 #endif /* ENABLE_CHECKING */
809 
810 /* Create a new cp_token_cache, representing a range of tokens.  */
811 
812 static cp_token_cache *
cp_token_cache_new(cp_token * first,cp_token * last)813 cp_token_cache_new (cp_token *first, cp_token *last)
814 {
815   cp_token_cache *cache = GGC_NEW (cp_token_cache);
816   cache->first = first;
817   cache->last = last;
818   return cache;
819 }
820 
821 
822 /* Decl-specifiers.  */
823 
824 /* Set *DECL_SPECS to represent an empty decl-specifier-seq.  */
825 
826 static void
clear_decl_specs(cp_decl_specifier_seq * decl_specs)827 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
828 {
829   memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
830 }
831 
832 /* Declarators.  */
833 
834 /* Nothing other than the parser should be creating declarators;
835    declarators are a semi-syntactic representation of C++ entities.
836    Other parts of the front end that need to create entities (like
837    VAR_DECLs or FUNCTION_DECLs) should do that directly.  */
838 
839 static cp_declarator *make_call_declarator
840   (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
841 static cp_declarator *make_array_declarator
842   (cp_declarator *, tree);
843 static cp_declarator *make_pointer_declarator
844   (cp_cv_quals, cp_declarator *);
845 static cp_declarator *make_reference_declarator
846   (cp_cv_quals, cp_declarator *);
847 static cp_parameter_declarator *make_parameter_declarator
848   (cp_decl_specifier_seq *, cp_declarator *, tree);
849 static cp_declarator *make_ptrmem_declarator
850   (cp_cv_quals, tree, cp_declarator *);
851 
852 /* An erroneous declarator.  */
853 static cp_declarator *cp_error_declarator;
854 
855 /* The obstack on which declarators and related data structures are
856    allocated.  */
857 static struct obstack declarator_obstack;
858 
859 /* Alloc BYTES from the declarator memory pool.  */
860 
861 static inline void *
alloc_declarator(size_t bytes)862 alloc_declarator (size_t bytes)
863 {
864   return obstack_alloc (&declarator_obstack, bytes);
865 }
866 
867 /* Allocate a declarator of the indicated KIND.  Clear fields that are
868    common to all declarators.  */
869 
870 static cp_declarator *
make_declarator(cp_declarator_kind kind)871 make_declarator (cp_declarator_kind kind)
872 {
873   cp_declarator *declarator;
874 
875   declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
876   declarator->kind = kind;
877   declarator->attributes = NULL_TREE;
878   declarator->declarator = NULL;
879 
880   return declarator;
881 }
882 
883 /* Make a declarator for a generalized identifier.  If
884    QUALIFYING_SCOPE is non-NULL, the identifier is
885    QUALIFYING_SCOPE::UNQUALIFIED_NAME; otherwise, it is just
886    UNQUALIFIED_NAME.  SFK indicates the kind of special function this
887    is, if any.   */
888 
889 static cp_declarator *
make_id_declarator(tree qualifying_scope,tree unqualified_name,special_function_kind sfk)890 make_id_declarator (tree qualifying_scope, tree unqualified_name,
891 		    special_function_kind sfk)
892 {
893   cp_declarator *declarator;
894 
895   /* It is valid to write:
896 
897        class C { void f(); };
898        typedef C D;
899        void D::f();
900 
901      The standard is not clear about whether `typedef const C D' is
902      legal; as of 2002-09-15 the committee is considering that
903      question.  EDG 3.0 allows that syntax.  Therefore, we do as
904      well.  */
905   if (qualifying_scope && TYPE_P (qualifying_scope))
906     qualifying_scope = TYPE_MAIN_VARIANT (qualifying_scope);
907 
908   gcc_assert (TREE_CODE (unqualified_name) == IDENTIFIER_NODE
909 	      || TREE_CODE (unqualified_name) == BIT_NOT_EXPR
910 	      || TREE_CODE (unqualified_name) == TEMPLATE_ID_EXPR);
911 
912   declarator = make_declarator (cdk_id);
913   declarator->u.id.qualifying_scope = qualifying_scope;
914   declarator->u.id.unqualified_name = unqualified_name;
915   declarator->u.id.sfk = sfk;
916 
917   return declarator;
918 }
919 
920 /* Make a declarator for a pointer to TARGET.  CV_QUALIFIERS is a list
921    of modifiers such as const or volatile to apply to the pointer
922    type, represented as identifiers.  */
923 
924 cp_declarator *
make_pointer_declarator(cp_cv_quals cv_qualifiers,cp_declarator * target)925 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
926 {
927   cp_declarator *declarator;
928 
929   declarator = make_declarator (cdk_pointer);
930   declarator->declarator = target;
931   declarator->u.pointer.qualifiers = cv_qualifiers;
932   declarator->u.pointer.class_type = NULL_TREE;
933 
934   return declarator;
935 }
936 
937 /* Like make_pointer_declarator -- but for references.  */
938 
939 cp_declarator *
make_reference_declarator(cp_cv_quals cv_qualifiers,cp_declarator * target)940 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
941 {
942   cp_declarator *declarator;
943 
944   declarator = make_declarator (cdk_reference);
945   declarator->declarator = target;
946   declarator->u.pointer.qualifiers = cv_qualifiers;
947   declarator->u.pointer.class_type = NULL_TREE;
948 
949   return declarator;
950 }
951 
952 /* Like make_pointer_declarator -- but for a pointer to a non-static
953    member of CLASS_TYPE.  */
954 
955 cp_declarator *
make_ptrmem_declarator(cp_cv_quals cv_qualifiers,tree class_type,cp_declarator * pointee)956 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
957 			cp_declarator *pointee)
958 {
959   cp_declarator *declarator;
960 
961   declarator = make_declarator (cdk_ptrmem);
962   declarator->declarator = pointee;
963   declarator->u.pointer.qualifiers = cv_qualifiers;
964   declarator->u.pointer.class_type = class_type;
965 
966   return declarator;
967 }
968 
969 /* Make a declarator for the function given by TARGET, with the
970    indicated PARMS.  The CV_QUALIFIERS aply to the function, as in
971    "const"-qualified member function.  The EXCEPTION_SPECIFICATION
972    indicates what exceptions can be thrown.  */
973 
974 cp_declarator *
make_call_declarator(cp_declarator * target,cp_parameter_declarator * parms,cp_cv_quals cv_qualifiers,tree exception_specification)975 make_call_declarator (cp_declarator *target,
976 		      cp_parameter_declarator *parms,
977 		      cp_cv_quals cv_qualifiers,
978 		      tree exception_specification)
979 {
980   cp_declarator *declarator;
981 
982   declarator = make_declarator (cdk_function);
983   declarator->declarator = target;
984   declarator->u.function.parameters = parms;
985   declarator->u.function.qualifiers = cv_qualifiers;
986   declarator->u.function.exception_specification = exception_specification;
987 
988   return declarator;
989 }
990 
991 /* Make a declarator for an array of BOUNDS elements, each of which is
992    defined by ELEMENT.  */
993 
994 cp_declarator *
make_array_declarator(cp_declarator * element,tree bounds)995 make_array_declarator (cp_declarator *element, tree bounds)
996 {
997   cp_declarator *declarator;
998 
999   declarator = make_declarator (cdk_array);
1000   declarator->declarator = element;
1001   declarator->u.array.bounds = bounds;
1002 
1003   return declarator;
1004 }
1005 
1006 cp_parameter_declarator *no_parameters;
1007 
1008 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
1009    DECLARATOR and DEFAULT_ARGUMENT.  */
1010 
1011 cp_parameter_declarator *
make_parameter_declarator(cp_decl_specifier_seq * decl_specifiers,cp_declarator * declarator,tree default_argument)1012 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
1013 			   cp_declarator *declarator,
1014 			   tree default_argument)
1015 {
1016   cp_parameter_declarator *parameter;
1017 
1018   parameter = ((cp_parameter_declarator *)
1019 	       alloc_declarator (sizeof (cp_parameter_declarator)));
1020   parameter->next = NULL;
1021   if (decl_specifiers)
1022     parameter->decl_specifiers = *decl_specifiers;
1023   else
1024     clear_decl_specs (&parameter->decl_specifiers);
1025   parameter->declarator = declarator;
1026   parameter->default_argument = default_argument;
1027   parameter->ellipsis_p = false;
1028 
1029   return parameter;
1030 }
1031 
1032 /* Returns true iff DECLARATOR  is a declaration for a function.  */
1033 
1034 static bool
function_declarator_p(const cp_declarator * declarator)1035 function_declarator_p (const cp_declarator *declarator)
1036 {
1037   while (declarator)
1038     {
1039       if (declarator->kind == cdk_function
1040 	  && declarator->declarator->kind == cdk_id)
1041 	return true;
1042       if (declarator->kind == cdk_id
1043 	  || declarator->kind == cdk_error)
1044 	return false;
1045       declarator = declarator->declarator;
1046     }
1047   return false;
1048 }
1049 
1050 /* The parser.  */
1051 
1052 /* Overview
1053    --------
1054 
1055    A cp_parser parses the token stream as specified by the C++
1056    grammar.  Its job is purely parsing, not semantic analysis.  For
1057    example, the parser breaks the token stream into declarators,
1058    expressions, statements, and other similar syntactic constructs.
1059    It does not check that the types of the expressions on either side
1060    of an assignment-statement are compatible, or that a function is
1061    not declared with a parameter of type `void'.
1062 
1063    The parser invokes routines elsewhere in the compiler to perform
1064    semantic analysis and to build up the abstract syntax tree for the
1065    code processed.
1066 
1067    The parser (and the template instantiation code, which is, in a
1068    way, a close relative of parsing) are the only parts of the
1069    compiler that should be calling push_scope and pop_scope, or
1070    related functions.  The parser (and template instantiation code)
1071    keeps track of what scope is presently active; everything else
1072    should simply honor that.  (The code that generates static
1073    initializers may also need to set the scope, in order to check
1074    access control correctly when emitting the initializers.)
1075 
1076    Methodology
1077    -----------
1078 
1079    The parser is of the standard recursive-descent variety.  Upcoming
1080    tokens in the token stream are examined in order to determine which
1081    production to use when parsing a non-terminal.  Some C++ constructs
1082    require arbitrary look ahead to disambiguate.  For example, it is
1083    impossible, in the general case, to tell whether a statement is an
1084    expression or declaration without scanning the entire statement.
1085    Therefore, the parser is capable of "parsing tentatively."  When the
1086    parser is not sure what construct comes next, it enters this mode.
1087    Then, while we attempt to parse the construct, the parser queues up
1088    error messages, rather than issuing them immediately, and saves the
1089    tokens it consumes.  If the construct is parsed successfully, the
1090    parser "commits", i.e., it issues any queued error messages and
1091    the tokens that were being preserved are permanently discarded.
1092    If, however, the construct is not parsed successfully, the parser
1093    rolls back its state completely so that it can resume parsing using
1094    a different alternative.
1095 
1096    Future Improvements
1097    -------------------
1098 
1099    The performance of the parser could probably be improved substantially.
1100    We could often eliminate the need to parse tentatively by looking ahead
1101    a little bit.  In some places, this approach might not entirely eliminate
1102    the need to parse tentatively, but it might still speed up the average
1103    case.  */
1104 
1105 /* Flags that are passed to some parsing functions.  These values can
1106    be bitwise-ored together.  */
1107 
1108 typedef enum cp_parser_flags
1109 {
1110   /* No flags.  */
1111   CP_PARSER_FLAGS_NONE = 0x0,
1112   /* The construct is optional.  If it is not present, then no error
1113      should be issued.  */
1114   CP_PARSER_FLAGS_OPTIONAL = 0x1,
1115   /* When parsing a type-specifier, do not allow user-defined types.  */
1116   CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
1117 } cp_parser_flags;
1118 
1119 /* The different kinds of declarators we want to parse.  */
1120 
1121 typedef enum cp_parser_declarator_kind
1122 {
1123   /* We want an abstract declarator.  */
1124   CP_PARSER_DECLARATOR_ABSTRACT,
1125   /* We want a named declarator.  */
1126   CP_PARSER_DECLARATOR_NAMED,
1127   /* We don't mind, but the name must be an unqualified-id.  */
1128   CP_PARSER_DECLARATOR_EITHER
1129 } cp_parser_declarator_kind;
1130 
1131 /* The precedence values used to parse binary expressions.  The minimum value
1132    of PREC must be 1, because zero is reserved to quickly discriminate
1133    binary operators from other tokens.  */
1134 
1135 enum cp_parser_prec
1136 {
1137   PREC_NOT_OPERATOR,
1138   PREC_LOGICAL_OR_EXPRESSION,
1139   PREC_LOGICAL_AND_EXPRESSION,
1140   PREC_INCLUSIVE_OR_EXPRESSION,
1141   PREC_EXCLUSIVE_OR_EXPRESSION,
1142   PREC_AND_EXPRESSION,
1143   PREC_EQUALITY_EXPRESSION,
1144   PREC_RELATIONAL_EXPRESSION,
1145   PREC_SHIFT_EXPRESSION,
1146   PREC_ADDITIVE_EXPRESSION,
1147   PREC_MULTIPLICATIVE_EXPRESSION,
1148   PREC_PM_EXPRESSION,
1149   NUM_PREC_VALUES = PREC_PM_EXPRESSION
1150 };
1151 
1152 /* A mapping from a token type to a corresponding tree node type, with a
1153    precedence value.  */
1154 
1155 typedef struct cp_parser_binary_operations_map_node
1156 {
1157   /* The token type.  */
1158   enum cpp_ttype token_type;
1159   /* The corresponding tree code.  */
1160   enum tree_code tree_type;
1161   /* The precedence of this operator.  */
1162   enum cp_parser_prec prec;
1163 } cp_parser_binary_operations_map_node;
1164 
1165 /* The status of a tentative parse.  */
1166 
1167 typedef enum cp_parser_status_kind
1168 {
1169   /* No errors have occurred.  */
1170   CP_PARSER_STATUS_KIND_NO_ERROR,
1171   /* An error has occurred.  */
1172   CP_PARSER_STATUS_KIND_ERROR,
1173   /* We are committed to this tentative parse, whether or not an error
1174      has occurred.  */
1175   CP_PARSER_STATUS_KIND_COMMITTED
1176 } cp_parser_status_kind;
1177 
1178 typedef struct cp_parser_expression_stack_entry
1179 {
1180   tree lhs;
1181   enum tree_code tree_type;
1182   int prec;
1183 } cp_parser_expression_stack_entry;
1184 
1185 /* The stack for storing partial expressions.  We only need NUM_PREC_VALUES
1186    entries because precedence levels on the stack are monotonically
1187    increasing.  */
1188 typedef struct cp_parser_expression_stack_entry
1189   cp_parser_expression_stack[NUM_PREC_VALUES];
1190 
1191 /* Context that is saved and restored when parsing tentatively.  */
1192 typedef struct cp_parser_context GTY (())
1193 {
1194   /* If this is a tentative parsing context, the status of the
1195      tentative parse.  */
1196   enum cp_parser_status_kind status;
1197   /* If non-NULL, we have just seen a `x->' or `x.' expression.  Names
1198      that are looked up in this context must be looked up both in the
1199      scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1200      the context of the containing expression.  */
1201   tree object_type;
1202 
1203   /* The next parsing context in the stack.  */
1204   struct cp_parser_context *next;
1205 } cp_parser_context;
1206 
1207 /* Prototypes.  */
1208 
1209 /* Constructors and destructors.  */
1210 
1211 static cp_parser_context *cp_parser_context_new
1212   (cp_parser_context *);
1213 
1214 /* Class variables.  */
1215 
1216 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1217 
1218 /* The operator-precedence table used by cp_parser_binary_expression.
1219    Transformed into an associative array (binops_by_token) by
1220    cp_parser_new.  */
1221 
1222 static const cp_parser_binary_operations_map_node binops[] = {
1223   { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
1224   { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
1225 
1226   { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1227   { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1228   { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1229 
1230   { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1231   { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1232 
1233   { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1234   { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1235 
1236   { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
1237   { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
1238   { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
1239   { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
1240 
1241   { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
1242   { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
1243 
1244   { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
1245 
1246   { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
1247 
1248   { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
1249 
1250   { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
1251 
1252   { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
1253 };
1254 
1255 /* The same as binops, but initialized by cp_parser_new so that
1256    binops_by_token[N].token_type == N.  Used in cp_parser_binary_expression
1257    for speed.  */
1258 static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
1259 
1260 /* Constructors and destructors.  */
1261 
1262 /* Construct a new context.  The context below this one on the stack
1263    is given by NEXT.  */
1264 
1265 static cp_parser_context *
cp_parser_context_new(cp_parser_context * next)1266 cp_parser_context_new (cp_parser_context* next)
1267 {
1268   cp_parser_context *context;
1269 
1270   /* Allocate the storage.  */
1271   if (cp_parser_context_free_list != NULL)
1272     {
1273       /* Pull the first entry from the free list.  */
1274       context = cp_parser_context_free_list;
1275       cp_parser_context_free_list = context->next;
1276       memset (context, 0, sizeof (*context));
1277     }
1278   else
1279     context = GGC_CNEW (cp_parser_context);
1280 
1281   /* No errors have occurred yet in this context.  */
1282   context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1283   /* If this is not the bottomost context, copy information that we
1284      need from the previous context.  */
1285   if (next)
1286     {
1287       /* If, in the NEXT context, we are parsing an `x->' or `x.'
1288 	 expression, then we are parsing one in this context, too.  */
1289       context->object_type = next->object_type;
1290       /* Thread the stack.  */
1291       context->next = next;
1292     }
1293 
1294   return context;
1295 }
1296 
1297 /* The cp_parser structure represents the C++ parser.  */
1298 
1299 typedef struct cp_parser GTY(())
1300 {
1301   /* The lexer from which we are obtaining tokens.  */
1302   cp_lexer *lexer;
1303 
1304   /* The scope in which names should be looked up.  If NULL_TREE, then
1305      we look up names in the scope that is currently open in the
1306      source program.  If non-NULL, this is either a TYPE or
1307      NAMESPACE_DECL for the scope in which we should look.  It can
1308      also be ERROR_MARK, when we've parsed a bogus scope.
1309 
1310      This value is not cleared automatically after a name is looked
1311      up, so we must be careful to clear it before starting a new look
1312      up sequence.  (If it is not cleared, then `X::Y' followed by `Z'
1313      will look up `Z' in the scope of `X', rather than the current
1314      scope.)  Unfortunately, it is difficult to tell when name lookup
1315      is complete, because we sometimes peek at a token, look it up,
1316      and then decide not to consume it.   */
1317   tree scope;
1318 
1319   /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1320      last lookup took place.  OBJECT_SCOPE is used if an expression
1321      like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1322      respectively.  QUALIFYING_SCOPE is used for an expression of the
1323      form "X::Y"; it refers to X.  */
1324   tree object_scope;
1325   tree qualifying_scope;
1326 
1327   /* A stack of parsing contexts.  All but the bottom entry on the
1328      stack will be tentative contexts.
1329 
1330      We parse tentatively in order to determine which construct is in
1331      use in some situations.  For example, in order to determine
1332      whether a statement is an expression-statement or a
1333      declaration-statement we parse it tentatively as a
1334      declaration-statement.  If that fails, we then reparse the same
1335      token stream as an expression-statement.  */
1336   cp_parser_context *context;
1337 
1338   /* True if we are parsing GNU C++.  If this flag is not set, then
1339      GNU extensions are not recognized.  */
1340   bool allow_gnu_extensions_p;
1341 
1342   /* TRUE if the `>' token should be interpreted as the greater-than
1343      operator.  FALSE if it is the end of a template-id or
1344      template-parameter-list.  */
1345   bool greater_than_is_operator_p;
1346 
1347   /* TRUE if default arguments are allowed within a parameter list
1348      that starts at this point. FALSE if only a gnu extension makes
1349      them permissible.  */
1350   bool default_arg_ok_p;
1351 
1352   /* TRUE if we are parsing an integral constant-expression.  See
1353      [expr.const] for a precise definition.  */
1354   bool integral_constant_expression_p;
1355 
1356   /* TRUE if we are parsing an integral constant-expression -- but a
1357      non-constant expression should be permitted as well.  This flag
1358      is used when parsing an array bound so that GNU variable-length
1359      arrays are tolerated.  */
1360   bool allow_non_integral_constant_expression_p;
1361 
1362   /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1363      been seen that makes the expression non-constant.  */
1364   bool non_integral_constant_expression_p;
1365 
1366   /* TRUE if local variable names and `this' are forbidden in the
1367      current context.  */
1368   bool local_variables_forbidden_p;
1369 
1370   /* TRUE if the declaration we are parsing is part of a
1371      linkage-specification of the form `extern string-literal
1372      declaration'.  */
1373   bool in_unbraced_linkage_specification_p;
1374 
1375   /* TRUE if we are presently parsing a declarator, after the
1376      direct-declarator.  */
1377   bool in_declarator_p;
1378 
1379   /* TRUE if we are presently parsing a template-argument-list.  */
1380   bool in_template_argument_list_p;
1381 
1382   /* Set to IN_ITERATION_STMT if parsing an iteration-statement,
1383      to IN_OMP_BLOCK if parsing OpenMP structured block and
1384      IN_OMP_FOR if parsing OpenMP loop.  If parsing a switch statement,
1385      this is bitwise ORed with IN_SWITCH_STMT, unless parsing an
1386      iteration-statement, OpenMP block or loop within that switch.  */
1387 #define IN_SWITCH_STMT		1
1388 #define IN_ITERATION_STMT	2
1389 #define IN_OMP_BLOCK		4
1390 #define IN_OMP_FOR		8
1391   unsigned char in_statement;
1392 
1393   /* TRUE if we are presently parsing the body of a switch statement.
1394      Note that this doesn't quite overlap with in_statement above.
1395      The difference relates to giving the right sets of error messages:
1396      "case not in switch" vs "break statement used with OpenMP...".  */
1397   bool in_switch_statement_p;
1398 
1399   /* TRUE if we are parsing a type-id in an expression context.  In
1400      such a situation, both "type (expr)" and "type (type)" are valid
1401      alternatives.  */
1402   bool in_type_id_in_expr_p;
1403 
1404   /* TRUE if we are currently in a header file where declarations are
1405      implicitly extern "C".  */
1406   bool implicit_extern_c;
1407 
1408   /* TRUE if strings in expressions should be translated to the execution
1409      character set.  */
1410   bool translate_strings_p;
1411 
1412   /* TRUE if we are presently parsing the body of a function, but not
1413      a local class.  */
1414   bool in_function_body;
1415 
1416   /* If non-NULL, then we are parsing a construct where new type
1417      definitions are not permitted.  The string stored here will be
1418      issued as an error message if a type is defined.  */
1419   const char *type_definition_forbidden_message;
1420 
1421   /* A list of lists. The outer list is a stack, used for member
1422      functions of local classes. At each level there are two sub-list,
1423      one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1424      sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1425      TREE_VALUE's. The functions are chained in reverse declaration
1426      order.
1427 
1428      The TREE_PURPOSE sublist contains those functions with default
1429      arguments that need post processing, and the TREE_VALUE sublist
1430      contains those functions with definitions that need post
1431      processing.
1432 
1433      These lists can only be processed once the outermost class being
1434      defined is complete.  */
1435   tree unparsed_functions_queues;
1436 
1437   /* The number of classes whose definitions are currently in
1438      progress.  */
1439   unsigned num_classes_being_defined;
1440 
1441   /* The number of template parameter lists that apply directly to the
1442      current declaration.  */
1443   unsigned num_template_parameter_lists;
1444 } cp_parser;
1445 
1446 /* Prototypes.  */
1447 
1448 /* Constructors and destructors.  */
1449 
1450 static cp_parser *cp_parser_new
1451   (void);
1452 
1453 /* Routines to parse various constructs.
1454 
1455    Those that return `tree' will return the error_mark_node (rather
1456    than NULL_TREE) if a parse error occurs, unless otherwise noted.
1457    Sometimes, they will return an ordinary node if error-recovery was
1458    attempted, even though a parse error occurred.  So, to check
1459    whether or not a parse error occurred, you should always use
1460    cp_parser_error_occurred.  If the construct is optional (indicated
1461    either by an `_opt' in the name of the function that does the
1462    parsing or via a FLAGS parameter), then NULL_TREE is returned if
1463    the construct is not present.  */
1464 
1465 /* Lexical conventions [gram.lex]  */
1466 
1467 static tree cp_parser_identifier
1468   (cp_parser *);
1469 static tree cp_parser_string_literal
1470   (cp_parser *, bool, bool);
1471 
1472 /* Basic concepts [gram.basic]  */
1473 
1474 static bool cp_parser_translation_unit
1475   (cp_parser *);
1476 
1477 /* Expressions [gram.expr]  */
1478 
1479 static tree cp_parser_primary_expression
1480   (cp_parser *, bool, bool, bool, cp_id_kind *);
1481 static tree cp_parser_id_expression
1482   (cp_parser *, bool, bool, bool *, bool, bool);
1483 static tree cp_parser_unqualified_id
1484   (cp_parser *, bool, bool, bool, bool);
1485 static tree cp_parser_nested_name_specifier_opt
1486   (cp_parser *, bool, bool, bool, bool);
1487 static tree cp_parser_nested_name_specifier
1488   (cp_parser *, bool, bool, bool, bool);
1489 static tree cp_parser_class_or_namespace_name
1490   (cp_parser *, bool, bool, bool, bool, bool);
1491 static tree cp_parser_postfix_expression
1492   (cp_parser *, bool, bool);
1493 static tree cp_parser_postfix_open_square_expression
1494   (cp_parser *, tree, bool);
1495 static tree cp_parser_postfix_dot_deref_expression
1496   (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1497 static tree cp_parser_parenthesized_expression_list
1498   (cp_parser *, bool, bool, bool *);
1499 static void cp_parser_pseudo_destructor_name
1500   (cp_parser *, tree *, tree *);
1501 static tree cp_parser_unary_expression
1502   (cp_parser *, bool, bool);
1503 static enum tree_code cp_parser_unary_operator
1504   (cp_token *);
1505 static tree cp_parser_new_expression
1506   (cp_parser *);
1507 static tree cp_parser_new_placement
1508   (cp_parser *);
1509 static tree cp_parser_new_type_id
1510   (cp_parser *, tree *);
1511 static cp_declarator *cp_parser_new_declarator_opt
1512   (cp_parser *);
1513 static cp_declarator *cp_parser_direct_new_declarator
1514   (cp_parser *);
1515 static tree cp_parser_new_initializer
1516   (cp_parser *);
1517 static tree cp_parser_delete_expression
1518   (cp_parser *);
1519 static tree cp_parser_cast_expression
1520   (cp_parser *, bool, bool);
1521 static tree cp_parser_binary_expression
1522   (cp_parser *, bool);
1523 static tree cp_parser_question_colon_clause
1524   (cp_parser *, tree);
1525 static tree cp_parser_assignment_expression
1526   (cp_parser *, bool);
1527 static enum tree_code cp_parser_assignment_operator_opt
1528   (cp_parser *);
1529 static tree cp_parser_expression
1530   (cp_parser *, bool);
1531 static tree cp_parser_constant_expression
1532   (cp_parser *, bool, bool *);
1533 static tree cp_parser_builtin_offsetof
1534   (cp_parser *);
1535 
1536 /* Statements [gram.stmt.stmt]  */
1537 
1538 static void cp_parser_statement
1539   (cp_parser *, tree, bool);
1540 static void cp_parser_label_for_labeled_statement
1541   (cp_parser *);
1542 static tree cp_parser_expression_statement
1543   (cp_parser *, tree);
1544 static tree cp_parser_compound_statement
1545   (cp_parser *, tree, bool);
1546 static void cp_parser_statement_seq_opt
1547   (cp_parser *, tree);
1548 static tree cp_parser_selection_statement
1549   (cp_parser *);
1550 static tree cp_parser_condition
1551   (cp_parser *);
1552 static tree cp_parser_iteration_statement
1553   (cp_parser *);
1554 static void cp_parser_for_init_statement
1555   (cp_parser *);
1556 static tree cp_parser_jump_statement
1557   (cp_parser *);
1558 static void cp_parser_declaration_statement
1559   (cp_parser *);
1560 
1561 static tree cp_parser_implicitly_scoped_statement
1562   (cp_parser *);
1563 static void cp_parser_already_scoped_statement
1564   (cp_parser *);
1565 
1566 /* Declarations [gram.dcl.dcl] */
1567 
1568 static void cp_parser_declaration_seq_opt
1569   (cp_parser *);
1570 static void cp_parser_declaration
1571   (cp_parser *);
1572 static void cp_parser_block_declaration
1573   (cp_parser *, bool);
1574 static void cp_parser_simple_declaration
1575   (cp_parser *, bool);
1576 static void cp_parser_decl_specifier_seq
1577   (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1578 static tree cp_parser_storage_class_specifier_opt
1579   (cp_parser *);
1580 static tree cp_parser_function_specifier_opt
1581   (cp_parser *, cp_decl_specifier_seq *);
1582 static tree cp_parser_type_specifier
1583   (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1584    int *, bool *);
1585 static tree cp_parser_simple_type_specifier
1586   (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1587 static tree cp_parser_type_name
1588   (cp_parser *);
1589 static tree cp_parser_elaborated_type_specifier
1590   (cp_parser *, bool, bool);
1591 static tree cp_parser_enum_specifier
1592   (cp_parser *);
1593 static void cp_parser_enumerator_list
1594   (cp_parser *, tree);
1595 static void cp_parser_enumerator_definition
1596   (cp_parser *, tree);
1597 static tree cp_parser_namespace_name
1598   (cp_parser *);
1599 static void cp_parser_namespace_definition
1600   (cp_parser *);
1601 static void cp_parser_namespace_body
1602   (cp_parser *);
1603 static tree cp_parser_qualified_namespace_specifier
1604   (cp_parser *);
1605 static void cp_parser_namespace_alias_definition
1606   (cp_parser *);
1607 static bool cp_parser_using_declaration
1608   (cp_parser *, bool);
1609 static void cp_parser_using_directive
1610   (cp_parser *);
1611 static void cp_parser_asm_definition
1612   (cp_parser *);
1613 static void cp_parser_linkage_specification
1614   (cp_parser *);
1615 
1616 /* Declarators [gram.dcl.decl] */
1617 
1618 static tree cp_parser_init_declarator
1619   (cp_parser *, cp_decl_specifier_seq *, VEC (deferred_access_check,gc)*, bool, bool, int, bool *);
1620 static cp_declarator *cp_parser_declarator
1621   (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
1622 static cp_declarator *cp_parser_direct_declarator
1623   (cp_parser *, cp_parser_declarator_kind, int *, bool);
1624 static enum tree_code cp_parser_ptr_operator
1625   (cp_parser *, tree *, cp_cv_quals *);
1626 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1627   (cp_parser *);
1628 static tree cp_parser_declarator_id
1629   (cp_parser *, bool);
1630 static tree cp_parser_type_id
1631   (cp_parser *);
1632 static void cp_parser_type_specifier_seq
1633   (cp_parser *, bool, cp_decl_specifier_seq *);
1634 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1635   (cp_parser *);
1636 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1637   (cp_parser *, bool *);
1638 static cp_parameter_declarator *cp_parser_parameter_declaration
1639   (cp_parser *, bool, bool *);
1640 static void cp_parser_function_body
1641   (cp_parser *);
1642 static tree cp_parser_initializer
1643   (cp_parser *, bool *, bool *);
1644 static tree cp_parser_initializer_clause
1645   (cp_parser *, bool *);
1646 static VEC(constructor_elt,gc) *cp_parser_initializer_list
1647   (cp_parser *, bool *);
1648 
1649 static bool cp_parser_ctor_initializer_opt_and_function_body
1650   (cp_parser *);
1651 
1652 /* Classes [gram.class] */
1653 
1654 static tree cp_parser_class_name
1655   (cp_parser *, bool, bool, enum tag_types, bool, bool, bool);
1656 static tree cp_parser_class_specifier
1657   (cp_parser *);
1658 static tree cp_parser_class_head
1659   (cp_parser *, bool *, tree *, tree *);
1660 static enum tag_types cp_parser_class_key
1661   (cp_parser *);
1662 static void cp_parser_member_specification_opt
1663   (cp_parser *);
1664 static void cp_parser_member_declaration
1665   (cp_parser *);
1666 static tree cp_parser_pure_specifier
1667   (cp_parser *);
1668 static tree cp_parser_constant_initializer
1669   (cp_parser *);
1670 
1671 /* Derived classes [gram.class.derived] */
1672 
1673 static tree cp_parser_base_clause
1674   (cp_parser *);
1675 static tree cp_parser_base_specifier
1676   (cp_parser *);
1677 
1678 /* Special member functions [gram.special] */
1679 
1680 static tree cp_parser_conversion_function_id
1681   (cp_parser *);
1682 static tree cp_parser_conversion_type_id
1683   (cp_parser *);
1684 static cp_declarator *cp_parser_conversion_declarator_opt
1685   (cp_parser *);
1686 static bool cp_parser_ctor_initializer_opt
1687   (cp_parser *);
1688 static void cp_parser_mem_initializer_list
1689   (cp_parser *);
1690 static tree cp_parser_mem_initializer
1691   (cp_parser *);
1692 static tree cp_parser_mem_initializer_id
1693   (cp_parser *);
1694 
1695 /* Overloading [gram.over] */
1696 
1697 static tree cp_parser_operator_function_id
1698   (cp_parser *);
1699 static tree cp_parser_operator
1700   (cp_parser *);
1701 
1702 /* Templates [gram.temp] */
1703 
1704 static void cp_parser_template_declaration
1705   (cp_parser *, bool);
1706 static tree cp_parser_template_parameter_list
1707   (cp_parser *);
1708 static tree cp_parser_template_parameter
1709   (cp_parser *, bool *);
1710 static tree cp_parser_type_parameter
1711   (cp_parser *);
1712 static tree cp_parser_template_id
1713   (cp_parser *, bool, bool, bool);
1714 static tree cp_parser_template_name
1715   (cp_parser *, bool, bool, bool, bool *);
1716 static tree cp_parser_template_argument_list
1717   (cp_parser *);
1718 static tree cp_parser_template_argument
1719   (cp_parser *);
1720 static void cp_parser_explicit_instantiation
1721   (cp_parser *);
1722 static void cp_parser_explicit_specialization
1723   (cp_parser *);
1724 
1725 /* Exception handling [gram.exception] */
1726 
1727 static tree cp_parser_try_block
1728   (cp_parser *);
1729 static bool cp_parser_function_try_block
1730   (cp_parser *);
1731 static void cp_parser_handler_seq
1732   (cp_parser *);
1733 static void cp_parser_handler
1734   (cp_parser *);
1735 static tree cp_parser_exception_declaration
1736   (cp_parser *);
1737 static tree cp_parser_throw_expression
1738   (cp_parser *);
1739 static tree cp_parser_exception_specification_opt
1740   (cp_parser *);
1741 static tree cp_parser_type_id_list
1742   (cp_parser *);
1743 
1744 /* GNU Extensions */
1745 
1746 static tree cp_parser_asm_specification_opt
1747   (cp_parser *);
1748 static tree cp_parser_asm_operand_list
1749   (cp_parser *);
1750 static tree cp_parser_asm_clobber_list
1751   (cp_parser *);
1752 static tree cp_parser_attributes_opt
1753   (cp_parser *);
1754 static tree cp_parser_attribute_list
1755   (cp_parser *);
1756 static bool cp_parser_extension_opt
1757   (cp_parser *, int *);
1758 static void cp_parser_label_declaration
1759   (cp_parser *);
1760 
1761 enum pragma_context { pragma_external, pragma_stmt, pragma_compound };
1762 static bool cp_parser_pragma
1763   (cp_parser *, enum pragma_context);
1764 
1765 /* Objective-C++ Productions */
1766 
1767 static tree cp_parser_objc_message_receiver
1768   (cp_parser *);
1769 static tree cp_parser_objc_message_args
1770   (cp_parser *);
1771 static tree cp_parser_objc_message_expression
1772   (cp_parser *);
1773 static tree cp_parser_objc_encode_expression
1774   (cp_parser *);
1775 static tree cp_parser_objc_defs_expression
1776   (cp_parser *);
1777 static tree cp_parser_objc_protocol_expression
1778   (cp_parser *);
1779 static tree cp_parser_objc_selector_expression
1780   (cp_parser *);
1781 static tree cp_parser_objc_expression
1782   (cp_parser *);
1783 static bool cp_parser_objc_selector_p
1784   (enum cpp_ttype);
1785 static tree cp_parser_objc_selector
1786   (cp_parser *);
1787 static tree cp_parser_objc_protocol_refs_opt
1788   (cp_parser *);
1789 static void cp_parser_objc_declaration
1790   (cp_parser *);
1791 static tree cp_parser_objc_statement
1792   (cp_parser *);
1793 
1794 /* Utility Routines */
1795 
1796 static tree cp_parser_lookup_name
1797   (cp_parser *, tree, enum tag_types, bool, bool, bool, tree *);
1798 static tree cp_parser_lookup_name_simple
1799   (cp_parser *, tree);
1800 static tree cp_parser_maybe_treat_template_as_class
1801   (tree, bool);
1802 static bool cp_parser_check_declarator_template_parameters
1803   (cp_parser *, cp_declarator *);
1804 static bool cp_parser_check_template_parameters
1805   (cp_parser *, unsigned);
1806 static tree cp_parser_simple_cast_expression
1807   (cp_parser *);
1808 static tree cp_parser_global_scope_opt
1809   (cp_parser *, bool);
1810 static bool cp_parser_constructor_declarator_p
1811   (cp_parser *, bool);
1812 static tree cp_parser_function_definition_from_specifiers_and_declarator
1813   (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1814 static tree cp_parser_function_definition_after_declarator
1815   (cp_parser *, bool);
1816 static void cp_parser_template_declaration_after_export
1817   (cp_parser *, bool);
1818 static void cp_parser_perform_template_parameter_access_checks
1819   (VEC (deferred_access_check,gc)*);
1820 static tree cp_parser_single_declaration
1821   (cp_parser *, VEC (deferred_access_check,gc)*, bool, bool *);
1822 static tree cp_parser_functional_cast
1823   (cp_parser *, tree);
1824 static tree cp_parser_save_member_function_body
1825   (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1826 static tree cp_parser_enclosed_template_argument_list
1827   (cp_parser *);
1828 static void cp_parser_save_default_args
1829   (cp_parser *, tree);
1830 static void cp_parser_late_parsing_for_member
1831   (cp_parser *, tree);
1832 static void cp_parser_late_parsing_default_args
1833   (cp_parser *, tree);
1834 static tree cp_parser_sizeof_operand
1835   (cp_parser *, enum rid);
1836 static bool cp_parser_declares_only_class_p
1837   (cp_parser *);
1838 static void cp_parser_set_storage_class
1839   (cp_parser *, cp_decl_specifier_seq *, enum rid);
1840 static void cp_parser_set_decl_spec_type
1841   (cp_decl_specifier_seq *, tree, bool);
1842 static bool cp_parser_friend_p
1843   (const cp_decl_specifier_seq *);
1844 static cp_token *cp_parser_require
1845   (cp_parser *, enum cpp_ttype, const char *);
1846 static cp_token *cp_parser_require_keyword
1847   (cp_parser *, enum rid, const char *);
1848 static bool cp_parser_token_starts_function_definition_p
1849   (cp_token *);
1850 static bool cp_parser_next_token_starts_class_definition_p
1851   (cp_parser *);
1852 static bool cp_parser_next_token_ends_template_argument_p
1853   (cp_parser *);
1854 static bool cp_parser_nth_token_starts_template_argument_list_p
1855   (cp_parser *, size_t);
1856 static enum tag_types cp_parser_token_is_class_key
1857   (cp_token *);
1858 static void cp_parser_check_class_key
1859   (enum tag_types, tree type);
1860 static void cp_parser_check_access_in_redeclaration
1861   (tree type);
1862 static bool cp_parser_optional_template_keyword
1863   (cp_parser *);
1864 static void cp_parser_pre_parsed_nested_name_specifier
1865   (cp_parser *);
1866 static void cp_parser_cache_group
1867   (cp_parser *, enum cpp_ttype, unsigned);
1868 static void cp_parser_parse_tentatively
1869   (cp_parser *);
1870 static void cp_parser_commit_to_tentative_parse
1871   (cp_parser *);
1872 static void cp_parser_abort_tentative_parse
1873   (cp_parser *);
1874 static bool cp_parser_parse_definitely
1875   (cp_parser *);
1876 static inline bool cp_parser_parsing_tentatively
1877   (cp_parser *);
1878 static bool cp_parser_uncommitted_to_tentative_parse_p
1879   (cp_parser *);
1880 static void cp_parser_error
1881   (cp_parser *, const char *);
1882 static void cp_parser_name_lookup_error
1883   (cp_parser *, tree, tree, const char *);
1884 static bool cp_parser_simulate_error
1885   (cp_parser *);
1886 static bool cp_parser_check_type_definition
1887   (cp_parser *);
1888 static void cp_parser_check_for_definition_in_return_type
1889   (cp_declarator *, tree);
1890 static void cp_parser_check_for_invalid_template_id
1891   (cp_parser *, tree);
1892 static bool cp_parser_non_integral_constant_expression
1893   (cp_parser *, const char *);
1894 static void cp_parser_diagnose_invalid_type_name
1895   (cp_parser *, tree, tree);
1896 static bool cp_parser_parse_and_diagnose_invalid_type_name
1897   (cp_parser *);
1898 static int cp_parser_skip_to_closing_parenthesis
1899   (cp_parser *, bool, bool, bool);
1900 static void cp_parser_skip_to_end_of_statement
1901   (cp_parser *);
1902 static void cp_parser_consume_semicolon_at_end_of_statement
1903   (cp_parser *);
1904 static void cp_parser_skip_to_end_of_block_or_statement
1905   (cp_parser *);
1906 static void cp_parser_skip_to_closing_brace
1907   (cp_parser *);
1908 static void cp_parser_skip_to_end_of_template_parameter_list
1909   (cp_parser *);
1910 static void cp_parser_skip_to_pragma_eol
1911   (cp_parser*, cp_token *);
1912 static bool cp_parser_error_occurred
1913   (cp_parser *);
1914 static bool cp_parser_allow_gnu_extensions_p
1915   (cp_parser *);
1916 static bool cp_parser_is_string_literal
1917   (cp_token *);
1918 static bool cp_parser_is_keyword
1919   (cp_token *, enum rid);
1920 static tree cp_parser_make_typename_type
1921   (cp_parser *, tree, tree);
1922 
1923 /* Returns nonzero if we are parsing tentatively.  */
1924 
1925 static inline bool
cp_parser_parsing_tentatively(cp_parser * parser)1926 cp_parser_parsing_tentatively (cp_parser* parser)
1927 {
1928   return parser->context->next != NULL;
1929 }
1930 
1931 /* Returns nonzero if TOKEN is a string literal.  */
1932 
1933 static bool
cp_parser_is_string_literal(cp_token * token)1934 cp_parser_is_string_literal (cp_token* token)
1935 {
1936   return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1937 }
1938 
1939 /* Returns nonzero if TOKEN is the indicated KEYWORD.  */
1940 
1941 static bool
cp_parser_is_keyword(cp_token * token,enum rid keyword)1942 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1943 {
1944   return token->keyword == keyword;
1945 }
1946 
1947 /* If not parsing tentatively, issue a diagnostic of the form
1948       FILE:LINE: MESSAGE before TOKEN
1949    where TOKEN is the next token in the input stream.  MESSAGE
1950    (specified by the caller) is usually of the form "expected
1951    OTHER-TOKEN".  */
1952 
1953 static void
cp_parser_error(cp_parser * parser,const char * message)1954 cp_parser_error (cp_parser* parser, const char* message)
1955 {
1956   if (!cp_parser_simulate_error (parser))
1957     {
1958       cp_token *token = cp_lexer_peek_token (parser->lexer);
1959       /* This diagnostic makes more sense if it is tagged to the line
1960 	 of the token we just peeked at.  */
1961       cp_lexer_set_source_position_from_token (token);
1962 
1963       if (token->type == CPP_PRAGMA)
1964 	{
1965 	  error ("%<#pragma%> is not allowed here");
1966 	  cp_parser_skip_to_pragma_eol (parser, token);
1967 	  return;
1968 	}
1969 
1970       c_parse_error (message,
1971 		     /* Because c_parser_error does not understand
1972 			CPP_KEYWORD, keywords are treated like
1973 			identifiers.  */
1974 		     (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1975 		     token->u.value);
1976     }
1977 }
1978 
1979 /* Issue an error about name-lookup failing.  NAME is the
1980    IDENTIFIER_NODE DECL is the result of
1981    the lookup (as returned from cp_parser_lookup_name).  DESIRED is
1982    the thing that we hoped to find.  */
1983 
1984 static void
cp_parser_name_lookup_error(cp_parser * parser,tree name,tree decl,const char * desired)1985 cp_parser_name_lookup_error (cp_parser* parser,
1986 			     tree name,
1987 			     tree decl,
1988 			     const char* desired)
1989 {
1990   /* If name lookup completely failed, tell the user that NAME was not
1991      declared.  */
1992   if (decl == error_mark_node)
1993     {
1994       if (parser->scope && parser->scope != global_namespace)
1995 	error ("%<%D::%D%> has not been declared",
1996 	       parser->scope, name);
1997       else if (parser->scope == global_namespace)
1998 	error ("%<::%D%> has not been declared", name);
1999       else if (parser->object_scope
2000 	       && !CLASS_TYPE_P (parser->object_scope))
2001 	error ("request for member %qD in non-class type %qT",
2002 	       name, parser->object_scope);
2003       else if (parser->object_scope)
2004 	error ("%<%T::%D%> has not been declared",
2005 	       parser->object_scope, name);
2006       else
2007 	error ("%qD has not been declared", name);
2008     }
2009   else if (parser->scope && parser->scope != global_namespace)
2010     error ("%<%D::%D%> %s", parser->scope, name, desired);
2011   else if (parser->scope == global_namespace)
2012     error ("%<::%D%> %s", name, desired);
2013   else
2014     error ("%qD %s", name, desired);
2015 }
2016 
2017 /* If we are parsing tentatively, remember that an error has occurred
2018    during this tentative parse.  Returns true if the error was
2019    simulated; false if a message should be issued by the caller.  */
2020 
2021 static bool
cp_parser_simulate_error(cp_parser * parser)2022 cp_parser_simulate_error (cp_parser* parser)
2023 {
2024   if (cp_parser_uncommitted_to_tentative_parse_p (parser))
2025     {
2026       parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
2027       return true;
2028     }
2029   return false;
2030 }
2031 
2032 /* Check for repeated decl-specifiers.  */
2033 
2034 static void
cp_parser_check_decl_spec(cp_decl_specifier_seq * decl_specs)2035 cp_parser_check_decl_spec (cp_decl_specifier_seq *decl_specs)
2036 {
2037   cp_decl_spec ds;
2038 
2039   for (ds = ds_first; ds != ds_last; ++ds)
2040     {
2041       unsigned count = decl_specs->specs[(int)ds];
2042       if (count < 2)
2043 	continue;
2044       /* The "long" specifier is a special case because of "long long".  */
2045       if (ds == ds_long)
2046 	{
2047 	  if (count > 2)
2048 	    error ("%<long long long%> is too long for GCC");
2049 	  else if (pedantic && !in_system_header && warn_long_long)
2050 	    pedwarn ("ISO C++ does not support %<long long%>");
2051 	}
2052       else if (count > 1)
2053 	{
2054 	  static const char *const decl_spec_names[] = {
2055 	    "signed",
2056 	    "unsigned",
2057 	    "short",
2058 	    "long",
2059 	    "const",
2060 	    "volatile",
2061 	    "restrict",
2062 	    "inline",
2063 	    "virtual",
2064 	    "explicit",
2065 	    "friend",
2066 	    "typedef",
2067 	    "__complex",
2068 	    "__thread"
2069 	  };
2070 	  error ("duplicate %qs", decl_spec_names[(int)ds]);
2071 	}
2072     }
2073 }
2074 
2075 /* This function is called when a type is defined.  If type
2076    definitions are forbidden at this point, an error message is
2077    issued.  */
2078 
2079 static bool
cp_parser_check_type_definition(cp_parser * parser)2080 cp_parser_check_type_definition (cp_parser* parser)
2081 {
2082   /* If types are forbidden here, issue a message.  */
2083   if (parser->type_definition_forbidden_message)
2084     {
2085       /* Use `%s' to print the string in case there are any escape
2086 	 characters in the message.  */
2087       error ("%s", parser->type_definition_forbidden_message);
2088       return false;
2089     }
2090   return true;
2091 }
2092 
2093 /* This function is called when the DECLARATOR is processed.  The TYPE
2094    was a type defined in the decl-specifiers.  If it is invalid to
2095    define a type in the decl-specifiers for DECLARATOR, an error is
2096    issued.  */
2097 
2098 static void
cp_parser_check_for_definition_in_return_type(cp_declarator * declarator,tree type)2099 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
2100 					       tree type)
2101 {
2102   /* [dcl.fct] forbids type definitions in return types.
2103      Unfortunately, it's not easy to know whether or not we are
2104      processing a return type until after the fact.  */
2105   while (declarator
2106 	 && (declarator->kind == cdk_pointer
2107 	     || declarator->kind == cdk_reference
2108 	     || declarator->kind == cdk_ptrmem))
2109     declarator = declarator->declarator;
2110   if (declarator
2111       && declarator->kind == cdk_function)
2112     {
2113       error ("new types may not be defined in a return type");
2114       inform ("(perhaps a semicolon is missing after the definition of %qT)",
2115 	      type);
2116     }
2117 }
2118 
2119 /* A type-specifier (TYPE) has been parsed which cannot be followed by
2120    "<" in any valid C++ program.  If the next token is indeed "<",
2121    issue a message warning the user about what appears to be an
2122    invalid attempt to form a template-id.  */
2123 
2124 static void
cp_parser_check_for_invalid_template_id(cp_parser * parser,tree type)2125 cp_parser_check_for_invalid_template_id (cp_parser* parser,
2126 					 tree type)
2127 {
2128   cp_token_position start = 0;
2129 
2130   if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
2131     {
2132       if (TYPE_P (type))
2133 	error ("%qT is not a template", type);
2134       else if (TREE_CODE (type) == IDENTIFIER_NODE)
2135 	error ("%qE is not a template", type);
2136       else
2137 	error ("invalid template-id");
2138       /* Remember the location of the invalid "<".  */
2139       if (cp_parser_uncommitted_to_tentative_parse_p (parser))
2140 	start = cp_lexer_token_position (parser->lexer, true);
2141       /* Consume the "<".  */
2142       cp_lexer_consume_token (parser->lexer);
2143       /* Parse the template arguments.  */
2144       cp_parser_enclosed_template_argument_list (parser);
2145       /* Permanently remove the invalid template arguments so that
2146 	 this error message is not issued again.  */
2147       if (start)
2148 	cp_lexer_purge_tokens_after (parser->lexer, start);
2149     }
2150 }
2151 
2152 /* If parsing an integral constant-expression, issue an error message
2153    about the fact that THING appeared and return true.  Otherwise,
2154    return false.  In either case, set
2155    PARSER->NON_INTEGRAL_CONSTANT_EXPRESSION_P.  */
2156 
2157 static bool
cp_parser_non_integral_constant_expression(cp_parser * parser,const char * thing)2158 cp_parser_non_integral_constant_expression (cp_parser  *parser,
2159 					    const char *thing)
2160 {
2161   parser->non_integral_constant_expression_p = true;
2162   if (parser->integral_constant_expression_p)
2163     {
2164       if (!parser->allow_non_integral_constant_expression_p)
2165 	{
2166 	  error ("%s cannot appear in a constant-expression", thing);
2167 	  return true;
2168 	}
2169     }
2170   return false;
2171 }
2172 
2173 /* Emit a diagnostic for an invalid type name.  SCOPE is the
2174    qualifying scope (or NULL, if none) for ID.  This function commits
2175    to the current active tentative parse, if any.  (Otherwise, the
2176    problematic construct might be encountered again later, resulting
2177    in duplicate error messages.)  */
2178 
2179 static void
cp_parser_diagnose_invalid_type_name(cp_parser * parser,tree scope,tree id)2180 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
2181 {
2182   tree decl, old_scope;
2183   /* Try to lookup the identifier.  */
2184   old_scope = parser->scope;
2185   parser->scope = scope;
2186   decl = cp_parser_lookup_name_simple (parser, id);
2187   parser->scope = old_scope;
2188   /* If the lookup found a template-name, it means that the user forgot
2189   to specify an argument list. Emit a useful error message.  */
2190   if (TREE_CODE (decl) == TEMPLATE_DECL)
2191     error ("invalid use of template-name %qE without an argument list", decl);
2192   else if (TREE_CODE (id) == BIT_NOT_EXPR)
2193     error ("invalid use of destructor %qD as a type", id);
2194   else if (TREE_CODE (decl) == TYPE_DECL)
2195     /* Something like 'unsigned A a;'  */
2196     error ("invalid combination of multiple type-specifiers");
2197   else if (!parser->scope)
2198     {
2199       /* Issue an error message.  */
2200       error ("%qE does not name a type", id);
2201       /* If we're in a template class, it's possible that the user was
2202 	 referring to a type from a base class.  For example:
2203 
2204 	   template <typename T> struct A { typedef T X; };
2205 	   template <typename T> struct B : public A<T> { X x; };
2206 
2207 	 The user should have said "typename A<T>::X".  */
2208       if (processing_template_decl && current_class_type
2209 	  && TYPE_BINFO (current_class_type))
2210 	{
2211 	  tree b;
2212 
2213 	  for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
2214 	       b;
2215 	       b = TREE_CHAIN (b))
2216 	    {
2217 	      tree base_type = BINFO_TYPE (b);
2218 	      if (CLASS_TYPE_P (base_type)
2219 		  && dependent_type_p (base_type))
2220 		{
2221 		  tree field;
2222 		  /* Go from a particular instantiation of the
2223 		     template (which will have an empty TYPE_FIELDs),
2224 		     to the main version.  */
2225 		  base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
2226 		  for (field = TYPE_FIELDS (base_type);
2227 		       field;
2228 		       field = TREE_CHAIN (field))
2229 		    if (TREE_CODE (field) == TYPE_DECL
2230 			&& DECL_NAME (field) == id)
2231 		      {
2232 			inform ("(perhaps %<typename %T::%E%> was intended)",
2233 				BINFO_TYPE (b), id);
2234 			break;
2235 		      }
2236 		  if (field)
2237 		    break;
2238 		}
2239 	    }
2240 	}
2241     }
2242   /* Here we diagnose qualified-ids where the scope is actually correct,
2243      but the identifier does not resolve to a valid type name.  */
2244   else if (parser->scope != error_mark_node)
2245     {
2246       if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2247 	error ("%qE in namespace %qE does not name a type",
2248 	       id, parser->scope);
2249       else if (TYPE_P (parser->scope))
2250 	error ("%qE in class %qT does not name a type", id, parser->scope);
2251       else
2252 	gcc_unreachable ();
2253     }
2254   cp_parser_commit_to_tentative_parse (parser);
2255 }
2256 
2257 /* Check for a common situation where a type-name should be present,
2258    but is not, and issue a sensible error message.  Returns true if an
2259    invalid type-name was detected.
2260 
2261    The situation handled by this function are variable declarations of the
2262    form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2263    Usually, `ID' should name a type, but if we got here it means that it
2264    does not. We try to emit the best possible error message depending on
2265    how exactly the id-expression looks like.  */
2266 
2267 static bool
cp_parser_parse_and_diagnose_invalid_type_name(cp_parser * parser)2268 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2269 {
2270   tree id;
2271 
2272   cp_parser_parse_tentatively (parser);
2273   id = cp_parser_id_expression (parser,
2274 				/*template_keyword_p=*/false,
2275 				/*check_dependency_p=*/true,
2276 				/*template_p=*/NULL,
2277 				/*declarator_p=*/true,
2278 				/*optional_p=*/false);
2279   /* After the id-expression, there should be a plain identifier,
2280      otherwise this is not a simple variable declaration. Also, if
2281      the scope is dependent, we cannot do much.  */
2282   if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2283       || (parser->scope && TYPE_P (parser->scope)
2284 	  && dependent_type_p (parser->scope))
2285       || TREE_CODE (id) == TYPE_DECL)
2286     {
2287       cp_parser_abort_tentative_parse (parser);
2288       return false;
2289     }
2290   if (!cp_parser_parse_definitely (parser))
2291     return false;
2292 
2293   /* Emit a diagnostic for the invalid type.  */
2294   cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2295   /* Skip to the end of the declaration; there's no point in
2296      trying to process it.  */
2297   cp_parser_skip_to_end_of_block_or_statement (parser);
2298   return true;
2299 }
2300 
2301 /* Consume tokens up to, and including, the next non-nested closing `)'.
2302    Returns 1 iff we found a closing `)'.  RECOVERING is true, if we
2303    are doing error recovery. Returns -1 if OR_COMMA is true and we
2304    found an unnested comma.  */
2305 
2306 static int
cp_parser_skip_to_closing_parenthesis(cp_parser * parser,bool recovering,bool or_comma,bool consume_paren)2307 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2308 				       bool recovering,
2309 				       bool or_comma,
2310 				       bool consume_paren)
2311 {
2312   unsigned paren_depth = 0;
2313   unsigned brace_depth = 0;
2314 
2315   if (recovering && !or_comma
2316       && cp_parser_uncommitted_to_tentative_parse_p (parser))
2317     return 0;
2318 
2319   while (true)
2320     {
2321       cp_token * token = cp_lexer_peek_token (parser->lexer);
2322 
2323       switch (token->type)
2324 	{
2325 	case CPP_EOF:
2326 	case CPP_PRAGMA_EOL:
2327 	  /* If we've run out of tokens, then there is no closing `)'.  */
2328 	  return 0;
2329 
2330 	case CPP_SEMICOLON:
2331 	  /* This matches the processing in skip_to_end_of_statement.  */
2332 	  if (!brace_depth)
2333 	    return 0;
2334 	  break;
2335 
2336 	case CPP_OPEN_BRACE:
2337 	  ++brace_depth;
2338 	  break;
2339 	case CPP_CLOSE_BRACE:
2340 	  if (!brace_depth--)
2341 	    return 0;
2342 	  break;
2343 
2344 	case CPP_COMMA:
2345 	  if (recovering && or_comma && !brace_depth && !paren_depth)
2346 	    return -1;
2347 	  break;
2348 
2349 	case CPP_OPEN_PAREN:
2350 	  if (!brace_depth)
2351 	    ++paren_depth;
2352 	  break;
2353 
2354 	case CPP_CLOSE_PAREN:
2355 	  if (!brace_depth && !paren_depth--)
2356 	    {
2357 	      if (consume_paren)
2358 		cp_lexer_consume_token (parser->lexer);
2359 	      return 1;
2360 	    }
2361 	  break;
2362 
2363 	default:
2364 	  break;
2365 	}
2366 
2367       /* Consume the token.  */
2368       cp_lexer_consume_token (parser->lexer);
2369     }
2370 }
2371 
2372 /* Consume tokens until we reach the end of the current statement.
2373    Normally, that will be just before consuming a `;'.  However, if a
2374    non-nested `}' comes first, then we stop before consuming that.  */
2375 
2376 static void
cp_parser_skip_to_end_of_statement(cp_parser * parser)2377 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2378 {
2379   unsigned nesting_depth = 0;
2380 
2381   while (true)
2382     {
2383       cp_token *token = cp_lexer_peek_token (parser->lexer);
2384 
2385       switch (token->type)
2386 	{
2387 	case CPP_EOF:
2388 	case CPP_PRAGMA_EOL:
2389 	  /* If we've run out of tokens, stop.  */
2390 	  return;
2391 
2392 	case CPP_SEMICOLON:
2393 	  /* If the next token is a `;', we have reached the end of the
2394 	     statement.  */
2395 	  if (!nesting_depth)
2396 	    return;
2397 	  break;
2398 
2399 	case CPP_CLOSE_BRACE:
2400 	  /* If this is a non-nested '}', stop before consuming it.
2401 	     That way, when confronted with something like:
2402 
2403 	       { 3 + }
2404 
2405 	     we stop before consuming the closing '}', even though we
2406 	     have not yet reached a `;'.  */
2407 	  if (nesting_depth == 0)
2408 	    return;
2409 
2410 	  /* If it is the closing '}' for a block that we have
2411 	     scanned, stop -- but only after consuming the token.
2412 	     That way given:
2413 
2414 		void f g () { ... }
2415 		typedef int I;
2416 
2417 	     we will stop after the body of the erroneously declared
2418 	     function, but before consuming the following `typedef'
2419 	     declaration.  */
2420 	  if (--nesting_depth == 0)
2421 	    {
2422 	      cp_lexer_consume_token (parser->lexer);
2423 	      return;
2424 	    }
2425 
2426 	case CPP_OPEN_BRACE:
2427 	  ++nesting_depth;
2428 	  break;
2429 
2430 	default:
2431 	  break;
2432 	}
2433 
2434       /* Consume the token.  */
2435       cp_lexer_consume_token (parser->lexer);
2436     }
2437 }
2438 
2439 /* This function is called at the end of a statement or declaration.
2440    If the next token is a semicolon, it is consumed; otherwise, error
2441    recovery is attempted.  */
2442 
2443 static void
cp_parser_consume_semicolon_at_end_of_statement(cp_parser * parser)2444 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2445 {
2446   /* Look for the trailing `;'.  */
2447   if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2448     {
2449       /* If there is additional (erroneous) input, skip to the end of
2450 	 the statement.  */
2451       cp_parser_skip_to_end_of_statement (parser);
2452       /* If the next token is now a `;', consume it.  */
2453       if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2454 	cp_lexer_consume_token (parser->lexer);
2455     }
2456 }
2457 
2458 /* Skip tokens until we have consumed an entire block, or until we
2459    have consumed a non-nested `;'.  */
2460 
2461 static void
cp_parser_skip_to_end_of_block_or_statement(cp_parser * parser)2462 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2463 {
2464   int nesting_depth = 0;
2465 
2466   while (nesting_depth >= 0)
2467     {
2468       cp_token *token = cp_lexer_peek_token (parser->lexer);
2469 
2470       switch (token->type)
2471 	{
2472 	case CPP_EOF:
2473 	case CPP_PRAGMA_EOL:
2474 	  /* If we've run out of tokens, stop.  */
2475 	  return;
2476 
2477 	case CPP_SEMICOLON:
2478 	  /* Stop if this is an unnested ';'. */
2479 	  if (!nesting_depth)
2480 	    nesting_depth = -1;
2481 	  break;
2482 
2483 	case CPP_CLOSE_BRACE:
2484 	  /* Stop if this is an unnested '}', or closes the outermost
2485 	     nesting level.  */
2486 	  nesting_depth--;
2487 	  if (!nesting_depth)
2488 	    nesting_depth = -1;
2489 	  break;
2490 
2491 	case CPP_OPEN_BRACE:
2492 	  /* Nest. */
2493 	  nesting_depth++;
2494 	  break;
2495 
2496 	default:
2497 	  break;
2498 	}
2499 
2500       /* Consume the token.  */
2501       cp_lexer_consume_token (parser->lexer);
2502     }
2503 }
2504 
2505 /* Skip tokens until a non-nested closing curly brace is the next
2506    token.  */
2507 
2508 static void
cp_parser_skip_to_closing_brace(cp_parser * parser)2509 cp_parser_skip_to_closing_brace (cp_parser *parser)
2510 {
2511   unsigned nesting_depth = 0;
2512 
2513   while (true)
2514     {
2515       cp_token *token = cp_lexer_peek_token (parser->lexer);
2516 
2517       switch (token->type)
2518 	{
2519 	case CPP_EOF:
2520 	case CPP_PRAGMA_EOL:
2521 	  /* If we've run out of tokens, stop.  */
2522 	  return;
2523 
2524 	case CPP_CLOSE_BRACE:
2525 	  /* If the next token is a non-nested `}', then we have reached
2526 	     the end of the current block.  */
2527 	  if (nesting_depth-- == 0)
2528 	    return;
2529 	  break;
2530 
2531 	case CPP_OPEN_BRACE:
2532 	  /* If it the next token is a `{', then we are entering a new
2533 	     block.  Consume the entire block.  */
2534 	  ++nesting_depth;
2535 	  break;
2536 
2537 	default:
2538 	  break;
2539 	}
2540 
2541       /* Consume the token.  */
2542       cp_lexer_consume_token (parser->lexer);
2543     }
2544 }
2545 
2546 /* Consume tokens until we reach the end of the pragma.  The PRAGMA_TOK
2547    parameter is the PRAGMA token, allowing us to purge the entire pragma
2548    sequence.  */
2549 
2550 static void
cp_parser_skip_to_pragma_eol(cp_parser * parser,cp_token * pragma_tok)2551 cp_parser_skip_to_pragma_eol (cp_parser* parser, cp_token *pragma_tok)
2552 {
2553   cp_token *token;
2554 
2555   parser->lexer->in_pragma = false;
2556 
2557   do
2558     token = cp_lexer_consume_token (parser->lexer);
2559   while (token->type != CPP_PRAGMA_EOL && token->type != CPP_EOF);
2560 
2561   /* Ensure that the pragma is not parsed again.  */
2562   cp_lexer_purge_tokens_after (parser->lexer, pragma_tok);
2563 }
2564 
2565 /* Require pragma end of line, resyncing with it as necessary.  The
2566    arguments are as for cp_parser_skip_to_pragma_eol.  */
2567 
2568 static void
cp_parser_require_pragma_eol(cp_parser * parser,cp_token * pragma_tok)2569 cp_parser_require_pragma_eol (cp_parser *parser, cp_token *pragma_tok)
2570 {
2571   parser->lexer->in_pragma = false;
2572   if (!cp_parser_require (parser, CPP_PRAGMA_EOL, "end of line"))
2573     cp_parser_skip_to_pragma_eol (parser, pragma_tok);
2574 }
2575 
2576 /* This is a simple wrapper around make_typename_type. When the id is
2577    an unresolved identifier node, we can provide a superior diagnostic
2578    using cp_parser_diagnose_invalid_type_name.  */
2579 
2580 static tree
cp_parser_make_typename_type(cp_parser * parser,tree scope,tree id)2581 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2582 {
2583   tree result;
2584   if (TREE_CODE (id) == IDENTIFIER_NODE)
2585     {
2586       result = make_typename_type (scope, id, typename_type,
2587 				   /*complain=*/tf_none);
2588       if (result == error_mark_node)
2589 	cp_parser_diagnose_invalid_type_name (parser, scope, id);
2590       return result;
2591     }
2592   return make_typename_type (scope, id, typename_type, tf_error);
2593 }
2594 
2595 
2596 /* Create a new C++ parser.  */
2597 
2598 static cp_parser *
cp_parser_new(void)2599 cp_parser_new (void)
2600 {
2601   cp_parser *parser;
2602   cp_lexer *lexer;
2603   unsigned i;
2604 
2605   /* cp_lexer_new_main is called before calling ggc_alloc because
2606      cp_lexer_new_main might load a PCH file.  */
2607   lexer = cp_lexer_new_main ();
2608 
2609   /* Initialize the binops_by_token so that we can get the tree
2610      directly from the token.  */
2611   for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
2612     binops_by_token[binops[i].token_type] = binops[i];
2613 
2614   parser = GGC_CNEW (cp_parser);
2615   parser->lexer = lexer;
2616   parser->context = cp_parser_context_new (NULL);
2617 
2618   /* For now, we always accept GNU extensions.  */
2619   parser->allow_gnu_extensions_p = 1;
2620 
2621   /* The `>' token is a greater-than operator, not the end of a
2622      template-id.  */
2623   parser->greater_than_is_operator_p = true;
2624 
2625   parser->default_arg_ok_p = true;
2626 
2627   /* We are not parsing a constant-expression.  */
2628   parser->integral_constant_expression_p = false;
2629   parser->allow_non_integral_constant_expression_p = false;
2630   parser->non_integral_constant_expression_p = false;
2631 
2632   /* Local variable names are not forbidden.  */
2633   parser->local_variables_forbidden_p = false;
2634 
2635   /* We are not processing an `extern "C"' declaration.  */
2636   parser->in_unbraced_linkage_specification_p = false;
2637 
2638   /* We are not processing a declarator.  */
2639   parser->in_declarator_p = false;
2640 
2641   /* We are not processing a template-argument-list.  */
2642   parser->in_template_argument_list_p = false;
2643 
2644   /* We are not in an iteration statement.  */
2645   parser->in_statement = 0;
2646 
2647   /* We are not in a switch statement.  */
2648   parser->in_switch_statement_p = false;
2649 
2650   /* We are not parsing a type-id inside an expression.  */
2651   parser->in_type_id_in_expr_p = false;
2652 
2653   /* Declarations aren't implicitly extern "C".  */
2654   parser->implicit_extern_c = false;
2655 
2656   /* String literals should be translated to the execution character set.  */
2657   parser->translate_strings_p = true;
2658 
2659   /* We are not parsing a function body.  */
2660   parser->in_function_body = false;
2661 
2662   /* The unparsed function queue is empty.  */
2663   parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2664 
2665   /* There are no classes being defined.  */
2666   parser->num_classes_being_defined = 0;
2667 
2668   /* No template parameters apply.  */
2669   parser->num_template_parameter_lists = 0;
2670 
2671   return parser;
2672 }
2673 
2674 /* Create a cp_lexer structure which will emit the tokens in CACHE
2675    and push it onto the parser's lexer stack.  This is used for delayed
2676    parsing of in-class method bodies and default arguments, and should
2677    not be confused with tentative parsing.  */
2678 static void
cp_parser_push_lexer_for_tokens(cp_parser * parser,cp_token_cache * cache)2679 cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
2680 {
2681   cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
2682   lexer->next = parser->lexer;
2683   parser->lexer = lexer;
2684 
2685   /* Move the current source position to that of the first token in the
2686      new lexer.  */
2687   cp_lexer_set_source_position_from_token (lexer->next_token);
2688 }
2689 
2690 /* Pop the top lexer off the parser stack.  This is never used for the
2691    "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens.  */
2692 static void
cp_parser_pop_lexer(cp_parser * parser)2693 cp_parser_pop_lexer (cp_parser *parser)
2694 {
2695   cp_lexer *lexer = parser->lexer;
2696   parser->lexer = lexer->next;
2697   cp_lexer_destroy (lexer);
2698 
2699   /* Put the current source position back where it was before this
2700      lexer was pushed.  */
2701   cp_lexer_set_source_position_from_token (parser->lexer->next_token);
2702 }
2703 
2704 /* Lexical conventions [gram.lex]  */
2705 
2706 /* Parse an identifier.  Returns an IDENTIFIER_NODE representing the
2707    identifier.  */
2708 
2709 static tree
cp_parser_identifier(cp_parser * parser)2710 cp_parser_identifier (cp_parser* parser)
2711 {
2712   cp_token *token;
2713 
2714   /* Look for the identifier.  */
2715   token = cp_parser_require (parser, CPP_NAME, "identifier");
2716   /* Return the value.  */
2717   return token ? token->u.value : error_mark_node;
2718 }
2719 
2720 /* Parse a sequence of adjacent string constants.  Returns a
2721    TREE_STRING representing the combined, nul-terminated string
2722    constant.  If TRANSLATE is true, translate the string to the
2723    execution character set.  If WIDE_OK is true, a wide string is
2724    invalid here.
2725 
2726    C++98 [lex.string] says that if a narrow string literal token is
2727    adjacent to a wide string literal token, the behavior is undefined.
2728    However, C99 6.4.5p4 says that this results in a wide string literal.
2729    We follow C99 here, for consistency with the C front end.
2730 
2731    This code is largely lifted from lex_string() in c-lex.c.
2732 
2733    FUTURE: ObjC++ will need to handle @-strings here.  */
2734 static tree
cp_parser_string_literal(cp_parser * parser,bool translate,bool wide_ok)2735 cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
2736 {
2737   tree value;
2738   bool wide = false;
2739   size_t count;
2740   struct obstack str_ob;
2741   cpp_string str, istr, *strs;
2742   cp_token *tok;
2743 
2744   tok = cp_lexer_peek_token (parser->lexer);
2745   if (!cp_parser_is_string_literal (tok))
2746     {
2747       cp_parser_error (parser, "expected string-literal");
2748       return error_mark_node;
2749     }
2750 
2751   /* Try to avoid the overhead of creating and destroying an obstack
2752      for the common case of just one string.  */
2753   if (!cp_parser_is_string_literal
2754       (cp_lexer_peek_nth_token (parser->lexer, 2)))
2755     {
2756       cp_lexer_consume_token (parser->lexer);
2757 
2758       str.text = (const unsigned char *)TREE_STRING_POINTER (tok->u.value);
2759       str.len = TREE_STRING_LENGTH (tok->u.value);
2760       count = 1;
2761       if (tok->type == CPP_WSTRING)
2762 	wide = true;
2763 
2764       strs = &str;
2765     }
2766   else
2767     {
2768       gcc_obstack_init (&str_ob);
2769       count = 0;
2770 
2771       do
2772 	{
2773 	  cp_lexer_consume_token (parser->lexer);
2774 	  count++;
2775 	  str.text = (unsigned char *)TREE_STRING_POINTER (tok->u.value);
2776 	  str.len = TREE_STRING_LENGTH (tok->u.value);
2777 	  if (tok->type == CPP_WSTRING)
2778 	    wide = true;
2779 
2780 	  obstack_grow (&str_ob, &str, sizeof (cpp_string));
2781 
2782 	  tok = cp_lexer_peek_token (parser->lexer);
2783 	}
2784       while (cp_parser_is_string_literal (tok));
2785 
2786       strs = (cpp_string *) obstack_finish (&str_ob);
2787     }
2788 
2789   if (wide && !wide_ok)
2790     {
2791       cp_parser_error (parser, "a wide string is invalid in this context");
2792       wide = false;
2793     }
2794 
2795   if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
2796       (parse_in, strs, count, &istr, wide))
2797     {
2798       value = build_string (istr.len, (char *)istr.text);
2799       free ((void *)istr.text);
2800 
2801       TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
2802       value = fix_string_type (value);
2803     }
2804   else
2805     /* cpp_interpret_string has issued an error.  */
2806     value = error_mark_node;
2807 
2808   if (count > 1)
2809     obstack_free (&str_ob, 0);
2810 
2811   return value;
2812 }
2813 
2814 
2815 /* Basic concepts [gram.basic]  */
2816 
2817 /* Parse a translation-unit.
2818 
2819    translation-unit:
2820      declaration-seq [opt]
2821 
2822    Returns TRUE if all went well.  */
2823 
2824 static bool
cp_parser_translation_unit(cp_parser * parser)2825 cp_parser_translation_unit (cp_parser* parser)
2826 {
2827   /* The address of the first non-permanent object on the declarator
2828      obstack.  */
2829   static void *declarator_obstack_base;
2830 
2831   bool success;
2832 
2833   /* Create the declarator obstack, if necessary.  */
2834   if (!cp_error_declarator)
2835     {
2836       gcc_obstack_init (&declarator_obstack);
2837       /* Create the error declarator.  */
2838       cp_error_declarator = make_declarator (cdk_error);
2839       /* Create the empty parameter list.  */
2840       no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2841       /* Remember where the base of the declarator obstack lies.  */
2842       declarator_obstack_base = obstack_next_free (&declarator_obstack);
2843     }
2844 
2845   cp_parser_declaration_seq_opt (parser);
2846 
2847   /* If there are no tokens left then all went well.  */
2848   if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2849     {
2850       /* Get rid of the token array; we don't need it any more.  */
2851       cp_lexer_destroy (parser->lexer);
2852       parser->lexer = NULL;
2853 
2854       /* This file might have been a context that's implicitly extern
2855 	 "C".  If so, pop the lang context.  (Only relevant for PCH.) */
2856       if (parser->implicit_extern_c)
2857 	{
2858 	  pop_lang_context ();
2859 	  parser->implicit_extern_c = false;
2860 	}
2861 
2862       /* Finish up.  */
2863       finish_translation_unit ();
2864 
2865       success = true;
2866     }
2867   else
2868     {
2869       cp_parser_error (parser, "expected declaration");
2870       success = false;
2871     }
2872 
2873   /* Make sure the declarator obstack was fully cleaned up.  */
2874   gcc_assert (obstack_next_free (&declarator_obstack)
2875 	      == declarator_obstack_base);
2876 
2877   /* All went well.  */
2878   return success;
2879 }
2880 
2881 /* Expressions [gram.expr] */
2882 
2883 /* Parse a primary-expression.
2884 
2885    primary-expression:
2886      literal
2887      this
2888      ( expression )
2889      id-expression
2890 
2891    GNU Extensions:
2892 
2893    primary-expression:
2894      ( compound-statement )
2895      __builtin_va_arg ( assignment-expression , type-id )
2896      __builtin_offsetof ( type-id , offsetof-expression )
2897 
2898    Objective-C++ Extension:
2899 
2900    primary-expression:
2901      objc-expression
2902 
2903    literal:
2904      __null
2905 
2906    ADDRESS_P is true iff this expression was immediately preceded by
2907    "&" and therefore might denote a pointer-to-member.  CAST_P is true
2908    iff this expression is the target of a cast.  TEMPLATE_ARG_P is
2909    true iff this expression is a template argument.
2910 
2911    Returns a representation of the expression.  Upon return, *IDK
2912    indicates what kind of id-expression (if any) was present.  */
2913 
2914 static tree
cp_parser_primary_expression(cp_parser * parser,bool address_p,bool cast_p,bool template_arg_p,cp_id_kind * idk)2915 cp_parser_primary_expression (cp_parser *parser,
2916 			      bool address_p,
2917 			      bool cast_p,
2918 			      bool template_arg_p,
2919 			      cp_id_kind *idk)
2920 {
2921   cp_token *token;
2922 
2923   /* Assume the primary expression is not an id-expression.  */
2924   *idk = CP_ID_KIND_NONE;
2925 
2926   /* Peek at the next token.  */
2927   token = cp_lexer_peek_token (parser->lexer);
2928   switch (token->type)
2929     {
2930       /* literal:
2931 	   integer-literal
2932 	   character-literal
2933 	   floating-literal
2934 	   string-literal
2935 	   boolean-literal  */
2936     case CPP_CHAR:
2937     case CPP_WCHAR:
2938     case CPP_NUMBER:
2939       token = cp_lexer_consume_token (parser->lexer);
2940       /* Floating-point literals are only allowed in an integral
2941 	 constant expression if they are cast to an integral or
2942 	 enumeration type.  */
2943       if (TREE_CODE (token->u.value) == REAL_CST
2944 	  && parser->integral_constant_expression_p
2945 	  && pedantic)
2946 	{
2947 	  /* CAST_P will be set even in invalid code like "int(2.7 +
2948 	     ...)".   Therefore, we have to check that the next token
2949 	     is sure to end the cast.  */
2950 	  if (cast_p)
2951 	    {
2952 	      cp_token *next_token;
2953 
2954 	      next_token = cp_lexer_peek_token (parser->lexer);
2955 	      if (/* The comma at the end of an
2956 		     enumerator-definition.  */
2957 		  next_token->type != CPP_COMMA
2958 		  /* The curly brace at the end of an enum-specifier.  */
2959 		  && next_token->type != CPP_CLOSE_BRACE
2960 		  /* The end of a statement.  */
2961 		  && next_token->type != CPP_SEMICOLON
2962 		  /* The end of the cast-expression.  */
2963 		  && next_token->type != CPP_CLOSE_PAREN
2964 		  /* The end of an array bound.  */
2965 		  && next_token->type != CPP_CLOSE_SQUARE
2966 		  /* The closing ">" in a template-argument-list.  */
2967 		  && (next_token->type != CPP_GREATER
2968 		      || parser->greater_than_is_operator_p))
2969 		cast_p = false;
2970 	    }
2971 
2972 	  /* If we are within a cast, then the constraint that the
2973 	     cast is to an integral or enumeration type will be
2974 	     checked at that point.  If we are not within a cast, then
2975 	     this code is invalid.  */
2976 	  if (!cast_p)
2977 	    cp_parser_non_integral_constant_expression
2978 	      (parser, "floating-point literal");
2979 	}
2980       return token->u.value;
2981 
2982     case CPP_STRING:
2983     case CPP_WSTRING:
2984       /* ??? Should wide strings be allowed when parser->translate_strings_p
2985 	 is false (i.e. in attributes)?  If not, we can kill the third
2986 	 argument to cp_parser_string_literal.  */
2987       return cp_parser_string_literal (parser,
2988 				       parser->translate_strings_p,
2989 				       true);
2990 
2991     case CPP_OPEN_PAREN:
2992       {
2993 	tree expr;
2994 	bool saved_greater_than_is_operator_p;
2995 
2996 	/* Consume the `('.  */
2997 	cp_lexer_consume_token (parser->lexer);
2998 	/* Within a parenthesized expression, a `>' token is always
2999 	   the greater-than operator.  */
3000 	saved_greater_than_is_operator_p
3001 	  = parser->greater_than_is_operator_p;
3002 	parser->greater_than_is_operator_p = true;
3003 	/* If we see `( { ' then we are looking at the beginning of
3004 	   a GNU statement-expression.  */
3005 	if (cp_parser_allow_gnu_extensions_p (parser)
3006 	    && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
3007 	  {
3008 	    /* Statement-expressions are not allowed by the standard.  */
3009 	    if (pedantic)
3010 	      pedwarn ("ISO C++ forbids braced-groups within expressions");
3011 
3012 	    /* And they're not allowed outside of a function-body; you
3013 	       cannot, for example, write:
3014 
3015 		 int i = ({ int j = 3; j + 1; });
3016 
3017 	       at class or namespace scope.  */
3018 	    if (!parser->in_function_body)
3019 	      error ("statement-expressions are allowed only inside functions");
3020 	    /* Start the statement-expression.  */
3021 	    expr = begin_stmt_expr ();
3022 	    /* Parse the compound-statement.  */
3023 	    cp_parser_compound_statement (parser, expr, false);
3024 	    /* Finish up.  */
3025 	    expr = finish_stmt_expr (expr, false);
3026 	  }
3027 	else
3028 	  {
3029 	    /* Parse the parenthesized expression.  */
3030 	    expr = cp_parser_expression (parser, cast_p);
3031 	    /* Let the front end know that this expression was
3032 	       enclosed in parentheses. This matters in case, for
3033 	       example, the expression is of the form `A::B', since
3034 	       `&A::B' might be a pointer-to-member, but `&(A::B)' is
3035 	       not.  */
3036 	    finish_parenthesized_expr (expr);
3037 	  }
3038 	/* The `>' token might be the end of a template-id or
3039 	   template-parameter-list now.  */
3040 	parser->greater_than_is_operator_p
3041 	  = saved_greater_than_is_operator_p;
3042 	/* Consume the `)'.  */
3043 	if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
3044 	  cp_parser_skip_to_end_of_statement (parser);
3045 
3046 	return expr;
3047       }
3048 
3049     case CPP_KEYWORD:
3050       switch (token->keyword)
3051 	{
3052 	  /* These two are the boolean literals.  */
3053 	case RID_TRUE:
3054 	  cp_lexer_consume_token (parser->lexer);
3055 	  return boolean_true_node;
3056 	case RID_FALSE:
3057 	  cp_lexer_consume_token (parser->lexer);
3058 	  return boolean_false_node;
3059 
3060 	  /* The `__null' literal.  */
3061 	case RID_NULL:
3062 	  cp_lexer_consume_token (parser->lexer);
3063 	  return null_node;
3064 
3065 	  /* Recognize the `this' keyword.  */
3066 	case RID_THIS:
3067 	  cp_lexer_consume_token (parser->lexer);
3068 	  if (parser->local_variables_forbidden_p)
3069 	    {
3070 	      error ("%<this%> may not be used in this context");
3071 	      return error_mark_node;
3072 	    }
3073 	  /* Pointers cannot appear in constant-expressions.  */
3074 	  if (cp_parser_non_integral_constant_expression (parser,
3075 							  "`this'"))
3076 	    return error_mark_node;
3077 	  return finish_this_expr ();
3078 
3079 	  /* The `operator' keyword can be the beginning of an
3080 	     id-expression.  */
3081 	case RID_OPERATOR:
3082 	  goto id_expression;
3083 
3084 	case RID_FUNCTION_NAME:
3085 	case RID_PRETTY_FUNCTION_NAME:
3086 	case RID_C99_FUNCTION_NAME:
3087 	  /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
3088 	     __func__ are the names of variables -- but they are
3089 	     treated specially.  Therefore, they are handled here,
3090 	     rather than relying on the generic id-expression logic
3091 	     below.  Grammatically, these names are id-expressions.
3092 
3093 	     Consume the token.  */
3094 	  token = cp_lexer_consume_token (parser->lexer);
3095 	  /* Look up the name.  */
3096 	  return finish_fname (token->u.value);
3097 
3098 	case RID_VA_ARG:
3099 	  {
3100 	    tree expression;
3101 	    tree type;
3102 
3103 	    /* The `__builtin_va_arg' construct is used to handle
3104 	       `va_arg'.  Consume the `__builtin_va_arg' token.  */
3105 	    cp_lexer_consume_token (parser->lexer);
3106 	    /* Look for the opening `('.  */
3107 	    cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3108 	    /* Now, parse the assignment-expression.  */
3109 	    expression = cp_parser_assignment_expression (parser,
3110 							  /*cast_p=*/false);
3111 	    /* Look for the `,'.  */
3112 	    cp_parser_require (parser, CPP_COMMA, "`,'");
3113 	    /* Parse the type-id.  */
3114 	    type = cp_parser_type_id (parser);
3115 	    /* Look for the closing `)'.  */
3116 	    cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3117 	    /* Using `va_arg' in a constant-expression is not
3118 	       allowed.  */
3119 	    if (cp_parser_non_integral_constant_expression (parser,
3120 							    "`va_arg'"))
3121 	      return error_mark_node;
3122 	    return build_x_va_arg (expression, type);
3123 	  }
3124 
3125 	case RID_OFFSETOF:
3126 	  return cp_parser_builtin_offsetof (parser);
3127 
3128 	  /* Objective-C++ expressions.  */
3129 	case RID_AT_ENCODE:
3130 	case RID_AT_PROTOCOL:
3131 	case RID_AT_SELECTOR:
3132 	  return cp_parser_objc_expression (parser);
3133 
3134 	default:
3135 	  cp_parser_error (parser, "expected primary-expression");
3136 	  return error_mark_node;
3137 	}
3138 
3139       /* An id-expression can start with either an identifier, a
3140 	 `::' as the beginning of a qualified-id, or the "operator"
3141 	 keyword.  */
3142     case CPP_NAME:
3143     case CPP_SCOPE:
3144     case CPP_TEMPLATE_ID:
3145     case CPP_NESTED_NAME_SPECIFIER:
3146       {
3147 	tree id_expression;
3148 	tree decl;
3149 	const char *error_msg;
3150 	bool template_p;
3151 	bool done;
3152 
3153       id_expression:
3154 	/* Parse the id-expression.  */
3155 	id_expression
3156 	  = cp_parser_id_expression (parser,
3157 				     /*template_keyword_p=*/false,
3158 				     /*check_dependency_p=*/true,
3159 				     &template_p,
3160 				     /*declarator_p=*/false,
3161 				     /*optional_p=*/false);
3162 	if (id_expression == error_mark_node)
3163 	  return error_mark_node;
3164 	token = cp_lexer_peek_token (parser->lexer);
3165 	done = (token->type != CPP_OPEN_SQUARE
3166 		&& token->type != CPP_OPEN_PAREN
3167 		&& token->type != CPP_DOT
3168 		&& token->type != CPP_DEREF
3169 		&& token->type != CPP_PLUS_PLUS
3170 		&& token->type != CPP_MINUS_MINUS);
3171 	/* If we have a template-id, then no further lookup is
3172 	   required.  If the template-id was for a template-class, we
3173 	   will sometimes have a TYPE_DECL at this point.  */
3174 	if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
3175 		 || TREE_CODE (id_expression) == TYPE_DECL)
3176 	  decl = id_expression;
3177 	/* Look up the name.  */
3178 	else
3179 	  {
3180 	    tree ambiguous_decls;
3181 
3182 	    decl = cp_parser_lookup_name (parser, id_expression,
3183 					  none_type,
3184 					  template_p,
3185 					  /*is_namespace=*/false,
3186 					  /*check_dependency=*/true,
3187 					  &ambiguous_decls);
3188 	    /* If the lookup was ambiguous, an error will already have
3189 	       been issued.  */
3190 	    if (ambiguous_decls)
3191 	      return error_mark_node;
3192 
3193 	    /* In Objective-C++, an instance variable (ivar) may be preferred
3194 	       to whatever cp_parser_lookup_name() found.  */
3195 	    decl = objc_lookup_ivar (decl, id_expression);
3196 
3197 	    /* If name lookup gives us a SCOPE_REF, then the
3198 	       qualifying scope was dependent.  */
3199 	    if (TREE_CODE (decl) == SCOPE_REF)
3200 	      {
3201 		/* At this point, we do not know if DECL is a valid
3202 		   integral constant expression.  We assume that it is
3203 		   in fact such an expression, so that code like:
3204 
3205 		      template <int N> struct A {
3206 			int a[B<N>::i];
3207 		      };
3208 
3209 		   is accepted.  At template-instantiation time, we
3210 		   will check that B<N>::i is actually a constant.  */
3211 		return decl;
3212 	      }
3213 	    /* Check to see if DECL is a local variable in a context
3214 	       where that is forbidden.  */
3215 	    if (parser->local_variables_forbidden_p
3216 		&& local_variable_p (decl))
3217 	      {
3218 		/* It might be that we only found DECL because we are
3219 		   trying to be generous with pre-ISO scoping rules.
3220 		   For example, consider:
3221 
3222 		     int i;
3223 		     void g() {
3224 		       for (int i = 0; i < 10; ++i) {}
3225 		       extern void f(int j = i);
3226 		     }
3227 
3228 		   Here, name look up will originally find the out
3229 		   of scope `i'.  We need to issue a warning message,
3230 		   but then use the global `i'.  */
3231 		decl = check_for_out_of_scope_variable (decl);
3232 		if (local_variable_p (decl))
3233 		  {
3234 		    error ("local variable %qD may not appear in this context",
3235 			   decl);
3236 		    return error_mark_node;
3237 		  }
3238 	      }
3239 	  }
3240 
3241 	decl = (finish_id_expression
3242 		(id_expression, decl, parser->scope,
3243 		 idk,
3244 		 parser->integral_constant_expression_p,
3245 		 parser->allow_non_integral_constant_expression_p,
3246 		 &parser->non_integral_constant_expression_p,
3247 		 template_p, done, address_p,
3248 		 template_arg_p,
3249 		 &error_msg));
3250 	if (error_msg)
3251 	  cp_parser_error (parser, error_msg);
3252 	return decl;
3253       }
3254 
3255       /* Anything else is an error.  */
3256     default:
3257       /* ...unless we have an Objective-C++ message or string literal, that is.  */
3258       if (c_dialect_objc ()
3259 	  && (token->type == CPP_OPEN_SQUARE || token->type == CPP_OBJC_STRING))
3260 	return cp_parser_objc_expression (parser);
3261 
3262       cp_parser_error (parser, "expected primary-expression");
3263       return error_mark_node;
3264     }
3265 }
3266 
3267 /* Parse an id-expression.
3268 
3269    id-expression:
3270      unqualified-id
3271      qualified-id
3272 
3273    qualified-id:
3274      :: [opt] nested-name-specifier template [opt] unqualified-id
3275      :: identifier
3276      :: operator-function-id
3277      :: template-id
3278 
3279    Return a representation of the unqualified portion of the
3280    identifier.  Sets PARSER->SCOPE to the qualifying scope if there is
3281    a `::' or nested-name-specifier.
3282 
3283    Often, if the id-expression was a qualified-id, the caller will
3284    want to make a SCOPE_REF to represent the qualified-id.  This
3285    function does not do this in order to avoid wastefully creating
3286    SCOPE_REFs when they are not required.
3287 
3288    If TEMPLATE_KEYWORD_P is true, then we have just seen the
3289    `template' keyword.
3290 
3291    If CHECK_DEPENDENCY_P is false, then names are looked up inside
3292    uninstantiated templates.
3293 
3294    If *TEMPLATE_P is non-NULL, it is set to true iff the
3295    `template' keyword is used to explicitly indicate that the entity
3296    named is a template.
3297 
3298    If DECLARATOR_P is true, the id-expression is appearing as part of
3299    a declarator, rather than as part of an expression.  */
3300 
3301 static tree
cp_parser_id_expression(cp_parser * parser,bool template_keyword_p,bool check_dependency_p,bool * template_p,bool declarator_p,bool optional_p)3302 cp_parser_id_expression (cp_parser *parser,
3303 			 bool template_keyword_p,
3304 			 bool check_dependency_p,
3305 			 bool *template_p,
3306 			 bool declarator_p,
3307 			 bool optional_p)
3308 {
3309   bool global_scope_p;
3310   bool nested_name_specifier_p;
3311 
3312   /* Assume the `template' keyword was not used.  */
3313   if (template_p)
3314     *template_p = template_keyword_p;
3315 
3316   /* Look for the optional `::' operator.  */
3317   global_scope_p
3318     = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
3319        != NULL_TREE);
3320   /* Look for the optional nested-name-specifier.  */
3321   nested_name_specifier_p
3322     = (cp_parser_nested_name_specifier_opt (parser,
3323 					    /*typename_keyword_p=*/false,
3324 					    check_dependency_p,
3325 					    /*type_p=*/false,
3326 					    declarator_p)
3327        != NULL_TREE);
3328   /* If there is a nested-name-specifier, then we are looking at
3329      the first qualified-id production.  */
3330   if (nested_name_specifier_p)
3331     {
3332       tree saved_scope;
3333       tree saved_object_scope;
3334       tree saved_qualifying_scope;
3335       tree unqualified_id;
3336       bool is_template;
3337 
3338       /* See if the next token is the `template' keyword.  */
3339       if (!template_p)
3340 	template_p = &is_template;
3341       *template_p = cp_parser_optional_template_keyword (parser);
3342       /* Name lookup we do during the processing of the
3343 	 unqualified-id might obliterate SCOPE.  */
3344       saved_scope = parser->scope;
3345       saved_object_scope = parser->object_scope;
3346       saved_qualifying_scope = parser->qualifying_scope;
3347       /* Process the final unqualified-id.  */
3348       unqualified_id = cp_parser_unqualified_id (parser, *template_p,
3349 						 check_dependency_p,
3350 						 declarator_p,
3351 						 /*optional_p=*/false);
3352       /* Restore the SAVED_SCOPE for our caller.  */
3353       parser->scope = saved_scope;
3354       parser->object_scope = saved_object_scope;
3355       parser->qualifying_scope = saved_qualifying_scope;
3356 
3357       return unqualified_id;
3358     }
3359   /* Otherwise, if we are in global scope, then we are looking at one
3360      of the other qualified-id productions.  */
3361   else if (global_scope_p)
3362     {
3363       cp_token *token;
3364       tree id;
3365 
3366       /* Peek at the next token.  */
3367       token = cp_lexer_peek_token (parser->lexer);
3368 
3369       /* If it's an identifier, and the next token is not a "<", then
3370 	 we can avoid the template-id case.  This is an optimization
3371 	 for this common case.  */
3372       if (token->type == CPP_NAME
3373 	  && !cp_parser_nth_token_starts_template_argument_list_p
3374 	       (parser, 2))
3375 	return cp_parser_identifier (parser);
3376 
3377       cp_parser_parse_tentatively (parser);
3378       /* Try a template-id.  */
3379       id = cp_parser_template_id (parser,
3380 				  /*template_keyword_p=*/false,
3381 				  /*check_dependency_p=*/true,
3382 				  declarator_p);
3383       /* If that worked, we're done.  */
3384       if (cp_parser_parse_definitely (parser))
3385 	return id;
3386 
3387       /* Peek at the next token.  (Changes in the token buffer may
3388 	 have invalidated the pointer obtained above.)  */
3389       token = cp_lexer_peek_token (parser->lexer);
3390 
3391       switch (token->type)
3392 	{
3393 	case CPP_NAME:
3394 	  return cp_parser_identifier (parser);
3395 
3396 	case CPP_KEYWORD:
3397 	  if (token->keyword == RID_OPERATOR)
3398 	    return cp_parser_operator_function_id (parser);
3399 	  /* Fall through.  */
3400 
3401 	default:
3402 	  cp_parser_error (parser, "expected id-expression");
3403 	  return error_mark_node;
3404 	}
3405     }
3406   else
3407     return cp_parser_unqualified_id (parser, template_keyword_p,
3408 				     /*check_dependency_p=*/true,
3409 				     declarator_p,
3410 				     optional_p);
3411 }
3412 
3413 /* Parse an unqualified-id.
3414 
3415    unqualified-id:
3416      identifier
3417      operator-function-id
3418      conversion-function-id
3419      ~ class-name
3420      template-id
3421 
3422    If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3423    keyword, in a construct like `A::template ...'.
3424 
3425    Returns a representation of unqualified-id.  For the `identifier'
3426    production, an IDENTIFIER_NODE is returned.  For the `~ class-name'
3427    production a BIT_NOT_EXPR is returned; the operand of the
3428    BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name.  For the
3429    other productions, see the documentation accompanying the
3430    corresponding parsing functions.  If CHECK_DEPENDENCY_P is false,
3431    names are looked up in uninstantiated templates.  If DECLARATOR_P
3432    is true, the unqualified-id is appearing as part of a declarator,
3433    rather than as part of an expression.  */
3434 
3435 static tree
cp_parser_unqualified_id(cp_parser * parser,bool template_keyword_p,bool check_dependency_p,bool declarator_p,bool optional_p)3436 cp_parser_unqualified_id (cp_parser* parser,
3437 			  bool template_keyword_p,
3438 			  bool check_dependency_p,
3439 			  bool declarator_p,
3440 			  bool optional_p)
3441 {
3442   cp_token *token;
3443 
3444   /* Peek at the next token.  */
3445   token = cp_lexer_peek_token (parser->lexer);
3446 
3447   switch (token->type)
3448     {
3449     case CPP_NAME:
3450       {
3451 	tree id;
3452 
3453 	/* We don't know yet whether or not this will be a
3454 	   template-id.  */
3455 	cp_parser_parse_tentatively (parser);
3456 	/* Try a template-id.  */
3457 	id = cp_parser_template_id (parser, template_keyword_p,
3458 				    check_dependency_p,
3459 				    declarator_p);
3460 	/* If it worked, we're done.  */
3461 	if (cp_parser_parse_definitely (parser))
3462 	  return id;
3463 	/* Otherwise, it's an ordinary identifier.  */
3464 	return cp_parser_identifier (parser);
3465       }
3466 
3467     case CPP_TEMPLATE_ID:
3468       return cp_parser_template_id (parser, template_keyword_p,
3469 				    check_dependency_p,
3470 				    declarator_p);
3471 
3472     case CPP_COMPL:
3473       {
3474 	tree type_decl;
3475 	tree qualifying_scope;
3476 	tree object_scope;
3477 	tree scope;
3478 	bool done;
3479 
3480 	/* Consume the `~' token.  */
3481 	cp_lexer_consume_token (parser->lexer);
3482 	/* Parse the class-name.  The standard, as written, seems to
3483 	   say that:
3484 
3485 	     template <typename T> struct S { ~S (); };
3486 	     template <typename T> S<T>::~S() {}
3487 
3488 	   is invalid, since `~' must be followed by a class-name, but
3489 	   `S<T>' is dependent, and so not known to be a class.
3490 	   That's not right; we need to look in uninstantiated
3491 	   templates.  A further complication arises from:
3492 
3493 	     template <typename T> void f(T t) {
3494 	       t.T::~T();
3495 	     }
3496 
3497 	   Here, it is not possible to look up `T' in the scope of `T'
3498 	   itself.  We must look in both the current scope, and the
3499 	   scope of the containing complete expression.
3500 
3501 	   Yet another issue is:
3502 
3503 	     struct S {
3504 	       int S;
3505 	       ~S();
3506 	     };
3507 
3508 	     S::~S() {}
3509 
3510 	   The standard does not seem to say that the `S' in `~S'
3511 	   should refer to the type `S' and not the data member
3512 	   `S::S'.  */
3513 
3514 	/* DR 244 says that we look up the name after the "~" in the
3515 	   same scope as we looked up the qualifying name.  That idea
3516 	   isn't fully worked out; it's more complicated than that.  */
3517 	scope = parser->scope;
3518 	object_scope = parser->object_scope;
3519 	qualifying_scope = parser->qualifying_scope;
3520 
3521 	/* Check for invalid scopes.  */
3522 	if (scope == error_mark_node)
3523 	  {
3524 	    if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
3525 	      cp_lexer_consume_token (parser->lexer);
3526 	    return error_mark_node;
3527 	  }
3528 	if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
3529 	  {
3530 	    if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
3531 	      error ("scope %qT before %<~%> is not a class-name", scope);
3532 	    cp_parser_simulate_error (parser);
3533 	    if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
3534 	      cp_lexer_consume_token (parser->lexer);
3535 	    return error_mark_node;
3536 	  }
3537 	gcc_assert (!scope || TYPE_P (scope));
3538 
3539 	/* If the name is of the form "X::~X" it's OK.  */
3540 	token = cp_lexer_peek_token (parser->lexer);
3541 	if (scope
3542 	    && token->type == CPP_NAME
3543 	    && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3544 		== CPP_OPEN_PAREN)
3545 	    && constructor_name_p (token->u.value, scope))
3546 	  {
3547 	    cp_lexer_consume_token (parser->lexer);
3548 	    return build_nt (BIT_NOT_EXPR, scope);
3549 	  }
3550 
3551 	/* If there was an explicit qualification (S::~T), first look
3552 	   in the scope given by the qualification (i.e., S).  */
3553 	done = false;
3554 	type_decl = NULL_TREE;
3555 	if (scope)
3556 	  {
3557 	    cp_parser_parse_tentatively (parser);
3558 	    type_decl = cp_parser_class_name (parser,
3559 					      /*typename_keyword_p=*/false,
3560 					      /*template_keyword_p=*/false,
3561 					      none_type,
3562 					      /*check_dependency=*/false,
3563 					      /*class_head_p=*/false,
3564 					      declarator_p);
3565 	    if (cp_parser_parse_definitely (parser))
3566 	      done = true;
3567 	  }
3568 	/* In "N::S::~S", look in "N" as well.  */
3569 	if (!done && scope && qualifying_scope)
3570 	  {
3571 	    cp_parser_parse_tentatively (parser);
3572 	    parser->scope = qualifying_scope;
3573 	    parser->object_scope = NULL_TREE;
3574 	    parser->qualifying_scope = NULL_TREE;
3575 	    type_decl
3576 	      = cp_parser_class_name (parser,
3577 				      /*typename_keyword_p=*/false,
3578 				      /*template_keyword_p=*/false,
3579 				      none_type,
3580 				      /*check_dependency=*/false,
3581 				      /*class_head_p=*/false,
3582 				      declarator_p);
3583 	    if (cp_parser_parse_definitely (parser))
3584 	      done = true;
3585 	  }
3586 	/* In "p->S::~T", look in the scope given by "*p" as well.  */
3587 	else if (!done && object_scope)
3588 	  {
3589 	    cp_parser_parse_tentatively (parser);
3590 	    parser->scope = object_scope;
3591 	    parser->object_scope = NULL_TREE;
3592 	    parser->qualifying_scope = NULL_TREE;
3593 	    type_decl
3594 	      = cp_parser_class_name (parser,
3595 				      /*typename_keyword_p=*/false,
3596 				      /*template_keyword_p=*/false,
3597 				      none_type,
3598 				      /*check_dependency=*/false,
3599 				      /*class_head_p=*/false,
3600 				      declarator_p);
3601 	    if (cp_parser_parse_definitely (parser))
3602 	      done = true;
3603 	  }
3604 	/* Look in the surrounding context.  */
3605 	if (!done)
3606 	  {
3607 	    parser->scope = NULL_TREE;
3608 	    parser->object_scope = NULL_TREE;
3609 	    parser->qualifying_scope = NULL_TREE;
3610 	    type_decl
3611 	      = cp_parser_class_name (parser,
3612 				      /*typename_keyword_p=*/false,
3613 				      /*template_keyword_p=*/false,
3614 				      none_type,
3615 				      /*check_dependency=*/false,
3616 				      /*class_head_p=*/false,
3617 				      declarator_p);
3618 	  }
3619 	/* If an error occurred, assume that the name of the
3620 	   destructor is the same as the name of the qualifying
3621 	   class.  That allows us to keep parsing after running
3622 	   into ill-formed destructor names.  */
3623 	if (type_decl == error_mark_node && scope)
3624 	  return build_nt (BIT_NOT_EXPR, scope);
3625 	else if (type_decl == error_mark_node)
3626 	  return error_mark_node;
3627 
3628 	/* Check that destructor name and scope match.  */
3629 	if (declarator_p && scope && !check_dtor_name (scope, type_decl))
3630 	  {
3631 	    if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
3632 	      error ("declaration of %<~%T%> as member of %qT",
3633 		     type_decl, scope);
3634 	    cp_parser_simulate_error (parser);
3635 	    return error_mark_node;
3636 	  }
3637 
3638 	/* [class.dtor]
3639 
3640 	   A typedef-name that names a class shall not be used as the
3641 	   identifier in the declarator for a destructor declaration.  */
3642 	if (declarator_p
3643 	    && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3644 	    && !DECL_SELF_REFERENCE_P (type_decl)
3645 	    && !cp_parser_uncommitted_to_tentative_parse_p (parser))
3646 	  error ("typedef-name %qD used as destructor declarator",
3647 		 type_decl);
3648 
3649 	return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3650       }
3651 
3652     case CPP_KEYWORD:
3653       if (token->keyword == RID_OPERATOR)
3654 	{
3655 	  tree id;
3656 
3657 	  /* This could be a template-id, so we try that first.  */
3658 	  cp_parser_parse_tentatively (parser);
3659 	  /* Try a template-id.  */
3660 	  id = cp_parser_template_id (parser, template_keyword_p,
3661 				      /*check_dependency_p=*/true,
3662 				      declarator_p);
3663 	  /* If that worked, we're done.  */
3664 	  if (cp_parser_parse_definitely (parser))
3665 	    return id;
3666 	  /* We still don't know whether we're looking at an
3667 	     operator-function-id or a conversion-function-id.  */
3668 	  cp_parser_parse_tentatively (parser);
3669 	  /* Try an operator-function-id.  */
3670 	  id = cp_parser_operator_function_id (parser);
3671 	  /* If that didn't work, try a conversion-function-id.  */
3672 	  if (!cp_parser_parse_definitely (parser))
3673 	    id = cp_parser_conversion_function_id (parser);
3674 
3675 	  return id;
3676 	}
3677       /* Fall through.  */
3678 
3679     default:
3680       if (optional_p)
3681 	return NULL_TREE;
3682       cp_parser_error (parser, "expected unqualified-id");
3683       return error_mark_node;
3684     }
3685 }
3686 
3687 /* Parse an (optional) nested-name-specifier.
3688 
3689    nested-name-specifier:
3690      class-or-namespace-name :: nested-name-specifier [opt]
3691      class-or-namespace-name :: template nested-name-specifier [opt]
3692 
3693    PARSER->SCOPE should be set appropriately before this function is
3694    called.  TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3695    effect.  TYPE_P is TRUE if we non-type bindings should be ignored
3696    in name lookups.
3697 
3698    Sets PARSER->SCOPE to the class (TYPE) or namespace
3699    (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3700    it unchanged if there is no nested-name-specifier.  Returns the new
3701    scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3702 
3703    If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3704    part of a declaration and/or decl-specifier.  */
3705 
3706 static tree
cp_parser_nested_name_specifier_opt(cp_parser * parser,bool typename_keyword_p,bool check_dependency_p,bool type_p,bool is_declaration)3707 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3708 				     bool typename_keyword_p,
3709 				     bool check_dependency_p,
3710 				     bool type_p,
3711 				     bool is_declaration)
3712 {
3713   bool success = false;
3714   cp_token_position start = 0;
3715   cp_token *token;
3716 
3717   /* Remember where the nested-name-specifier starts.  */
3718   if (cp_parser_uncommitted_to_tentative_parse_p (parser))
3719     {
3720       start = cp_lexer_token_position (parser->lexer, false);
3721       push_deferring_access_checks (dk_deferred);
3722     }
3723 
3724   while (true)
3725     {
3726       tree new_scope;
3727       tree old_scope;
3728       tree saved_qualifying_scope;
3729       bool template_keyword_p;
3730 
3731       /* Spot cases that cannot be the beginning of a
3732 	 nested-name-specifier.  */
3733       token = cp_lexer_peek_token (parser->lexer);
3734 
3735       /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3736 	 the already parsed nested-name-specifier.  */
3737       if (token->type == CPP_NESTED_NAME_SPECIFIER)
3738 	{
3739 	  /* Grab the nested-name-specifier and continue the loop.  */
3740 	  cp_parser_pre_parsed_nested_name_specifier (parser);
3741 	  /* If we originally encountered this nested-name-specifier
3742 	     with IS_DECLARATION set to false, we will not have
3743 	     resolved TYPENAME_TYPEs, so we must do so here.  */
3744 	  if (is_declaration
3745 	      && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3746 	    {
3747 	      new_scope = resolve_typename_type (parser->scope,
3748 						 /*only_current_p=*/false);
3749 	      if (new_scope != error_mark_node)
3750 		parser->scope = new_scope;
3751 	    }
3752 	  success = true;
3753 	  continue;
3754 	}
3755 
3756       /* Spot cases that cannot be the beginning of a
3757 	 nested-name-specifier.  On the second and subsequent times
3758 	 through the loop, we look for the `template' keyword.  */
3759       if (success && token->keyword == RID_TEMPLATE)
3760 	;
3761       /* A template-id can start a nested-name-specifier.  */
3762       else if (token->type == CPP_TEMPLATE_ID)
3763 	;
3764       else
3765 	{
3766 	  /* If the next token is not an identifier, then it is
3767 	     definitely not a class-or-namespace-name.  */
3768 	  if (token->type != CPP_NAME)
3769 	    break;
3770 	  /* If the following token is neither a `<' (to begin a
3771 	     template-id), nor a `::', then we are not looking at a
3772 	     nested-name-specifier.  */
3773 	  token = cp_lexer_peek_nth_token (parser->lexer, 2);
3774 	  if (token->type != CPP_SCOPE
3775 	      && !cp_parser_nth_token_starts_template_argument_list_p
3776 		  (parser, 2))
3777 	    break;
3778 	}
3779 
3780       /* The nested-name-specifier is optional, so we parse
3781 	 tentatively.  */
3782       cp_parser_parse_tentatively (parser);
3783 
3784       /* Look for the optional `template' keyword, if this isn't the
3785 	 first time through the loop.  */
3786       if (success)
3787 	template_keyword_p = cp_parser_optional_template_keyword (parser);
3788       else
3789 	template_keyword_p = false;
3790 
3791       /* Save the old scope since the name lookup we are about to do
3792 	 might destroy it.  */
3793       old_scope = parser->scope;
3794       saved_qualifying_scope = parser->qualifying_scope;
3795       /* In a declarator-id like "X<T>::I::Y<T>" we must be able to
3796 	 look up names in "X<T>::I" in order to determine that "Y" is
3797 	 a template.  So, if we have a typename at this point, we make
3798 	 an effort to look through it.  */
3799       if (is_declaration
3800 	  && !typename_keyword_p
3801 	  && parser->scope
3802 	  && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3803 	parser->scope = resolve_typename_type (parser->scope,
3804 					       /*only_current_p=*/false);
3805       /* Parse the qualifying entity.  */
3806       new_scope
3807 	= cp_parser_class_or_namespace_name (parser,
3808 					     typename_keyword_p,
3809 					     template_keyword_p,
3810 					     check_dependency_p,
3811 					     type_p,
3812 					     is_declaration);
3813       /* Look for the `::' token.  */
3814       cp_parser_require (parser, CPP_SCOPE, "`::'");
3815 
3816       /* If we found what we wanted, we keep going; otherwise, we're
3817 	 done.  */
3818       if (!cp_parser_parse_definitely (parser))
3819 	{
3820 	  bool error_p = false;
3821 
3822 	  /* Restore the OLD_SCOPE since it was valid before the
3823 	     failed attempt at finding the last
3824 	     class-or-namespace-name.  */
3825 	  parser->scope = old_scope;
3826 	  parser->qualifying_scope = saved_qualifying_scope;
3827 	  if (cp_parser_uncommitted_to_tentative_parse_p (parser))
3828 	    break;
3829 	  /* If the next token is an identifier, and the one after
3830 	     that is a `::', then any valid interpretation would have
3831 	     found a class-or-namespace-name.  */
3832 	  while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3833 		 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3834 		     == CPP_SCOPE)
3835 		 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3836 		     != CPP_COMPL))
3837 	    {
3838 	      token = cp_lexer_consume_token (parser->lexer);
3839 	      if (!error_p)
3840 		{
3841 		  if (!token->ambiguous_p)
3842 		    {
3843 		      tree decl;
3844 		      tree ambiguous_decls;
3845 
3846 		      decl = cp_parser_lookup_name (parser, token->u.value,
3847 						    none_type,
3848 						    /*is_template=*/false,
3849 						    /*is_namespace=*/false,
3850 						    /*check_dependency=*/true,
3851 						    &ambiguous_decls);
3852 		      if (TREE_CODE (decl) == TEMPLATE_DECL)
3853 			error ("%qD used without template parameters", decl);
3854 		      else if (ambiguous_decls)
3855 			{
3856 			  error ("reference to %qD is ambiguous",
3857 				 token->u.value);
3858 			  print_candidates (ambiguous_decls);
3859 			  decl = error_mark_node;
3860 			}
3861 		      else
3862 			cp_parser_name_lookup_error
3863 			  (parser, token->u.value, decl,
3864 			   "is not a class or namespace");
3865 		    }
3866 		  parser->scope = error_mark_node;
3867 		  error_p = true;
3868 		  /* Treat this as a successful nested-name-specifier
3869 		     due to:
3870 
3871 		     [basic.lookup.qual]
3872 
3873 		     If the name found is not a class-name (clause
3874 		     _class_) or namespace-name (_namespace.def_), the
3875 		     program is ill-formed.  */
3876 		  success = true;
3877 		}
3878 	      cp_lexer_consume_token (parser->lexer);
3879 	    }
3880 	  break;
3881 	}
3882       /* We've found one valid nested-name-specifier.  */
3883       success = true;
3884       /* Name lookup always gives us a DECL.  */
3885       if (TREE_CODE (new_scope) == TYPE_DECL)
3886 	new_scope = TREE_TYPE (new_scope);
3887       /* Uses of "template" must be followed by actual templates.  */
3888       if (template_keyword_p
3889 	  && !(CLASS_TYPE_P (new_scope)
3890 	       && ((CLASSTYPE_USE_TEMPLATE (new_scope)
3891 		    && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (new_scope)))
3892 		   || CLASSTYPE_IS_TEMPLATE (new_scope)))
3893 	  && !(TREE_CODE (new_scope) == TYPENAME_TYPE
3894 	       && (TREE_CODE (TYPENAME_TYPE_FULLNAME (new_scope))
3895 		   == TEMPLATE_ID_EXPR)))
3896 	pedwarn (TYPE_P (new_scope)
3897 		 ? "%qT is not a template"
3898 		 : "%qD is not a template",
3899 		 new_scope);
3900       /* If it is a class scope, try to complete it; we are about to
3901 	 be looking up names inside the class.  */
3902       if (TYPE_P (new_scope)
3903 	  /* Since checking types for dependency can be expensive,
3904 	     avoid doing it if the type is already complete.  */
3905 	  && !COMPLETE_TYPE_P (new_scope)
3906 	  /* Do not try to complete dependent types.  */
3907 	  && !dependent_type_p (new_scope))
3908 	new_scope = complete_type (new_scope);
3909       /* Make sure we look in the right scope the next time through
3910 	 the loop.  */
3911       parser->scope = new_scope;
3912     }
3913 
3914   /* If parsing tentatively, replace the sequence of tokens that makes
3915      up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3916      token.  That way, should we re-parse the token stream, we will
3917      not have to repeat the effort required to do the parse, nor will
3918      we issue duplicate error messages.  */
3919   if (success && start)
3920     {
3921       cp_token *token;
3922 
3923       token = cp_lexer_token_at (parser->lexer, start);
3924       /* Reset the contents of the START token.  */
3925       token->type = CPP_NESTED_NAME_SPECIFIER;
3926       /* Retrieve any deferred checks.  Do not pop this access checks yet
3927 	 so the memory will not be reclaimed during token replacing below.  */
3928       token->u.tree_check_value = GGC_CNEW (struct tree_check);
3929       token->u.tree_check_value->value = parser->scope;
3930       token->u.tree_check_value->checks = get_deferred_access_checks ();
3931       token->u.tree_check_value->qualifying_scope =
3932 	parser->qualifying_scope;
3933       token->keyword = RID_MAX;
3934 
3935       /* Purge all subsequent tokens.  */
3936       cp_lexer_purge_tokens_after (parser->lexer, start);
3937     }
3938 
3939   if (start)
3940     pop_to_parent_deferring_access_checks ();
3941 
3942   return success ? parser->scope : NULL_TREE;
3943 }
3944 
3945 /* Parse a nested-name-specifier.  See
3946    cp_parser_nested_name_specifier_opt for details.  This function
3947    behaves identically, except that it will an issue an error if no
3948    nested-name-specifier is present.  */
3949 
3950 static tree
cp_parser_nested_name_specifier(cp_parser * parser,bool typename_keyword_p,bool check_dependency_p,bool type_p,bool is_declaration)3951 cp_parser_nested_name_specifier (cp_parser *parser,
3952 				 bool typename_keyword_p,
3953 				 bool check_dependency_p,
3954 				 bool type_p,
3955 				 bool is_declaration)
3956 {
3957   tree scope;
3958 
3959   /* Look for the nested-name-specifier.  */
3960   scope = cp_parser_nested_name_specifier_opt (parser,
3961 					       typename_keyword_p,
3962 					       check_dependency_p,
3963 					       type_p,
3964 					       is_declaration);
3965   /* If it was not present, issue an error message.  */
3966   if (!scope)
3967     {
3968       cp_parser_error (parser, "expected nested-name-specifier");
3969       parser->scope = NULL_TREE;
3970     }
3971 
3972   return scope;
3973 }
3974 
3975 /* Parse a class-or-namespace-name.
3976 
3977    class-or-namespace-name:
3978      class-name
3979      namespace-name
3980 
3981    TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3982    TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3983    CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3984    TYPE_P is TRUE iff the next name should be taken as a class-name,
3985    even the same name is declared to be another entity in the same
3986    scope.
3987 
3988    Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3989    specified by the class-or-namespace-name.  If neither is found the
3990    ERROR_MARK_NODE is returned.  */
3991 
3992 static tree
cp_parser_class_or_namespace_name(cp_parser * parser,bool typename_keyword_p,bool template_keyword_p,bool check_dependency_p,bool type_p,bool is_declaration)3993 cp_parser_class_or_namespace_name (cp_parser *parser,
3994 				   bool typename_keyword_p,
3995 				   bool template_keyword_p,
3996 				   bool check_dependency_p,
3997 				   bool type_p,
3998 				   bool is_declaration)
3999 {
4000   tree saved_scope;
4001   tree saved_qualifying_scope;
4002   tree saved_object_scope;
4003   tree scope;
4004   bool only_class_p;
4005 
4006   /* Before we try to parse the class-name, we must save away the
4007      current PARSER->SCOPE since cp_parser_class_name will destroy
4008      it.  */
4009   saved_scope = parser->scope;
4010   saved_qualifying_scope = parser->qualifying_scope;
4011   saved_object_scope = parser->object_scope;
4012   /* Try for a class-name first.  If the SAVED_SCOPE is a type, then
4013      there is no need to look for a namespace-name.  */
4014   only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
4015   if (!only_class_p)
4016     cp_parser_parse_tentatively (parser);
4017   scope = cp_parser_class_name (parser,
4018 				typename_keyword_p,
4019 				template_keyword_p,
4020 				type_p ? class_type : none_type,
4021 				check_dependency_p,
4022 				/*class_head_p=*/false,
4023 				is_declaration);
4024   /* If that didn't work, try for a namespace-name.  */
4025   if (!only_class_p && !cp_parser_parse_definitely (parser))
4026     {
4027       /* Restore the saved scope.  */
4028       parser->scope = saved_scope;
4029       parser->qualifying_scope = saved_qualifying_scope;
4030       parser->object_scope = saved_object_scope;
4031       /* If we are not looking at an identifier followed by the scope
4032 	 resolution operator, then this is not part of a
4033 	 nested-name-specifier.  (Note that this function is only used
4034 	 to parse the components of a nested-name-specifier.)  */
4035       if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
4036 	  || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
4037 	return error_mark_node;
4038       scope = cp_parser_namespace_name (parser);
4039     }
4040 
4041   return scope;
4042 }
4043 
4044 /* Parse a postfix-expression.
4045 
4046    postfix-expression:
4047      primary-expression
4048      postfix-expression [ expression ]
4049      postfix-expression ( expression-list [opt] )
4050      simple-type-specifier ( expression-list [opt] )
4051      typename :: [opt] nested-name-specifier identifier
4052        ( expression-list [opt] )
4053      typename :: [opt] nested-name-specifier template [opt] template-id
4054        ( expression-list [opt] )
4055      postfix-expression . template [opt] id-expression
4056      postfix-expression -> template [opt] id-expression
4057      postfix-expression . pseudo-destructor-name
4058      postfix-expression -> pseudo-destructor-name
4059      postfix-expression ++
4060      postfix-expression --
4061      dynamic_cast < type-id > ( expression )
4062      static_cast < type-id > ( expression )
4063      reinterpret_cast < type-id > ( expression )
4064      const_cast < type-id > ( expression )
4065      typeid ( expression )
4066      typeid ( type-id )
4067 
4068    GNU Extension:
4069 
4070    postfix-expression:
4071      ( type-id ) { initializer-list , [opt] }
4072 
4073    This extension is a GNU version of the C99 compound-literal
4074    construct.  (The C99 grammar uses `type-name' instead of `type-id',
4075    but they are essentially the same concept.)
4076 
4077    If ADDRESS_P is true, the postfix expression is the operand of the
4078    `&' operator.  CAST_P is true if this expression is the target of a
4079    cast.
4080 
4081    Returns a representation of the expression.  */
4082 
4083 static tree
cp_parser_postfix_expression(cp_parser * parser,bool address_p,bool cast_p)4084 cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p)
4085 {
4086   cp_token *token;
4087   enum rid keyword;
4088   cp_id_kind idk = CP_ID_KIND_NONE;
4089   tree postfix_expression = NULL_TREE;
4090 
4091   /* Peek at the next token.  */
4092   token = cp_lexer_peek_token (parser->lexer);
4093   /* Some of the productions are determined by keywords.  */
4094   keyword = token->keyword;
4095   switch (keyword)
4096     {
4097     case RID_DYNCAST:
4098     case RID_STATCAST:
4099     case RID_REINTCAST:
4100     case RID_CONSTCAST:
4101       {
4102 	tree type;
4103 	tree expression;
4104 	const char *saved_message;
4105 
4106 	/* All of these can be handled in the same way from the point
4107 	   of view of parsing.  Begin by consuming the token
4108 	   identifying the cast.  */
4109 	cp_lexer_consume_token (parser->lexer);
4110 
4111 	/* New types cannot be defined in the cast.  */
4112 	saved_message = parser->type_definition_forbidden_message;
4113 	parser->type_definition_forbidden_message
4114 	  = "types may not be defined in casts";
4115 
4116 	/* Look for the opening `<'.  */
4117 	cp_parser_require (parser, CPP_LESS, "`<'");
4118 	/* Parse the type to which we are casting.  */
4119 	type = cp_parser_type_id (parser);
4120 	/* Look for the closing `>'.  */
4121 	cp_parser_require (parser, CPP_GREATER, "`>'");
4122 	/* Restore the old message.  */
4123 	parser->type_definition_forbidden_message = saved_message;
4124 
4125 	/* And the expression which is being cast.  */
4126 	cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
4127 	expression = cp_parser_expression (parser, /*cast_p=*/true);
4128 	cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4129 
4130 	/* Only type conversions to integral or enumeration types
4131 	   can be used in constant-expressions.  */
4132 	if (!cast_valid_in_integral_constant_expression_p (type)
4133 	    && (cp_parser_non_integral_constant_expression
4134 		(parser,
4135 		 "a cast to a type other than an integral or "
4136 		 "enumeration type")))
4137 	  return error_mark_node;
4138 
4139 	switch (keyword)
4140 	  {
4141 	  case RID_DYNCAST:
4142 	    postfix_expression
4143 	      = build_dynamic_cast (type, expression);
4144 	    break;
4145 	  case RID_STATCAST:
4146 	    postfix_expression
4147 	      = build_static_cast (type, expression);
4148 	    break;
4149 	  case RID_REINTCAST:
4150 	    postfix_expression
4151 	      = build_reinterpret_cast (type, expression);
4152 	    break;
4153 	  case RID_CONSTCAST:
4154 	    postfix_expression
4155 	      = build_const_cast (type, expression);
4156 	    break;
4157 	  default:
4158 	    gcc_unreachable ();
4159 	  }
4160       }
4161       break;
4162 
4163     case RID_TYPEID:
4164       {
4165 	tree type;
4166 	const char *saved_message;
4167 	bool saved_in_type_id_in_expr_p;
4168 
4169 	/* Consume the `typeid' token.  */
4170 	cp_lexer_consume_token (parser->lexer);
4171 	/* Look for the `(' token.  */
4172 	cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
4173 	/* Types cannot be defined in a `typeid' expression.  */
4174 	saved_message = parser->type_definition_forbidden_message;
4175 	parser->type_definition_forbidden_message
4176 	  = "types may not be defined in a `typeid\' expression";
4177 	/* We can't be sure yet whether we're looking at a type-id or an
4178 	   expression.  */
4179 	cp_parser_parse_tentatively (parser);
4180 	/* Try a type-id first.  */
4181 	saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
4182 	parser->in_type_id_in_expr_p = true;
4183 	type = cp_parser_type_id (parser);
4184 	parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
4185 	/* Look for the `)' token.  Otherwise, we can't be sure that
4186 	   we're not looking at an expression: consider `typeid (int
4187 	   (3))', for example.  */
4188 	cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4189 	/* If all went well, simply lookup the type-id.  */
4190 	if (cp_parser_parse_definitely (parser))
4191 	  postfix_expression = get_typeid (type);
4192 	/* Otherwise, fall back to the expression variant.  */
4193 	else
4194 	  {
4195 	    tree expression;
4196 
4197 	    /* Look for an expression.  */
4198 	    expression = cp_parser_expression (parser, /*cast_p=*/false);
4199 	    /* Compute its typeid.  */
4200 	    postfix_expression = build_typeid (expression);
4201 	    /* Look for the `)' token.  */
4202 	    cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4203 	  }
4204 	/* Restore the saved message.  */
4205 	parser->type_definition_forbidden_message = saved_message;
4206 	/* `typeid' may not appear in an integral constant expression.  */
4207 	if (cp_parser_non_integral_constant_expression(parser,
4208 						       "`typeid' operator"))
4209 	  return error_mark_node;
4210       }
4211       break;
4212 
4213     case RID_TYPENAME:
4214       {
4215 	tree type;
4216 	/* The syntax permitted here is the same permitted for an
4217 	   elaborated-type-specifier.  */
4218 	type = cp_parser_elaborated_type_specifier (parser,
4219 						    /*is_friend=*/false,
4220 						    /*is_declaration=*/false);
4221 	postfix_expression = cp_parser_functional_cast (parser, type);
4222       }
4223       break;
4224 
4225     default:
4226       {
4227 	tree type;
4228 
4229 	/* If the next thing is a simple-type-specifier, we may be
4230 	   looking at a functional cast.  We could also be looking at
4231 	   an id-expression.  So, we try the functional cast, and if
4232 	   that doesn't work we fall back to the primary-expression.  */
4233 	cp_parser_parse_tentatively (parser);
4234 	/* Look for the simple-type-specifier.  */
4235 	type = cp_parser_simple_type_specifier (parser,
4236 						/*decl_specs=*/NULL,
4237 						CP_PARSER_FLAGS_NONE);
4238 	/* Parse the cast itself.  */
4239 	if (!cp_parser_error_occurred (parser))
4240 	  postfix_expression
4241 	    = cp_parser_functional_cast (parser, type);
4242 	/* If that worked, we're done.  */
4243 	if (cp_parser_parse_definitely (parser))
4244 	  break;
4245 
4246 	/* If the functional-cast didn't work out, try a
4247 	   compound-literal.  */
4248 	if (cp_parser_allow_gnu_extensions_p (parser)
4249 	    && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4250 	  {
4251 	    VEC(constructor_elt,gc) *initializer_list = NULL;
4252 	    bool saved_in_type_id_in_expr_p;
4253 
4254 	    cp_parser_parse_tentatively (parser);
4255 	    /* Consume the `('.  */
4256 	    cp_lexer_consume_token (parser->lexer);
4257 	    /* Parse the type.  */
4258 	    saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
4259 	    parser->in_type_id_in_expr_p = true;
4260 	    type = cp_parser_type_id (parser);
4261 	    parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
4262 	    /* Look for the `)'.  */
4263 	    cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4264 	    /* Look for the `{'.  */
4265 	    cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
4266 	    /* If things aren't going well, there's no need to
4267 	       keep going.  */
4268 	    if (!cp_parser_error_occurred (parser))
4269 	      {
4270 		bool non_constant_p;
4271 		/* Parse the initializer-list.  */
4272 		initializer_list
4273 		  = cp_parser_initializer_list (parser, &non_constant_p);
4274 		/* Allow a trailing `,'.  */
4275 		if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
4276 		  cp_lexer_consume_token (parser->lexer);
4277 		/* Look for the final `}'.  */
4278 		cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
4279 	      }
4280 	    /* If that worked, we're definitely looking at a
4281 	       compound-literal expression.  */
4282 	    if (cp_parser_parse_definitely (parser))
4283 	      {
4284 		/* Warn the user that a compound literal is not
4285 		   allowed in standard C++.  */
4286 		if (pedantic)
4287 		  pedwarn ("ISO C++ forbids compound-literals");
4288 		/* For simplicitly, we disallow compound literals in
4289 		   constant-expressions for simpliicitly.  We could
4290 		   allow compound literals of integer type, whose
4291 		   initializer was a constant, in constant
4292 		   expressions.  Permitting that usage, as a further
4293 		   extension, would not change the meaning of any
4294 		   currently accepted programs.  (Of course, as
4295 		   compound literals are not part of ISO C++, the
4296 		   standard has nothing to say.)  */
4297 		if (cp_parser_non_integral_constant_expression
4298 		    (parser, "non-constant compound literals"))
4299 		  {
4300 		    postfix_expression = error_mark_node;
4301 		    break;
4302 		  }
4303 		/* Form the representation of the compound-literal.  */
4304 		postfix_expression
4305 		  = finish_compound_literal (type, initializer_list);
4306 		break;
4307 	      }
4308 	  }
4309 
4310 	/* It must be a primary-expression.  */
4311 	postfix_expression
4312 	  = cp_parser_primary_expression (parser, address_p, cast_p,
4313 					  /*template_arg_p=*/false,
4314 					  &idk);
4315       }
4316       break;
4317     }
4318 
4319   /* Keep looping until the postfix-expression is complete.  */
4320   while (true)
4321     {
4322       if (idk == CP_ID_KIND_UNQUALIFIED
4323 	  && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
4324 	  && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
4325 	/* It is not a Koenig lookup function call.  */
4326 	postfix_expression
4327 	  = unqualified_name_lookup_error (postfix_expression);
4328 
4329       /* Peek at the next token.  */
4330       token = cp_lexer_peek_token (parser->lexer);
4331 
4332       switch (token->type)
4333 	{
4334 	case CPP_OPEN_SQUARE:
4335 	  postfix_expression
4336 	    = cp_parser_postfix_open_square_expression (parser,
4337 							postfix_expression,
4338 							false);
4339 	  idk = CP_ID_KIND_NONE;
4340 	  break;
4341 
4342 	case CPP_OPEN_PAREN:
4343 	  /* postfix-expression ( expression-list [opt] ) */
4344 	  {
4345 	    bool koenig_p;
4346 	    bool is_builtin_constant_p;
4347 	    bool saved_integral_constant_expression_p = false;
4348 	    bool saved_non_integral_constant_expression_p = false;
4349 	    tree args;
4350 
4351 	    is_builtin_constant_p
4352 	      = DECL_IS_BUILTIN_CONSTANT_P (postfix_expression);
4353 	    if (is_builtin_constant_p)
4354 	      {
4355 		/* The whole point of __builtin_constant_p is to allow
4356 		   non-constant expressions to appear as arguments.  */
4357 		saved_integral_constant_expression_p
4358 		  = parser->integral_constant_expression_p;
4359 		saved_non_integral_constant_expression_p
4360 		  = parser->non_integral_constant_expression_p;
4361 		parser->integral_constant_expression_p = false;
4362 	      }
4363 	    args = (cp_parser_parenthesized_expression_list
4364 		    (parser, /*is_attribute_list=*/false,
4365 		     /*cast_p=*/false,
4366 		     /*non_constant_p=*/NULL));
4367 	    if (is_builtin_constant_p)
4368 	      {
4369 		parser->integral_constant_expression_p
4370 		  = saved_integral_constant_expression_p;
4371 		parser->non_integral_constant_expression_p
4372 		  = saved_non_integral_constant_expression_p;
4373 	      }
4374 
4375 	    if (args == error_mark_node)
4376 	      {
4377 		postfix_expression = error_mark_node;
4378 		break;
4379 	      }
4380 
4381 	    /* Function calls are not permitted in
4382 	       constant-expressions.  */
4383 	    if (! builtin_valid_in_constant_expr_p (postfix_expression)
4384 		&& cp_parser_non_integral_constant_expression (parser,
4385 							       "a function call"))
4386 	      {
4387 		postfix_expression = error_mark_node;
4388 		break;
4389 	      }
4390 
4391 	    koenig_p = false;
4392 	    if (idk == CP_ID_KIND_UNQUALIFIED)
4393 	      {
4394 		if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
4395 		  {
4396 		    if (args)
4397 		      {
4398 			koenig_p = true;
4399 			postfix_expression
4400 			  = perform_koenig_lookup (postfix_expression, args);
4401 		      }
4402 		    else
4403 		      postfix_expression
4404 			= unqualified_fn_lookup_error (postfix_expression);
4405 		  }
4406 		/* We do not perform argument-dependent lookup if
4407 		   normal lookup finds a non-function, in accordance
4408 		   with the expected resolution of DR 218.  */
4409 		else if (args && is_overloaded_fn (postfix_expression))
4410 		  {
4411 		    tree fn = get_first_fn (postfix_expression);
4412 
4413 		    if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
4414 		      fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
4415 
4416 		    /* Only do argument dependent lookup if regular
4417 		       lookup does not find a set of member functions.
4418 		       [basic.lookup.koenig]/2a  */
4419 		    if (!DECL_FUNCTION_MEMBER_P (fn))
4420 		      {
4421 			koenig_p = true;
4422 			postfix_expression
4423 			  = perform_koenig_lookup (postfix_expression, args);
4424 		      }
4425 		  }
4426 	      }
4427 
4428 	    if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4429 	      {
4430 		tree instance = TREE_OPERAND (postfix_expression, 0);
4431 		tree fn = TREE_OPERAND (postfix_expression, 1);
4432 
4433 		if (processing_template_decl
4434 		    && (type_dependent_expression_p (instance)
4435 			|| (!BASELINK_P (fn)
4436 			    && TREE_CODE (fn) != FIELD_DECL)
4437 			|| type_dependent_expression_p (fn)
4438 			|| any_type_dependent_arguments_p (args)))
4439 		  {
4440 		    postfix_expression
4441 		      = build_min_nt (CALL_EXPR, postfix_expression,
4442 				      args, NULL_TREE);
4443 		    break;
4444 		  }
4445 
4446 		if (BASELINK_P (fn))
4447 		  postfix_expression
4448 		    = (build_new_method_call
4449 		       (instance, fn, args, NULL_TREE,
4450 			(idk == CP_ID_KIND_QUALIFIED
4451 			 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL),
4452 			/*fn_p=*/NULL));
4453 		else
4454 		  postfix_expression
4455 		    = finish_call_expr (postfix_expression, args,
4456 					/*disallow_virtual=*/false,
4457 					/*koenig_p=*/false);
4458 	      }
4459 	    else if (TREE_CODE (postfix_expression) == OFFSET_REF
4460 		     || TREE_CODE (postfix_expression) == MEMBER_REF
4461 		     || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4462 	      postfix_expression = (build_offset_ref_call_from_tree
4463 				    (postfix_expression, args));
4464 	    else if (idk == CP_ID_KIND_QUALIFIED)
4465 	      /* A call to a static class member, or a namespace-scope
4466 		 function.  */
4467 	      postfix_expression
4468 		= finish_call_expr (postfix_expression, args,
4469 				    /*disallow_virtual=*/true,
4470 				    koenig_p);
4471 	    else
4472 	      /* All other function calls.  */
4473 	      postfix_expression
4474 		= finish_call_expr (postfix_expression, args,
4475 				    /*disallow_virtual=*/false,
4476 				    koenig_p);
4477 
4478 	    /* The POSTFIX_EXPRESSION is certainly no longer an id.  */
4479 	    idk = CP_ID_KIND_NONE;
4480 	  }
4481 	  break;
4482 
4483 	case CPP_DOT:
4484 	case CPP_DEREF:
4485 	  /* postfix-expression . template [opt] id-expression
4486 	     postfix-expression . pseudo-destructor-name
4487 	     postfix-expression -> template [opt] id-expression
4488 	     postfix-expression -> pseudo-destructor-name */
4489 
4490 	  /* Consume the `.' or `->' operator.  */
4491 	  cp_lexer_consume_token (parser->lexer);
4492 
4493 	  postfix_expression
4494 	    = cp_parser_postfix_dot_deref_expression (parser, token->type,
4495 						      postfix_expression,
4496 						      false, &idk);
4497 	  break;
4498 
4499 	case CPP_PLUS_PLUS:
4500 	  /* postfix-expression ++  */
4501 	  /* Consume the `++' token.  */
4502 	  cp_lexer_consume_token (parser->lexer);
4503 	  /* Generate a representation for the complete expression.  */
4504 	  postfix_expression
4505 	    = finish_increment_expr (postfix_expression,
4506 				     POSTINCREMENT_EXPR);
4507 	  /* Increments may not appear in constant-expressions.  */
4508 	  if (cp_parser_non_integral_constant_expression (parser,
4509 							  "an increment"))
4510 	    postfix_expression = error_mark_node;
4511 	  idk = CP_ID_KIND_NONE;
4512 	  break;
4513 
4514 	case CPP_MINUS_MINUS:
4515 	  /* postfix-expression -- */
4516 	  /* Consume the `--' token.  */
4517 	  cp_lexer_consume_token (parser->lexer);
4518 	  /* Generate a representation for the complete expression.  */
4519 	  postfix_expression
4520 	    = finish_increment_expr (postfix_expression,
4521 				     POSTDECREMENT_EXPR);
4522 	  /* Decrements may not appear in constant-expressions.  */
4523 	  if (cp_parser_non_integral_constant_expression (parser,
4524 							  "a decrement"))
4525 	    postfix_expression = error_mark_node;
4526 	  idk = CP_ID_KIND_NONE;
4527 	  break;
4528 
4529 	default:
4530 	  return postfix_expression;
4531 	}
4532     }
4533 
4534   /* We should never get here.  */
4535   gcc_unreachable ();
4536   return error_mark_node;
4537 }
4538 
4539 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4540    by cp_parser_builtin_offsetof.  We're looking for
4541 
4542      postfix-expression [ expression ]
4543 
4544    FOR_OFFSETOF is set if we're being called in that context, which
4545    changes how we deal with integer constant expressions.  */
4546 
4547 static tree
cp_parser_postfix_open_square_expression(cp_parser * parser,tree postfix_expression,bool for_offsetof)4548 cp_parser_postfix_open_square_expression (cp_parser *parser,
4549 					  tree postfix_expression,
4550 					  bool for_offsetof)
4551 {
4552   tree index;
4553 
4554   /* Consume the `[' token.  */
4555   cp_lexer_consume_token (parser->lexer);
4556 
4557   /* Parse the index expression.  */
4558   /* ??? For offsetof, there is a question of what to allow here.  If
4559      offsetof is not being used in an integral constant expression context,
4560      then we *could* get the right answer by computing the value at runtime.
4561      If we are in an integral constant expression context, then we might
4562      could accept any constant expression; hard to say without analysis.
4563      Rather than open the barn door too wide right away, allow only integer
4564      constant expressions here.  */
4565   if (for_offsetof)
4566     index = cp_parser_constant_expression (parser, false, NULL);
4567   else
4568     index = cp_parser_expression (parser, /*cast_p=*/false);
4569 
4570   /* Look for the closing `]'.  */
4571   cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4572 
4573   /* Build the ARRAY_REF.  */
4574   postfix_expression = grok_array_decl (postfix_expression, index);
4575 
4576   /* When not doing offsetof, array references are not permitted in
4577      constant-expressions.  */
4578   if (!for_offsetof
4579       && (cp_parser_non_integral_constant_expression
4580 	  (parser, "an array reference")))
4581     postfix_expression = error_mark_node;
4582 
4583   return postfix_expression;
4584 }
4585 
4586 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4587    by cp_parser_builtin_offsetof.  We're looking for
4588 
4589      postfix-expression . template [opt] id-expression
4590      postfix-expression . pseudo-destructor-name
4591      postfix-expression -> template [opt] id-expression
4592      postfix-expression -> pseudo-destructor-name
4593 
4594    FOR_OFFSETOF is set if we're being called in that context.  That sorta
4595    limits what of the above we'll actually accept, but nevermind.
4596    TOKEN_TYPE is the "." or "->" token, which will already have been
4597    removed from the stream.  */
4598 
4599 static tree
cp_parser_postfix_dot_deref_expression(cp_parser * parser,enum cpp_ttype token_type,tree postfix_expression,bool for_offsetof,cp_id_kind * idk)4600 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4601 					enum cpp_ttype token_type,
4602 					tree postfix_expression,
4603 					bool for_offsetof, cp_id_kind *idk)
4604 {
4605   tree name;
4606   bool dependent_p;
4607   bool pseudo_destructor_p;
4608   tree scope = NULL_TREE;
4609 
4610   /* If this is a `->' operator, dereference the pointer.  */
4611   if (token_type == CPP_DEREF)
4612     postfix_expression = build_x_arrow (postfix_expression);
4613   /* Check to see whether or not the expression is type-dependent.  */
4614   dependent_p = type_dependent_expression_p (postfix_expression);
4615   /* The identifier following the `->' or `.' is not qualified.  */
4616   parser->scope = NULL_TREE;
4617   parser->qualifying_scope = NULL_TREE;
4618   parser->object_scope = NULL_TREE;
4619   *idk = CP_ID_KIND_NONE;
4620   /* Enter the scope corresponding to the type of the object
4621      given by the POSTFIX_EXPRESSION.  */
4622   if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4623     {
4624       scope = TREE_TYPE (postfix_expression);
4625       /* According to the standard, no expression should ever have
4626 	 reference type.  Unfortunately, we do not currently match
4627 	 the standard in this respect in that our internal representation
4628 	 of an expression may have reference type even when the standard
4629 	 says it does not.  Therefore, we have to manually obtain the
4630 	 underlying type here.  */
4631       scope = non_reference (scope);
4632       /* The type of the POSTFIX_EXPRESSION must be complete.  */
4633       if (scope == unknown_type_node)
4634 	{
4635 	  error ("%qE does not have class type", postfix_expression);
4636 	  scope = NULL_TREE;
4637 	}
4638       else
4639 	scope = complete_type_or_else (scope, NULL_TREE);
4640       /* Let the name lookup machinery know that we are processing a
4641 	 class member access expression.  */
4642       parser->context->object_type = scope;
4643       /* If something went wrong, we want to be able to discern that case,
4644 	 as opposed to the case where there was no SCOPE due to the type
4645 	 of expression being dependent.  */
4646       if (!scope)
4647 	scope = error_mark_node;
4648       /* If the SCOPE was erroneous, make the various semantic analysis
4649 	 functions exit quickly -- and without issuing additional error
4650 	 messages.  */
4651       if (scope == error_mark_node)
4652 	postfix_expression = error_mark_node;
4653     }
4654 
4655   /* Assume this expression is not a pseudo-destructor access.  */
4656   pseudo_destructor_p = false;
4657 
4658   /* If the SCOPE is a scalar type, then, if this is a valid program,
4659      we must be looking at a pseudo-destructor-name.  */
4660   if (scope && SCALAR_TYPE_P (scope))
4661     {
4662       tree s;
4663       tree type;
4664 
4665       cp_parser_parse_tentatively (parser);
4666       /* Parse the pseudo-destructor-name.  */
4667       s = NULL_TREE;
4668       cp_parser_pseudo_destructor_name (parser, &s, &type);
4669       if (cp_parser_parse_definitely (parser))
4670 	{
4671 	  pseudo_destructor_p = true;
4672 	  postfix_expression
4673 	    = finish_pseudo_destructor_expr (postfix_expression,
4674 					     s, TREE_TYPE (type));
4675 	}
4676     }
4677 
4678   if (!pseudo_destructor_p)
4679     {
4680       /* If the SCOPE is not a scalar type, we are looking at an
4681 	 ordinary class member access expression, rather than a
4682 	 pseudo-destructor-name.  */
4683       bool template_p;
4684       /* Parse the id-expression.  */
4685       name = (cp_parser_id_expression
4686 	      (parser,
4687 	       cp_parser_optional_template_keyword (parser),
4688 	       /*check_dependency_p=*/true,
4689 	       &template_p,
4690 	       /*declarator_p=*/false,
4691 	       /*optional_p=*/false));
4692       /* In general, build a SCOPE_REF if the member name is qualified.
4693 	 However, if the name was not dependent and has already been
4694 	 resolved; there is no need to build the SCOPE_REF.  For example;
4695 
4696 	     struct X { void f(); };
4697 	     template <typename T> void f(T* t) { t->X::f(); }
4698 
4699 	 Even though "t" is dependent, "X::f" is not and has been resolved
4700 	 to a BASELINK; there is no need to include scope information.  */
4701 
4702       /* But we do need to remember that there was an explicit scope for
4703 	 virtual function calls.  */
4704       if (parser->scope)
4705 	*idk = CP_ID_KIND_QUALIFIED;
4706 
4707       /* If the name is a template-id that names a type, we will get a
4708 	 TYPE_DECL here.  That is invalid code.  */
4709       if (TREE_CODE (name) == TYPE_DECL)
4710 	{
4711 	  error ("invalid use of %qD", name);
4712 	  postfix_expression = error_mark_node;
4713 	}
4714       else
4715 	{
4716 	  if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4717 	    {
4718 	      name = build_qualified_name (/*type=*/NULL_TREE,
4719 					   parser->scope,
4720 					   name,
4721 					   template_p);
4722 	      parser->scope = NULL_TREE;
4723 	      parser->qualifying_scope = NULL_TREE;
4724 	      parser->object_scope = NULL_TREE;
4725 	    }
4726 	  if (scope && name && BASELINK_P (name))
4727 	    adjust_result_of_qualified_name_lookup
4728 	      (name, BINFO_TYPE (BASELINK_ACCESS_BINFO (name)), scope);
4729 	  postfix_expression
4730 	    = finish_class_member_access_expr (postfix_expression, name,
4731 					       template_p);
4732 	}
4733     }
4734 
4735   /* We no longer need to look up names in the scope of the object on
4736      the left-hand side of the `.' or `->' operator.  */
4737   parser->context->object_type = NULL_TREE;
4738 
4739   /* Outside of offsetof, these operators may not appear in
4740      constant-expressions.  */
4741   if (!for_offsetof
4742       && (cp_parser_non_integral_constant_expression
4743 	  (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4744     postfix_expression = error_mark_node;
4745 
4746   return postfix_expression;
4747 }
4748 
4749 /* Parse a parenthesized expression-list.
4750 
4751    expression-list:
4752      assignment-expression
4753      expression-list, assignment-expression
4754 
4755    attribute-list:
4756      expression-list
4757      identifier
4758      identifier, expression-list
4759 
4760    CAST_P is true if this expression is the target of a cast.
4761 
4762    Returns a TREE_LIST.  The TREE_VALUE of each node is a
4763    representation of an assignment-expression.  Note that a TREE_LIST
4764    is returned even if there is only a single expression in the list.
4765    error_mark_node is returned if the ( and or ) are
4766    missing. NULL_TREE is returned on no expressions. The parentheses
4767    are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4768    list being parsed.  If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4769    indicates whether or not all of the expressions in the list were
4770    constant.  */
4771 
4772 static tree
cp_parser_parenthesized_expression_list(cp_parser * parser,bool is_attribute_list,bool cast_p,bool * non_constant_p)4773 cp_parser_parenthesized_expression_list (cp_parser* parser,
4774 					 bool is_attribute_list,
4775 					 bool cast_p,
4776 					 bool *non_constant_p)
4777 {
4778   tree expression_list = NULL_TREE;
4779   bool fold_expr_p = is_attribute_list;
4780   tree identifier = NULL_TREE;
4781 
4782   /* Assume all the expressions will be constant.  */
4783   if (non_constant_p)
4784     *non_constant_p = false;
4785 
4786   if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4787     return error_mark_node;
4788 
4789   /* Consume expressions until there are no more.  */
4790   if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4791     while (true)
4792       {
4793 	tree expr;
4794 
4795 	/* At the beginning of attribute lists, check to see if the
4796 	   next token is an identifier.  */
4797 	if (is_attribute_list
4798 	    && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4799 	  {
4800 	    cp_token *token;
4801 
4802 	    /* Consume the identifier.  */
4803 	    token = cp_lexer_consume_token (parser->lexer);
4804 	    /* Save the identifier.  */
4805 	    identifier = token->u.value;
4806 	  }
4807 	else
4808 	  {
4809 	    /* Parse the next assignment-expression.  */
4810 	    if (non_constant_p)
4811 	      {
4812 		bool expr_non_constant_p;
4813 		expr = (cp_parser_constant_expression
4814 			(parser, /*allow_non_constant_p=*/true,
4815 			 &expr_non_constant_p));
4816 		if (expr_non_constant_p)
4817 		  *non_constant_p = true;
4818 	      }
4819 	    else
4820 	      expr = cp_parser_assignment_expression (parser, cast_p);
4821 
4822 	    if (fold_expr_p)
4823 	      expr = fold_non_dependent_expr (expr);
4824 
4825 	     /* Add it to the list.  We add error_mark_node
4826 		expressions to the list, so that we can still tell if
4827 		the correct form for a parenthesized expression-list
4828 		is found. That gives better errors.  */
4829 	    expression_list = tree_cons (NULL_TREE, expr, expression_list);
4830 
4831 	    if (expr == error_mark_node)
4832 	      goto skip_comma;
4833 	  }
4834 
4835 	/* After the first item, attribute lists look the same as
4836 	   expression lists.  */
4837 	is_attribute_list = false;
4838 
4839       get_comma:;
4840 	/* If the next token isn't a `,', then we are done.  */
4841 	if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4842 	  break;
4843 
4844 	/* Otherwise, consume the `,' and keep going.  */
4845 	cp_lexer_consume_token (parser->lexer);
4846       }
4847 
4848   if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4849     {
4850       int ending;
4851 
4852     skip_comma:;
4853       /* We try and resync to an unnested comma, as that will give the
4854 	 user better diagnostics.  */
4855       ending = cp_parser_skip_to_closing_parenthesis (parser,
4856 						      /*recovering=*/true,
4857 						      /*or_comma=*/true,
4858 						      /*consume_paren=*/true);
4859       if (ending < 0)
4860 	goto get_comma;
4861       if (!ending)
4862 	return error_mark_node;
4863     }
4864 
4865   /* We built up the list in reverse order so we must reverse it now.  */
4866   expression_list = nreverse (expression_list);
4867   if (identifier)
4868     expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4869 
4870   return expression_list;
4871 }
4872 
4873 /* Parse a pseudo-destructor-name.
4874 
4875    pseudo-destructor-name:
4876      :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4877      :: [opt] nested-name-specifier template template-id :: ~ type-name
4878      :: [opt] nested-name-specifier [opt] ~ type-name
4879 
4880    If either of the first two productions is used, sets *SCOPE to the
4881    TYPE specified before the final `::'.  Otherwise, *SCOPE is set to
4882    NULL_TREE.  *TYPE is set to the TYPE_DECL for the final type-name,
4883    or ERROR_MARK_NODE if the parse fails.  */
4884 
4885 static void
cp_parser_pseudo_destructor_name(cp_parser * parser,tree * scope,tree * type)4886 cp_parser_pseudo_destructor_name (cp_parser* parser,
4887 				  tree* scope,
4888 				  tree* type)
4889 {
4890   bool nested_name_specifier_p;
4891 
4892   /* Assume that things will not work out.  */
4893   *type = error_mark_node;
4894 
4895   /* Look for the optional `::' operator.  */
4896   cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4897   /* Look for the optional nested-name-specifier.  */
4898   nested_name_specifier_p
4899     = (cp_parser_nested_name_specifier_opt (parser,
4900 					    /*typename_keyword_p=*/false,
4901 					    /*check_dependency_p=*/true,
4902 					    /*type_p=*/false,
4903 					    /*is_declaration=*/true)
4904        != NULL_TREE);
4905   /* Now, if we saw a nested-name-specifier, we might be doing the
4906      second production.  */
4907   if (nested_name_specifier_p
4908       && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4909     {
4910       /* Consume the `template' keyword.  */
4911       cp_lexer_consume_token (parser->lexer);
4912       /* Parse the template-id.  */
4913       cp_parser_template_id (parser,
4914 			     /*template_keyword_p=*/true,
4915 			     /*check_dependency_p=*/false,
4916 			     /*is_declaration=*/true);
4917       /* Look for the `::' token.  */
4918       cp_parser_require (parser, CPP_SCOPE, "`::'");
4919     }
4920   /* If the next token is not a `~', then there might be some
4921      additional qualification.  */
4922   else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4923     {
4924       /* Look for the type-name.  */
4925       *scope = TREE_TYPE (cp_parser_type_name (parser));
4926 
4927       if (*scope == error_mark_node)
4928 	return;
4929 
4930       /* If we don't have ::~, then something has gone wrong.  Since
4931 	 the only caller of this function is looking for something
4932 	 after `.' or `->' after a scalar type, most likely the
4933 	 program is trying to get a member of a non-aggregate
4934 	 type.  */
4935       if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4936 	  || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4937 	{
4938 	  cp_parser_error (parser, "request for member of non-aggregate type");
4939 	  return;
4940 	}
4941 
4942       /* Look for the `::' token.  */
4943       cp_parser_require (parser, CPP_SCOPE, "`::'");
4944     }
4945   else
4946     *scope = NULL_TREE;
4947 
4948   /* Look for the `~'.  */
4949   cp_parser_require (parser, CPP_COMPL, "`~'");
4950   /* Look for the type-name again.  We are not responsible for
4951      checking that it matches the first type-name.  */
4952   *type = cp_parser_type_name (parser);
4953 }
4954 
4955 /* Parse a unary-expression.
4956 
4957    unary-expression:
4958      postfix-expression
4959      ++ cast-expression
4960      -- cast-expression
4961      unary-operator cast-expression
4962      sizeof unary-expression
4963      sizeof ( type-id )
4964      new-expression
4965      delete-expression
4966 
4967    GNU Extensions:
4968 
4969    unary-expression:
4970      __extension__ cast-expression
4971      __alignof__ unary-expression
4972      __alignof__ ( type-id )
4973      __real__ cast-expression
4974      __imag__ cast-expression
4975      && identifier
4976 
4977    ADDRESS_P is true iff the unary-expression is appearing as the
4978    operand of the `&' operator.   CAST_P is true if this expression is
4979    the target of a cast.
4980 
4981    Returns a representation of the expression.  */
4982 
4983 static tree
cp_parser_unary_expression(cp_parser * parser,bool address_p,bool cast_p)4984 cp_parser_unary_expression (cp_parser *parser, bool address_p, bool cast_p)
4985 {
4986   cp_token *token;
4987   enum tree_code unary_operator;
4988 
4989   /* Peek at the next token.  */
4990   token = cp_lexer_peek_token (parser->lexer);
4991   /* Some keywords give away the kind of expression.  */
4992   if (token->type == CPP_KEYWORD)
4993     {
4994       enum rid keyword = token->keyword;
4995 
4996       switch (keyword)
4997 	{
4998 	case RID_ALIGNOF:
4999 	case RID_SIZEOF:
5000 	  {
5001 	    tree operand;
5002 	    enum tree_code op;
5003 
5004 	    op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
5005 	    /* Consume the token.  */
5006 	    cp_lexer_consume_token (parser->lexer);
5007 	    /* Parse the operand.  */
5008 	    operand = cp_parser_sizeof_operand (parser, keyword);
5009 
5010 	    if (TYPE_P (operand))
5011 	      return cxx_sizeof_or_alignof_type (operand, op, true);
5012 	    else
5013 	      return cxx_sizeof_or_alignof_expr (operand, op);
5014 	  }
5015 
5016 	case RID_NEW:
5017 	  return cp_parser_new_expression (parser);
5018 
5019 	case RID_DELETE:
5020 	  return cp_parser_delete_expression (parser);
5021 
5022 	case RID_EXTENSION:
5023 	  {
5024 	    /* The saved value of the PEDANTIC flag.  */
5025 	    int saved_pedantic;
5026 	    tree expr;
5027 
5028 	    /* Save away the PEDANTIC flag.  */
5029 	    cp_parser_extension_opt (parser, &saved_pedantic);
5030 	    /* Parse the cast-expression.  */
5031 	    expr = cp_parser_simple_cast_expression (parser);
5032 	    /* Restore the PEDANTIC flag.  */
5033 	    pedantic = saved_pedantic;
5034 
5035 	    return expr;
5036 	  }
5037 
5038 	case RID_REALPART:
5039 	case RID_IMAGPART:
5040 	  {
5041 	    tree expression;
5042 
5043 	    /* Consume the `__real__' or `__imag__' token.  */
5044 	    cp_lexer_consume_token (parser->lexer);
5045 	    /* Parse the cast-expression.  */
5046 	    expression = cp_parser_simple_cast_expression (parser);
5047 	    /* Create the complete representation.  */
5048 	    return build_x_unary_op ((keyword == RID_REALPART
5049 				      ? REALPART_EXPR : IMAGPART_EXPR),
5050 				     expression);
5051 	  }
5052 	  break;
5053 
5054 	default:
5055 	  break;
5056 	}
5057     }
5058 
5059   /* Look for the `:: new' and `:: delete', which also signal the
5060      beginning of a new-expression, or delete-expression,
5061      respectively.  If the next token is `::', then it might be one of
5062      these.  */
5063   if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
5064     {
5065       enum rid keyword;
5066 
5067       /* See if the token after the `::' is one of the keywords in
5068 	 which we're interested.  */
5069       keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
5070       /* If it's `new', we have a new-expression.  */
5071       if (keyword == RID_NEW)
5072 	return cp_parser_new_expression (parser);
5073       /* Similarly, for `delete'.  */
5074       else if (keyword == RID_DELETE)
5075 	return cp_parser_delete_expression (parser);
5076     }
5077 
5078   /* Look for a unary operator.  */
5079   unary_operator = cp_parser_unary_operator (token);
5080   /* The `++' and `--' operators can be handled similarly, even though
5081      they are not technically unary-operators in the grammar.  */
5082   if (unary_operator == ERROR_MARK)
5083     {
5084       if (token->type == CPP_PLUS_PLUS)
5085 	unary_operator = PREINCREMENT_EXPR;
5086       else if (token->type == CPP_MINUS_MINUS)
5087 	unary_operator = PREDECREMENT_EXPR;
5088       /* Handle the GNU address-of-label extension.  */
5089       else if (cp_parser_allow_gnu_extensions_p (parser)
5090 	       && token->type == CPP_AND_AND)
5091 	{
5092 	  tree identifier;
5093 
5094 	  /* Consume the '&&' token.  */
5095 	  cp_lexer_consume_token (parser->lexer);
5096 	  /* Look for the identifier.  */
5097 	  identifier = cp_parser_identifier (parser);
5098 	  /* Create an expression representing the address.  */
5099 	  return finish_label_address_expr (identifier);
5100 	}
5101     }
5102   if (unary_operator != ERROR_MARK)
5103     {
5104       tree cast_expression;
5105       tree expression = error_mark_node;
5106       const char *non_constant_p = NULL;
5107 
5108       /* Consume the operator token.  */
5109       token = cp_lexer_consume_token (parser->lexer);
5110       /* Parse the cast-expression.  */
5111       cast_expression
5112 	= cp_parser_cast_expression (parser,
5113 				     unary_operator == ADDR_EXPR,
5114 				     /*cast_p=*/false);
5115       /* Now, build an appropriate representation.  */
5116       switch (unary_operator)
5117 	{
5118 	case INDIRECT_REF:
5119 	  non_constant_p = "`*'";
5120 	  expression = build_x_indirect_ref (cast_expression, "unary *");
5121 	  break;
5122 
5123 	case ADDR_EXPR:
5124 	  non_constant_p = "`&'";
5125 	  /* Fall through.  */
5126 	case BIT_NOT_EXPR:
5127 	  expression = build_x_unary_op (unary_operator, cast_expression);
5128 	  break;
5129 
5130 	case PREINCREMENT_EXPR:
5131 	case PREDECREMENT_EXPR:
5132 	  non_constant_p = (unary_operator == PREINCREMENT_EXPR
5133 			    ? "`++'" : "`--'");
5134 	  /* Fall through.  */
5135 	case UNARY_PLUS_EXPR:
5136 	case NEGATE_EXPR:
5137 	case TRUTH_NOT_EXPR:
5138 	  expression = finish_unary_op_expr (unary_operator, cast_expression);
5139 	  break;
5140 
5141 	default:
5142 	  gcc_unreachable ();
5143 	}
5144 
5145       if (non_constant_p
5146 	  && cp_parser_non_integral_constant_expression (parser,
5147 							 non_constant_p))
5148 	expression = error_mark_node;
5149 
5150       return expression;
5151     }
5152 
5153   return cp_parser_postfix_expression (parser, address_p, cast_p);
5154 }
5155 
5156 /* Returns ERROR_MARK if TOKEN is not a unary-operator.  If TOKEN is a
5157    unary-operator, the corresponding tree code is returned.  */
5158 
5159 static enum tree_code
cp_parser_unary_operator(cp_token * token)5160 cp_parser_unary_operator (cp_token* token)
5161 {
5162   switch (token->type)
5163     {
5164     case CPP_MULT:
5165       return INDIRECT_REF;
5166 
5167     case CPP_AND:
5168       return ADDR_EXPR;
5169 
5170     case CPP_PLUS:
5171       return UNARY_PLUS_EXPR;
5172 
5173     case CPP_MINUS:
5174       return NEGATE_EXPR;
5175 
5176     case CPP_NOT:
5177       return TRUTH_NOT_EXPR;
5178 
5179     case CPP_COMPL:
5180       return BIT_NOT_EXPR;
5181 
5182     default:
5183       return ERROR_MARK;
5184     }
5185 }
5186 
5187 /* Parse a new-expression.
5188 
5189    new-expression:
5190      :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
5191      :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
5192 
5193    Returns a representation of the expression.  */
5194 
5195 static tree
cp_parser_new_expression(cp_parser * parser)5196 cp_parser_new_expression (cp_parser* parser)
5197 {
5198   bool global_scope_p;
5199   tree placement;
5200   tree type;
5201   tree initializer;
5202   tree nelts;
5203 
5204   /* Look for the optional `::' operator.  */
5205   global_scope_p
5206     = (cp_parser_global_scope_opt (parser,
5207 				   /*current_scope_valid_p=*/false)
5208        != NULL_TREE);
5209   /* Look for the `new' operator.  */
5210   cp_parser_require_keyword (parser, RID_NEW, "`new'");
5211   /* There's no easy way to tell a new-placement from the
5212      `( type-id )' construct.  */
5213   cp_parser_parse_tentatively (parser);
5214   /* Look for a new-placement.  */
5215   placement = cp_parser_new_placement (parser);
5216   /* If that didn't work out, there's no new-placement.  */
5217   if (!cp_parser_parse_definitely (parser))
5218     placement = NULL_TREE;
5219 
5220   /* If the next token is a `(', then we have a parenthesized
5221      type-id.  */
5222   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5223     {
5224       /* Consume the `('.  */
5225       cp_lexer_consume_token (parser->lexer);
5226       /* Parse the type-id.  */
5227       type = cp_parser_type_id (parser);
5228       /* Look for the closing `)'.  */
5229       cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5230       /* There should not be a direct-new-declarator in this production,
5231 	 but GCC used to allowed this, so we check and emit a sensible error
5232 	 message for this case.  */
5233       if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5234 	{
5235 	  error ("array bound forbidden after parenthesized type-id");
5236 	  inform ("try removing the parentheses around the type-id");
5237 	  cp_parser_direct_new_declarator (parser);
5238 	}
5239       nelts = NULL_TREE;
5240     }
5241   /* Otherwise, there must be a new-type-id.  */
5242   else
5243     type = cp_parser_new_type_id (parser, &nelts);
5244 
5245   /* If the next token is a `(', then we have a new-initializer.  */
5246   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5247     initializer = cp_parser_new_initializer (parser);
5248   else
5249     initializer = NULL_TREE;
5250 
5251   /* A new-expression may not appear in an integral constant
5252      expression.  */
5253   if (cp_parser_non_integral_constant_expression (parser, "`new'"))
5254     return error_mark_node;
5255 
5256   /* Create a representation of the new-expression.  */
5257   return build_new (placement, type, nelts, initializer, global_scope_p);
5258 }
5259 
5260 /* Parse a new-placement.
5261 
5262    new-placement:
5263      ( expression-list )
5264 
5265    Returns the same representation as for an expression-list.  */
5266 
5267 static tree
cp_parser_new_placement(cp_parser * parser)5268 cp_parser_new_placement (cp_parser* parser)
5269 {
5270   tree expression_list;
5271 
5272   /* Parse the expression-list.  */
5273   expression_list = (cp_parser_parenthesized_expression_list
5274 		     (parser, false, /*cast_p=*/false,
5275 		      /*non_constant_p=*/NULL));
5276 
5277   return expression_list;
5278 }
5279 
5280 /* Parse a new-type-id.
5281 
5282    new-type-id:
5283      type-specifier-seq new-declarator [opt]
5284 
5285    Returns the TYPE allocated.  If the new-type-id indicates an array
5286    type, *NELTS is set to the number of elements in the last array
5287    bound; the TYPE will not include the last array bound.  */
5288 
5289 static tree
cp_parser_new_type_id(cp_parser * parser,tree * nelts)5290 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
5291 {
5292   cp_decl_specifier_seq type_specifier_seq;
5293   cp_declarator *new_declarator;
5294   cp_declarator *declarator;
5295   cp_declarator *outer_declarator;
5296   const char *saved_message;
5297   tree type;
5298 
5299   /* The type-specifier sequence must not contain type definitions.
5300      (It cannot contain declarations of new types either, but if they
5301      are not definitions we will catch that because they are not
5302      complete.)  */
5303   saved_message = parser->type_definition_forbidden_message;
5304   parser->type_definition_forbidden_message
5305     = "types may not be defined in a new-type-id";
5306   /* Parse the type-specifier-seq.  */
5307   cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
5308 				&type_specifier_seq);
5309   /* Restore the old message.  */
5310   parser->type_definition_forbidden_message = saved_message;
5311   /* Parse the new-declarator.  */
5312   new_declarator = cp_parser_new_declarator_opt (parser);
5313 
5314   /* Determine the number of elements in the last array dimension, if
5315      any.  */
5316   *nelts = NULL_TREE;
5317   /* Skip down to the last array dimension.  */
5318   declarator = new_declarator;
5319   outer_declarator = NULL;
5320   while (declarator && (declarator->kind == cdk_pointer
5321 			|| declarator->kind == cdk_ptrmem))
5322     {
5323       outer_declarator = declarator;
5324       declarator = declarator->declarator;
5325     }
5326   while (declarator
5327 	 && declarator->kind == cdk_array
5328 	 && declarator->declarator
5329 	 && declarator->declarator->kind == cdk_array)
5330     {
5331       outer_declarator = declarator;
5332       declarator = declarator->declarator;
5333     }
5334 
5335   if (declarator && declarator->kind == cdk_array)
5336     {
5337       *nelts = declarator->u.array.bounds;
5338       if (*nelts == error_mark_node)
5339 	*nelts = integer_one_node;
5340 
5341       if (outer_declarator)
5342 	outer_declarator->declarator = declarator->declarator;
5343       else
5344 	new_declarator = NULL;
5345     }
5346 
5347   type = groktypename (&type_specifier_seq, new_declarator);
5348   if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
5349     {
5350       *nelts = array_type_nelts_top (type);
5351       type = TREE_TYPE (type);
5352     }
5353   return type;
5354 }
5355 
5356 /* Parse an (optional) new-declarator.
5357 
5358    new-declarator:
5359      ptr-operator new-declarator [opt]
5360      direct-new-declarator
5361 
5362    Returns the declarator.  */
5363 
5364 static cp_declarator *
cp_parser_new_declarator_opt(cp_parser * parser)5365 cp_parser_new_declarator_opt (cp_parser* parser)
5366 {
5367   enum tree_code code;
5368   tree type;
5369   cp_cv_quals cv_quals;
5370 
5371   /* We don't know if there's a ptr-operator next, or not.  */
5372   cp_parser_parse_tentatively (parser);
5373   /* Look for a ptr-operator.  */
5374   code = cp_parser_ptr_operator (parser, &type, &cv_quals);
5375   /* If that worked, look for more new-declarators.  */
5376   if (cp_parser_parse_definitely (parser))
5377     {
5378       cp_declarator *declarator;
5379 
5380       /* Parse another optional declarator.  */
5381       declarator = cp_parser_new_declarator_opt (parser);
5382 
5383       /* Create the representation of the declarator.  */
5384       if (type)
5385 	declarator = make_ptrmem_declarator (cv_quals, type, declarator);
5386       else if (code == INDIRECT_REF)
5387 	declarator = make_pointer_declarator (cv_quals, declarator);
5388       else
5389 	declarator = make_reference_declarator (cv_quals, declarator);
5390 
5391       return declarator;
5392     }
5393 
5394   /* If the next token is a `[', there is a direct-new-declarator.  */
5395   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5396     return cp_parser_direct_new_declarator (parser);
5397 
5398   return NULL;
5399 }
5400 
5401 /* Parse a direct-new-declarator.
5402 
5403    direct-new-declarator:
5404      [ expression ]
5405      direct-new-declarator [constant-expression]
5406 
5407    */
5408 
5409 static cp_declarator *
cp_parser_direct_new_declarator(cp_parser * parser)5410 cp_parser_direct_new_declarator (cp_parser* parser)
5411 {
5412   cp_declarator *declarator = NULL;
5413 
5414   while (true)
5415     {
5416       tree expression;
5417 
5418       /* Look for the opening `['.  */
5419       cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
5420       /* The first expression is not required to be constant.  */
5421       if (!declarator)
5422 	{
5423 	  expression = cp_parser_expression (parser, /*cast_p=*/false);
5424 	  /* The standard requires that the expression have integral
5425 	     type.  DR 74 adds enumeration types.  We believe that the
5426 	     real intent is that these expressions be handled like the
5427 	     expression in a `switch' condition, which also allows
5428 	     classes with a single conversion to integral or
5429 	     enumeration type.  */
5430 	  if (!processing_template_decl)
5431 	    {
5432 	      expression
5433 		= build_expr_type_conversion (WANT_INT | WANT_ENUM,
5434 					      expression,
5435 					      /*complain=*/true);
5436 	      if (!expression)
5437 		{
5438 		  error ("expression in new-declarator must have integral "
5439 			 "or enumeration type");
5440 		  expression = error_mark_node;
5441 		}
5442 	    }
5443 	}
5444       /* But all the other expressions must be.  */
5445       else
5446 	expression
5447 	  = cp_parser_constant_expression (parser,
5448 					   /*allow_non_constant=*/false,
5449 					   NULL);
5450       /* Look for the closing `]'.  */
5451       cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5452 
5453       /* Add this bound to the declarator.  */
5454       declarator = make_array_declarator (declarator, expression);
5455 
5456       /* If the next token is not a `[', then there are no more
5457 	 bounds.  */
5458       if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5459 	break;
5460     }
5461 
5462   return declarator;
5463 }
5464 
5465 /* Parse a new-initializer.
5466 
5467    new-initializer:
5468      ( expression-list [opt] )
5469 
5470    Returns a representation of the expression-list.  If there is no
5471    expression-list, VOID_ZERO_NODE is returned.  */
5472 
5473 static tree
cp_parser_new_initializer(cp_parser * parser)5474 cp_parser_new_initializer (cp_parser* parser)
5475 {
5476   tree expression_list;
5477 
5478   expression_list = (cp_parser_parenthesized_expression_list
5479 		     (parser, false, /*cast_p=*/false,
5480 		      /*non_constant_p=*/NULL));
5481   if (!expression_list)
5482     expression_list = void_zero_node;
5483 
5484   return expression_list;
5485 }
5486 
5487 /* Parse a delete-expression.
5488 
5489    delete-expression:
5490      :: [opt] delete cast-expression
5491      :: [opt] delete [ ] cast-expression
5492 
5493    Returns a representation of the expression.  */
5494 
5495 static tree
cp_parser_delete_expression(cp_parser * parser)5496 cp_parser_delete_expression (cp_parser* parser)
5497 {
5498   bool global_scope_p;
5499   bool array_p;
5500   tree expression;
5501 
5502   /* Look for the optional `::' operator.  */
5503   global_scope_p
5504     = (cp_parser_global_scope_opt (parser,
5505 				   /*current_scope_valid_p=*/false)
5506        != NULL_TREE);
5507   /* Look for the `delete' keyword.  */
5508   cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5509   /* See if the array syntax is in use.  */
5510   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5511     {
5512       /* Consume the `[' token.  */
5513       cp_lexer_consume_token (parser->lexer);
5514       /* Look for the `]' token.  */
5515       cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5516       /* Remember that this is the `[]' construct.  */
5517       array_p = true;
5518     }
5519   else
5520     array_p = false;
5521 
5522   /* Parse the cast-expression.  */
5523   expression = cp_parser_simple_cast_expression (parser);
5524 
5525   /* A delete-expression may not appear in an integral constant
5526      expression.  */
5527   if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5528     return error_mark_node;
5529 
5530   return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5531 }
5532 
5533 /* Parse a cast-expression.
5534 
5535    cast-expression:
5536      unary-expression
5537      ( type-id ) cast-expression
5538 
5539    ADDRESS_P is true iff the unary-expression is appearing as the
5540    operand of the `&' operator.   CAST_P is true if this expression is
5541    the target of a cast.
5542 
5543    Returns a representation of the expression.  */
5544 
5545 static tree
cp_parser_cast_expression(cp_parser * parser,bool address_p,bool cast_p)5546 cp_parser_cast_expression (cp_parser *parser, bool address_p, bool cast_p)
5547 {
5548   /* If it's a `(', then we might be looking at a cast.  */
5549   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5550     {
5551       tree type = NULL_TREE;
5552       tree expr = NULL_TREE;
5553       bool compound_literal_p;
5554       const char *saved_message;
5555 
5556       /* There's no way to know yet whether or not this is a cast.
5557 	 For example, `(int (3))' is a unary-expression, while `(int)
5558 	 3' is a cast.  So, we resort to parsing tentatively.  */
5559       cp_parser_parse_tentatively (parser);
5560       /* Types may not be defined in a cast.  */
5561       saved_message = parser->type_definition_forbidden_message;
5562       parser->type_definition_forbidden_message
5563 	= "types may not be defined in casts";
5564       /* Consume the `('.  */
5565       cp_lexer_consume_token (parser->lexer);
5566       /* A very tricky bit is that `(struct S) { 3 }' is a
5567 	 compound-literal (which we permit in C++ as an extension).
5568 	 But, that construct is not a cast-expression -- it is a
5569 	 postfix-expression.  (The reason is that `(struct S) { 3 }.i'
5570 	 is legal; if the compound-literal were a cast-expression,
5571 	 you'd need an extra set of parentheses.)  But, if we parse
5572 	 the type-id, and it happens to be a class-specifier, then we
5573 	 will commit to the parse at that point, because we cannot
5574 	 undo the action that is done when creating a new class.  So,
5575 	 then we cannot back up and do a postfix-expression.
5576 
5577 	 Therefore, we scan ahead to the closing `)', and check to see
5578 	 if the token after the `)' is a `{'.  If so, we are not
5579 	 looking at a cast-expression.
5580 
5581 	 Save tokens so that we can put them back.  */
5582       cp_lexer_save_tokens (parser->lexer);
5583       /* Skip tokens until the next token is a closing parenthesis.
5584 	 If we find the closing `)', and the next token is a `{', then
5585 	 we are looking at a compound-literal.  */
5586       compound_literal_p
5587 	= (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5588 						  /*consume_paren=*/true)
5589 	   && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5590       /* Roll back the tokens we skipped.  */
5591       cp_lexer_rollback_tokens (parser->lexer);
5592       /* If we were looking at a compound-literal, simulate an error
5593 	 so that the call to cp_parser_parse_definitely below will
5594 	 fail.  */
5595       if (compound_literal_p)
5596 	cp_parser_simulate_error (parser);
5597       else
5598 	{
5599 	  bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5600 	  parser->in_type_id_in_expr_p = true;
5601 	  /* Look for the type-id.  */
5602 	  type = cp_parser_type_id (parser);
5603 	  /* Look for the closing `)'.  */
5604 	  cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5605 	  parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5606 	}
5607 
5608       /* Restore the saved message.  */
5609       parser->type_definition_forbidden_message = saved_message;
5610 
5611       /* If ok so far, parse the dependent expression. We cannot be
5612 	 sure it is a cast. Consider `(T ())'.  It is a parenthesized
5613 	 ctor of T, but looks like a cast to function returning T
5614 	 without a dependent expression.  */
5615       if (!cp_parser_error_occurred (parser))
5616 	expr = cp_parser_cast_expression (parser,
5617 					  /*address_p=*/false,
5618 					  /*cast_p=*/true);
5619 
5620       if (cp_parser_parse_definitely (parser))
5621 	{
5622 	  /* Warn about old-style casts, if so requested.  */
5623 	  if (warn_old_style_cast
5624 	      && !in_system_header
5625 	      && !VOID_TYPE_P (type)
5626 	      && current_lang_name != lang_name_c)
5627 	    warning (OPT_Wold_style_cast, "use of old-style cast");
5628 
5629 	  /* Only type conversions to integral or enumeration types
5630 	     can be used in constant-expressions.  */
5631 	  if (!cast_valid_in_integral_constant_expression_p (type)
5632 	      && (cp_parser_non_integral_constant_expression
5633 		  (parser,
5634 		   "a cast to a type other than an integral or "
5635 		   "enumeration type")))
5636 	    return error_mark_node;
5637 
5638 	  /* Perform the cast.  */
5639 	  expr = build_c_cast (type, expr);
5640 	  return expr;
5641 	}
5642     }
5643 
5644   /* If we get here, then it's not a cast, so it must be a
5645      unary-expression.  */
5646   return cp_parser_unary_expression (parser, address_p, cast_p);
5647 }
5648 
5649 /* Parse a binary expression of the general form:
5650 
5651    pm-expression:
5652      cast-expression
5653      pm-expression .* cast-expression
5654      pm-expression ->* cast-expression
5655 
5656    multiplicative-expression:
5657      pm-expression
5658      multiplicative-expression * pm-expression
5659      multiplicative-expression / pm-expression
5660      multiplicative-expression % pm-expression
5661 
5662    additive-expression:
5663      multiplicative-expression
5664      additive-expression + multiplicative-expression
5665      additive-expression - multiplicative-expression
5666 
5667    shift-expression:
5668      additive-expression
5669      shift-expression << additive-expression
5670      shift-expression >> additive-expression
5671 
5672    relational-expression:
5673      shift-expression
5674      relational-expression < shift-expression
5675      relational-expression > shift-expression
5676      relational-expression <= shift-expression
5677      relational-expression >= shift-expression
5678 
5679   GNU Extension:
5680 
5681    relational-expression:
5682      relational-expression <? shift-expression
5683      relational-expression >? shift-expression
5684 
5685    equality-expression:
5686      relational-expression
5687      equality-expression == relational-expression
5688      equality-expression != relational-expression
5689 
5690    and-expression:
5691      equality-expression
5692      and-expression & equality-expression
5693 
5694    exclusive-or-expression:
5695      and-expression
5696      exclusive-or-expression ^ and-expression
5697 
5698    inclusive-or-expression:
5699      exclusive-or-expression
5700      inclusive-or-expression | exclusive-or-expression
5701 
5702    logical-and-expression:
5703      inclusive-or-expression
5704      logical-and-expression && inclusive-or-expression
5705 
5706    logical-or-expression:
5707      logical-and-expression
5708      logical-or-expression || logical-and-expression
5709 
5710    All these are implemented with a single function like:
5711 
5712    binary-expression:
5713      simple-cast-expression
5714      binary-expression <token> binary-expression
5715 
5716    CAST_P is true if this expression is the target of a cast.
5717 
5718    The binops_by_token map is used to get the tree codes for each <token> type.
5719    binary-expressions are associated according to a precedence table.  */
5720 
5721 #define TOKEN_PRECEDENCE(token) \
5722   ((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
5723    ? PREC_NOT_OPERATOR \
5724    : binops_by_token[token->type].prec)
5725 
5726 static tree
cp_parser_binary_expression(cp_parser * parser,bool cast_p)5727 cp_parser_binary_expression (cp_parser* parser, bool cast_p)
5728 {
5729   cp_parser_expression_stack stack;
5730   cp_parser_expression_stack_entry *sp = &stack[0];
5731   tree lhs, rhs;
5732   cp_token *token;
5733   enum tree_code tree_type;
5734   enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
5735   bool overloaded_p;
5736 
5737   /* Parse the first expression.  */
5738   lhs = cp_parser_cast_expression (parser, /*address_p=*/false, cast_p);
5739 
5740   for (;;)
5741     {
5742       /* Get an operator token.  */
5743       token = cp_lexer_peek_token (parser->lexer);
5744 
5745       new_prec = TOKEN_PRECEDENCE (token);
5746 
5747       /* Popping an entry off the stack means we completed a subexpression:
5748 	 - either we found a token which is not an operator (`>' where it is not
5749 	   an operator, or prec == PREC_NOT_OPERATOR), in which case popping
5750 	   will happen repeatedly;
5751 	 - or, we found an operator which has lower priority.  This is the case
5752 	   where the recursive descent *ascends*, as in `3 * 4 + 5' after
5753 	   parsing `3 * 4'.  */
5754       if (new_prec <= prec)
5755 	{
5756 	  if (sp == stack)
5757 	    break;
5758 	  else
5759 	    goto pop;
5760 	}
5761 
5762      get_rhs:
5763       tree_type = binops_by_token[token->type].tree_type;
5764 
5765       /* We used the operator token.  */
5766       cp_lexer_consume_token (parser->lexer);
5767 
5768       /* Extract another operand.  It may be the RHS of this expression
5769 	 or the LHS of a new, higher priority expression.  */
5770       rhs = cp_parser_simple_cast_expression (parser);
5771 
5772       /* Get another operator token.  Look up its precedence to avoid
5773 	 building a useless (immediately popped) stack entry for common
5774 	 cases such as 3 + 4 + 5 or 3 * 4 + 5.  */
5775       token = cp_lexer_peek_token (parser->lexer);
5776       lookahead_prec = TOKEN_PRECEDENCE (token);
5777       if (lookahead_prec > new_prec)
5778 	{
5779 	  /* ... and prepare to parse the RHS of the new, higher priority
5780 	     expression.  Since precedence levels on the stack are
5781 	     monotonically increasing, we do not have to care about
5782 	     stack overflows.  */
5783 	  sp->prec = prec;
5784 	  sp->tree_type = tree_type;
5785 	  sp->lhs = lhs;
5786 	  sp++;
5787 	  lhs = rhs;
5788 	  prec = new_prec;
5789 	  new_prec = lookahead_prec;
5790 	  goto get_rhs;
5791 
5792 	 pop:
5793 	  /* If the stack is not empty, we have parsed into LHS the right side
5794 	     (`4' in the example above) of an expression we had suspended.
5795 	     We can use the information on the stack to recover the LHS (`3')
5796 	     from the stack together with the tree code (`MULT_EXPR'), and
5797 	     the precedence of the higher level subexpression
5798 	     (`PREC_ADDITIVE_EXPRESSION').  TOKEN is the CPP_PLUS token,
5799 	     which will be used to actually build the additive expression.  */
5800 	  --sp;
5801 	  prec = sp->prec;
5802 	  tree_type = sp->tree_type;
5803 	  rhs = lhs;
5804 	  lhs = sp->lhs;
5805 	}
5806 
5807       overloaded_p = false;
5808       lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
5809 
5810       /* If the binary operator required the use of an overloaded operator,
5811 	 then this expression cannot be an integral constant-expression.
5812 	 An overloaded operator can be used even if both operands are
5813 	 otherwise permissible in an integral constant-expression if at
5814 	 least one of the operands is of enumeration type.  */
5815 
5816       if (overloaded_p
5817 	  && (cp_parser_non_integral_constant_expression
5818 	      (parser, "calls to overloaded operators")))
5819 	return error_mark_node;
5820     }
5821 
5822   return lhs;
5823 }
5824 
5825 
5826 /* Parse the `? expression : assignment-expression' part of a
5827    conditional-expression.  The LOGICAL_OR_EXPR is the
5828    logical-or-expression that started the conditional-expression.
5829    Returns a representation of the entire conditional-expression.
5830 
5831    This routine is used by cp_parser_assignment_expression.
5832 
5833      ? expression : assignment-expression
5834 
5835    GNU Extensions:
5836 
5837      ? : assignment-expression */
5838 
5839 static tree
cp_parser_question_colon_clause(cp_parser * parser,tree logical_or_expr)5840 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5841 {
5842   tree expr;
5843   tree assignment_expr;
5844 
5845   /* Consume the `?' token.  */
5846   cp_lexer_consume_token (parser->lexer);
5847   if (cp_parser_allow_gnu_extensions_p (parser)
5848       && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5849     /* Implicit true clause.  */
5850     expr = NULL_TREE;
5851   else
5852     /* Parse the expression.  */
5853     expr = cp_parser_expression (parser, /*cast_p=*/false);
5854 
5855   /* The next token should be a `:'.  */
5856   cp_parser_require (parser, CPP_COLON, "`:'");
5857   /* Parse the assignment-expression.  */
5858   assignment_expr = cp_parser_assignment_expression (parser, /*cast_p=*/false);
5859 
5860   /* Build the conditional-expression.  */
5861   return build_x_conditional_expr (logical_or_expr,
5862 				   expr,
5863 				   assignment_expr);
5864 }
5865 
5866 /* Parse an assignment-expression.
5867 
5868    assignment-expression:
5869      conditional-expression
5870      logical-or-expression assignment-operator assignment_expression
5871      throw-expression
5872 
5873    CAST_P is true if this expression is the target of a cast.
5874 
5875    Returns a representation for the expression.  */
5876 
5877 static tree
cp_parser_assignment_expression(cp_parser * parser,bool cast_p)5878 cp_parser_assignment_expression (cp_parser* parser, bool cast_p)
5879 {
5880   tree expr;
5881 
5882   /* If the next token is the `throw' keyword, then we're looking at
5883      a throw-expression.  */
5884   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5885     expr = cp_parser_throw_expression (parser);
5886   /* Otherwise, it must be that we are looking at a
5887      logical-or-expression.  */
5888   else
5889     {
5890       /* Parse the binary expressions (logical-or-expression).  */
5891       expr = cp_parser_binary_expression (parser, cast_p);
5892       /* If the next token is a `?' then we're actually looking at a
5893 	 conditional-expression.  */
5894       if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5895 	return cp_parser_question_colon_clause (parser, expr);
5896       else
5897 	{
5898 	  enum tree_code assignment_operator;
5899 
5900 	  /* If it's an assignment-operator, we're using the second
5901 	     production.  */
5902 	  assignment_operator
5903 	    = cp_parser_assignment_operator_opt (parser);
5904 	  if (assignment_operator != ERROR_MARK)
5905 	    {
5906 	      tree rhs;
5907 
5908 	      /* Parse the right-hand side of the assignment.  */
5909 	      rhs = cp_parser_assignment_expression (parser, cast_p);
5910 	      /* An assignment may not appear in a
5911 		 constant-expression.  */
5912 	      if (cp_parser_non_integral_constant_expression (parser,
5913 							      "an assignment"))
5914 		return error_mark_node;
5915 	      /* Build the assignment expression.  */
5916 	      expr = build_x_modify_expr (expr,
5917 					  assignment_operator,
5918 					  rhs);
5919 	    }
5920 	}
5921     }
5922 
5923   return expr;
5924 }
5925 
5926 /* Parse an (optional) assignment-operator.
5927 
5928    assignment-operator: one of
5929      = *= /= %= += -= >>= <<= &= ^= |=
5930 
5931    GNU Extension:
5932 
5933    assignment-operator: one of
5934      <?= >?=
5935 
5936    If the next token is an assignment operator, the corresponding tree
5937    code is returned, and the token is consumed.  For example, for
5938    `+=', PLUS_EXPR is returned.  For `=' itself, the code returned is
5939    NOP_EXPR.  For `/', TRUNC_DIV_EXPR is returned; for `%',
5940    TRUNC_MOD_EXPR is returned.  If TOKEN is not an assignment
5941    operator, ERROR_MARK is returned.  */
5942 
5943 static enum tree_code
cp_parser_assignment_operator_opt(cp_parser * parser)5944 cp_parser_assignment_operator_opt (cp_parser* parser)
5945 {
5946   enum tree_code op;
5947   cp_token *token;
5948 
5949   /* Peek at the next toen.  */
5950   token = cp_lexer_peek_token (parser->lexer);
5951 
5952   switch (token->type)
5953     {
5954     case CPP_EQ:
5955       op = NOP_EXPR;
5956       break;
5957 
5958     case CPP_MULT_EQ:
5959       op = MULT_EXPR;
5960       break;
5961 
5962     case CPP_DIV_EQ:
5963       op = TRUNC_DIV_EXPR;
5964       break;
5965 
5966     case CPP_MOD_EQ:
5967       op = TRUNC_MOD_EXPR;
5968       break;
5969 
5970     case CPP_PLUS_EQ:
5971       op = PLUS_EXPR;
5972       break;
5973 
5974     case CPP_MINUS_EQ:
5975       op = MINUS_EXPR;
5976       break;
5977 
5978     case CPP_RSHIFT_EQ:
5979       op = RSHIFT_EXPR;
5980       break;
5981 
5982     case CPP_LSHIFT_EQ:
5983       op = LSHIFT_EXPR;
5984       break;
5985 
5986     case CPP_AND_EQ:
5987       op = BIT_AND_EXPR;
5988       break;
5989 
5990     case CPP_XOR_EQ:
5991       op = BIT_XOR_EXPR;
5992       break;
5993 
5994     case CPP_OR_EQ:
5995       op = BIT_IOR_EXPR;
5996       break;
5997 
5998     default:
5999       /* Nothing else is an assignment operator.  */
6000       op = ERROR_MARK;
6001     }
6002 
6003   /* If it was an assignment operator, consume it.  */
6004   if (op != ERROR_MARK)
6005     cp_lexer_consume_token (parser->lexer);
6006 
6007   return op;
6008 }
6009 
6010 /* Parse an expression.
6011 
6012    expression:
6013      assignment-expression
6014      expression , assignment-expression
6015 
6016    CAST_P is true if this expression is the target of a cast.
6017 
6018    Returns a representation of the expression.  */
6019 
6020 static tree
cp_parser_expression(cp_parser * parser,bool cast_p)6021 cp_parser_expression (cp_parser* parser, bool cast_p)
6022 {
6023   tree expression = NULL_TREE;
6024 
6025   while (true)
6026     {
6027       tree assignment_expression;
6028 
6029       /* Parse the next assignment-expression.  */
6030       assignment_expression
6031 	= cp_parser_assignment_expression (parser, cast_p);
6032       /* If this is the first assignment-expression, we can just
6033 	 save it away.  */
6034       if (!expression)
6035 	expression = assignment_expression;
6036       else
6037 	expression = build_x_compound_expr (expression,
6038 					    assignment_expression);
6039       /* If the next token is not a comma, then we are done with the
6040 	 expression.  */
6041       if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
6042 	break;
6043       /* Consume the `,'.  */
6044       cp_lexer_consume_token (parser->lexer);
6045       /* A comma operator cannot appear in a constant-expression.  */
6046       if (cp_parser_non_integral_constant_expression (parser,
6047 						      "a comma operator"))
6048 	expression = error_mark_node;
6049     }
6050 
6051   return expression;
6052 }
6053 
6054 /* Parse a constant-expression.
6055 
6056    constant-expression:
6057      conditional-expression
6058 
6059   If ALLOW_NON_CONSTANT_P a non-constant expression is silently
6060   accepted.  If ALLOW_NON_CONSTANT_P is true and the expression is not
6061   constant, *NON_CONSTANT_P is set to TRUE.  If ALLOW_NON_CONSTANT_P
6062   is false, NON_CONSTANT_P should be NULL.  */
6063 
6064 static tree
cp_parser_constant_expression(cp_parser * parser,bool allow_non_constant_p,bool * non_constant_p)6065 cp_parser_constant_expression (cp_parser* parser,
6066 			       bool allow_non_constant_p,
6067 			       bool *non_constant_p)
6068 {
6069   bool saved_integral_constant_expression_p;
6070   bool saved_allow_non_integral_constant_expression_p;
6071   bool saved_non_integral_constant_expression_p;
6072   tree expression;
6073 
6074   /* It might seem that we could simply parse the
6075      conditional-expression, and then check to see if it were
6076      TREE_CONSTANT.  However, an expression that is TREE_CONSTANT is
6077      one that the compiler can figure out is constant, possibly after
6078      doing some simplifications or optimizations.  The standard has a
6079      precise definition of constant-expression, and we must honor
6080      that, even though it is somewhat more restrictive.
6081 
6082      For example:
6083 
6084        int i[(2, 3)];
6085 
6086      is not a legal declaration, because `(2, 3)' is not a
6087      constant-expression.  The `,' operator is forbidden in a
6088      constant-expression.  However, GCC's constant-folding machinery
6089      will fold this operation to an INTEGER_CST for `3'.  */
6090 
6091   /* Save the old settings.  */
6092   saved_integral_constant_expression_p = parser->integral_constant_expression_p;
6093   saved_allow_non_integral_constant_expression_p
6094     = parser->allow_non_integral_constant_expression_p;
6095   saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
6096   /* We are now parsing a constant-expression.  */
6097   parser->integral_constant_expression_p = true;
6098   parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
6099   parser->non_integral_constant_expression_p = false;
6100   /* Although the grammar says "conditional-expression", we parse an
6101      "assignment-expression", which also permits "throw-expression"
6102      and the use of assignment operators.  In the case that
6103      ALLOW_NON_CONSTANT_P is false, we get better errors than we would
6104      otherwise.  In the case that ALLOW_NON_CONSTANT_P is true, it is
6105      actually essential that we look for an assignment-expression.
6106      For example, cp_parser_initializer_clauses uses this function to
6107      determine whether a particular assignment-expression is in fact
6108      constant.  */
6109   expression = cp_parser_assignment_expression (parser, /*cast_p=*/false);
6110   /* Restore the old settings.  */
6111   parser->integral_constant_expression_p
6112     = saved_integral_constant_expression_p;
6113   parser->allow_non_integral_constant_expression_p
6114     = saved_allow_non_integral_constant_expression_p;
6115   if (allow_non_constant_p)
6116     *non_constant_p = parser->non_integral_constant_expression_p;
6117   else if (parser->non_integral_constant_expression_p)
6118     expression = error_mark_node;
6119   parser->non_integral_constant_expression_p
6120     = saved_non_integral_constant_expression_p;
6121 
6122   return expression;
6123 }
6124 
6125 /* Parse __builtin_offsetof.
6126 
6127    offsetof-expression:
6128      "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
6129 
6130    offsetof-member-designator:
6131      id-expression
6132      | offsetof-member-designator "." id-expression
6133      | offsetof-member-designator "[" expression "]"  */
6134 
6135 static tree
cp_parser_builtin_offsetof(cp_parser * parser)6136 cp_parser_builtin_offsetof (cp_parser *parser)
6137 {
6138   int save_ice_p, save_non_ice_p;
6139   tree type, expr;
6140   cp_id_kind dummy;
6141 
6142   /* We're about to accept non-integral-constant things, but will
6143      definitely yield an integral constant expression.  Save and
6144      restore these values around our local parsing.  */
6145   save_ice_p = parser->integral_constant_expression_p;
6146   save_non_ice_p = parser->non_integral_constant_expression_p;
6147 
6148   /* Consume the "__builtin_offsetof" token.  */
6149   cp_lexer_consume_token (parser->lexer);
6150   /* Consume the opening `('.  */
6151   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6152   /* Parse the type-id.  */
6153   type = cp_parser_type_id (parser);
6154   /* Look for the `,'.  */
6155   cp_parser_require (parser, CPP_COMMA, "`,'");
6156 
6157   /* Build the (type *)null that begins the traditional offsetof macro.  */
6158   expr = build_static_cast (build_pointer_type (type), null_pointer_node);
6159 
6160   /* Parse the offsetof-member-designator.  We begin as if we saw "expr->".  */
6161   expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
6162 						 true, &dummy);
6163   while (true)
6164     {
6165       cp_token *token = cp_lexer_peek_token (parser->lexer);
6166       switch (token->type)
6167 	{
6168 	case CPP_OPEN_SQUARE:
6169 	  /* offsetof-member-designator "[" expression "]" */
6170 	  expr = cp_parser_postfix_open_square_expression (parser, expr, true);
6171 	  break;
6172 
6173 	case CPP_DOT:
6174 	  /* offsetof-member-designator "." identifier */
6175 	  cp_lexer_consume_token (parser->lexer);
6176 	  expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
6177 							 true, &dummy);
6178 	  break;
6179 
6180 	case CPP_CLOSE_PAREN:
6181 	  /* Consume the ")" token.  */
6182 	  cp_lexer_consume_token (parser->lexer);
6183 	  goto success;
6184 
6185 	default:
6186 	  /* Error.  We know the following require will fail, but
6187 	     that gives the proper error message.  */
6188 	  cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6189 	  cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
6190 	  expr = error_mark_node;
6191 	  goto failure;
6192 	}
6193     }
6194 
6195  success:
6196   /* If we're processing a template, we can't finish the semantics yet.
6197      Otherwise we can fold the entire expression now.  */
6198   if (processing_template_decl)
6199     expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
6200   else
6201     expr = finish_offsetof (expr);
6202 
6203  failure:
6204   parser->integral_constant_expression_p = save_ice_p;
6205   parser->non_integral_constant_expression_p = save_non_ice_p;
6206 
6207   return expr;
6208 }
6209 
6210 /* Statements [gram.stmt.stmt]  */
6211 
6212 /* Parse a statement.
6213 
6214    statement:
6215      labeled-statement
6216      expression-statement
6217      compound-statement
6218      selection-statement
6219      iteration-statement
6220      jump-statement
6221      declaration-statement
6222      try-block
6223 
6224   IN_COMPOUND is true when the statement is nested inside a
6225   cp_parser_compound_statement; this matters for certain pragmas.  */
6226 
6227 static void
cp_parser_statement(cp_parser * parser,tree in_statement_expr,bool in_compound)6228 cp_parser_statement (cp_parser* parser, tree in_statement_expr,
6229 		     bool in_compound)
6230 {
6231   tree statement;
6232   cp_token *token;
6233   location_t statement_location;
6234 
6235  restart:
6236   /* There is no statement yet.  */
6237   statement = NULL_TREE;
6238   /* Peek at the next token.  */
6239   token = cp_lexer_peek_token (parser->lexer);
6240   /* Remember the location of the first token in the statement.  */
6241   statement_location = token->location;
6242   /* If this is a keyword, then that will often determine what kind of
6243      statement we have.  */
6244   if (token->type == CPP_KEYWORD)
6245     {
6246       enum rid keyword = token->keyword;
6247 
6248       switch (keyword)
6249 	{
6250 	case RID_CASE:
6251 	case RID_DEFAULT:
6252 	  /* Looks like a labeled-statement with a case label.
6253 	     Parse the label, and then use tail recursion to parse
6254 	     the statement.  */
6255 	  cp_parser_label_for_labeled_statement (parser);
6256 	  goto restart;
6257 
6258 	case RID_IF:
6259 	case RID_SWITCH:
6260 	  statement = cp_parser_selection_statement (parser);
6261 	  break;
6262 
6263 	case RID_WHILE:
6264 	case RID_DO:
6265 	case RID_FOR:
6266 	  statement = cp_parser_iteration_statement (parser);
6267 	  break;
6268 
6269 	case RID_BREAK:
6270 	case RID_CONTINUE:
6271 	case RID_RETURN:
6272 	case RID_GOTO:
6273 	  statement = cp_parser_jump_statement (parser);
6274 	  break;
6275 
6276 	  /* Objective-C++ exception-handling constructs.  */
6277 	case RID_AT_TRY:
6278 	case RID_AT_CATCH:
6279 	case RID_AT_FINALLY:
6280 	case RID_AT_SYNCHRONIZED:
6281 	case RID_AT_THROW:
6282 	  statement = cp_parser_objc_statement (parser);
6283 	  break;
6284 
6285 	case RID_TRY:
6286 	  statement = cp_parser_try_block (parser);
6287 	  break;
6288 
6289 	default:
6290 	  /* It might be a keyword like `int' that can start a
6291 	     declaration-statement.  */
6292 	  break;
6293 	}
6294     }
6295   else if (token->type == CPP_NAME)
6296     {
6297       /* If the next token is a `:', then we are looking at a
6298 	 labeled-statement.  */
6299       token = cp_lexer_peek_nth_token (parser->lexer, 2);
6300       if (token->type == CPP_COLON)
6301 	{
6302 	  /* Looks like a labeled-statement with an ordinary label.
6303 	     Parse the label, and then use tail recursion to parse
6304 	     the statement.  */
6305 	  cp_parser_label_for_labeled_statement (parser);
6306 	  goto restart;
6307 	}
6308     }
6309   /* Anything that starts with a `{' must be a compound-statement.  */
6310   else if (token->type == CPP_OPEN_BRACE)
6311     statement = cp_parser_compound_statement (parser, NULL, false);
6312   /* CPP_PRAGMA is a #pragma inside a function body, which constitutes
6313      a statement all its own.  */
6314   else if (token->type == CPP_PRAGMA)
6315     {
6316       /* Only certain OpenMP pragmas are attached to statements, and thus
6317 	 are considered statements themselves.  All others are not.  In
6318 	 the context of a compound, accept the pragma as a "statement" and
6319 	 return so that we can check for a close brace.  Otherwise we
6320 	 require a real statement and must go back and read one.  */
6321       if (in_compound)
6322 	cp_parser_pragma (parser, pragma_compound);
6323       else if (!cp_parser_pragma (parser, pragma_stmt))
6324 	goto restart;
6325       return;
6326     }
6327   else if (token->type == CPP_EOF)
6328     {
6329       cp_parser_error (parser, "expected statement");
6330       return;
6331     }
6332 
6333   /* Everything else must be a declaration-statement or an
6334      expression-statement.  Try for the declaration-statement
6335      first, unless we are looking at a `;', in which case we know that
6336      we have an expression-statement.  */
6337   if (!statement)
6338     {
6339       if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6340 	{
6341 	  cp_parser_parse_tentatively (parser);
6342 	  /* Try to parse the declaration-statement.  */
6343 	  cp_parser_declaration_statement (parser);
6344 	  /* If that worked, we're done.  */
6345 	  if (cp_parser_parse_definitely (parser))
6346 	    return;
6347 	}
6348       /* Look for an expression-statement instead.  */
6349       statement = cp_parser_expression_statement (parser, in_statement_expr);
6350     }
6351 
6352   /* Set the line number for the statement.  */
6353   if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
6354     SET_EXPR_LOCATION (statement, statement_location);
6355 }
6356 
6357 /* Parse the label for a labeled-statement, i.e.
6358 
6359    identifier :
6360    case constant-expression :
6361    default :
6362 
6363    GNU Extension:
6364    case constant-expression ... constant-expression : statement
6365 
6366    When a label is parsed without errors, the label is added to the
6367    parse tree by the finish_* functions, so this function doesn't
6368    have to return the label.  */
6369 
6370 static void
cp_parser_label_for_labeled_statement(cp_parser * parser)6371 cp_parser_label_for_labeled_statement (cp_parser* parser)
6372 {
6373   cp_token *token;
6374 
6375   /* The next token should be an identifier.  */
6376   token = cp_lexer_peek_token (parser->lexer);
6377   if (token->type != CPP_NAME
6378       && token->type != CPP_KEYWORD)
6379     {
6380       cp_parser_error (parser, "expected labeled-statement");
6381       return;
6382     }
6383 
6384   switch (token->keyword)
6385     {
6386     case RID_CASE:
6387       {
6388 	tree expr, expr_hi;
6389 	cp_token *ellipsis;
6390 
6391 	/* Consume the `case' token.  */
6392 	cp_lexer_consume_token (parser->lexer);
6393 	/* Parse the constant-expression.  */
6394 	expr = cp_parser_constant_expression (parser,
6395 					      /*allow_non_constant_p=*/false,
6396 					      NULL);
6397 
6398 	ellipsis = cp_lexer_peek_token (parser->lexer);
6399 	if (ellipsis->type == CPP_ELLIPSIS)
6400 	  {
6401 	    /* Consume the `...' token.  */
6402 	    cp_lexer_consume_token (parser->lexer);
6403 	    expr_hi =
6404 	      cp_parser_constant_expression (parser,
6405 					     /*allow_non_constant_p=*/false,
6406 					     NULL);
6407 	    /* We don't need to emit warnings here, as the common code
6408 	       will do this for us.  */
6409 	  }
6410 	else
6411 	  expr_hi = NULL_TREE;
6412 
6413 	if (parser->in_switch_statement_p)
6414 	  finish_case_label (expr, expr_hi);
6415 	else
6416 	  error ("case label %qE not within a switch statement", expr);
6417       }
6418       break;
6419 
6420     case RID_DEFAULT:
6421       /* Consume the `default' token.  */
6422       cp_lexer_consume_token (parser->lexer);
6423 
6424       if (parser->in_switch_statement_p)
6425 	finish_case_label (NULL_TREE, NULL_TREE);
6426       else
6427 	error ("case label not within a switch statement");
6428       break;
6429 
6430     default:
6431       /* Anything else must be an ordinary label.  */
6432       finish_label_stmt (cp_parser_identifier (parser));
6433       break;
6434     }
6435 
6436   /* Require the `:' token.  */
6437   cp_parser_require (parser, CPP_COLON, "`:'");
6438 }
6439 
6440 /* Parse an expression-statement.
6441 
6442    expression-statement:
6443      expression [opt] ;
6444 
6445    Returns the new EXPR_STMT -- or NULL_TREE if the expression
6446    statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
6447    indicates whether this expression-statement is part of an
6448    expression statement.  */
6449 
6450 static tree
cp_parser_expression_statement(cp_parser * parser,tree in_statement_expr)6451 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
6452 {
6453   tree statement = NULL_TREE;
6454 
6455   /* If the next token is a ';', then there is no expression
6456      statement.  */
6457   if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6458     statement = cp_parser_expression (parser, /*cast_p=*/false);
6459 
6460   /* Consume the final `;'.  */
6461   cp_parser_consume_semicolon_at_end_of_statement (parser);
6462 
6463   if (in_statement_expr
6464       && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
6465     /* This is the final expression statement of a statement
6466        expression.  */
6467     statement = finish_stmt_expr_expr (statement, in_statement_expr);
6468   else if (statement)
6469     statement = finish_expr_stmt (statement);
6470   else
6471     finish_stmt ();
6472 
6473   return statement;
6474 }
6475 
6476 /* Parse a compound-statement.
6477 
6478    compound-statement:
6479      { statement-seq [opt] }
6480 
6481    Returns a tree representing the statement.  */
6482 
6483 static tree
cp_parser_compound_statement(cp_parser * parser,tree in_statement_expr,bool in_try)6484 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6485 			      bool in_try)
6486 {
6487   tree compound_stmt;
6488 
6489   /* Consume the `{'.  */
6490   if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6491     return error_mark_node;
6492   /* Begin the compound-statement.  */
6493   compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6494   /* Parse an (optional) statement-seq.  */
6495   cp_parser_statement_seq_opt (parser, in_statement_expr);
6496   /* Finish the compound-statement.  */
6497   finish_compound_stmt (compound_stmt);
6498   /* Consume the `}'.  */
6499   cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6500 
6501   return compound_stmt;
6502 }
6503 
6504 /* Parse an (optional) statement-seq.
6505 
6506    statement-seq:
6507      statement
6508      statement-seq [opt] statement  */
6509 
6510 static void
cp_parser_statement_seq_opt(cp_parser * parser,tree in_statement_expr)6511 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6512 {
6513   /* Scan statements until there aren't any more.  */
6514   while (true)
6515     {
6516       cp_token *token = cp_lexer_peek_token (parser->lexer);
6517 
6518       /* If we're looking at a `}', then we've run out of statements.  */
6519       if (token->type == CPP_CLOSE_BRACE
6520 	  || token->type == CPP_EOF
6521 	  || token->type == CPP_PRAGMA_EOL)
6522 	break;
6523 
6524       /* Parse the statement.  */
6525       cp_parser_statement (parser, in_statement_expr, true);
6526     }
6527 }
6528 
6529 /* Parse a selection-statement.
6530 
6531    selection-statement:
6532      if ( condition ) statement
6533      if ( condition ) statement else statement
6534      switch ( condition ) statement
6535 
6536    Returns the new IF_STMT or SWITCH_STMT.  */
6537 
6538 static tree
cp_parser_selection_statement(cp_parser * parser)6539 cp_parser_selection_statement (cp_parser* parser)
6540 {
6541   cp_token *token;
6542   enum rid keyword;
6543 
6544   /* Peek at the next token.  */
6545   token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6546 
6547   /* See what kind of keyword it is.  */
6548   keyword = token->keyword;
6549   switch (keyword)
6550     {
6551     case RID_IF:
6552     case RID_SWITCH:
6553       {
6554 	tree statement;
6555 	tree condition;
6556 
6557 	/* Look for the `('.  */
6558 	if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6559 	  {
6560 	    cp_parser_skip_to_end_of_statement (parser);
6561 	    return error_mark_node;
6562 	  }
6563 
6564 	/* Begin the selection-statement.  */
6565 	if (keyword == RID_IF)
6566 	  statement = begin_if_stmt ();
6567 	else
6568 	  statement = begin_switch_stmt ();
6569 
6570 	/* Parse the condition.  */
6571 	condition = cp_parser_condition (parser);
6572 	/* Look for the `)'.  */
6573 	if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6574 	  cp_parser_skip_to_closing_parenthesis (parser, true, false,
6575 						 /*consume_paren=*/true);
6576 
6577 	if (keyword == RID_IF)
6578 	  {
6579 	    /* Add the condition.  */
6580 	    finish_if_stmt_cond (condition, statement);
6581 
6582 	    /* Parse the then-clause.  */
6583 	    cp_parser_implicitly_scoped_statement (parser);
6584 	    finish_then_clause (statement);
6585 
6586 	    /* If the next token is `else', parse the else-clause.  */
6587 	    if (cp_lexer_next_token_is_keyword (parser->lexer,
6588 						RID_ELSE))
6589 	      {
6590 		/* Consume the `else' keyword.  */
6591 		cp_lexer_consume_token (parser->lexer);
6592 		begin_else_clause (statement);
6593 		/* Parse the else-clause.  */
6594 		cp_parser_implicitly_scoped_statement (parser);
6595 		finish_else_clause (statement);
6596 	      }
6597 
6598 	    /* Now we're all done with the if-statement.  */
6599 	    finish_if_stmt (statement);
6600 	  }
6601 	else
6602 	  {
6603 	    bool in_switch_statement_p;
6604 	    unsigned char in_statement;
6605 
6606 	    /* Add the condition.  */
6607 	    finish_switch_cond (condition, statement);
6608 
6609 	    /* Parse the body of the switch-statement.  */
6610 	    in_switch_statement_p = parser->in_switch_statement_p;
6611 	    in_statement = parser->in_statement;
6612 	    parser->in_switch_statement_p = true;
6613 	    parser->in_statement |= IN_SWITCH_STMT;
6614 	    cp_parser_implicitly_scoped_statement (parser);
6615 	    parser->in_switch_statement_p = in_switch_statement_p;
6616 	    parser->in_statement = in_statement;
6617 
6618 	    /* Now we're all done with the switch-statement.  */
6619 	    finish_switch_stmt (statement);
6620 	  }
6621 
6622 	return statement;
6623       }
6624       break;
6625 
6626     default:
6627       cp_parser_error (parser, "expected selection-statement");
6628       return error_mark_node;
6629     }
6630 }
6631 
6632 /* Parse a condition.
6633 
6634    condition:
6635      expression
6636      type-specifier-seq declarator = assignment-expression
6637 
6638    GNU Extension:
6639 
6640    condition:
6641      type-specifier-seq declarator asm-specification [opt]
6642        attributes [opt] = assignment-expression
6643 
6644    Returns the expression that should be tested.  */
6645 
6646 static tree
cp_parser_condition(cp_parser * parser)6647 cp_parser_condition (cp_parser* parser)
6648 {
6649   cp_decl_specifier_seq type_specifiers;
6650   const char *saved_message;
6651 
6652   /* Try the declaration first.  */
6653   cp_parser_parse_tentatively (parser);
6654   /* New types are not allowed in the type-specifier-seq for a
6655      condition.  */
6656   saved_message = parser->type_definition_forbidden_message;
6657   parser->type_definition_forbidden_message
6658     = "types may not be defined in conditions";
6659   /* Parse the type-specifier-seq.  */
6660   cp_parser_type_specifier_seq (parser, /*is_condition==*/true,
6661 				&type_specifiers);
6662   /* Restore the saved message.  */
6663   parser->type_definition_forbidden_message = saved_message;
6664   /* If all is well, we might be looking at a declaration.  */
6665   if (!cp_parser_error_occurred (parser))
6666     {
6667       tree decl;
6668       tree asm_specification;
6669       tree attributes;
6670       cp_declarator *declarator;
6671       tree initializer = NULL_TREE;
6672 
6673       /* Parse the declarator.  */
6674       declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6675 					 /*ctor_dtor_or_conv_p=*/NULL,
6676 					 /*parenthesized_p=*/NULL,
6677 					 /*member_p=*/false);
6678       /* Parse the attributes.  */
6679       attributes = cp_parser_attributes_opt (parser);
6680       /* Parse the asm-specification.  */
6681       asm_specification = cp_parser_asm_specification_opt (parser);
6682       /* If the next token is not an `=', then we might still be
6683 	 looking at an expression.  For example:
6684 
6685 	   if (A(a).x)
6686 
6687 	 looks like a decl-specifier-seq and a declarator -- but then
6688 	 there is no `=', so this is an expression.  */
6689       cp_parser_require (parser, CPP_EQ, "`='");
6690       /* If we did see an `=', then we are looking at a declaration
6691 	 for sure.  */
6692       if (cp_parser_parse_definitely (parser))
6693 	{
6694 	  tree pushed_scope;
6695 	  bool non_constant_p;
6696 
6697 	  /* Create the declaration.  */
6698 	  decl = start_decl (declarator, &type_specifiers,
6699 			     /*initialized_p=*/true,
6700 			     attributes, /*prefix_attributes=*/NULL_TREE,
6701 			     &pushed_scope);
6702 	  /* Parse the assignment-expression.  */
6703 	  initializer
6704 	    = cp_parser_constant_expression (parser,
6705 					     /*allow_non_constant_p=*/true,
6706 					     &non_constant_p);
6707 	  if (!non_constant_p)
6708 	    initializer = fold_non_dependent_expr (initializer);
6709 
6710 	  /* Process the initializer.  */
6711 	  cp_finish_decl (decl,
6712 			  initializer, !non_constant_p,
6713 			  asm_specification,
6714 			  LOOKUP_ONLYCONVERTING);
6715 
6716 	  if (pushed_scope)
6717 	    pop_scope (pushed_scope);
6718 
6719 	  return convert_from_reference (decl);
6720 	}
6721     }
6722   /* If we didn't even get past the declarator successfully, we are
6723      definitely not looking at a declaration.  */
6724   else
6725     cp_parser_abort_tentative_parse (parser);
6726 
6727   /* Otherwise, we are looking at an expression.  */
6728   return cp_parser_expression (parser, /*cast_p=*/false);
6729 }
6730 
6731 /* Parse an iteration-statement.
6732 
6733    iteration-statement:
6734      while ( condition ) statement
6735      do statement while ( expression ) ;
6736      for ( for-init-statement condition [opt] ; expression [opt] )
6737        statement
6738 
6739    Returns the new WHILE_STMT, DO_STMT, or FOR_STMT.  */
6740 
6741 static tree
cp_parser_iteration_statement(cp_parser * parser)6742 cp_parser_iteration_statement (cp_parser* parser)
6743 {
6744   cp_token *token;
6745   enum rid keyword;
6746   tree statement;
6747   unsigned char in_statement;
6748 
6749   /* Peek at the next token.  */
6750   token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6751   if (!token)
6752     return error_mark_node;
6753 
6754   /* Remember whether or not we are already within an iteration
6755      statement.  */
6756   in_statement = parser->in_statement;
6757 
6758   /* See what kind of keyword it is.  */
6759   keyword = token->keyword;
6760   switch (keyword)
6761     {
6762     case RID_WHILE:
6763       {
6764 	tree condition;
6765 
6766 	/* Begin the while-statement.  */
6767 	statement = begin_while_stmt ();
6768 	/* Look for the `('.  */
6769 	cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6770 	/* Parse the condition.  */
6771 	condition = cp_parser_condition (parser);
6772 	finish_while_stmt_cond (condition, statement);
6773 	/* Look for the `)'.  */
6774 	cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6775 	/* Parse the dependent statement.  */
6776 	parser->in_statement = IN_ITERATION_STMT;
6777 	cp_parser_already_scoped_statement (parser);
6778 	parser->in_statement = in_statement;
6779 	/* We're done with the while-statement.  */
6780 	finish_while_stmt (statement);
6781       }
6782       break;
6783 
6784     case RID_DO:
6785       {
6786 	tree expression;
6787 
6788 	/* Begin the do-statement.  */
6789 	statement = begin_do_stmt ();
6790 	/* Parse the body of the do-statement.  */
6791 	parser->in_statement = IN_ITERATION_STMT;
6792 	cp_parser_implicitly_scoped_statement (parser);
6793 	parser->in_statement = in_statement;
6794 	finish_do_body (statement);
6795 	/* Look for the `while' keyword.  */
6796 	cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6797 	/* Look for the `('.  */
6798 	cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6799 	/* Parse the expression.  */
6800 	expression = cp_parser_expression (parser, /*cast_p=*/false);
6801 	/* We're done with the do-statement.  */
6802 	finish_do_stmt (expression, statement);
6803 	/* Look for the `)'.  */
6804 	cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6805 	/* Look for the `;'.  */
6806 	cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6807       }
6808       break;
6809 
6810     case RID_FOR:
6811       {
6812 	tree condition = NULL_TREE;
6813 	tree expression = NULL_TREE;
6814 
6815 	/* Begin the for-statement.  */
6816 	statement = begin_for_stmt ();
6817 	/* Look for the `('.  */
6818 	cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6819 	/* Parse the initialization.  */
6820 	cp_parser_for_init_statement (parser);
6821 	finish_for_init_stmt (statement);
6822 
6823 	/* If there's a condition, process it.  */
6824 	if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6825 	  condition = cp_parser_condition (parser);
6826 	finish_for_cond (condition, statement);
6827 	/* Look for the `;'.  */
6828 	cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6829 
6830 	/* If there's an expression, process it.  */
6831 	if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6832 	  expression = cp_parser_expression (parser, /*cast_p=*/false);
6833 	finish_for_expr (expression, statement);
6834 	/* Look for the `)'.  */
6835 	cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6836 
6837 	/* Parse the body of the for-statement.  */
6838 	parser->in_statement = IN_ITERATION_STMT;
6839 	cp_parser_already_scoped_statement (parser);
6840 	parser->in_statement = in_statement;
6841 
6842 	/* We're done with the for-statement.  */
6843 	finish_for_stmt (statement);
6844       }
6845       break;
6846 
6847     default:
6848       cp_parser_error (parser, "expected iteration-statement");
6849       statement = error_mark_node;
6850       break;
6851     }
6852 
6853   return statement;
6854 }
6855 
6856 /* Parse a for-init-statement.
6857 
6858    for-init-statement:
6859      expression-statement
6860      simple-declaration  */
6861 
6862 static void
cp_parser_for_init_statement(cp_parser * parser)6863 cp_parser_for_init_statement (cp_parser* parser)
6864 {
6865   /* If the next token is a `;', then we have an empty
6866      expression-statement.  Grammatically, this is also a
6867      simple-declaration, but an invalid one, because it does not
6868      declare anything.  Therefore, if we did not handle this case
6869      specially, we would issue an error message about an invalid
6870      declaration.  */
6871   if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6872     {
6873       /* We're going to speculatively look for a declaration, falling back
6874 	 to an expression, if necessary.  */
6875       cp_parser_parse_tentatively (parser);
6876       /* Parse the declaration.  */
6877       cp_parser_simple_declaration (parser,
6878 				    /*function_definition_allowed_p=*/false);
6879       /* If the tentative parse failed, then we shall need to look for an
6880 	 expression-statement.  */
6881       if (cp_parser_parse_definitely (parser))
6882 	return;
6883     }
6884 
6885   cp_parser_expression_statement (parser, false);
6886 }
6887 
6888 /* Parse a jump-statement.
6889 
6890    jump-statement:
6891      break ;
6892      continue ;
6893      return expression [opt] ;
6894      goto identifier ;
6895 
6896    GNU extension:
6897 
6898    jump-statement:
6899      goto * expression ;
6900 
6901    Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR.  */
6902 
6903 static tree
cp_parser_jump_statement(cp_parser * parser)6904 cp_parser_jump_statement (cp_parser* parser)
6905 {
6906   tree statement = error_mark_node;
6907   cp_token *token;
6908   enum rid keyword;
6909 
6910   /* Peek at the next token.  */
6911   token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6912   if (!token)
6913     return error_mark_node;
6914 
6915   /* See what kind of keyword it is.  */
6916   keyword = token->keyword;
6917   switch (keyword)
6918     {
6919     case RID_BREAK:
6920       switch (parser->in_statement)
6921 	{
6922 	case 0:
6923 	  error ("break statement not within loop or switch");
6924 	  break;
6925 	default:
6926 	  gcc_assert ((parser->in_statement & IN_SWITCH_STMT)
6927 		      || parser->in_statement == IN_ITERATION_STMT);
6928 	  statement = finish_break_stmt ();
6929 	  break;
6930 	case IN_OMP_BLOCK:
6931 	  error ("invalid exit from OpenMP structured block");
6932 	  break;
6933 	case IN_OMP_FOR:
6934 	  error ("break statement used with OpenMP for loop");
6935 	  break;
6936 	}
6937       cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6938       break;
6939 
6940     case RID_CONTINUE:
6941       switch (parser->in_statement & ~IN_SWITCH_STMT)
6942 	{
6943 	case 0:
6944 	  error ("continue statement not within a loop");
6945 	  break;
6946 	case IN_ITERATION_STMT:
6947 	case IN_OMP_FOR:
6948 	  statement = finish_continue_stmt ();
6949 	  break;
6950 	case IN_OMP_BLOCK:
6951 	  error ("invalid exit from OpenMP structured block");
6952 	  break;
6953 	default:
6954 	  gcc_unreachable ();
6955 	}
6956       cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6957       break;
6958 
6959     case RID_RETURN:
6960       {
6961 	tree expr;
6962 
6963 	/* If the next token is a `;', then there is no
6964 	   expression.  */
6965 	if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6966 	  expr = cp_parser_expression (parser, /*cast_p=*/false);
6967 	else
6968 	  expr = NULL_TREE;
6969 	/* Build the return-statement.  */
6970 	statement = finish_return_stmt (expr);
6971 	/* Look for the final `;'.  */
6972 	cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6973       }
6974       break;
6975 
6976     case RID_GOTO:
6977       /* Create the goto-statement.  */
6978       if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6979 	{
6980 	  /* Issue a warning about this use of a GNU extension.  */
6981 	  if (pedantic)
6982 	    pedwarn ("ISO C++ forbids computed gotos");
6983 	  /* Consume the '*' token.  */
6984 	  cp_lexer_consume_token (parser->lexer);
6985 	  /* Parse the dependent expression.  */
6986 	  finish_goto_stmt (cp_parser_expression (parser, /*cast_p=*/false));
6987 	}
6988       else
6989 	finish_goto_stmt (cp_parser_identifier (parser));
6990       /* Look for the final `;'.  */
6991       cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6992       break;
6993 
6994     default:
6995       cp_parser_error (parser, "expected jump-statement");
6996       break;
6997     }
6998 
6999   return statement;
7000 }
7001 
7002 /* Parse a declaration-statement.
7003 
7004    declaration-statement:
7005      block-declaration  */
7006 
7007 static void
cp_parser_declaration_statement(cp_parser * parser)7008 cp_parser_declaration_statement (cp_parser* parser)
7009 {
7010   void *p;
7011 
7012   /* Get the high-water mark for the DECLARATOR_OBSTACK.  */
7013   p = obstack_alloc (&declarator_obstack, 0);
7014 
7015  /* Parse the block-declaration.  */
7016   cp_parser_block_declaration (parser, /*statement_p=*/true);
7017 
7018   /* Free any declarators allocated.  */
7019   obstack_free (&declarator_obstack, p);
7020 
7021   /* Finish off the statement.  */
7022   finish_stmt ();
7023 }
7024 
7025 /* Some dependent statements (like `if (cond) statement'), are
7026    implicitly in their own scope.  In other words, if the statement is
7027    a single statement (as opposed to a compound-statement), it is
7028    none-the-less treated as if it were enclosed in braces.  Any
7029    declarations appearing in the dependent statement are out of scope
7030    after control passes that point.  This function parses a statement,
7031    but ensures that is in its own scope, even if it is not a
7032    compound-statement.
7033 
7034    Returns the new statement.  */
7035 
7036 static tree
cp_parser_implicitly_scoped_statement(cp_parser * parser)7037 cp_parser_implicitly_scoped_statement (cp_parser* parser)
7038 {
7039   tree statement;
7040 
7041   /* Mark if () ; with a special NOP_EXPR.  */
7042   if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
7043     {
7044       cp_lexer_consume_token (parser->lexer);
7045       statement = add_stmt (build_empty_stmt ());
7046     }
7047   /* if a compound is opened, we simply parse the statement directly.  */
7048   else if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7049     statement = cp_parser_compound_statement (parser, NULL, false);
7050   /* If the token is not a `{', then we must take special action.  */
7051   else
7052     {
7053       /* Create a compound-statement.  */
7054       statement = begin_compound_stmt (0);
7055       /* Parse the dependent-statement.  */
7056       cp_parser_statement (parser, NULL_TREE, false);
7057       /* Finish the dummy compound-statement.  */
7058       finish_compound_stmt (statement);
7059     }
7060 
7061   /* Return the statement.  */
7062   return statement;
7063 }
7064 
7065 /* For some dependent statements (like `while (cond) statement'), we
7066    have already created a scope.  Therefore, even if the dependent
7067    statement is a compound-statement, we do not want to create another
7068    scope.  */
7069 
7070 static void
cp_parser_already_scoped_statement(cp_parser * parser)7071 cp_parser_already_scoped_statement (cp_parser* parser)
7072 {
7073   /* If the token is a `{', then we must take special action.  */
7074   if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
7075     cp_parser_statement (parser, NULL_TREE, false);
7076   else
7077     {
7078       /* Avoid calling cp_parser_compound_statement, so that we
7079 	 don't create a new scope.  Do everything else by hand.  */
7080       cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
7081       cp_parser_statement_seq_opt (parser, NULL_TREE);
7082       cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7083     }
7084 }
7085 
7086 /* Declarations [gram.dcl.dcl] */
7087 
7088 /* Parse an optional declaration-sequence.
7089 
7090    declaration-seq:
7091      declaration
7092      declaration-seq declaration  */
7093 
7094 static void
cp_parser_declaration_seq_opt(cp_parser * parser)7095 cp_parser_declaration_seq_opt (cp_parser* parser)
7096 {
7097   while (true)
7098     {
7099       cp_token *token;
7100 
7101       token = cp_lexer_peek_token (parser->lexer);
7102 
7103       if (token->type == CPP_CLOSE_BRACE
7104 	  || token->type == CPP_EOF
7105 	  || token->type == CPP_PRAGMA_EOL)
7106 	break;
7107 
7108       if (token->type == CPP_SEMICOLON)
7109 	{
7110 	  /* A declaration consisting of a single semicolon is
7111 	     invalid.  Allow it unless we're being pedantic.  */
7112 	  cp_lexer_consume_token (parser->lexer);
7113 	  if (pedantic && !in_system_header)
7114 	    pedwarn ("extra %<;%>");
7115 	  continue;
7116 	}
7117 
7118       /* If we're entering or exiting a region that's implicitly
7119 	 extern "C", modify the lang context appropriately.  */
7120       if (!parser->implicit_extern_c && token->implicit_extern_c)
7121 	{
7122 	  push_lang_context (lang_name_c);
7123 	  parser->implicit_extern_c = true;
7124 	}
7125       else if (parser->implicit_extern_c && !token->implicit_extern_c)
7126 	{
7127 	  pop_lang_context ();
7128 	  parser->implicit_extern_c = false;
7129 	}
7130 
7131       if (token->type == CPP_PRAGMA)
7132 	{
7133 	  /* A top-level declaration can consist solely of a #pragma.
7134 	     A nested declaration cannot, so this is done here and not
7135 	     in cp_parser_declaration.  (A #pragma at block scope is
7136 	     handled in cp_parser_statement.)  */
7137 	  cp_parser_pragma (parser, pragma_external);
7138 	  continue;
7139 	}
7140 
7141       /* Parse the declaration itself.  */
7142       cp_parser_declaration (parser);
7143     }
7144 }
7145 
7146 /* Parse a declaration.
7147 
7148    declaration:
7149      block-declaration
7150      function-definition
7151      template-declaration
7152      explicit-instantiation
7153      explicit-specialization
7154      linkage-specification
7155      namespace-definition
7156 
7157    GNU extension:
7158 
7159    declaration:
7160       __extension__ declaration */
7161 
7162 static void
cp_parser_declaration(cp_parser * parser)7163 cp_parser_declaration (cp_parser* parser)
7164 {
7165   cp_token token1;
7166   cp_token token2;
7167   int saved_pedantic;
7168   void *p;
7169 
7170   /* Check for the `__extension__' keyword.  */
7171   if (cp_parser_extension_opt (parser, &saved_pedantic))
7172     {
7173       /* Parse the qualified declaration.  */
7174       cp_parser_declaration (parser);
7175       /* Restore the PEDANTIC flag.  */
7176       pedantic = saved_pedantic;
7177 
7178       return;
7179     }
7180 
7181   /* Try to figure out what kind of declaration is present.  */
7182   token1 = *cp_lexer_peek_token (parser->lexer);
7183 
7184   if (token1.type != CPP_EOF)
7185     token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
7186   else
7187     {
7188       token2.type = CPP_EOF;
7189       token2.keyword = RID_MAX;
7190     }
7191 
7192   /* Get the high-water mark for the DECLARATOR_OBSTACK.  */
7193   p = obstack_alloc (&declarator_obstack, 0);
7194 
7195   /* If the next token is `extern' and the following token is a string
7196      literal, then we have a linkage specification.  */
7197   if (token1.keyword == RID_EXTERN
7198       && cp_parser_is_string_literal (&token2))
7199     cp_parser_linkage_specification (parser);
7200   /* If the next token is `template', then we have either a template
7201      declaration, an explicit instantiation, or an explicit
7202      specialization.  */
7203   else if (token1.keyword == RID_TEMPLATE)
7204     {
7205       /* `template <>' indicates a template specialization.  */
7206       if (token2.type == CPP_LESS
7207 	  && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
7208 	cp_parser_explicit_specialization (parser);
7209       /* `template <' indicates a template declaration.  */
7210       else if (token2.type == CPP_LESS)
7211 	cp_parser_template_declaration (parser, /*member_p=*/false);
7212       /* Anything else must be an explicit instantiation.  */
7213       else
7214 	cp_parser_explicit_instantiation (parser);
7215     }
7216   /* If the next token is `export', then we have a template
7217      declaration.  */
7218   else if (token1.keyword == RID_EXPORT)
7219     cp_parser_template_declaration (parser, /*member_p=*/false);
7220   /* If the next token is `extern', 'static' or 'inline' and the one
7221      after that is `template', we have a GNU extended explicit
7222      instantiation directive.  */
7223   else if (cp_parser_allow_gnu_extensions_p (parser)
7224 	   && (token1.keyword == RID_EXTERN
7225 	       || token1.keyword == RID_STATIC
7226 	       || token1.keyword == RID_INLINE)
7227 	   && token2.keyword == RID_TEMPLATE)
7228     cp_parser_explicit_instantiation (parser);
7229   /* If the next token is `namespace', check for a named or unnamed
7230      namespace definition.  */
7231   else if (token1.keyword == RID_NAMESPACE
7232 	   && (/* A named namespace definition.  */
7233 	       (token2.type == CPP_NAME
7234 		&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
7235 		    != CPP_EQ))
7236 	       /* An unnamed namespace definition.  */
7237 	       || token2.type == CPP_OPEN_BRACE
7238 	       || token2.keyword == RID_ATTRIBUTE))
7239     cp_parser_namespace_definition (parser);
7240   /* Objective-C++ declaration/definition.  */
7241   else if (c_dialect_objc () && OBJC_IS_AT_KEYWORD (token1.keyword))
7242     cp_parser_objc_declaration (parser);
7243   /* We must have either a block declaration or a function
7244      definition.  */
7245   else
7246     /* Try to parse a block-declaration, or a function-definition.  */
7247     cp_parser_block_declaration (parser, /*statement_p=*/false);
7248 
7249   /* Free any declarators allocated.  */
7250   obstack_free (&declarator_obstack, p);
7251 }
7252 
7253 /* Parse a block-declaration.
7254 
7255    block-declaration:
7256      simple-declaration
7257      asm-definition
7258      namespace-alias-definition
7259      using-declaration
7260      using-directive
7261 
7262    GNU Extension:
7263 
7264    block-declaration:
7265      __extension__ block-declaration
7266      label-declaration
7267 
7268    If STATEMENT_P is TRUE, then this block-declaration is occurring as
7269    part of a declaration-statement.  */
7270 
7271 static void
cp_parser_block_declaration(cp_parser * parser,bool statement_p)7272 cp_parser_block_declaration (cp_parser *parser,
7273 			     bool      statement_p)
7274 {
7275   cp_token *token1;
7276   int saved_pedantic;
7277 
7278   /* Check for the `__extension__' keyword.  */
7279   if (cp_parser_extension_opt (parser, &saved_pedantic))
7280     {
7281       /* Parse the qualified declaration.  */
7282       cp_parser_block_declaration (parser, statement_p);
7283       /* Restore the PEDANTIC flag.  */
7284       pedantic = saved_pedantic;
7285 
7286       return;
7287     }
7288 
7289   /* Peek at the next token to figure out which kind of declaration is
7290      present.  */
7291   token1 = cp_lexer_peek_token (parser->lexer);
7292 
7293   /* If the next keyword is `asm', we have an asm-definition.  */
7294   if (token1->keyword == RID_ASM)
7295     {
7296       if (statement_p)
7297 	cp_parser_commit_to_tentative_parse (parser);
7298       cp_parser_asm_definition (parser);
7299     }
7300   /* If the next keyword is `namespace', we have a
7301      namespace-alias-definition.  */
7302   else if (token1->keyword == RID_NAMESPACE)
7303     cp_parser_namespace_alias_definition (parser);
7304   /* If the next keyword is `using', we have either a
7305      using-declaration or a using-directive.  */
7306   else if (token1->keyword == RID_USING)
7307     {
7308       cp_token *token2;
7309 
7310       if (statement_p)
7311 	cp_parser_commit_to_tentative_parse (parser);
7312       /* If the token after `using' is `namespace', then we have a
7313 	 using-directive.  */
7314       token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
7315       if (token2->keyword == RID_NAMESPACE)
7316 	cp_parser_using_directive (parser);
7317       /* Otherwise, it's a using-declaration.  */
7318       else
7319 	cp_parser_using_declaration (parser,
7320 				     /*access_declaration_p=*/false);
7321     }
7322   /* If the next keyword is `__label__' we have a label declaration.  */
7323   else if (token1->keyword == RID_LABEL)
7324     {
7325       if (statement_p)
7326 	cp_parser_commit_to_tentative_parse (parser);
7327       cp_parser_label_declaration (parser);
7328     }
7329   /* Anything else must be a simple-declaration.  */
7330   else
7331     cp_parser_simple_declaration (parser, !statement_p);
7332 }
7333 
7334 /* Parse a simple-declaration.
7335 
7336    simple-declaration:
7337      decl-specifier-seq [opt] init-declarator-list [opt] ;
7338 
7339    init-declarator-list:
7340      init-declarator
7341      init-declarator-list , init-declarator
7342 
7343    If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
7344    function-definition as a simple-declaration.  */
7345 
7346 static void
cp_parser_simple_declaration(cp_parser * parser,bool function_definition_allowed_p)7347 cp_parser_simple_declaration (cp_parser* parser,
7348 			      bool function_definition_allowed_p)
7349 {
7350   cp_decl_specifier_seq decl_specifiers;
7351   int declares_class_or_enum;
7352   bool saw_declarator;
7353 
7354   /* Defer access checks until we know what is being declared; the
7355      checks for names appearing in the decl-specifier-seq should be
7356      done as if we were in the scope of the thing being declared.  */
7357   push_deferring_access_checks (dk_deferred);
7358 
7359   /* Parse the decl-specifier-seq.  We have to keep track of whether
7360      or not the decl-specifier-seq declares a named class or
7361      enumeration type, since that is the only case in which the
7362      init-declarator-list is allowed to be empty.
7363 
7364      [dcl.dcl]
7365 
7366      In a simple-declaration, the optional init-declarator-list can be
7367      omitted only when declaring a class or enumeration, that is when
7368      the decl-specifier-seq contains either a class-specifier, an
7369      elaborated-type-specifier, or an enum-specifier.  */
7370   cp_parser_decl_specifier_seq (parser,
7371 				CP_PARSER_FLAGS_OPTIONAL,
7372 				&decl_specifiers,
7373 				&declares_class_or_enum);
7374   /* We no longer need to defer access checks.  */
7375   stop_deferring_access_checks ();
7376 
7377   /* In a block scope, a valid declaration must always have a
7378      decl-specifier-seq.  By not trying to parse declarators, we can
7379      resolve the declaration/expression ambiguity more quickly.  */
7380   if (!function_definition_allowed_p
7381       && !decl_specifiers.any_specifiers_p)
7382     {
7383       cp_parser_error (parser, "expected declaration");
7384       goto done;
7385     }
7386 
7387   /* If the next two tokens are both identifiers, the code is
7388      erroneous. The usual cause of this situation is code like:
7389 
7390        T t;
7391 
7392      where "T" should name a type -- but does not.  */
7393   if (!decl_specifiers.type
7394       && cp_parser_parse_and_diagnose_invalid_type_name (parser))
7395     {
7396       /* If parsing tentatively, we should commit; we really are
7397 	 looking at a declaration.  */
7398       cp_parser_commit_to_tentative_parse (parser);
7399       /* Give up.  */
7400       goto done;
7401     }
7402 
7403   /* If we have seen at least one decl-specifier, and the next token
7404      is not a parenthesis, then we must be looking at a declaration.
7405      (After "int (" we might be looking at a functional cast.)  */
7406   if (decl_specifiers.any_specifiers_p
7407       && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
7408     cp_parser_commit_to_tentative_parse (parser);
7409 
7410   /* Keep going until we hit the `;' at the end of the simple
7411      declaration.  */
7412   saw_declarator = false;
7413   while (cp_lexer_next_token_is_not (parser->lexer,
7414 				     CPP_SEMICOLON))
7415     {
7416       cp_token *token;
7417       bool function_definition_p;
7418       tree decl;
7419 
7420       if (saw_declarator)
7421 	{
7422 	  /* If we are processing next declarator, coma is expected */
7423 	  token = cp_lexer_peek_token (parser->lexer);
7424 	  gcc_assert (token->type == CPP_COMMA);
7425 	  cp_lexer_consume_token (parser->lexer);
7426 	}
7427       else
7428 	saw_declarator = true;
7429 
7430       /* Parse the init-declarator.  */
7431       decl = cp_parser_init_declarator (parser, &decl_specifiers,
7432 					/*checks=*/NULL,
7433 					function_definition_allowed_p,
7434 					/*member_p=*/false,
7435 					declares_class_or_enum,
7436 					&function_definition_p);
7437       /* If an error occurred while parsing tentatively, exit quickly.
7438 	 (That usually happens when in the body of a function; each
7439 	 statement is treated as a declaration-statement until proven
7440 	 otherwise.)  */
7441       if (cp_parser_error_occurred (parser))
7442 	goto done;
7443       /* Handle function definitions specially.  */
7444       if (function_definition_p)
7445 	{
7446 	  /* If the next token is a `,', then we are probably
7447 	     processing something like:
7448 
7449 	       void f() {}, *p;
7450 
7451 	     which is erroneous.  */
7452 	  if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
7453 	    error ("mixing declarations and function-definitions is forbidden");
7454 	  /* Otherwise, we're done with the list of declarators.  */
7455 	  else
7456 	    {
7457 	      pop_deferring_access_checks ();
7458 	      return;
7459 	    }
7460 	}
7461       /* The next token should be either a `,' or a `;'.  */
7462       token = cp_lexer_peek_token (parser->lexer);
7463       /* If it's a `,', there are more declarators to come.  */
7464       if (token->type == CPP_COMMA)
7465 	/* will be consumed next time around */;
7466       /* If it's a `;', we are done.  */
7467       else if (token->type == CPP_SEMICOLON)
7468 	break;
7469       /* Anything else is an error.  */
7470       else
7471 	{
7472 	  /* If we have already issued an error message we don't need
7473 	     to issue another one.  */
7474 	  if (decl != error_mark_node
7475 	      || cp_parser_uncommitted_to_tentative_parse_p (parser))
7476 	    cp_parser_error (parser, "expected %<,%> or %<;%>");
7477 	  /* Skip tokens until we reach the end of the statement.  */
7478 	  cp_parser_skip_to_end_of_statement (parser);
7479 	  /* If the next token is now a `;', consume it.  */
7480 	  if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
7481 	    cp_lexer_consume_token (parser->lexer);
7482 	  goto done;
7483 	}
7484       /* After the first time around, a function-definition is not
7485 	 allowed -- even if it was OK at first.  For example:
7486 
7487 	   int i, f() {}
7488 
7489 	 is not valid.  */
7490       function_definition_allowed_p = false;
7491     }
7492 
7493   /* Issue an error message if no declarators are present, and the
7494      decl-specifier-seq does not itself declare a class or
7495      enumeration.  */
7496   if (!saw_declarator)
7497     {
7498       if (cp_parser_declares_only_class_p (parser))
7499 	shadow_tag (&decl_specifiers);
7500       /* Perform any deferred access checks.  */
7501       perform_deferred_access_checks ();
7502     }
7503 
7504   /* Consume the `;'.  */
7505   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
7506 
7507  done:
7508   pop_deferring_access_checks ();
7509 }
7510 
7511 /* Parse a decl-specifier-seq.
7512 
7513    decl-specifier-seq:
7514      decl-specifier-seq [opt] decl-specifier
7515 
7516    decl-specifier:
7517      storage-class-specifier
7518      type-specifier
7519      function-specifier
7520      friend
7521      typedef
7522 
7523    GNU Extension:
7524 
7525    decl-specifier:
7526      attributes
7527 
7528    Set *DECL_SPECS to a representation of the decl-specifier-seq.
7529 
7530    The parser flags FLAGS is used to control type-specifier parsing.
7531 
7532    *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7533    flags:
7534 
7535      1: one of the decl-specifiers is an elaborated-type-specifier
7536 	(i.e., a type declaration)
7537      2: one of the decl-specifiers is an enum-specifier or a
7538 	class-specifier (i.e., a type definition)
7539 
7540    */
7541 
7542 static void
cp_parser_decl_specifier_seq(cp_parser * parser,cp_parser_flags flags,cp_decl_specifier_seq * decl_specs,int * declares_class_or_enum)7543 cp_parser_decl_specifier_seq (cp_parser* parser,
7544 			      cp_parser_flags flags,
7545 			      cp_decl_specifier_seq *decl_specs,
7546 			      int* declares_class_or_enum)
7547 {
7548   bool constructor_possible_p = !parser->in_declarator_p;
7549 
7550   /* Clear DECL_SPECS.  */
7551   clear_decl_specs (decl_specs);
7552 
7553   /* Assume no class or enumeration type is declared.  */
7554   *declares_class_or_enum = 0;
7555 
7556   /* Keep reading specifiers until there are no more to read.  */
7557   while (true)
7558     {
7559       bool constructor_p;
7560       bool found_decl_spec;
7561       cp_token *token;
7562 
7563       /* Peek at the next token.  */
7564       token = cp_lexer_peek_token (parser->lexer);
7565       /* Handle attributes.  */
7566       if (token->keyword == RID_ATTRIBUTE)
7567 	{
7568 	  /* Parse the attributes.  */
7569 	  decl_specs->attributes
7570 	    = chainon (decl_specs->attributes,
7571 		       cp_parser_attributes_opt (parser));
7572 	  continue;
7573 	}
7574       /* Assume we will find a decl-specifier keyword.  */
7575       found_decl_spec = true;
7576       /* If the next token is an appropriate keyword, we can simply
7577 	 add it to the list.  */
7578       switch (token->keyword)
7579 	{
7580 	  /* decl-specifier:
7581 	       friend  */
7582 	case RID_FRIEND:
7583 	  if (!at_class_scope_p ())
7584 	    {
7585 	      error ("%<friend%> used outside of class");
7586 	      cp_lexer_purge_token (parser->lexer);
7587 	    }
7588 	  else
7589 	    {
7590 	      ++decl_specs->specs[(int) ds_friend];
7591 	      /* Consume the token.  */
7592 	      cp_lexer_consume_token (parser->lexer);
7593 	    }
7594 	  break;
7595 
7596 	  /* function-specifier:
7597 	       inline
7598 	       virtual
7599 	       explicit  */
7600 	case RID_INLINE:
7601 	case RID_VIRTUAL:
7602 	case RID_EXPLICIT:
7603 	  cp_parser_function_specifier_opt (parser, decl_specs);
7604 	  break;
7605 
7606 	  /* decl-specifier:
7607 	       typedef  */
7608 	case RID_TYPEDEF:
7609 	  ++decl_specs->specs[(int) ds_typedef];
7610 	  /* Consume the token.  */
7611 	  cp_lexer_consume_token (parser->lexer);
7612 	  /* A constructor declarator cannot appear in a typedef.  */
7613 	  constructor_possible_p = false;
7614 	  /* The "typedef" keyword can only occur in a declaration; we
7615 	     may as well commit at this point.  */
7616 	  cp_parser_commit_to_tentative_parse (parser);
7617 
7618           if (decl_specs->storage_class != sc_none)
7619             decl_specs->conflicting_specifiers_p = true;
7620 	  break;
7621 
7622 	  /* storage-class-specifier:
7623 	       auto
7624 	       register
7625 	       static
7626 	       extern
7627 	       mutable
7628 
7629 	     GNU Extension:
7630 	       thread  */
7631 	case RID_AUTO:
7632 	case RID_REGISTER:
7633 	case RID_STATIC:
7634 	case RID_EXTERN:
7635 	case RID_MUTABLE:
7636 	  /* Consume the token.  */
7637 	  cp_lexer_consume_token (parser->lexer);
7638 	  cp_parser_set_storage_class (parser, decl_specs, token->keyword);
7639 	  break;
7640 	case RID_THREAD:
7641 	  /* Consume the token.  */
7642 	  cp_lexer_consume_token (parser->lexer);
7643 	  ++decl_specs->specs[(int) ds_thread];
7644 	  break;
7645 
7646 	default:
7647 	  /* We did not yet find a decl-specifier yet.  */
7648 	  found_decl_spec = false;
7649 	  break;
7650 	}
7651 
7652       /* Constructors are a special case.  The `S' in `S()' is not a
7653 	 decl-specifier; it is the beginning of the declarator.  */
7654       constructor_p
7655 	= (!found_decl_spec
7656 	   && constructor_possible_p
7657 	   && (cp_parser_constructor_declarator_p
7658 	       (parser, decl_specs->specs[(int) ds_friend] != 0)));
7659 
7660       /* If we don't have a DECL_SPEC yet, then we must be looking at
7661 	 a type-specifier.  */
7662       if (!found_decl_spec && !constructor_p)
7663 	{
7664 	  int decl_spec_declares_class_or_enum;
7665 	  bool is_cv_qualifier;
7666 	  tree type_spec;
7667 
7668 	  type_spec
7669 	    = cp_parser_type_specifier (parser, flags,
7670 					decl_specs,
7671 					/*is_declaration=*/true,
7672 					&decl_spec_declares_class_or_enum,
7673 					&is_cv_qualifier);
7674 
7675 	  *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7676 
7677 	  /* If this type-specifier referenced a user-defined type
7678 	     (a typedef, class-name, etc.), then we can't allow any
7679 	     more such type-specifiers henceforth.
7680 
7681 	     [dcl.spec]
7682 
7683 	     The longest sequence of decl-specifiers that could
7684 	     possibly be a type name is taken as the
7685 	     decl-specifier-seq of a declaration.  The sequence shall
7686 	     be self-consistent as described below.
7687 
7688 	     [dcl.type]
7689 
7690 	     As a general rule, at most one type-specifier is allowed
7691 	     in the complete decl-specifier-seq of a declaration.  The
7692 	     only exceptions are the following:
7693 
7694 	     -- const or volatile can be combined with any other
7695 		type-specifier.
7696 
7697 	     -- signed or unsigned can be combined with char, long,
7698 		short, or int.
7699 
7700 	     -- ..
7701 
7702 	     Example:
7703 
7704 	       typedef char* Pc;
7705 	       void g (const int Pc);
7706 
7707 	     Here, Pc is *not* part of the decl-specifier seq; it's
7708 	     the declarator.  Therefore, once we see a type-specifier
7709 	     (other than a cv-qualifier), we forbid any additional
7710 	     user-defined types.  We *do* still allow things like `int
7711 	     int' to be considered a decl-specifier-seq, and issue the
7712 	     error message later.  */
7713 	  if (type_spec && !is_cv_qualifier)
7714 	    flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7715 	  /* A constructor declarator cannot follow a type-specifier.  */
7716 	  if (type_spec)
7717 	    {
7718 	      constructor_possible_p = false;
7719 	      found_decl_spec = true;
7720 	    }
7721 	}
7722 
7723       /* If we still do not have a DECL_SPEC, then there are no more
7724 	 decl-specifiers.  */
7725       if (!found_decl_spec)
7726 	break;
7727 
7728       decl_specs->any_specifiers_p = true;
7729       /* After we see one decl-specifier, further decl-specifiers are
7730 	 always optional.  */
7731       flags |= CP_PARSER_FLAGS_OPTIONAL;
7732     }
7733 
7734   cp_parser_check_decl_spec (decl_specs);
7735 
7736   /* Don't allow a friend specifier with a class definition.  */
7737   if (decl_specs->specs[(int) ds_friend] != 0
7738       && (*declares_class_or_enum & 2))
7739     error ("class definition may not be declared a friend");
7740 }
7741 
7742 /* Parse an (optional) storage-class-specifier.
7743 
7744    storage-class-specifier:
7745      auto
7746      register
7747      static
7748      extern
7749      mutable
7750 
7751    GNU Extension:
7752 
7753    storage-class-specifier:
7754      thread
7755 
7756    Returns an IDENTIFIER_NODE corresponding to the keyword used.  */
7757 
7758 static tree
cp_parser_storage_class_specifier_opt(cp_parser * parser)7759 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7760 {
7761   switch (cp_lexer_peek_token (parser->lexer)->keyword)
7762     {
7763     case RID_AUTO:
7764     case RID_REGISTER:
7765     case RID_STATIC:
7766     case RID_EXTERN:
7767     case RID_MUTABLE:
7768     case RID_THREAD:
7769       /* Consume the token.  */
7770       return cp_lexer_consume_token (parser->lexer)->u.value;
7771 
7772     default:
7773       return NULL_TREE;
7774     }
7775 }
7776 
7777 /* Parse an (optional) function-specifier.
7778 
7779    function-specifier:
7780      inline
7781      virtual
7782      explicit
7783 
7784    Returns an IDENTIFIER_NODE corresponding to the keyword used.
7785    Updates DECL_SPECS, if it is non-NULL.  */
7786 
7787 static tree
cp_parser_function_specifier_opt(cp_parser * parser,cp_decl_specifier_seq * decl_specs)7788 cp_parser_function_specifier_opt (cp_parser* parser,
7789 				  cp_decl_specifier_seq *decl_specs)
7790 {
7791   switch (cp_lexer_peek_token (parser->lexer)->keyword)
7792     {
7793     case RID_INLINE:
7794       if (decl_specs)
7795 	++decl_specs->specs[(int) ds_inline];
7796       break;
7797 
7798     case RID_VIRTUAL:
7799       /* 14.5.2.3 [temp.mem]
7800 
7801 	 A member function template shall not be virtual.  */
7802       if (PROCESSING_REAL_TEMPLATE_DECL_P ())
7803 	error ("templates may not be %<virtual%>");
7804       else if (decl_specs)
7805 	++decl_specs->specs[(int) ds_virtual];
7806       break;
7807 
7808     case RID_EXPLICIT:
7809       if (decl_specs)
7810 	++decl_specs->specs[(int) ds_explicit];
7811       break;
7812 
7813     default:
7814       return NULL_TREE;
7815     }
7816 
7817   /* Consume the token.  */
7818   return cp_lexer_consume_token (parser->lexer)->u.value;
7819 }
7820 
7821 /* Parse a linkage-specification.
7822 
7823    linkage-specification:
7824      extern string-literal { declaration-seq [opt] }
7825      extern string-literal declaration  */
7826 
7827 static void
cp_parser_linkage_specification(cp_parser * parser)7828 cp_parser_linkage_specification (cp_parser* parser)
7829 {
7830   tree linkage;
7831 
7832   /* Look for the `extern' keyword.  */
7833   cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7834 
7835   /* Look for the string-literal.  */
7836   linkage = cp_parser_string_literal (parser, false, false);
7837 
7838   /* Transform the literal into an identifier.  If the literal is a
7839      wide-character string, or contains embedded NULs, then we can't
7840      handle it as the user wants.  */
7841   if (strlen (TREE_STRING_POINTER (linkage))
7842       != (size_t) (TREE_STRING_LENGTH (linkage) - 1))
7843     {
7844       cp_parser_error (parser, "invalid linkage-specification");
7845       /* Assume C++ linkage.  */
7846       linkage = lang_name_cplusplus;
7847     }
7848   else
7849     linkage = get_identifier (TREE_STRING_POINTER (linkage));
7850 
7851   /* We're now using the new linkage.  */
7852   push_lang_context (linkage);
7853 
7854   /* If the next token is a `{', then we're using the first
7855      production.  */
7856   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7857     {
7858       /* Consume the `{' token.  */
7859       cp_lexer_consume_token (parser->lexer);
7860       /* Parse the declarations.  */
7861       cp_parser_declaration_seq_opt (parser);
7862       /* Look for the closing `}'.  */
7863       cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7864     }
7865   /* Otherwise, there's just one declaration.  */
7866   else
7867     {
7868       bool saved_in_unbraced_linkage_specification_p;
7869 
7870       saved_in_unbraced_linkage_specification_p
7871 	= parser->in_unbraced_linkage_specification_p;
7872       parser->in_unbraced_linkage_specification_p = true;
7873       cp_parser_declaration (parser);
7874       parser->in_unbraced_linkage_specification_p
7875 	= saved_in_unbraced_linkage_specification_p;
7876     }
7877 
7878   /* We're done with the linkage-specification.  */
7879   pop_lang_context ();
7880 }
7881 
7882 /* Special member functions [gram.special] */
7883 
7884 /* Parse a conversion-function-id.
7885 
7886    conversion-function-id:
7887      operator conversion-type-id
7888 
7889    Returns an IDENTIFIER_NODE representing the operator.  */
7890 
7891 static tree
cp_parser_conversion_function_id(cp_parser * parser)7892 cp_parser_conversion_function_id (cp_parser* parser)
7893 {
7894   tree type;
7895   tree saved_scope;
7896   tree saved_qualifying_scope;
7897   tree saved_object_scope;
7898   tree pushed_scope = NULL_TREE;
7899 
7900   /* Look for the `operator' token.  */
7901   if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7902     return error_mark_node;
7903   /* When we parse the conversion-type-id, the current scope will be
7904      reset.  However, we need that information in able to look up the
7905      conversion function later, so we save it here.  */
7906   saved_scope = parser->scope;
7907   saved_qualifying_scope = parser->qualifying_scope;
7908   saved_object_scope = parser->object_scope;
7909   /* We must enter the scope of the class so that the names of
7910      entities declared within the class are available in the
7911      conversion-type-id.  For example, consider:
7912 
7913        struct S {
7914 	 typedef int I;
7915 	 operator I();
7916        };
7917 
7918        S::operator I() { ... }
7919 
7920      In order to see that `I' is a type-name in the definition, we
7921      must be in the scope of `S'.  */
7922   if (saved_scope)
7923     pushed_scope = push_scope (saved_scope);
7924   /* Parse the conversion-type-id.  */
7925   type = cp_parser_conversion_type_id (parser);
7926   /* Leave the scope of the class, if any.  */
7927   if (pushed_scope)
7928     pop_scope (pushed_scope);
7929   /* Restore the saved scope.  */
7930   parser->scope = saved_scope;
7931   parser->qualifying_scope = saved_qualifying_scope;
7932   parser->object_scope = saved_object_scope;
7933   /* If the TYPE is invalid, indicate failure.  */
7934   if (type == error_mark_node)
7935     return error_mark_node;
7936   return mangle_conv_op_name_for_type (type);
7937 }
7938 
7939 /* Parse a conversion-type-id:
7940 
7941    conversion-type-id:
7942      type-specifier-seq conversion-declarator [opt]
7943 
7944    Returns the TYPE specified.  */
7945 
7946 static tree
cp_parser_conversion_type_id(cp_parser * parser)7947 cp_parser_conversion_type_id (cp_parser* parser)
7948 {
7949   tree attributes;
7950   cp_decl_specifier_seq type_specifiers;
7951   cp_declarator *declarator;
7952   tree type_specified;
7953 
7954   /* Parse the attributes.  */
7955   attributes = cp_parser_attributes_opt (parser);
7956   /* Parse the type-specifiers.  */
7957   cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
7958 				&type_specifiers);
7959   /* If that didn't work, stop.  */
7960   if (type_specifiers.type == error_mark_node)
7961     return error_mark_node;
7962   /* Parse the conversion-declarator.  */
7963   declarator = cp_parser_conversion_declarator_opt (parser);
7964 
7965   type_specified =  grokdeclarator (declarator, &type_specifiers, TYPENAME,
7966 				    /*initialized=*/0, &attributes);
7967   if (attributes)
7968     cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
7969   return type_specified;
7970 }
7971 
7972 /* Parse an (optional) conversion-declarator.
7973 
7974    conversion-declarator:
7975      ptr-operator conversion-declarator [opt]
7976 
7977    */
7978 
7979 static cp_declarator *
cp_parser_conversion_declarator_opt(cp_parser * parser)7980 cp_parser_conversion_declarator_opt (cp_parser* parser)
7981 {
7982   enum tree_code code;
7983   tree class_type;
7984   cp_cv_quals cv_quals;
7985 
7986   /* We don't know if there's a ptr-operator next, or not.  */
7987   cp_parser_parse_tentatively (parser);
7988   /* Try the ptr-operator.  */
7989   code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7990   /* If it worked, look for more conversion-declarators.  */
7991   if (cp_parser_parse_definitely (parser))
7992     {
7993       cp_declarator *declarator;
7994 
7995       /* Parse another optional declarator.  */
7996       declarator = cp_parser_conversion_declarator_opt (parser);
7997 
7998       /* Create the representation of the declarator.  */
7999       if (class_type)
8000 	declarator = make_ptrmem_declarator (cv_quals, class_type,
8001 					     declarator);
8002       else if (code == INDIRECT_REF)
8003 	declarator = make_pointer_declarator (cv_quals, declarator);
8004       else
8005 	declarator = make_reference_declarator (cv_quals, declarator);
8006 
8007       return declarator;
8008    }
8009 
8010   return NULL;
8011 }
8012 
8013 /* Parse an (optional) ctor-initializer.
8014 
8015    ctor-initializer:
8016      : mem-initializer-list
8017 
8018    Returns TRUE iff the ctor-initializer was actually present.  */
8019 
8020 static bool
cp_parser_ctor_initializer_opt(cp_parser * parser)8021 cp_parser_ctor_initializer_opt (cp_parser* parser)
8022 {
8023   /* If the next token is not a `:', then there is no
8024      ctor-initializer.  */
8025   if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
8026     {
8027       /* Do default initialization of any bases and members.  */
8028       if (DECL_CONSTRUCTOR_P (current_function_decl))
8029 	finish_mem_initializers (NULL_TREE);
8030 
8031       return false;
8032     }
8033 
8034   /* Consume the `:' token.  */
8035   cp_lexer_consume_token (parser->lexer);
8036   /* And the mem-initializer-list.  */
8037   cp_parser_mem_initializer_list (parser);
8038 
8039   return true;
8040 }
8041 
8042 /* Parse a mem-initializer-list.
8043 
8044    mem-initializer-list:
8045      mem-initializer
8046      mem-initializer , mem-initializer-list  */
8047 
8048 static void
cp_parser_mem_initializer_list(cp_parser * parser)8049 cp_parser_mem_initializer_list (cp_parser* parser)
8050 {
8051   tree mem_initializer_list = NULL_TREE;
8052 
8053   /* Let the semantic analysis code know that we are starting the
8054      mem-initializer-list.  */
8055   if (!DECL_CONSTRUCTOR_P (current_function_decl))
8056     error ("only constructors take base initializers");
8057 
8058   /* Loop through the list.  */
8059   while (true)
8060     {
8061       tree mem_initializer;
8062 
8063       /* Parse the mem-initializer.  */
8064       mem_initializer = cp_parser_mem_initializer (parser);
8065       /* Add it to the list, unless it was erroneous.  */
8066       if (mem_initializer != error_mark_node)
8067 	{
8068 	  TREE_CHAIN (mem_initializer) = mem_initializer_list;
8069 	  mem_initializer_list = mem_initializer;
8070 	}
8071       /* If the next token is not a `,', we're done.  */
8072       if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8073 	break;
8074       /* Consume the `,' token.  */
8075       cp_lexer_consume_token (parser->lexer);
8076     }
8077 
8078   /* Perform semantic analysis.  */
8079   if (DECL_CONSTRUCTOR_P (current_function_decl))
8080     finish_mem_initializers (mem_initializer_list);
8081 }
8082 
8083 /* Parse a mem-initializer.
8084 
8085    mem-initializer:
8086      mem-initializer-id ( expression-list [opt] )
8087 
8088    GNU extension:
8089 
8090    mem-initializer:
8091      ( expression-list [opt] )
8092 
8093    Returns a TREE_LIST.  The TREE_PURPOSE is the TYPE (for a base
8094    class) or FIELD_DECL (for a non-static data member) to initialize;
8095    the TREE_VALUE is the expression-list.  An empty initialization
8096    list is represented by void_list_node.  */
8097 
8098 static tree
cp_parser_mem_initializer(cp_parser * parser)8099 cp_parser_mem_initializer (cp_parser* parser)
8100 {
8101   tree mem_initializer_id;
8102   tree expression_list;
8103   tree member;
8104 
8105   /* Find out what is being initialized.  */
8106   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
8107     {
8108       pedwarn ("anachronistic old-style base class initializer");
8109       mem_initializer_id = NULL_TREE;
8110     }
8111   else
8112     mem_initializer_id = cp_parser_mem_initializer_id (parser);
8113   member = expand_member_init (mem_initializer_id);
8114   if (member && !DECL_P (member))
8115     in_base_initializer = 1;
8116 
8117   expression_list
8118     = cp_parser_parenthesized_expression_list (parser, false,
8119 					       /*cast_p=*/false,
8120 					       /*non_constant_p=*/NULL);
8121   if (expression_list == error_mark_node)
8122     return error_mark_node;
8123   if (!expression_list)
8124     expression_list = void_type_node;
8125 
8126   in_base_initializer = 0;
8127 
8128   return member ? build_tree_list (member, expression_list) : error_mark_node;
8129 }
8130 
8131 /* Parse a mem-initializer-id.
8132 
8133    mem-initializer-id:
8134      :: [opt] nested-name-specifier [opt] class-name
8135      identifier
8136 
8137    Returns a TYPE indicating the class to be initializer for the first
8138    production.  Returns an IDENTIFIER_NODE indicating the data member
8139    to be initialized for the second production.  */
8140 
8141 static tree
cp_parser_mem_initializer_id(cp_parser * parser)8142 cp_parser_mem_initializer_id (cp_parser* parser)
8143 {
8144   bool global_scope_p;
8145   bool nested_name_specifier_p;
8146   bool template_p = false;
8147   tree id;
8148 
8149   /* `typename' is not allowed in this context ([temp.res]).  */
8150   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
8151     {
8152       error ("keyword %<typename%> not allowed in this context (a qualified "
8153 	     "member initializer is implicitly a type)");
8154       cp_lexer_consume_token (parser->lexer);
8155     }
8156   /* Look for the optional `::' operator.  */
8157   global_scope_p
8158     = (cp_parser_global_scope_opt (parser,
8159 				   /*current_scope_valid_p=*/false)
8160        != NULL_TREE);
8161   /* Look for the optional nested-name-specifier.  The simplest way to
8162      implement:
8163 
8164        [temp.res]
8165 
8166        The keyword `typename' is not permitted in a base-specifier or
8167        mem-initializer; in these contexts a qualified name that
8168        depends on a template-parameter is implicitly assumed to be a
8169        type name.
8170 
8171      is to assume that we have seen the `typename' keyword at this
8172      point.  */
8173   nested_name_specifier_p
8174     = (cp_parser_nested_name_specifier_opt (parser,
8175 					    /*typename_keyword_p=*/true,
8176 					    /*check_dependency_p=*/true,
8177 					    /*type_p=*/true,
8178 					    /*is_declaration=*/true)
8179        != NULL_TREE);
8180   if (nested_name_specifier_p)
8181     template_p = cp_parser_optional_template_keyword (parser);
8182   /* If there is a `::' operator or a nested-name-specifier, then we
8183      are definitely looking for a class-name.  */
8184   if (global_scope_p || nested_name_specifier_p)
8185     return cp_parser_class_name (parser,
8186 				 /*typename_keyword_p=*/true,
8187 				 /*template_keyword_p=*/template_p,
8188 				 none_type,
8189 				 /*check_dependency_p=*/true,
8190 				 /*class_head_p=*/false,
8191 				 /*is_declaration=*/true);
8192   /* Otherwise, we could also be looking for an ordinary identifier.  */
8193   cp_parser_parse_tentatively (parser);
8194   /* Try a class-name.  */
8195   id = cp_parser_class_name (parser,
8196 			     /*typename_keyword_p=*/true,
8197 			     /*template_keyword_p=*/false,
8198 			     none_type,
8199 			     /*check_dependency_p=*/true,
8200 			     /*class_head_p=*/false,
8201 			     /*is_declaration=*/true);
8202   /* If we found one, we're done.  */
8203   if (cp_parser_parse_definitely (parser))
8204     return id;
8205   /* Otherwise, look for an ordinary identifier.  */
8206   return cp_parser_identifier (parser);
8207 }
8208 
8209 /* Overloading [gram.over] */
8210 
8211 /* Parse an operator-function-id.
8212 
8213    operator-function-id:
8214      operator operator
8215 
8216    Returns an IDENTIFIER_NODE for the operator which is a
8217    human-readable spelling of the identifier, e.g., `operator +'.  */
8218 
8219 static tree
cp_parser_operator_function_id(cp_parser * parser)8220 cp_parser_operator_function_id (cp_parser* parser)
8221 {
8222   /* Look for the `operator' keyword.  */
8223   if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
8224     return error_mark_node;
8225   /* And then the name of the operator itself.  */
8226   return cp_parser_operator (parser);
8227 }
8228 
8229 /* Parse an operator.
8230 
8231    operator:
8232      new delete new[] delete[] + - * / % ^ & | ~ ! = < >
8233      += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
8234      || ++ -- , ->* -> () []
8235 
8236    GNU Extensions:
8237 
8238    operator:
8239      <? >? <?= >?=
8240 
8241    Returns an IDENTIFIER_NODE for the operator which is a
8242    human-readable spelling of the identifier, e.g., `operator +'.  */
8243 
8244 static tree
cp_parser_operator(cp_parser * parser)8245 cp_parser_operator (cp_parser* parser)
8246 {
8247   tree id = NULL_TREE;
8248   cp_token *token;
8249 
8250   /* Peek at the next token.  */
8251   token = cp_lexer_peek_token (parser->lexer);
8252   /* Figure out which operator we have.  */
8253   switch (token->type)
8254     {
8255     case CPP_KEYWORD:
8256       {
8257 	enum tree_code op;
8258 
8259 	/* The keyword should be either `new' or `delete'.  */
8260 	if (token->keyword == RID_NEW)
8261 	  op = NEW_EXPR;
8262 	else if (token->keyword == RID_DELETE)
8263 	  op = DELETE_EXPR;
8264 	else
8265 	  break;
8266 
8267 	/* Consume the `new' or `delete' token.  */
8268 	cp_lexer_consume_token (parser->lexer);
8269 
8270 	/* Peek at the next token.  */
8271 	token = cp_lexer_peek_token (parser->lexer);
8272 	/* If it's a `[' token then this is the array variant of the
8273 	   operator.  */
8274 	if (token->type == CPP_OPEN_SQUARE)
8275 	  {
8276 	    /* Consume the `[' token.  */
8277 	    cp_lexer_consume_token (parser->lexer);
8278 	    /* Look for the `]' token.  */
8279 	    cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
8280 	    id = ansi_opname (op == NEW_EXPR
8281 			      ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
8282 	  }
8283 	/* Otherwise, we have the non-array variant.  */
8284 	else
8285 	  id = ansi_opname (op);
8286 
8287 	return id;
8288       }
8289 
8290     case CPP_PLUS:
8291       id = ansi_opname (PLUS_EXPR);
8292       break;
8293 
8294     case CPP_MINUS:
8295       id = ansi_opname (MINUS_EXPR);
8296       break;
8297 
8298     case CPP_MULT:
8299       id = ansi_opname (MULT_EXPR);
8300       break;
8301 
8302     case CPP_DIV:
8303       id = ansi_opname (TRUNC_DIV_EXPR);
8304       break;
8305 
8306     case CPP_MOD:
8307       id = ansi_opname (TRUNC_MOD_EXPR);
8308       break;
8309 
8310     case CPP_XOR:
8311       id = ansi_opname (BIT_XOR_EXPR);
8312       break;
8313 
8314     case CPP_AND:
8315       id = ansi_opname (BIT_AND_EXPR);
8316       break;
8317 
8318     case CPP_OR:
8319       id = ansi_opname (BIT_IOR_EXPR);
8320       break;
8321 
8322     case CPP_COMPL:
8323       id = ansi_opname (BIT_NOT_EXPR);
8324       break;
8325 
8326     case CPP_NOT:
8327       id = ansi_opname (TRUTH_NOT_EXPR);
8328       break;
8329 
8330     case CPP_EQ:
8331       id = ansi_assopname (NOP_EXPR);
8332       break;
8333 
8334     case CPP_LESS:
8335       id = ansi_opname (LT_EXPR);
8336       break;
8337 
8338     case CPP_GREATER:
8339       id = ansi_opname (GT_EXPR);
8340       break;
8341 
8342     case CPP_PLUS_EQ:
8343       id = ansi_assopname (PLUS_EXPR);
8344       break;
8345 
8346     case CPP_MINUS_EQ:
8347       id = ansi_assopname (MINUS_EXPR);
8348       break;
8349 
8350     case CPP_MULT_EQ:
8351       id = ansi_assopname (MULT_EXPR);
8352       break;
8353 
8354     case CPP_DIV_EQ:
8355       id = ansi_assopname (TRUNC_DIV_EXPR);
8356       break;
8357 
8358     case CPP_MOD_EQ:
8359       id = ansi_assopname (TRUNC_MOD_EXPR);
8360       break;
8361 
8362     case CPP_XOR_EQ:
8363       id = ansi_assopname (BIT_XOR_EXPR);
8364       break;
8365 
8366     case CPP_AND_EQ:
8367       id = ansi_assopname (BIT_AND_EXPR);
8368       break;
8369 
8370     case CPP_OR_EQ:
8371       id = ansi_assopname (BIT_IOR_EXPR);
8372       break;
8373 
8374     case CPP_LSHIFT:
8375       id = ansi_opname (LSHIFT_EXPR);
8376       break;
8377 
8378     case CPP_RSHIFT:
8379       id = ansi_opname (RSHIFT_EXPR);
8380       break;
8381 
8382     case CPP_LSHIFT_EQ:
8383       id = ansi_assopname (LSHIFT_EXPR);
8384       break;
8385 
8386     case CPP_RSHIFT_EQ:
8387       id = ansi_assopname (RSHIFT_EXPR);
8388       break;
8389 
8390     case CPP_EQ_EQ:
8391       id = ansi_opname (EQ_EXPR);
8392       break;
8393 
8394     case CPP_NOT_EQ:
8395       id = ansi_opname (NE_EXPR);
8396       break;
8397 
8398     case CPP_LESS_EQ:
8399       id = ansi_opname (LE_EXPR);
8400       break;
8401 
8402     case CPP_GREATER_EQ:
8403       id = ansi_opname (GE_EXPR);
8404       break;
8405 
8406     case CPP_AND_AND:
8407       id = ansi_opname (TRUTH_ANDIF_EXPR);
8408       break;
8409 
8410     case CPP_OR_OR:
8411       id = ansi_opname (TRUTH_ORIF_EXPR);
8412       break;
8413 
8414     case CPP_PLUS_PLUS:
8415       id = ansi_opname (POSTINCREMENT_EXPR);
8416       break;
8417 
8418     case CPP_MINUS_MINUS:
8419       id = ansi_opname (PREDECREMENT_EXPR);
8420       break;
8421 
8422     case CPP_COMMA:
8423       id = ansi_opname (COMPOUND_EXPR);
8424       break;
8425 
8426     case CPP_DEREF_STAR:
8427       id = ansi_opname (MEMBER_REF);
8428       break;
8429 
8430     case CPP_DEREF:
8431       id = ansi_opname (COMPONENT_REF);
8432       break;
8433 
8434     case CPP_OPEN_PAREN:
8435       /* Consume the `('.  */
8436       cp_lexer_consume_token (parser->lexer);
8437       /* Look for the matching `)'.  */
8438       cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
8439       return ansi_opname (CALL_EXPR);
8440 
8441     case CPP_OPEN_SQUARE:
8442       /* Consume the `['.  */
8443       cp_lexer_consume_token (parser->lexer);
8444       /* Look for the matching `]'.  */
8445       cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
8446       return ansi_opname (ARRAY_REF);
8447 
8448     default:
8449       /* Anything else is an error.  */
8450       break;
8451     }
8452 
8453   /* If we have selected an identifier, we need to consume the
8454      operator token.  */
8455   if (id)
8456     cp_lexer_consume_token (parser->lexer);
8457   /* Otherwise, no valid operator name was present.  */
8458   else
8459     {
8460       cp_parser_error (parser, "expected operator");
8461       id = error_mark_node;
8462     }
8463 
8464   return id;
8465 }
8466 
8467 /* Parse a template-declaration.
8468 
8469    template-declaration:
8470      export [opt] template < template-parameter-list > declaration
8471 
8472    If MEMBER_P is TRUE, this template-declaration occurs within a
8473    class-specifier.
8474 
8475    The grammar rule given by the standard isn't correct.  What
8476    is really meant is:
8477 
8478    template-declaration:
8479      export [opt] template-parameter-list-seq
8480        decl-specifier-seq [opt] init-declarator [opt] ;
8481      export [opt] template-parameter-list-seq
8482        function-definition
8483 
8484    template-parameter-list-seq:
8485      template-parameter-list-seq [opt]
8486      template < template-parameter-list >  */
8487 
8488 static void
cp_parser_template_declaration(cp_parser * parser,bool member_p)8489 cp_parser_template_declaration (cp_parser* parser, bool member_p)
8490 {
8491   /* Check for `export'.  */
8492   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
8493     {
8494       /* Consume the `export' token.  */
8495       cp_lexer_consume_token (parser->lexer);
8496       /* Warn that we do not support `export'.  */
8497       warning (0, "keyword %<export%> not implemented, and will be ignored");
8498     }
8499 
8500   cp_parser_template_declaration_after_export (parser, member_p);
8501 }
8502 
8503 /* Parse a template-parameter-list.
8504 
8505    template-parameter-list:
8506      template-parameter
8507      template-parameter-list , template-parameter
8508 
8509    Returns a TREE_LIST.  Each node represents a template parameter.
8510    The nodes are connected via their TREE_CHAINs.  */
8511 
8512 static tree
cp_parser_template_parameter_list(cp_parser * parser)8513 cp_parser_template_parameter_list (cp_parser* parser)
8514 {
8515   tree parameter_list = NULL_TREE;
8516 
8517   begin_template_parm_list ();
8518   while (true)
8519     {
8520       tree parameter;
8521       cp_token *token;
8522       bool is_non_type;
8523 
8524       /* Parse the template-parameter.  */
8525       parameter = cp_parser_template_parameter (parser, &is_non_type);
8526       /* Add it to the list.  */
8527       if (parameter != error_mark_node)
8528 	parameter_list = process_template_parm (parameter_list,
8529 						parameter,
8530 						is_non_type);
8531       else
8532        {
8533          tree err_parm = build_tree_list (parameter, parameter);
8534          TREE_VALUE (err_parm) = error_mark_node;
8535          parameter_list = chainon (parameter_list, err_parm);
8536        }
8537 
8538       /* Peek at the next token.  */
8539       token = cp_lexer_peek_token (parser->lexer);
8540       /* If it's not a `,', we're done.  */
8541       if (token->type != CPP_COMMA)
8542 	break;
8543       /* Otherwise, consume the `,' token.  */
8544       cp_lexer_consume_token (parser->lexer);
8545     }
8546 
8547   return end_template_parm_list (parameter_list);
8548 }
8549 
8550 /* Parse a template-parameter.
8551 
8552    template-parameter:
8553      type-parameter
8554      parameter-declaration
8555 
8556    If all goes well, returns a TREE_LIST.  The TREE_VALUE represents
8557    the parameter.  The TREE_PURPOSE is the default value, if any.
8558    Returns ERROR_MARK_NODE on failure.  *IS_NON_TYPE is set to true
8559    iff this parameter is a non-type parameter.  */
8560 
8561 static tree
cp_parser_template_parameter(cp_parser * parser,bool * is_non_type)8562 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8563 {
8564   cp_token *token;
8565   cp_parameter_declarator *parameter_declarator;
8566   tree parm;
8567 
8568   /* Assume it is a type parameter or a template parameter.  */
8569   *is_non_type = false;
8570   /* Peek at the next token.  */
8571   token = cp_lexer_peek_token (parser->lexer);
8572   /* If it is `class' or `template', we have a type-parameter.  */
8573   if (token->keyword == RID_TEMPLATE)
8574     return cp_parser_type_parameter (parser);
8575   /* If it is `class' or `typename' we do not know yet whether it is a
8576      type parameter or a non-type parameter.  Consider:
8577 
8578        template <typename T, typename T::X X> ...
8579 
8580      or:
8581 
8582        template <class C, class D*> ...
8583 
8584      Here, the first parameter is a type parameter, and the second is
8585      a non-type parameter.  We can tell by looking at the token after
8586      the identifier -- if it is a `,', `=', or `>' then we have a type
8587      parameter.  */
8588   if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8589     {
8590       /* Peek at the token after `class' or `typename'.  */
8591       token = cp_lexer_peek_nth_token (parser->lexer, 2);
8592       /* If it's an identifier, skip it.  */
8593       if (token->type == CPP_NAME)
8594 	token = cp_lexer_peek_nth_token (parser->lexer, 3);
8595       /* Now, see if the token looks like the end of a template
8596 	 parameter.  */
8597       if (token->type == CPP_COMMA
8598 	  || token->type == CPP_EQ
8599 	  || token->type == CPP_GREATER)
8600 	return cp_parser_type_parameter (parser);
8601     }
8602 
8603   /* Otherwise, it is a non-type parameter.
8604 
8605      [temp.param]
8606 
8607      When parsing a default template-argument for a non-type
8608      template-parameter, the first non-nested `>' is taken as the end
8609      of the template parameter-list rather than a greater-than
8610      operator.  */
8611   *is_non_type = true;
8612   parameter_declarator
8613      = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8614 					/*parenthesized_p=*/NULL);
8615   parm = grokdeclarator (parameter_declarator->declarator,
8616 			 &parameter_declarator->decl_specifiers,
8617 			 PARM, /*initialized=*/0,
8618 			 /*attrlist=*/NULL);
8619   if (parm == error_mark_node)
8620     return error_mark_node;
8621   return build_tree_list (parameter_declarator->default_argument, parm);
8622 }
8623 
8624 /* Parse a type-parameter.
8625 
8626    type-parameter:
8627      class identifier [opt]
8628      class identifier [opt] = type-id
8629      typename identifier [opt]
8630      typename identifier [opt] = type-id
8631      template < template-parameter-list > class identifier [opt]
8632      template < template-parameter-list > class identifier [opt]
8633        = id-expression
8634 
8635    Returns a TREE_LIST.  The TREE_VALUE is itself a TREE_LIST.  The
8636    TREE_PURPOSE is the default-argument, if any.  The TREE_VALUE is
8637    the declaration of the parameter.  */
8638 
8639 static tree
cp_parser_type_parameter(cp_parser * parser)8640 cp_parser_type_parameter (cp_parser* parser)
8641 {
8642   cp_token *token;
8643   tree parameter;
8644 
8645   /* Look for a keyword to tell us what kind of parameter this is.  */
8646   token = cp_parser_require (parser, CPP_KEYWORD,
8647 			     "`class', `typename', or `template'");
8648   if (!token)
8649     return error_mark_node;
8650 
8651   switch (token->keyword)
8652     {
8653     case RID_CLASS:
8654     case RID_TYPENAME:
8655       {
8656 	tree identifier;
8657 	tree default_argument;
8658 
8659 	/* If the next token is an identifier, then it names the
8660 	   parameter.  */
8661 	if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8662 	  identifier = cp_parser_identifier (parser);
8663 	else
8664 	  identifier = NULL_TREE;
8665 
8666 	/* Create the parameter.  */
8667 	parameter = finish_template_type_parm (class_type_node, identifier);
8668 
8669 	/* If the next token is an `=', we have a default argument.  */
8670 	if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8671 	  {
8672 	    /* Consume the `=' token.  */
8673 	    cp_lexer_consume_token (parser->lexer);
8674 	    /* Parse the default-argument.  */
8675 	    push_deferring_access_checks (dk_no_deferred);
8676 	    default_argument = cp_parser_type_id (parser);
8677 	    pop_deferring_access_checks ();
8678 	  }
8679 	else
8680 	  default_argument = NULL_TREE;
8681 
8682 	/* Create the combined representation of the parameter and the
8683 	   default argument.  */
8684 	parameter = build_tree_list (default_argument, parameter);
8685       }
8686       break;
8687 
8688     case RID_TEMPLATE:
8689       {
8690 	tree parameter_list;
8691 	tree identifier;
8692 	tree default_argument;
8693 
8694 	/* Look for the `<'.  */
8695 	cp_parser_require (parser, CPP_LESS, "`<'");
8696 	/* Parse the template-parameter-list.  */
8697 	parameter_list = cp_parser_template_parameter_list (parser);
8698 	/* Look for the `>'.  */
8699 	cp_parser_require (parser, CPP_GREATER, "`>'");
8700 	/* Look for the `class' keyword.  */
8701 	cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8702 	/* If the next token is an `=', then there is a
8703 	   default-argument.  If the next token is a `>', we are at
8704 	   the end of the parameter-list.  If the next token is a `,',
8705 	   then we are at the end of this parameter.  */
8706 	if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8707 	    && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8708 	    && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8709 	  {
8710 	    identifier = cp_parser_identifier (parser);
8711 	    /* Treat invalid names as if the parameter were nameless.  */
8712 	    if (identifier == error_mark_node)
8713 	      identifier = NULL_TREE;
8714 	  }
8715 	else
8716 	  identifier = NULL_TREE;
8717 
8718 	/* Create the template parameter.  */
8719 	parameter = finish_template_template_parm (class_type_node,
8720 						   identifier);
8721 
8722 	/* If the next token is an `=', then there is a
8723 	   default-argument.  */
8724 	if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8725 	  {
8726 	    bool is_template;
8727 
8728 	    /* Consume the `='.  */
8729 	    cp_lexer_consume_token (parser->lexer);
8730 	    /* Parse the id-expression.  */
8731 	    push_deferring_access_checks (dk_no_deferred);
8732 	    default_argument
8733 	      = cp_parser_id_expression (parser,
8734 					 /*template_keyword_p=*/false,
8735 					 /*check_dependency_p=*/true,
8736 					 /*template_p=*/&is_template,
8737 					 /*declarator_p=*/false,
8738 					 /*optional_p=*/false);
8739 	    if (TREE_CODE (default_argument) == TYPE_DECL)
8740 	      /* If the id-expression was a template-id that refers to
8741 		 a template-class, we already have the declaration here,
8742 		 so no further lookup is needed.  */
8743 		 ;
8744 	    else
8745 	      /* Look up the name.  */
8746 	      default_argument
8747 		= cp_parser_lookup_name (parser, default_argument,
8748 					 none_type,
8749 					 /*is_template=*/is_template,
8750 					 /*is_namespace=*/false,
8751 					 /*check_dependency=*/true,
8752 					 /*ambiguous_decls=*/NULL);
8753 	    /* See if the default argument is valid.  */
8754 	    default_argument
8755 	      = check_template_template_default_arg (default_argument);
8756 	    pop_deferring_access_checks ();
8757 	  }
8758 	else
8759 	  default_argument = NULL_TREE;
8760 
8761 	/* Create the combined representation of the parameter and the
8762 	   default argument.  */
8763 	parameter = build_tree_list (default_argument, parameter);
8764       }
8765       break;
8766 
8767     default:
8768       gcc_unreachable ();
8769       break;
8770     }
8771 
8772   return parameter;
8773 }
8774 
8775 /* Parse a template-id.
8776 
8777    template-id:
8778      template-name < template-argument-list [opt] >
8779 
8780    If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8781    `template' keyword.  In this case, a TEMPLATE_ID_EXPR will be
8782    returned.  Otherwise, if the template-name names a function, or set
8783    of functions, returns a TEMPLATE_ID_EXPR.  If the template-name
8784    names a class, returns a TYPE_DECL for the specialization.
8785 
8786    If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8787    uninstantiated templates.  */
8788 
8789 static tree
cp_parser_template_id(cp_parser * parser,bool template_keyword_p,bool check_dependency_p,bool is_declaration)8790 cp_parser_template_id (cp_parser *parser,
8791 		       bool template_keyword_p,
8792 		       bool check_dependency_p,
8793 		       bool is_declaration)
8794 {
8795   int i;
8796   tree template;
8797   tree arguments;
8798   tree template_id;
8799   cp_token_position start_of_id = 0;
8800   deferred_access_check *chk;
8801   VEC (deferred_access_check,gc) *access_check;
8802   cp_token *next_token, *next_token_2;
8803   bool is_identifier;
8804 
8805   /* If the next token corresponds to a template-id, there is no need
8806      to reparse it.  */
8807   next_token = cp_lexer_peek_token (parser->lexer);
8808   if (next_token->type == CPP_TEMPLATE_ID)
8809     {
8810       struct tree_check *check_value;
8811 
8812       /* Get the stored value.  */
8813       check_value = cp_lexer_consume_token (parser->lexer)->u.tree_check_value;
8814       /* Perform any access checks that were deferred.  */
8815       access_check = check_value->checks;
8816       if (access_check)
8817 	{
8818 	  for (i = 0 ;
8819 	       VEC_iterate (deferred_access_check, access_check, i, chk) ;
8820 	       ++i)
8821 	    {
8822 	      perform_or_defer_access_check (chk->binfo,
8823 					     chk->decl,
8824 					     chk->diag_decl);
8825 	    }
8826 	}
8827       /* Return the stored value.  */
8828       return check_value->value;
8829     }
8830 
8831   /* Avoid performing name lookup if there is no possibility of
8832      finding a template-id.  */
8833   if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8834       || (next_token->type == CPP_NAME
8835 	  && !cp_parser_nth_token_starts_template_argument_list_p
8836 	       (parser, 2)))
8837     {
8838       cp_parser_error (parser, "expected template-id");
8839       return error_mark_node;
8840     }
8841 
8842   /* Remember where the template-id starts.  */
8843   if (cp_parser_uncommitted_to_tentative_parse_p (parser))
8844     start_of_id = cp_lexer_token_position (parser->lexer, false);
8845 
8846   push_deferring_access_checks (dk_deferred);
8847 
8848   /* Parse the template-name.  */
8849   is_identifier = false;
8850   template = cp_parser_template_name (parser, template_keyword_p,
8851 				      check_dependency_p,
8852 				      is_declaration,
8853 				      &is_identifier);
8854   if (template == error_mark_node || is_identifier)
8855     {
8856       pop_deferring_access_checks ();
8857       return template;
8858     }
8859 
8860   /* If we find the sequence `[:' after a template-name, it's probably
8861      a digraph-typo for `< ::'. Substitute the tokens and check if we can
8862      parse correctly the argument list.  */
8863   next_token = cp_lexer_peek_token (parser->lexer);
8864   next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8865   if (next_token->type == CPP_OPEN_SQUARE
8866       && next_token->flags & DIGRAPH
8867       && next_token_2->type == CPP_COLON
8868       && !(next_token_2->flags & PREV_WHITE))
8869     {
8870       cp_parser_parse_tentatively (parser);
8871       /* Change `:' into `::'.  */
8872       next_token_2->type = CPP_SCOPE;
8873       /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8874 	 CPP_LESS.  */
8875       cp_lexer_consume_token (parser->lexer);
8876       /* Parse the arguments.  */
8877       arguments = cp_parser_enclosed_template_argument_list (parser);
8878       if (!cp_parser_parse_definitely (parser))
8879 	{
8880 	  /* If we couldn't parse an argument list, then we revert our changes
8881 	     and return simply an error. Maybe this is not a template-id
8882 	     after all.  */
8883 	  next_token_2->type = CPP_COLON;
8884 	  cp_parser_error (parser, "expected %<<%>");
8885 	  pop_deferring_access_checks ();
8886 	  return error_mark_node;
8887 	}
8888       /* Otherwise, emit an error about the invalid digraph, but continue
8889 	 parsing because we got our argument list.  */
8890       pedwarn ("%<<::%> cannot begin a template-argument list");
8891       inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
8892 	      "between %<<%> and %<::%>");
8893       if (!flag_permissive)
8894 	{
8895 	  static bool hint;
8896 	  if (!hint)
8897 	    {
8898 	      inform ("(if you use -fpermissive G++ will accept your code)");
8899 	      hint = true;
8900 	    }
8901 	}
8902     }
8903   else
8904     {
8905       /* Look for the `<' that starts the template-argument-list.  */
8906       if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8907 	{
8908 	  pop_deferring_access_checks ();
8909 	  return error_mark_node;
8910 	}
8911       /* Parse the arguments.  */
8912       arguments = cp_parser_enclosed_template_argument_list (parser);
8913     }
8914 
8915   /* Build a representation of the specialization.  */
8916   if (TREE_CODE (template) == IDENTIFIER_NODE)
8917     template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8918   else if (DECL_CLASS_TEMPLATE_P (template)
8919 	   || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8920     {
8921       bool entering_scope;
8922       /* In "template <typename T> ... A<T>::", A<T> is the abstract A
8923 	 template (rather than some instantiation thereof) only if
8924 	 is not nested within some other construct.  For example, in
8925 	 "template <typename T> void f(T) { A<T>::", A<T> is just an
8926 	 instantiation of A.  */
8927       entering_scope = (template_parm_scope_p ()
8928 			&& cp_lexer_next_token_is (parser->lexer,
8929 						   CPP_SCOPE));
8930       template_id
8931 	= finish_template_type (template, arguments, entering_scope);
8932     }
8933   else
8934     {
8935       /* If it's not a class-template or a template-template, it should be
8936 	 a function-template.  */
8937       gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8938 		   || TREE_CODE (template) == OVERLOAD
8939 		   || BASELINK_P (template)));
8940 
8941       template_id = lookup_template_function (template, arguments);
8942     }
8943 
8944   /* If parsing tentatively, replace the sequence of tokens that makes
8945      up the template-id with a CPP_TEMPLATE_ID token.  That way,
8946      should we re-parse the token stream, we will not have to repeat
8947      the effort required to do the parse, nor will we issue duplicate
8948      error messages about problems during instantiation of the
8949      template.  */
8950   if (start_of_id)
8951     {
8952       cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
8953 
8954       /* Reset the contents of the START_OF_ID token.  */
8955       token->type = CPP_TEMPLATE_ID;
8956       /* Retrieve any deferred checks.  Do not pop this access checks yet
8957 	 so the memory will not be reclaimed during token replacing below.  */
8958       token->u.tree_check_value = GGC_CNEW (struct tree_check);
8959       token->u.tree_check_value->value = template_id;
8960       token->u.tree_check_value->checks = get_deferred_access_checks ();
8961       token->keyword = RID_MAX;
8962 
8963       /* Purge all subsequent tokens.  */
8964       cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
8965 
8966       /* ??? Can we actually assume that, if template_id ==
8967 	 error_mark_node, we will have issued a diagnostic to the
8968 	 user, as opposed to simply marking the tentative parse as
8969 	 failed?  */
8970       if (cp_parser_error_occurred (parser) && template_id != error_mark_node)
8971 	error ("parse error in template argument list");
8972     }
8973 
8974   pop_deferring_access_checks ();
8975   return template_id;
8976 }
8977 
8978 /* Parse a template-name.
8979 
8980    template-name:
8981      identifier
8982 
8983    The standard should actually say:
8984 
8985    template-name:
8986      identifier
8987      operator-function-id
8988 
8989    A defect report has been filed about this issue.
8990 
8991    A conversion-function-id cannot be a template name because they cannot
8992    be part of a template-id. In fact, looking at this code:
8993 
8994    a.operator K<int>()
8995 
8996    the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8997    It is impossible to call a templated conversion-function-id with an
8998    explicit argument list, since the only allowed template parameter is
8999    the type to which it is converting.
9000 
9001    If TEMPLATE_KEYWORD_P is true, then we have just seen the
9002    `template' keyword, in a construction like:
9003 
9004      T::template f<3>()
9005 
9006    In that case `f' is taken to be a template-name, even though there
9007    is no way of knowing for sure.
9008 
9009    Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
9010    name refers to a set of overloaded functions, at least one of which
9011    is a template, or an IDENTIFIER_NODE with the name of the template,
9012    if TEMPLATE_KEYWORD_P is true.  If CHECK_DEPENDENCY_P is FALSE,
9013    names are looked up inside uninstantiated templates.  */
9014 
9015 static tree
cp_parser_template_name(cp_parser * parser,bool template_keyword_p,bool check_dependency_p,bool is_declaration,bool * is_identifier)9016 cp_parser_template_name (cp_parser* parser,
9017 			 bool template_keyword_p,
9018 			 bool check_dependency_p,
9019 			 bool is_declaration,
9020 			 bool *is_identifier)
9021 {
9022   tree identifier;
9023   tree decl;
9024   tree fns;
9025 
9026   /* If the next token is `operator', then we have either an
9027      operator-function-id or a conversion-function-id.  */
9028   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
9029     {
9030       /* We don't know whether we're looking at an
9031 	 operator-function-id or a conversion-function-id.  */
9032       cp_parser_parse_tentatively (parser);
9033       /* Try an operator-function-id.  */
9034       identifier = cp_parser_operator_function_id (parser);
9035       /* If that didn't work, try a conversion-function-id.  */
9036       if (!cp_parser_parse_definitely (parser))
9037 	{
9038 	  cp_parser_error (parser, "expected template-name");
9039 	  return error_mark_node;
9040 	}
9041     }
9042   /* Look for the identifier.  */
9043   else
9044     identifier = cp_parser_identifier (parser);
9045 
9046   /* If we didn't find an identifier, we don't have a template-id.  */
9047   if (identifier == error_mark_node)
9048     return error_mark_node;
9049 
9050   /* If the name immediately followed the `template' keyword, then it
9051      is a template-name.  However, if the next token is not `<', then
9052      we do not treat it as a template-name, since it is not being used
9053      as part of a template-id.  This enables us to handle constructs
9054      like:
9055 
9056        template <typename T> struct S { S(); };
9057        template <typename T> S<T>::S();
9058 
9059      correctly.  We would treat `S' as a template -- if it were `S<T>'
9060      -- but we do not if there is no `<'.  */
9061 
9062   if (processing_template_decl
9063       && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
9064     {
9065       /* In a declaration, in a dependent context, we pretend that the
9066 	 "template" keyword was present in order to improve error
9067 	 recovery.  For example, given:
9068 
9069 	   template <typename T> void f(T::X<int>);
9070 
9071 	 we want to treat "X<int>" as a template-id.  */
9072       if (is_declaration
9073 	  && !template_keyword_p
9074 	  && parser->scope && TYPE_P (parser->scope)
9075 	  && check_dependency_p
9076 	  && dependent_type_p (parser->scope)
9077 	  /* Do not do this for dtors (or ctors), since they never
9078 	     need the template keyword before their name.  */
9079 	  && !constructor_name_p (identifier, parser->scope))
9080 	{
9081 	  cp_token_position start = 0;
9082 
9083 	  /* Explain what went wrong.  */
9084 	  error ("non-template %qD used as template", identifier);
9085 	  inform ("use %<%T::template %D%> to indicate that it is a template",
9086 		  parser->scope, identifier);
9087 	  /* If parsing tentatively, find the location of the "<" token.  */
9088 	  if (cp_parser_simulate_error (parser))
9089 	    start = cp_lexer_token_position (parser->lexer, true);
9090 	  /* Parse the template arguments so that we can issue error
9091 	     messages about them.  */
9092 	  cp_lexer_consume_token (parser->lexer);
9093 	  cp_parser_enclosed_template_argument_list (parser);
9094 	  /* Skip tokens until we find a good place from which to
9095 	     continue parsing.  */
9096 	  cp_parser_skip_to_closing_parenthesis (parser,
9097 						 /*recovering=*/true,
9098 						 /*or_comma=*/true,
9099 						 /*consume_paren=*/false);
9100 	  /* If parsing tentatively, permanently remove the
9101 	     template argument list.  That will prevent duplicate
9102 	     error messages from being issued about the missing
9103 	     "template" keyword.  */
9104 	  if (start)
9105 	    cp_lexer_purge_tokens_after (parser->lexer, start);
9106 	  if (is_identifier)
9107 	    *is_identifier = true;
9108 	  return identifier;
9109 	}
9110 
9111       /* If the "template" keyword is present, then there is generally
9112 	 no point in doing name-lookup, so we just return IDENTIFIER.
9113 	 But, if the qualifying scope is non-dependent then we can
9114 	 (and must) do name-lookup normally.  */
9115       if (template_keyword_p
9116 	  && (!parser->scope
9117 	      || (TYPE_P (parser->scope)
9118 		  && dependent_type_p (parser->scope))))
9119 	return identifier;
9120     }
9121 
9122   /* Look up the name.  */
9123   decl = cp_parser_lookup_name (parser, identifier,
9124 				none_type,
9125 				/*is_template=*/false,
9126 				/*is_namespace=*/false,
9127 				check_dependency_p,
9128 				/*ambiguous_decls=*/NULL);
9129   decl = maybe_get_template_decl_from_type_decl (decl);
9130 
9131   /* If DECL is a template, then the name was a template-name.  */
9132   if (TREE_CODE (decl) == TEMPLATE_DECL)
9133     ;
9134   else
9135     {
9136       tree fn = NULL_TREE;
9137 
9138       /* The standard does not explicitly indicate whether a name that
9139 	 names a set of overloaded declarations, some of which are
9140 	 templates, is a template-name.  However, such a name should
9141 	 be a template-name; otherwise, there is no way to form a
9142 	 template-id for the overloaded templates.  */
9143       fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
9144       if (TREE_CODE (fns) == OVERLOAD)
9145 	for (fn = fns; fn; fn = OVL_NEXT (fn))
9146 	  if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
9147 	    break;
9148 
9149       if (!fn)
9150 	{
9151 	  /* The name does not name a template.  */
9152 	  cp_parser_error (parser, "expected template-name");
9153 	  return error_mark_node;
9154 	}
9155     }
9156 
9157   /* If DECL is dependent, and refers to a function, then just return
9158      its name; we will look it up again during template instantiation.  */
9159   if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
9160     {
9161       tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
9162       if (TYPE_P (scope) && dependent_type_p (scope))
9163 	return identifier;
9164     }
9165 
9166   return decl;
9167 }
9168 
9169 /* Parse a template-argument-list.
9170 
9171    template-argument-list:
9172      template-argument
9173      template-argument-list , template-argument
9174 
9175    Returns a TREE_VEC containing the arguments.  */
9176 
9177 static tree
cp_parser_template_argument_list(cp_parser * parser)9178 cp_parser_template_argument_list (cp_parser* parser)
9179 {
9180   tree fixed_args[10];
9181   unsigned n_args = 0;
9182   unsigned alloced = 10;
9183   tree *arg_ary = fixed_args;
9184   tree vec;
9185   bool saved_in_template_argument_list_p;
9186   bool saved_ice_p;
9187   bool saved_non_ice_p;
9188 
9189   saved_in_template_argument_list_p = parser->in_template_argument_list_p;
9190   parser->in_template_argument_list_p = true;
9191   /* Even if the template-id appears in an integral
9192      constant-expression, the contents of the argument list do
9193      not.  */
9194   saved_ice_p = parser->integral_constant_expression_p;
9195   parser->integral_constant_expression_p = false;
9196   saved_non_ice_p = parser->non_integral_constant_expression_p;
9197   parser->non_integral_constant_expression_p = false;
9198   /* Parse the arguments.  */
9199   do
9200     {
9201       tree argument;
9202 
9203       if (n_args)
9204 	/* Consume the comma.  */
9205 	cp_lexer_consume_token (parser->lexer);
9206 
9207       /* Parse the template-argument.  */
9208       argument = cp_parser_template_argument (parser);
9209       if (n_args == alloced)
9210 	{
9211 	  alloced *= 2;
9212 
9213 	  if (arg_ary == fixed_args)
9214 	    {
9215 	      arg_ary = XNEWVEC (tree, alloced);
9216 	      memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
9217 	    }
9218 	  else
9219 	    arg_ary = XRESIZEVEC (tree, arg_ary, alloced);
9220 	}
9221       arg_ary[n_args++] = argument;
9222     }
9223   while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
9224 
9225   vec = make_tree_vec (n_args);
9226 
9227   while (n_args--)
9228     TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
9229 
9230   if (arg_ary != fixed_args)
9231     free (arg_ary);
9232   parser->non_integral_constant_expression_p = saved_non_ice_p;
9233   parser->integral_constant_expression_p = saved_ice_p;
9234   parser->in_template_argument_list_p = saved_in_template_argument_list_p;
9235   return vec;
9236 }
9237 
9238 /* Parse a template-argument.
9239 
9240    template-argument:
9241      assignment-expression
9242      type-id
9243      id-expression
9244 
9245    The representation is that of an assignment-expression, type-id, or
9246    id-expression -- except that the qualified id-expression is
9247    evaluated, so that the value returned is either a DECL or an
9248    OVERLOAD.
9249 
9250    Although the standard says "assignment-expression", it forbids
9251    throw-expressions or assignments in the template argument.
9252    Therefore, we use "conditional-expression" instead.  */
9253 
9254 static tree
cp_parser_template_argument(cp_parser * parser)9255 cp_parser_template_argument (cp_parser* parser)
9256 {
9257   tree argument;
9258   bool template_p;
9259   bool address_p;
9260   bool maybe_type_id = false;
9261   cp_token *token;
9262   cp_id_kind idk;
9263 
9264   /* There's really no way to know what we're looking at, so we just
9265      try each alternative in order.
9266 
9267        [temp.arg]
9268 
9269        In a template-argument, an ambiguity between a type-id and an
9270        expression is resolved to a type-id, regardless of the form of
9271        the corresponding template-parameter.
9272 
9273      Therefore, we try a type-id first.  */
9274   cp_parser_parse_tentatively (parser);
9275   argument = cp_parser_type_id (parser);
9276   /* If there was no error parsing the type-id but the next token is a '>>',
9277      we probably found a typo for '> >'. But there are type-id which are
9278      also valid expressions. For instance:
9279 
9280      struct X { int operator >> (int); };
9281      template <int V> struct Foo {};
9282      Foo<X () >> 5> r;
9283 
9284      Here 'X()' is a valid type-id of a function type, but the user just
9285      wanted to write the expression "X() >> 5". Thus, we remember that we
9286      found a valid type-id, but we still try to parse the argument as an
9287      expression to see what happens.  */
9288   if (!cp_parser_error_occurred (parser)
9289       && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
9290     {
9291       maybe_type_id = true;
9292       cp_parser_abort_tentative_parse (parser);
9293     }
9294   else
9295     {
9296       /* If the next token isn't a `,' or a `>', then this argument wasn't
9297       really finished. This means that the argument is not a valid
9298       type-id.  */
9299       if (!cp_parser_next_token_ends_template_argument_p (parser))
9300 	cp_parser_error (parser, "expected template-argument");
9301       /* If that worked, we're done.  */
9302       if (cp_parser_parse_definitely (parser))
9303 	return argument;
9304     }
9305   /* We're still not sure what the argument will be.  */
9306   cp_parser_parse_tentatively (parser);
9307   /* Try a template.  */
9308   argument = cp_parser_id_expression (parser,
9309 				      /*template_keyword_p=*/false,
9310 				      /*check_dependency_p=*/true,
9311 				      &template_p,
9312 				      /*declarator_p=*/false,
9313 				      /*optional_p=*/false);
9314   /* If the next token isn't a `,' or a `>', then this argument wasn't
9315      really finished.  */
9316   if (!cp_parser_next_token_ends_template_argument_p (parser))
9317     cp_parser_error (parser, "expected template-argument");
9318   if (!cp_parser_error_occurred (parser))
9319     {
9320       /* Figure out what is being referred to.  If the id-expression
9321 	 was for a class template specialization, then we will have a
9322 	 TYPE_DECL at this point.  There is no need to do name lookup
9323 	 at this point in that case.  */
9324       if (TREE_CODE (argument) != TYPE_DECL)
9325 	argument = cp_parser_lookup_name (parser, argument,
9326 					  none_type,
9327 					  /*is_template=*/template_p,
9328 					  /*is_namespace=*/false,
9329 					  /*check_dependency=*/true,
9330 					  /*ambiguous_decls=*/NULL);
9331       if (TREE_CODE (argument) != TEMPLATE_DECL
9332 	  && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
9333 	cp_parser_error (parser, "expected template-name");
9334     }
9335   if (cp_parser_parse_definitely (parser))
9336     return argument;
9337   /* It must be a non-type argument.  There permitted cases are given
9338      in [temp.arg.nontype]:
9339 
9340      -- an integral constant-expression of integral or enumeration
9341 	type; or
9342 
9343      -- the name of a non-type template-parameter; or
9344 
9345      -- the name of an object or function with external linkage...
9346 
9347      -- the address of an object or function with external linkage...
9348 
9349      -- a pointer to member...  */
9350   /* Look for a non-type template parameter.  */
9351   if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9352     {
9353       cp_parser_parse_tentatively (parser);
9354       argument = cp_parser_primary_expression (parser,
9355 					       /*adress_p=*/false,
9356 					       /*cast_p=*/false,
9357 					       /*template_arg_p=*/true,
9358 					       &idk);
9359       if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
9360 	  || !cp_parser_next_token_ends_template_argument_p (parser))
9361 	cp_parser_simulate_error (parser);
9362       if (cp_parser_parse_definitely (parser))
9363 	return argument;
9364     }
9365 
9366   /* If the next token is "&", the argument must be the address of an
9367      object or function with external linkage.  */
9368   address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
9369   if (address_p)
9370     cp_lexer_consume_token (parser->lexer);
9371   /* See if we might have an id-expression.  */
9372   token = cp_lexer_peek_token (parser->lexer);
9373   if (token->type == CPP_NAME
9374       || token->keyword == RID_OPERATOR
9375       || token->type == CPP_SCOPE
9376       || token->type == CPP_TEMPLATE_ID
9377       || token->type == CPP_NESTED_NAME_SPECIFIER)
9378     {
9379       cp_parser_parse_tentatively (parser);
9380       argument = cp_parser_primary_expression (parser,
9381 					       address_p,
9382 					       /*cast_p=*/false,
9383 					       /*template_arg_p=*/true,
9384 					       &idk);
9385       if (cp_parser_error_occurred (parser)
9386 	  || !cp_parser_next_token_ends_template_argument_p (parser))
9387 	cp_parser_abort_tentative_parse (parser);
9388       else
9389 	{
9390 	  if (TREE_CODE (argument) == INDIRECT_REF)
9391 	    {
9392 	      gcc_assert (REFERENCE_REF_P (argument));
9393 	      argument = TREE_OPERAND (argument, 0);
9394 	    }
9395 
9396 	  if (TREE_CODE (argument) == VAR_DECL)
9397 	    {
9398 	      /* A variable without external linkage might still be a
9399 		 valid constant-expression, so no error is issued here
9400 		 if the external-linkage check fails.  */
9401 	      if (!address_p && !DECL_EXTERNAL_LINKAGE_P (argument))
9402 		cp_parser_simulate_error (parser);
9403 	    }
9404 	  else if (is_overloaded_fn (argument))
9405 	    /* All overloaded functions are allowed; if the external
9406 	       linkage test does not pass, an error will be issued
9407 	       later.  */
9408 	    ;
9409 	  else if (address_p
9410 		   && (TREE_CODE (argument) == OFFSET_REF
9411 		       || TREE_CODE (argument) == SCOPE_REF))
9412 	    /* A pointer-to-member.  */
9413 	    ;
9414 	  else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX)
9415 	    ;
9416 	  else
9417 	    cp_parser_simulate_error (parser);
9418 
9419 	  if (cp_parser_parse_definitely (parser))
9420 	    {
9421 	      if (address_p)
9422 		argument = build_x_unary_op (ADDR_EXPR, argument);
9423 	      return argument;
9424 	    }
9425 	}
9426     }
9427   /* If the argument started with "&", there are no other valid
9428      alternatives at this point.  */
9429   if (address_p)
9430     {
9431       cp_parser_error (parser, "invalid non-type template argument");
9432       return error_mark_node;
9433     }
9434 
9435   /* If the argument wasn't successfully parsed as a type-id followed
9436      by '>>', the argument can only be a constant expression now.
9437      Otherwise, we try parsing the constant-expression tentatively,
9438      because the argument could really be a type-id.  */
9439   if (maybe_type_id)
9440     cp_parser_parse_tentatively (parser);
9441   argument = cp_parser_constant_expression (parser,
9442 					    /*allow_non_constant_p=*/false,
9443 					    /*non_constant_p=*/NULL);
9444   argument = fold_non_dependent_expr (argument);
9445   if (!maybe_type_id)
9446     return argument;
9447   if (!cp_parser_next_token_ends_template_argument_p (parser))
9448     cp_parser_error (parser, "expected template-argument");
9449   if (cp_parser_parse_definitely (parser))
9450     return argument;
9451   /* We did our best to parse the argument as a non type-id, but that
9452      was the only alternative that matched (albeit with a '>' after
9453      it). We can assume it's just a typo from the user, and a
9454      diagnostic will then be issued.  */
9455   return cp_parser_type_id (parser);
9456 }
9457 
9458 /* Parse an explicit-instantiation.
9459 
9460    explicit-instantiation:
9461      template declaration
9462 
9463    Although the standard says `declaration', what it really means is:
9464 
9465    explicit-instantiation:
9466      template decl-specifier-seq [opt] declarator [opt] ;
9467 
9468    Things like `template int S<int>::i = 5, int S<double>::j;' are not
9469    supposed to be allowed.  A defect report has been filed about this
9470    issue.
9471 
9472    GNU Extension:
9473 
9474    explicit-instantiation:
9475      storage-class-specifier template
9476        decl-specifier-seq [opt] declarator [opt] ;
9477      function-specifier template
9478        decl-specifier-seq [opt] declarator [opt] ;  */
9479 
9480 static void
cp_parser_explicit_instantiation(cp_parser * parser)9481 cp_parser_explicit_instantiation (cp_parser* parser)
9482 {
9483   int declares_class_or_enum;
9484   cp_decl_specifier_seq decl_specifiers;
9485   tree extension_specifier = NULL_TREE;
9486 
9487   /* Look for an (optional) storage-class-specifier or
9488      function-specifier.  */
9489   if (cp_parser_allow_gnu_extensions_p (parser))
9490     {
9491       extension_specifier
9492 	= cp_parser_storage_class_specifier_opt (parser);
9493       if (!extension_specifier)
9494 	extension_specifier
9495 	  = cp_parser_function_specifier_opt (parser,
9496 					      /*decl_specs=*/NULL);
9497     }
9498 
9499   /* Look for the `template' keyword.  */
9500   cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9501   /* Let the front end know that we are processing an explicit
9502      instantiation.  */
9503   begin_explicit_instantiation ();
9504   /* [temp.explicit] says that we are supposed to ignore access
9505      control while processing explicit instantiation directives.  */
9506   push_deferring_access_checks (dk_no_check);
9507   /* Parse a decl-specifier-seq.  */
9508   cp_parser_decl_specifier_seq (parser,
9509 				CP_PARSER_FLAGS_OPTIONAL,
9510 				&decl_specifiers,
9511 				&declares_class_or_enum);
9512   /* If there was exactly one decl-specifier, and it declared a class,
9513      and there's no declarator, then we have an explicit type
9514      instantiation.  */
9515   if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
9516     {
9517       tree type;
9518 
9519       type = check_tag_decl (&decl_specifiers);
9520       /* Turn access control back on for names used during
9521 	 template instantiation.  */
9522       pop_deferring_access_checks ();
9523       if (type)
9524 	do_type_instantiation (type, extension_specifier,
9525 			       /*complain=*/tf_error);
9526     }
9527   else
9528     {
9529       cp_declarator *declarator;
9530       tree decl;
9531 
9532       /* Parse the declarator.  */
9533       declarator
9534 	= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
9535 				/*ctor_dtor_or_conv_p=*/NULL,
9536 				/*parenthesized_p=*/NULL,
9537 				/*member_p=*/false);
9538       if (declares_class_or_enum & 2)
9539 	cp_parser_check_for_definition_in_return_type (declarator,
9540 						       decl_specifiers.type);
9541       if (declarator != cp_error_declarator)
9542 	{
9543 	  decl = grokdeclarator (declarator, &decl_specifiers,
9544 				 NORMAL, 0, &decl_specifiers.attributes);
9545 	  /* Turn access control back on for names used during
9546 	     template instantiation.  */
9547 	  pop_deferring_access_checks ();
9548 	  /* Do the explicit instantiation.  */
9549 	  do_decl_instantiation (decl, extension_specifier);
9550 	}
9551       else
9552 	{
9553 	  pop_deferring_access_checks ();
9554 	  /* Skip the body of the explicit instantiation.  */
9555 	  cp_parser_skip_to_end_of_statement (parser);
9556 	}
9557     }
9558   /* We're done with the instantiation.  */
9559   end_explicit_instantiation ();
9560 
9561   cp_parser_consume_semicolon_at_end_of_statement (parser);
9562 }
9563 
9564 /* Parse an explicit-specialization.
9565 
9566    explicit-specialization:
9567      template < > declaration
9568 
9569    Although the standard says `declaration', what it really means is:
9570 
9571    explicit-specialization:
9572      template <> decl-specifier [opt] init-declarator [opt] ;
9573      template <> function-definition
9574      template <> explicit-specialization
9575      template <> template-declaration  */
9576 
9577 static void
cp_parser_explicit_specialization(cp_parser * parser)9578 cp_parser_explicit_specialization (cp_parser* parser)
9579 {
9580   bool need_lang_pop;
9581   /* Look for the `template' keyword.  */
9582   cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9583   /* Look for the `<'.  */
9584   cp_parser_require (parser, CPP_LESS, "`<'");
9585   /* Look for the `>'.  */
9586   cp_parser_require (parser, CPP_GREATER, "`>'");
9587   /* We have processed another parameter list.  */
9588   ++parser->num_template_parameter_lists;
9589   /* [temp]
9590 
9591      A template ... explicit specialization ... shall not have C
9592      linkage.  */
9593   if (current_lang_name == lang_name_c)
9594     {
9595       error ("template specialization with C linkage");
9596       /* Give it C++ linkage to avoid confusing other parts of the
9597 	 front end.  */
9598       push_lang_context (lang_name_cplusplus);
9599       need_lang_pop = true;
9600     }
9601   else
9602     need_lang_pop = false;
9603   /* Let the front end know that we are beginning a specialization.  */
9604   if (!begin_specialization ())
9605     {
9606       end_specialization ();
9607       cp_parser_skip_to_end_of_block_or_statement (parser);
9608       return;
9609     }
9610 
9611   /* If the next keyword is `template', we need to figure out whether
9612      or not we're looking a template-declaration.  */
9613   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9614     {
9615       if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9616 	  && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9617 	cp_parser_template_declaration_after_export (parser,
9618 						     /*member_p=*/false);
9619       else
9620 	cp_parser_explicit_specialization (parser);
9621     }
9622   else
9623     /* Parse the dependent declaration.  */
9624     cp_parser_single_declaration (parser,
9625 				  /*checks=*/NULL,
9626 				  /*member_p=*/false,
9627 				  /*friend_p=*/NULL);
9628   /* We're done with the specialization.  */
9629   end_specialization ();
9630   /* For the erroneous case of a template with C linkage, we pushed an
9631      implicit C++ linkage scope; exit that scope now.  */
9632   if (need_lang_pop)
9633     pop_lang_context ();
9634   /* We're done with this parameter list.  */
9635   --parser->num_template_parameter_lists;
9636 }
9637 
9638 /* Parse a type-specifier.
9639 
9640    type-specifier:
9641      simple-type-specifier
9642      class-specifier
9643      enum-specifier
9644      elaborated-type-specifier
9645      cv-qualifier
9646 
9647    GNU Extension:
9648 
9649    type-specifier:
9650      __complex__
9651 
9652    Returns a representation of the type-specifier.  For a
9653    class-specifier, enum-specifier, or elaborated-type-specifier, a
9654    TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9655 
9656    The parser flags FLAGS is used to control type-specifier parsing.
9657 
9658    If IS_DECLARATION is TRUE, then this type-specifier is appearing
9659    in a decl-specifier-seq.
9660 
9661    If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9662    class-specifier, enum-specifier, or elaborated-type-specifier, then
9663    *DECLARES_CLASS_OR_ENUM is set to a nonzero value.  The value is 1
9664    if a type is declared; 2 if it is defined.  Otherwise, it is set to
9665    zero.
9666 
9667    If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9668    cv-qualifier, then IS_CV_QUALIFIER is set to TRUE.  Otherwise, it
9669    is set to FALSE.  */
9670 
9671 static tree
cp_parser_type_specifier(cp_parser * parser,cp_parser_flags flags,cp_decl_specifier_seq * decl_specs,bool is_declaration,int * declares_class_or_enum,bool * is_cv_qualifier)9672 cp_parser_type_specifier (cp_parser* parser,
9673 			  cp_parser_flags flags,
9674 			  cp_decl_specifier_seq *decl_specs,
9675 			  bool is_declaration,
9676 			  int* declares_class_or_enum,
9677 			  bool* is_cv_qualifier)
9678 {
9679   tree type_spec = NULL_TREE;
9680   cp_token *token;
9681   enum rid keyword;
9682   cp_decl_spec ds = ds_last;
9683 
9684   /* Assume this type-specifier does not declare a new type.  */
9685   if (declares_class_or_enum)
9686     *declares_class_or_enum = 0;
9687   /* And that it does not specify a cv-qualifier.  */
9688   if (is_cv_qualifier)
9689     *is_cv_qualifier = false;
9690   /* Peek at the next token.  */
9691   token = cp_lexer_peek_token (parser->lexer);
9692 
9693   /* If we're looking at a keyword, we can use that to guide the
9694      production we choose.  */
9695   keyword = token->keyword;
9696   switch (keyword)
9697     {
9698     case RID_ENUM:
9699       /* Look for the enum-specifier.  */
9700       type_spec = cp_parser_enum_specifier (parser);
9701       /* If that worked, we're done.  */
9702       if (type_spec)
9703 	{
9704 	  if (declares_class_or_enum)
9705 	    *declares_class_or_enum = 2;
9706 	  if (decl_specs)
9707 	    cp_parser_set_decl_spec_type (decl_specs,
9708 					  type_spec,
9709 					  /*user_defined_p=*/true);
9710 	  return type_spec;
9711 	}
9712       else
9713 	goto elaborated_type_specifier;
9714 
9715       /* Any of these indicate either a class-specifier, or an
9716 	 elaborated-type-specifier.  */
9717     case RID_CLASS:
9718     case RID_STRUCT:
9719     case RID_UNION:
9720       /* Parse tentatively so that we can back up if we don't find a
9721 	 class-specifier.  */
9722       cp_parser_parse_tentatively (parser);
9723       /* Look for the class-specifier.  */
9724       type_spec = cp_parser_class_specifier (parser);
9725       /* If that worked, we're done.  */
9726       if (cp_parser_parse_definitely (parser))
9727 	{
9728 	  if (declares_class_or_enum)
9729 	    *declares_class_or_enum = 2;
9730 	  if (decl_specs)
9731 	    cp_parser_set_decl_spec_type (decl_specs,
9732 					  type_spec,
9733 					  /*user_defined_p=*/true);
9734 	  return type_spec;
9735 	}
9736 
9737       /* Fall through.  */
9738     elaborated_type_specifier:
9739       /* We're declaring (not defining) a class or enum.  */
9740       if (declares_class_or_enum)
9741 	*declares_class_or_enum = 1;
9742 
9743       /* Fall through.  */
9744     case RID_TYPENAME:
9745       /* Look for an elaborated-type-specifier.  */
9746       type_spec
9747 	= (cp_parser_elaborated_type_specifier
9748 	   (parser,
9749 	    decl_specs && decl_specs->specs[(int) ds_friend],
9750 	    is_declaration));
9751       if (decl_specs)
9752 	cp_parser_set_decl_spec_type (decl_specs,
9753 				      type_spec,
9754 				      /*user_defined_p=*/true);
9755       return type_spec;
9756 
9757     case RID_CONST:
9758       ds = ds_const;
9759       if (is_cv_qualifier)
9760 	*is_cv_qualifier = true;
9761       break;
9762 
9763     case RID_VOLATILE:
9764       ds = ds_volatile;
9765       if (is_cv_qualifier)
9766 	*is_cv_qualifier = true;
9767       break;
9768 
9769     case RID_RESTRICT:
9770       ds = ds_restrict;
9771       if (is_cv_qualifier)
9772 	*is_cv_qualifier = true;
9773       break;
9774 
9775     case RID_COMPLEX:
9776       /* The `__complex__' keyword is a GNU extension.  */
9777       ds = ds_complex;
9778       break;
9779 
9780     default:
9781       break;
9782     }
9783 
9784   /* Handle simple keywords.  */
9785   if (ds != ds_last)
9786     {
9787       if (decl_specs)
9788 	{
9789 	  ++decl_specs->specs[(int)ds];
9790 	  decl_specs->any_specifiers_p = true;
9791 	}
9792       return cp_lexer_consume_token (parser->lexer)->u.value;
9793     }
9794 
9795   /* If we do not already have a type-specifier, assume we are looking
9796      at a simple-type-specifier.  */
9797   type_spec = cp_parser_simple_type_specifier (parser,
9798 					       decl_specs,
9799 					       flags);
9800 
9801   /* If we didn't find a type-specifier, and a type-specifier was not
9802      optional in this context, issue an error message.  */
9803   if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9804     {
9805       cp_parser_error (parser, "expected type specifier");
9806       return error_mark_node;
9807     }
9808 
9809   return type_spec;
9810 }
9811 
9812 /* Parse a simple-type-specifier.
9813 
9814    simple-type-specifier:
9815      :: [opt] nested-name-specifier [opt] type-name
9816      :: [opt] nested-name-specifier template template-id
9817      char
9818      wchar_t
9819      bool
9820      short
9821      int
9822      long
9823      signed
9824      unsigned
9825      float
9826      double
9827      void
9828 
9829    GNU Extension:
9830 
9831    simple-type-specifier:
9832      __typeof__ unary-expression
9833      __typeof__ ( type-id )
9834 
9835    Returns the indicated TYPE_DECL.  If DECL_SPECS is not NULL, it is
9836    appropriately updated.  */
9837 
9838 static tree
cp_parser_simple_type_specifier(cp_parser * parser,cp_decl_specifier_seq * decl_specs,cp_parser_flags flags)9839 cp_parser_simple_type_specifier (cp_parser* parser,
9840 				 cp_decl_specifier_seq *decl_specs,
9841 				 cp_parser_flags flags)
9842 {
9843   tree type = NULL_TREE;
9844   cp_token *token;
9845 
9846   /* Peek at the next token.  */
9847   token = cp_lexer_peek_token (parser->lexer);
9848 
9849   /* If we're looking at a keyword, things are easy.  */
9850   switch (token->keyword)
9851     {
9852     case RID_CHAR:
9853       if (decl_specs)
9854 	decl_specs->explicit_char_p = true;
9855       type = char_type_node;
9856       break;
9857     case RID_WCHAR:
9858       type = wchar_type_node;
9859       break;
9860     case RID_BOOL:
9861       type = boolean_type_node;
9862       break;
9863     case RID_SHORT:
9864       if (decl_specs)
9865 	++decl_specs->specs[(int) ds_short];
9866       type = short_integer_type_node;
9867       break;
9868     case RID_INT:
9869       if (decl_specs)
9870 	decl_specs->explicit_int_p = true;
9871       type = integer_type_node;
9872       break;
9873     case RID_LONG:
9874       if (decl_specs)
9875 	++decl_specs->specs[(int) ds_long];
9876       type = long_integer_type_node;
9877       break;
9878     case RID_SIGNED:
9879       if (decl_specs)
9880 	++decl_specs->specs[(int) ds_signed];
9881       type = integer_type_node;
9882       break;
9883     case RID_UNSIGNED:
9884       if (decl_specs)
9885 	++decl_specs->specs[(int) ds_unsigned];
9886       type = unsigned_type_node;
9887       break;
9888     case RID_FLOAT:
9889       type = float_type_node;
9890       break;
9891     case RID_DOUBLE:
9892       type = double_type_node;
9893       break;
9894     case RID_VOID:
9895       type = void_type_node;
9896       break;
9897 
9898     case RID_TYPEOF:
9899       /* Consume the `typeof' token.  */
9900       cp_lexer_consume_token (parser->lexer);
9901       /* Parse the operand to `typeof'.  */
9902       type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9903       /* If it is not already a TYPE, take its type.  */
9904       if (!TYPE_P (type))
9905 	type = finish_typeof (type);
9906 
9907       if (decl_specs)
9908 	cp_parser_set_decl_spec_type (decl_specs, type,
9909 				      /*user_defined_p=*/true);
9910 
9911       return type;
9912 
9913     default:
9914       break;
9915     }
9916 
9917   /* If the type-specifier was for a built-in type, we're done.  */
9918   if (type)
9919     {
9920       tree id;
9921 
9922       /* Record the type.  */
9923       if (decl_specs
9924 	  && (token->keyword != RID_SIGNED
9925 	      && token->keyword != RID_UNSIGNED
9926 	      && token->keyword != RID_SHORT
9927 	      && token->keyword != RID_LONG))
9928 	cp_parser_set_decl_spec_type (decl_specs,
9929 				      type,
9930 				      /*user_defined=*/false);
9931       if (decl_specs)
9932 	decl_specs->any_specifiers_p = true;
9933 
9934       /* Consume the token.  */
9935       id = cp_lexer_consume_token (parser->lexer)->u.value;
9936 
9937       /* There is no valid C++ program where a non-template type is
9938 	 followed by a "<".  That usually indicates that the user thought
9939 	 that the type was a template.  */
9940       cp_parser_check_for_invalid_template_id (parser, type);
9941 
9942       return TYPE_NAME (type);
9943     }
9944 
9945   /* The type-specifier must be a user-defined type.  */
9946   if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9947     {
9948       bool qualified_p;
9949       bool global_p;
9950 
9951       /* Don't gobble tokens or issue error messages if this is an
9952 	 optional type-specifier.  */
9953       if (flags & CP_PARSER_FLAGS_OPTIONAL)
9954 	cp_parser_parse_tentatively (parser);
9955 
9956       /* Look for the optional `::' operator.  */
9957       global_p
9958 	= (cp_parser_global_scope_opt (parser,
9959 				       /*current_scope_valid_p=*/false)
9960 	   != NULL_TREE);
9961       /* Look for the nested-name specifier.  */
9962       qualified_p
9963 	= (cp_parser_nested_name_specifier_opt (parser,
9964 						/*typename_keyword_p=*/false,
9965 						/*check_dependency_p=*/true,
9966 						/*type_p=*/false,
9967 						/*is_declaration=*/false)
9968 	   != NULL_TREE);
9969       /* If we have seen a nested-name-specifier, and the next token
9970 	 is `template', then we are using the template-id production.  */
9971       if (parser->scope
9972 	  && cp_parser_optional_template_keyword (parser))
9973 	{
9974 	  /* Look for the template-id.  */
9975 	  type = cp_parser_template_id (parser,
9976 					/*template_keyword_p=*/true,
9977 					/*check_dependency_p=*/true,
9978 					/*is_declaration=*/false);
9979 	  /* If the template-id did not name a type, we are out of
9980 	     luck.  */
9981 	  if (TREE_CODE (type) != TYPE_DECL)
9982 	    {
9983 	      cp_parser_error (parser, "expected template-id for type");
9984 	      type = NULL_TREE;
9985 	    }
9986 	}
9987       /* Otherwise, look for a type-name.  */
9988       else
9989 	type = cp_parser_type_name (parser);
9990       /* Keep track of all name-lookups performed in class scopes.  */
9991       if (type
9992 	  && !global_p
9993 	  && !qualified_p
9994 	  && TREE_CODE (type) == TYPE_DECL
9995 	  && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9996 	maybe_note_name_used_in_class (DECL_NAME (type), type);
9997       /* If it didn't work out, we don't have a TYPE.  */
9998       if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9999 	  && !cp_parser_parse_definitely (parser))
10000 	type = NULL_TREE;
10001       if (type && decl_specs)
10002 	cp_parser_set_decl_spec_type (decl_specs, type,
10003 				      /*user_defined=*/true);
10004     }
10005 
10006   /* If we didn't get a type-name, issue an error message.  */
10007   if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
10008     {
10009       cp_parser_error (parser, "expected type-name");
10010       return error_mark_node;
10011     }
10012 
10013   /* There is no valid C++ program where a non-template type is
10014      followed by a "<".  That usually indicates that the user thought
10015      that the type was a template.  */
10016   if (type && type != error_mark_node)
10017     {
10018       /* As a last-ditch effort, see if TYPE is an Objective-C type.
10019 	 If it is, then the '<'...'>' enclose protocol names rather than
10020 	 template arguments, and so everything is fine.  */
10021       if (c_dialect_objc ()
10022 	  && (objc_is_id (type) || objc_is_class_name (type)))
10023 	{
10024 	  tree protos = cp_parser_objc_protocol_refs_opt (parser);
10025 	  tree qual_type = objc_get_protocol_qualified_type (type, protos);
10026 
10027 	  /* Clobber the "unqualified" type previously entered into
10028 	     DECL_SPECS with the new, improved protocol-qualified version.  */
10029 	  if (decl_specs)
10030 	    decl_specs->type = qual_type;
10031 
10032 	  return qual_type;
10033 	}
10034 
10035       cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
10036     }
10037 
10038   return type;
10039 }
10040 
10041 /* Parse a type-name.
10042 
10043    type-name:
10044      class-name
10045      enum-name
10046      typedef-name
10047 
10048    enum-name:
10049      identifier
10050 
10051    typedef-name:
10052      identifier
10053 
10054    Returns a TYPE_DECL for the type.  */
10055 
10056 static tree
cp_parser_type_name(cp_parser * parser)10057 cp_parser_type_name (cp_parser* parser)
10058 {
10059   tree type_decl;
10060   tree identifier;
10061 
10062   /* We can't know yet whether it is a class-name or not.  */
10063   cp_parser_parse_tentatively (parser);
10064   /* Try a class-name.  */
10065   type_decl = cp_parser_class_name (parser,
10066 				    /*typename_keyword_p=*/false,
10067 				    /*template_keyword_p=*/false,
10068 				    none_type,
10069 				    /*check_dependency_p=*/true,
10070 				    /*class_head_p=*/false,
10071 				    /*is_declaration=*/false);
10072   /* If it's not a class-name, keep looking.  */
10073   if (!cp_parser_parse_definitely (parser))
10074     {
10075       /* It must be a typedef-name or an enum-name.  */
10076       identifier = cp_parser_identifier (parser);
10077       if (identifier == error_mark_node)
10078 	return error_mark_node;
10079 
10080       /* Look up the type-name.  */
10081       type_decl = cp_parser_lookup_name_simple (parser, identifier);
10082 
10083       if (TREE_CODE (type_decl) != TYPE_DECL
10084 	  && (objc_is_id (identifier) || objc_is_class_name (identifier)))
10085 	{
10086 	  /* See if this is an Objective-C type.  */
10087 	  tree protos = cp_parser_objc_protocol_refs_opt (parser);
10088 	  tree type = objc_get_protocol_qualified_type (identifier, protos);
10089 	  if (type)
10090 	    type_decl = TYPE_NAME (type);
10091 	}
10092 
10093       /* Issue an error if we did not find a type-name.  */
10094       if (TREE_CODE (type_decl) != TYPE_DECL)
10095 	{
10096 	  if (!cp_parser_simulate_error (parser))
10097 	    cp_parser_name_lookup_error (parser, identifier, type_decl,
10098 					 "is not a type");
10099 	  type_decl = error_mark_node;
10100 	}
10101       /* Remember that the name was used in the definition of the
10102 	 current class so that we can check later to see if the
10103 	 meaning would have been different after the class was
10104 	 entirely defined.  */
10105       else if (type_decl != error_mark_node
10106 	       && !parser->scope)
10107 	maybe_note_name_used_in_class (identifier, type_decl);
10108     }
10109 
10110   return type_decl;
10111 }
10112 
10113 
10114 /* Parse an elaborated-type-specifier.  Note that the grammar given
10115    here incorporates the resolution to DR68.
10116 
10117    elaborated-type-specifier:
10118      class-key :: [opt] nested-name-specifier [opt] identifier
10119      class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
10120      enum :: [opt] nested-name-specifier [opt] identifier
10121      typename :: [opt] nested-name-specifier identifier
10122      typename :: [opt] nested-name-specifier template [opt]
10123        template-id
10124 
10125    GNU extension:
10126 
10127    elaborated-type-specifier:
10128      class-key attributes :: [opt] nested-name-specifier [opt] identifier
10129      class-key attributes :: [opt] nested-name-specifier [opt]
10130 	       template [opt] template-id
10131      enum attributes :: [opt] nested-name-specifier [opt] identifier
10132 
10133    If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
10134    declared `friend'.  If IS_DECLARATION is TRUE, then this
10135    elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
10136    something is being declared.
10137 
10138    Returns the TYPE specified.  */
10139 
10140 static tree
cp_parser_elaborated_type_specifier(cp_parser * parser,bool is_friend,bool is_declaration)10141 cp_parser_elaborated_type_specifier (cp_parser* parser,
10142 				     bool is_friend,
10143 				     bool is_declaration)
10144 {
10145   enum tag_types tag_type;
10146   tree identifier;
10147   tree type = NULL_TREE;
10148   tree attributes = NULL_TREE;
10149 
10150   /* See if we're looking at the `enum' keyword.  */
10151   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
10152     {
10153       /* Consume the `enum' token.  */
10154       cp_lexer_consume_token (parser->lexer);
10155       /* Remember that it's an enumeration type.  */
10156       tag_type = enum_type;
10157       /* Parse the attributes.  */
10158       attributes = cp_parser_attributes_opt (parser);
10159     }
10160   /* Or, it might be `typename'.  */
10161   else if (cp_lexer_next_token_is_keyword (parser->lexer,
10162 					   RID_TYPENAME))
10163     {
10164       /* Consume the `typename' token.  */
10165       cp_lexer_consume_token (parser->lexer);
10166       /* Remember that it's a `typename' type.  */
10167       tag_type = typename_type;
10168       /* The `typename' keyword is only allowed in templates.  */
10169       if (!processing_template_decl)
10170 	pedwarn ("using %<typename%> outside of template");
10171     }
10172   /* Otherwise it must be a class-key.  */
10173   else
10174     {
10175       tag_type = cp_parser_class_key (parser);
10176       if (tag_type == none_type)
10177 	return error_mark_node;
10178       /* Parse the attributes.  */
10179       attributes = cp_parser_attributes_opt (parser);
10180     }
10181 
10182   /* Look for the `::' operator.  */
10183   cp_parser_global_scope_opt (parser,
10184 			      /*current_scope_valid_p=*/false);
10185   /* Look for the nested-name-specifier.  */
10186   if (tag_type == typename_type)
10187     {
10188       if (!cp_parser_nested_name_specifier (parser,
10189 					   /*typename_keyword_p=*/true,
10190 					   /*check_dependency_p=*/true,
10191 					   /*type_p=*/true,
10192 					    is_declaration))
10193 	return error_mark_node;
10194     }
10195   else
10196     /* Even though `typename' is not present, the proposed resolution
10197        to Core Issue 180 says that in `class A<T>::B', `B' should be
10198        considered a type-name, even if `A<T>' is dependent.  */
10199     cp_parser_nested_name_specifier_opt (parser,
10200 					 /*typename_keyword_p=*/true,
10201 					 /*check_dependency_p=*/true,
10202 					 /*type_p=*/true,
10203 					 is_declaration);
10204   /* For everything but enumeration types, consider a template-id.
10205      For an enumeration type, consider only a plain identifier.  */
10206   if (tag_type != enum_type)
10207     {
10208       bool template_p = false;
10209       tree decl;
10210 
10211       /* Allow the `template' keyword.  */
10212       template_p = cp_parser_optional_template_keyword (parser);
10213       /* If we didn't see `template', we don't know if there's a
10214 	 template-id or not.  */
10215       if (!template_p)
10216 	cp_parser_parse_tentatively (parser);
10217       /* Parse the template-id.  */
10218       decl = cp_parser_template_id (parser, template_p,
10219 				    /*check_dependency_p=*/true,
10220 				    is_declaration);
10221       /* If we didn't find a template-id, look for an ordinary
10222 	 identifier.  */
10223       if (!template_p && !cp_parser_parse_definitely (parser))
10224 	;
10225       /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
10226 	 in effect, then we must assume that, upon instantiation, the
10227 	 template will correspond to a class.  */
10228       else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
10229 	       && tag_type == typename_type)
10230 	type = make_typename_type (parser->scope, decl,
10231 				   typename_type,
10232 				   /*complain=*/tf_error);
10233       else
10234 	type = TREE_TYPE (decl);
10235     }
10236 
10237   if (!type)
10238     {
10239       identifier = cp_parser_identifier (parser);
10240 
10241       if (identifier == error_mark_node)
10242 	{
10243 	  parser->scope = NULL_TREE;
10244 	  return error_mark_node;
10245 	}
10246 
10247       /* For a `typename', we needn't call xref_tag.  */
10248       if (tag_type == typename_type
10249 	  && TREE_CODE (parser->scope) != NAMESPACE_DECL)
10250 	return cp_parser_make_typename_type (parser, parser->scope,
10251 					     identifier);
10252       /* Look up a qualified name in the usual way.  */
10253       if (parser->scope)
10254 	{
10255 	  tree decl;
10256 
10257 	  decl = cp_parser_lookup_name (parser, identifier,
10258 					tag_type,
10259 					/*is_template=*/false,
10260 					/*is_namespace=*/false,
10261 					/*check_dependency=*/true,
10262 					/*ambiguous_decls=*/NULL);
10263 
10264 	  /* If we are parsing friend declaration, DECL may be a
10265 	     TEMPLATE_DECL tree node here.  However, we need to check
10266 	     whether this TEMPLATE_DECL results in valid code.  Consider
10267 	     the following example:
10268 
10269 	       namespace N {
10270 		 template <class T> class C {};
10271 	       }
10272 	       class X {
10273 		 template <class T> friend class N::C; // #1, valid code
10274 	       };
10275 	       template <class T> class Y {
10276 		 friend class N::C;		       // #2, invalid code
10277 	       };
10278 
10279 	     For both case #1 and #2, we arrive at a TEMPLATE_DECL after
10280 	     name lookup of `N::C'.  We see that friend declaration must
10281 	     be template for the code to be valid.  Note that
10282 	     processing_template_decl does not work here since it is
10283 	     always 1 for the above two cases.  */
10284 
10285 	  decl = (cp_parser_maybe_treat_template_as_class
10286 		  (decl, /*tag_name_p=*/is_friend
10287 			 && parser->num_template_parameter_lists));
10288 
10289 	  if (TREE_CODE (decl) != TYPE_DECL)
10290 	    {
10291 	      cp_parser_diagnose_invalid_type_name (parser,
10292 						    parser->scope,
10293 						    identifier);
10294 	      return error_mark_node;
10295 	    }
10296 
10297 	  if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
10298             {
10299               bool allow_template = (parser->num_template_parameter_lists
10300 		                      || DECL_SELF_REFERENCE_P (decl));
10301               type = check_elaborated_type_specifier (tag_type, decl,
10302                                                       allow_template);
10303 
10304               if (type == error_mark_node)
10305                 return error_mark_node;
10306             }
10307 
10308 	  type = TREE_TYPE (decl);
10309 	}
10310       else
10311 	{
10312 	  /* An elaborated-type-specifier sometimes introduces a new type and
10313 	     sometimes names an existing type.  Normally, the rule is that it
10314 	     introduces a new type only if there is not an existing type of
10315 	     the same name already in scope.  For example, given:
10316 
10317 	       struct S {};
10318 	       void f() { struct S s; }
10319 
10320 	     the `struct S' in the body of `f' is the same `struct S' as in
10321 	     the global scope; the existing definition is used.  However, if
10322 	     there were no global declaration, this would introduce a new
10323 	     local class named `S'.
10324 
10325 	     An exception to this rule applies to the following code:
10326 
10327 	       namespace N { struct S; }
10328 
10329 	     Here, the elaborated-type-specifier names a new type
10330 	     unconditionally; even if there is already an `S' in the
10331 	     containing scope this declaration names a new type.
10332 	     This exception only applies if the elaborated-type-specifier
10333 	     forms the complete declaration:
10334 
10335 	       [class.name]
10336 
10337 	       A declaration consisting solely of `class-key identifier ;' is
10338 	       either a redeclaration of the name in the current scope or a
10339 	       forward declaration of the identifier as a class name.  It
10340 	       introduces the name into the current scope.
10341 
10342 	     We are in this situation precisely when the next token is a `;'.
10343 
10344 	     An exception to the exception is that a `friend' declaration does
10345 	     *not* name a new type; i.e., given:
10346 
10347 	       struct S { friend struct T; };
10348 
10349 	     `T' is not a new type in the scope of `S'.
10350 
10351 	     Also, `new struct S' or `sizeof (struct S)' never results in the
10352 	     definition of a new type; a new type can only be declared in a
10353 	     declaration context.  */
10354 
10355 	  tag_scope ts;
10356 	  bool template_p;
10357 
10358 	  if (is_friend)
10359 	    /* Friends have special name lookup rules.  */
10360 	    ts = ts_within_enclosing_non_class;
10361 	  else if (is_declaration
10362 		   && cp_lexer_next_token_is (parser->lexer,
10363 					      CPP_SEMICOLON))
10364 	    /* This is a `class-key identifier ;' */
10365 	    ts = ts_current;
10366 	  else
10367 	    ts = ts_global;
10368 
10369 	  template_p =
10370 	    (parser->num_template_parameter_lists
10371 	     && (cp_parser_next_token_starts_class_definition_p (parser)
10372 		 || cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)));
10373 	  /* An unqualified name was used to reference this type, so
10374 	     there were no qualifying templates.  */
10375 	  if (!cp_parser_check_template_parameters (parser,
10376 						    /*num_templates=*/0))
10377 	    return error_mark_node;
10378 	  type = xref_tag (tag_type, identifier, ts, template_p);
10379 	}
10380     }
10381 
10382   if (type == error_mark_node)
10383     return error_mark_node;
10384 
10385   /* Allow attributes on forward declarations of classes.  */
10386   if (attributes)
10387     {
10388       if (TREE_CODE (type) == TYPENAME_TYPE)
10389 	warning (OPT_Wattributes,
10390 		 "attributes ignored on uninstantiated type");
10391       else if (tag_type != enum_type && CLASSTYPE_TEMPLATE_INSTANTIATION (type)
10392 	       && ! processing_explicit_instantiation)
10393 	warning (OPT_Wattributes,
10394 		 "attributes ignored on template instantiation");
10395       else if (is_declaration && cp_parser_declares_only_class_p (parser))
10396 	cplus_decl_attributes (&type, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
10397       else
10398 	warning (OPT_Wattributes,
10399 		 "attributes ignored on elaborated-type-specifier that is not a forward declaration");
10400     }
10401 
10402   if (tag_type != enum_type)
10403     cp_parser_check_class_key (tag_type, type);
10404 
10405   /* A "<" cannot follow an elaborated type specifier.  If that
10406      happens, the user was probably trying to form a template-id.  */
10407   cp_parser_check_for_invalid_template_id (parser, type);
10408 
10409   return type;
10410 }
10411 
10412 /* Parse an enum-specifier.
10413 
10414    enum-specifier:
10415      enum identifier [opt] { enumerator-list [opt] }
10416 
10417    GNU Extensions:
10418      enum attributes[opt] identifier [opt] { enumerator-list [opt] }
10419        attributes[opt]
10420 
10421    Returns an ENUM_TYPE representing the enumeration, or NULL_TREE
10422    if the token stream isn't an enum-specifier after all.  */
10423 
10424 static tree
cp_parser_enum_specifier(cp_parser * parser)10425 cp_parser_enum_specifier (cp_parser* parser)
10426 {
10427   tree identifier;
10428   tree type;
10429   tree attributes;
10430 
10431   /* Parse tentatively so that we can back up if we don't find a
10432      enum-specifier.  */
10433   cp_parser_parse_tentatively (parser);
10434 
10435   /* Caller guarantees that the current token is 'enum', an identifier
10436      possibly follows, and the token after that is an opening brace.
10437      If we don't have an identifier, fabricate an anonymous name for
10438      the enumeration being defined.  */
10439   cp_lexer_consume_token (parser->lexer);
10440 
10441   attributes = cp_parser_attributes_opt (parser);
10442 
10443   if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10444     identifier = cp_parser_identifier (parser);
10445   else
10446     identifier = make_anon_name ();
10447 
10448   /* Look for the `{' but don't consume it yet.  */
10449   if (!cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
10450     cp_parser_simulate_error (parser);
10451 
10452   if (!cp_parser_parse_definitely (parser))
10453     return NULL_TREE;
10454 
10455   /* Issue an error message if type-definitions are forbidden here.  */
10456   if (!cp_parser_check_type_definition (parser))
10457     type = error_mark_node;
10458   else
10459     /* Create the new type.  We do this before consuming the opening
10460        brace so the enum will be recorded as being on the line of its
10461        tag (or the 'enum' keyword, if there is no tag).  */
10462     type = start_enum (identifier);
10463 
10464   /* Consume the opening brace.  */
10465   cp_lexer_consume_token (parser->lexer);
10466 
10467   if (type == error_mark_node)
10468     {
10469       cp_parser_skip_to_end_of_block_or_statement (parser);
10470       return error_mark_node;
10471     }
10472 
10473   /* If the next token is not '}', then there are some enumerators.  */
10474   if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
10475     cp_parser_enumerator_list (parser, type);
10476 
10477   /* Consume the final '}'.  */
10478   cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10479 
10480   /* Look for trailing attributes to apply to this enumeration, and
10481      apply them if appropriate.  */
10482   if (cp_parser_allow_gnu_extensions_p (parser))
10483     {
10484       tree trailing_attr = cp_parser_attributes_opt (parser);
10485       trailing_attr = chainon (trailing_attr, attributes);
10486       cplus_decl_attributes (&type,
10487 			     trailing_attr,
10488 			     (int) ATTR_FLAG_TYPE_IN_PLACE);
10489     }
10490 
10491   /* Finish up the enumeration.  */
10492   finish_enum (type);
10493 
10494   return type;
10495 }
10496 
10497 /* Parse an enumerator-list.  The enumerators all have the indicated
10498    TYPE.
10499 
10500    enumerator-list:
10501      enumerator-definition
10502      enumerator-list , enumerator-definition  */
10503 
10504 static void
cp_parser_enumerator_list(cp_parser * parser,tree type)10505 cp_parser_enumerator_list (cp_parser* parser, tree type)
10506 {
10507   while (true)
10508     {
10509       /* Parse an enumerator-definition.  */
10510       cp_parser_enumerator_definition (parser, type);
10511 
10512       /* If the next token is not a ',', we've reached the end of
10513 	 the list.  */
10514       if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
10515 	break;
10516       /* Otherwise, consume the `,' and keep going.  */
10517       cp_lexer_consume_token (parser->lexer);
10518       /* If the next token is a `}', there is a trailing comma.  */
10519       if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
10520 	{
10521 	  if (pedantic && !in_system_header)
10522 	    pedwarn ("comma at end of enumerator list");
10523 	  break;
10524 	}
10525     }
10526 }
10527 
10528 /* Parse an enumerator-definition.  The enumerator has the indicated
10529    TYPE.
10530 
10531    enumerator-definition:
10532      enumerator
10533      enumerator = constant-expression
10534 
10535    enumerator:
10536      identifier  */
10537 
10538 static void
cp_parser_enumerator_definition(cp_parser * parser,tree type)10539 cp_parser_enumerator_definition (cp_parser* parser, tree type)
10540 {
10541   tree identifier;
10542   tree value;
10543 
10544   /* Look for the identifier.  */
10545   identifier = cp_parser_identifier (parser);
10546   if (identifier == error_mark_node)
10547     return;
10548 
10549   /* If the next token is an '=', then there is an explicit value.  */
10550   if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
10551     {
10552       /* Consume the `=' token.  */
10553       cp_lexer_consume_token (parser->lexer);
10554       /* Parse the value.  */
10555       value = cp_parser_constant_expression (parser,
10556 					     /*allow_non_constant_p=*/false,
10557 					     NULL);
10558     }
10559   else
10560     value = NULL_TREE;
10561 
10562   /* Create the enumerator.  */
10563   build_enumerator (identifier, value, type);
10564 }
10565 
10566 /* Parse a namespace-name.
10567 
10568    namespace-name:
10569      original-namespace-name
10570      namespace-alias
10571 
10572    Returns the NAMESPACE_DECL for the namespace.  */
10573 
10574 static tree
cp_parser_namespace_name(cp_parser * parser)10575 cp_parser_namespace_name (cp_parser* parser)
10576 {
10577   tree identifier;
10578   tree namespace_decl;
10579 
10580   /* Get the name of the namespace.  */
10581   identifier = cp_parser_identifier (parser);
10582   if (identifier == error_mark_node)
10583     return error_mark_node;
10584 
10585   /* Look up the identifier in the currently active scope.  Look only
10586      for namespaces, due to:
10587 
10588        [basic.lookup.udir]
10589 
10590        When looking up a namespace-name in a using-directive or alias
10591        definition, only namespace names are considered.
10592 
10593      And:
10594 
10595        [basic.lookup.qual]
10596 
10597        During the lookup of a name preceding the :: scope resolution
10598        operator, object, function, and enumerator names are ignored.
10599 
10600      (Note that cp_parser_class_or_namespace_name only calls this
10601      function if the token after the name is the scope resolution
10602      operator.)  */
10603   namespace_decl = cp_parser_lookup_name (parser, identifier,
10604 					  none_type,
10605 					  /*is_template=*/false,
10606 					  /*is_namespace=*/true,
10607 					  /*check_dependency=*/true,
10608 					  /*ambiguous_decls=*/NULL);
10609   /* If it's not a namespace, issue an error.  */
10610   if (namespace_decl == error_mark_node
10611       || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
10612     {
10613       if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
10614 	error ("%qD is not a namespace-name", identifier);
10615       cp_parser_error (parser, "expected namespace-name");
10616       namespace_decl = error_mark_node;
10617     }
10618 
10619   return namespace_decl;
10620 }
10621 
10622 /* Parse a namespace-definition.
10623 
10624    namespace-definition:
10625      named-namespace-definition
10626      unnamed-namespace-definition
10627 
10628    named-namespace-definition:
10629      original-namespace-definition
10630      extension-namespace-definition
10631 
10632    original-namespace-definition:
10633      namespace identifier { namespace-body }
10634 
10635    extension-namespace-definition:
10636      namespace original-namespace-name { namespace-body }
10637 
10638    unnamed-namespace-definition:
10639      namespace { namespace-body } */
10640 
10641 static void
cp_parser_namespace_definition(cp_parser * parser)10642 cp_parser_namespace_definition (cp_parser* parser)
10643 {
10644   tree identifier, attribs;
10645 
10646   /* Look for the `namespace' keyword.  */
10647   cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10648 
10649   /* Get the name of the namespace.  We do not attempt to distinguish
10650      between an original-namespace-definition and an
10651      extension-namespace-definition at this point.  The semantic
10652      analysis routines are responsible for that.  */
10653   if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10654     identifier = cp_parser_identifier (parser);
10655   else
10656     identifier = NULL_TREE;
10657 
10658   /* Parse any specified attributes.  */
10659   attribs = cp_parser_attributes_opt (parser);
10660 
10661   /* Look for the `{' to start the namespace.  */
10662   cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
10663   /* Start the namespace.  */
10664   push_namespace_with_attribs (identifier, attribs);
10665   /* Parse the body of the namespace.  */
10666   cp_parser_namespace_body (parser);
10667   /* Finish the namespace.  */
10668   pop_namespace ();
10669   /* Look for the final `}'.  */
10670   cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10671 }
10672 
10673 /* Parse a namespace-body.
10674 
10675    namespace-body:
10676      declaration-seq [opt]  */
10677 
10678 static void
cp_parser_namespace_body(cp_parser * parser)10679 cp_parser_namespace_body (cp_parser* parser)
10680 {
10681   cp_parser_declaration_seq_opt (parser);
10682 }
10683 
10684 /* Parse a namespace-alias-definition.
10685 
10686    namespace-alias-definition:
10687      namespace identifier = qualified-namespace-specifier ;  */
10688 
10689 static void
cp_parser_namespace_alias_definition(cp_parser * parser)10690 cp_parser_namespace_alias_definition (cp_parser* parser)
10691 {
10692   tree identifier;
10693   tree namespace_specifier;
10694 
10695   /* Look for the `namespace' keyword.  */
10696   cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10697   /* Look for the identifier.  */
10698   identifier = cp_parser_identifier (parser);
10699   if (identifier == error_mark_node)
10700     return;
10701   /* Look for the `=' token.  */
10702   cp_parser_require (parser, CPP_EQ, "`='");
10703   /* Look for the qualified-namespace-specifier.  */
10704   namespace_specifier
10705     = cp_parser_qualified_namespace_specifier (parser);
10706   /* Look for the `;' token.  */
10707   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10708 
10709   /* Register the alias in the symbol table.  */
10710   do_namespace_alias (identifier, namespace_specifier);
10711 }
10712 
10713 /* Parse a qualified-namespace-specifier.
10714 
10715    qualified-namespace-specifier:
10716      :: [opt] nested-name-specifier [opt] namespace-name
10717 
10718    Returns a NAMESPACE_DECL corresponding to the specified
10719    namespace.  */
10720 
10721 static tree
cp_parser_qualified_namespace_specifier(cp_parser * parser)10722 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10723 {
10724   /* Look for the optional `::'.  */
10725   cp_parser_global_scope_opt (parser,
10726 			      /*current_scope_valid_p=*/false);
10727 
10728   /* Look for the optional nested-name-specifier.  */
10729   cp_parser_nested_name_specifier_opt (parser,
10730 				       /*typename_keyword_p=*/false,
10731 				       /*check_dependency_p=*/true,
10732 				       /*type_p=*/false,
10733 				       /*is_declaration=*/true);
10734 
10735   return cp_parser_namespace_name (parser);
10736 }
10737 
10738 /* Parse a using-declaration, or, if ACCESS_DECLARATION_P is true, an
10739    access declaration.
10740 
10741    using-declaration:
10742      using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10743      using :: unqualified-id ;
10744 
10745    access-declaration:
10746      qualified-id ;
10747 
10748    */
10749 
10750 static bool
cp_parser_using_declaration(cp_parser * parser,bool access_declaration_p)10751 cp_parser_using_declaration (cp_parser* parser,
10752 			     bool access_declaration_p)
10753 {
10754   cp_token *token;
10755   bool typename_p = false;
10756   bool global_scope_p;
10757   tree decl;
10758   tree identifier;
10759   tree qscope;
10760 
10761   if (access_declaration_p)
10762     cp_parser_parse_tentatively (parser);
10763   else
10764     {
10765       /* Look for the `using' keyword.  */
10766       cp_parser_require_keyword (parser, RID_USING, "`using'");
10767 
10768       /* Peek at the next token.  */
10769       token = cp_lexer_peek_token (parser->lexer);
10770       /* See if it's `typename'.  */
10771       if (token->keyword == RID_TYPENAME)
10772 	{
10773 	  /* Remember that we've seen it.  */
10774 	  typename_p = true;
10775 	  /* Consume the `typename' token.  */
10776 	  cp_lexer_consume_token (parser->lexer);
10777 	}
10778     }
10779 
10780   /* Look for the optional global scope qualification.  */
10781   global_scope_p
10782     = (cp_parser_global_scope_opt (parser,
10783 				   /*current_scope_valid_p=*/false)
10784        != NULL_TREE);
10785 
10786   /* If we saw `typename', or didn't see `::', then there must be a
10787      nested-name-specifier present.  */
10788   if (typename_p || !global_scope_p)
10789     qscope = cp_parser_nested_name_specifier (parser, typename_p,
10790 					      /*check_dependency_p=*/true,
10791 					      /*type_p=*/false,
10792 					      /*is_declaration=*/true);
10793   /* Otherwise, we could be in either of the two productions.  In that
10794      case, treat the nested-name-specifier as optional.  */
10795   else
10796     qscope = cp_parser_nested_name_specifier_opt (parser,
10797 						  /*typename_keyword_p=*/false,
10798 						  /*check_dependency_p=*/true,
10799 						  /*type_p=*/false,
10800 						  /*is_declaration=*/true);
10801   if (!qscope)
10802     qscope = global_namespace;
10803 
10804   if (access_declaration_p && cp_parser_error_occurred (parser))
10805     /* Something has already gone wrong; there's no need to parse
10806        further.  Since an error has occurred, the return value of
10807        cp_parser_parse_definitely will be false, as required.  */
10808     return cp_parser_parse_definitely (parser);
10809 
10810   /* Parse the unqualified-id.  */
10811   identifier = cp_parser_unqualified_id (parser,
10812 					 /*template_keyword_p=*/false,
10813 					 /*check_dependency_p=*/true,
10814 					 /*declarator_p=*/true,
10815 					 /*optional_p=*/false);
10816 
10817   if (access_declaration_p)
10818     {
10819       if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
10820 	cp_parser_simulate_error (parser);
10821       if (!cp_parser_parse_definitely (parser))
10822 	return false;
10823     }
10824 
10825   /* The function we call to handle a using-declaration is different
10826      depending on what scope we are in.  */
10827   if (qscope == error_mark_node || identifier == error_mark_node)
10828     ;
10829   else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10830 	   && TREE_CODE (identifier) != BIT_NOT_EXPR)
10831     /* [namespace.udecl]
10832 
10833        A using declaration shall not name a template-id.  */
10834     error ("a template-id may not appear in a using-declaration");
10835   else
10836     {
10837       if (at_class_scope_p ())
10838 	{
10839 	  /* Create the USING_DECL.  */
10840 	  decl = do_class_using_decl (parser->scope, identifier);
10841 	  /* Add it to the list of members in this class.  */
10842 	  finish_member_declaration (decl);
10843 	}
10844       else
10845 	{
10846 	  decl = cp_parser_lookup_name_simple (parser, identifier);
10847 	  if (decl == error_mark_node)
10848 	    cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10849 	  else if (!at_namespace_scope_p ())
10850 	    do_local_using_decl (decl, qscope, identifier);
10851 	  else
10852 	    do_toplevel_using_decl (decl, qscope, identifier);
10853 	}
10854     }
10855 
10856   /* Look for the final `;'.  */
10857   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10858 
10859   return true;
10860 }
10861 
10862 /* Parse a using-directive.
10863 
10864    using-directive:
10865      using namespace :: [opt] nested-name-specifier [opt]
10866        namespace-name ;  */
10867 
10868 static void
cp_parser_using_directive(cp_parser * parser)10869 cp_parser_using_directive (cp_parser* parser)
10870 {
10871   tree namespace_decl;
10872   tree attribs;
10873 
10874   /* Look for the `using' keyword.  */
10875   cp_parser_require_keyword (parser, RID_USING, "`using'");
10876   /* And the `namespace' keyword.  */
10877   cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10878   /* Look for the optional `::' operator.  */
10879   cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10880   /* And the optional nested-name-specifier.  */
10881   cp_parser_nested_name_specifier_opt (parser,
10882 				       /*typename_keyword_p=*/false,
10883 				       /*check_dependency_p=*/true,
10884 				       /*type_p=*/false,
10885 				       /*is_declaration=*/true);
10886   /* Get the namespace being used.  */
10887   namespace_decl = cp_parser_namespace_name (parser);
10888   /* And any specified attributes.  */
10889   attribs = cp_parser_attributes_opt (parser);
10890   /* Update the symbol table.  */
10891   parse_using_directive (namespace_decl, attribs);
10892   /* Look for the final `;'.  */
10893   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10894 }
10895 
10896 /* Parse an asm-definition.
10897 
10898    asm-definition:
10899      asm ( string-literal ) ;
10900 
10901    GNU Extension:
10902 
10903    asm-definition:
10904      asm volatile [opt] ( string-literal ) ;
10905      asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10906      asm volatile [opt] ( string-literal : asm-operand-list [opt]
10907 			  : asm-operand-list [opt] ) ;
10908      asm volatile [opt] ( string-literal : asm-operand-list [opt]
10909 			  : asm-operand-list [opt]
10910 			  : asm-operand-list [opt] ) ;  */
10911 
10912 static void
cp_parser_asm_definition(cp_parser * parser)10913 cp_parser_asm_definition (cp_parser* parser)
10914 {
10915   tree string;
10916   tree outputs = NULL_TREE;
10917   tree inputs = NULL_TREE;
10918   tree clobbers = NULL_TREE;
10919   tree asm_stmt;
10920   bool volatile_p = false;
10921   bool extended_p = false;
10922 
10923   /* Look for the `asm' keyword.  */
10924   cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10925   /* See if the next token is `volatile'.  */
10926   if (cp_parser_allow_gnu_extensions_p (parser)
10927       && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10928     {
10929       /* Remember that we saw the `volatile' keyword.  */
10930       volatile_p = true;
10931       /* Consume the token.  */
10932       cp_lexer_consume_token (parser->lexer);
10933     }
10934   /* Look for the opening `('.  */
10935   if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
10936     return;
10937   /* Look for the string.  */
10938   string = cp_parser_string_literal (parser, false, false);
10939   if (string == error_mark_node)
10940     {
10941       cp_parser_skip_to_closing_parenthesis (parser, true, false,
10942 					     /*consume_paren=*/true);
10943       return;
10944     }
10945 
10946   /* If we're allowing GNU extensions, check for the extended assembly
10947      syntax.  Unfortunately, the `:' tokens need not be separated by
10948      a space in C, and so, for compatibility, we tolerate that here
10949      too.  Doing that means that we have to treat the `::' operator as
10950      two `:' tokens.  */
10951   if (cp_parser_allow_gnu_extensions_p (parser)
10952       && parser->in_function_body
10953       && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10954 	  || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10955     {
10956       bool inputs_p = false;
10957       bool clobbers_p = false;
10958 
10959       /* The extended syntax was used.  */
10960       extended_p = true;
10961 
10962       /* Look for outputs.  */
10963       if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10964 	{
10965 	  /* Consume the `:'.  */
10966 	  cp_lexer_consume_token (parser->lexer);
10967 	  /* Parse the output-operands.  */
10968 	  if (cp_lexer_next_token_is_not (parser->lexer,
10969 					  CPP_COLON)
10970 	      && cp_lexer_next_token_is_not (parser->lexer,
10971 					     CPP_SCOPE)
10972 	      && cp_lexer_next_token_is_not (parser->lexer,
10973 					     CPP_CLOSE_PAREN))
10974 	    outputs = cp_parser_asm_operand_list (parser);
10975 	}
10976       /* If the next token is `::', there are no outputs, and the
10977 	 next token is the beginning of the inputs.  */
10978       else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10979 	/* The inputs are coming next.  */
10980 	inputs_p = true;
10981 
10982       /* Look for inputs.  */
10983       if (inputs_p
10984 	  || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10985 	{
10986 	  /* Consume the `:' or `::'.  */
10987 	  cp_lexer_consume_token (parser->lexer);
10988 	  /* Parse the output-operands.  */
10989 	  if (cp_lexer_next_token_is_not (parser->lexer,
10990 					  CPP_COLON)
10991 	      && cp_lexer_next_token_is_not (parser->lexer,
10992 					     CPP_CLOSE_PAREN))
10993 	    inputs = cp_parser_asm_operand_list (parser);
10994 	}
10995       else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10996 	/* The clobbers are coming next.  */
10997 	clobbers_p = true;
10998 
10999       /* Look for clobbers.  */
11000       if (clobbers_p
11001 	  || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
11002 	{
11003 	  /* Consume the `:' or `::'.  */
11004 	  cp_lexer_consume_token (parser->lexer);
11005 	  /* Parse the clobbers.  */
11006 	  if (cp_lexer_next_token_is_not (parser->lexer,
11007 					  CPP_CLOSE_PAREN))
11008 	    clobbers = cp_parser_asm_clobber_list (parser);
11009 	}
11010     }
11011   /* Look for the closing `)'.  */
11012   if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
11013     cp_parser_skip_to_closing_parenthesis (parser, true, false,
11014 					   /*consume_paren=*/true);
11015   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
11016 
11017   /* Create the ASM_EXPR.  */
11018   if (parser->in_function_body)
11019     {
11020       asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
11021 				  inputs, clobbers);
11022       /* If the extended syntax was not used, mark the ASM_EXPR.  */
11023       if (!extended_p)
11024 	{
11025 	  tree temp = asm_stmt;
11026 	  if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
11027 	    temp = TREE_OPERAND (temp, 0);
11028 
11029 	  ASM_INPUT_P (temp) = 1;
11030 	}
11031     }
11032   else
11033     cgraph_add_asm_node (string);
11034 }
11035 
11036 /* Declarators [gram.dcl.decl] */
11037 
11038 /* Parse an init-declarator.
11039 
11040    init-declarator:
11041      declarator initializer [opt]
11042 
11043    GNU Extension:
11044 
11045    init-declarator:
11046      declarator asm-specification [opt] attributes [opt] initializer [opt]
11047 
11048    function-definition:
11049      decl-specifier-seq [opt] declarator ctor-initializer [opt]
11050        function-body
11051      decl-specifier-seq [opt] declarator function-try-block
11052 
11053    GNU Extension:
11054 
11055    function-definition:
11056      __extension__ function-definition
11057 
11058    The DECL_SPECIFIERS apply to this declarator.  Returns a
11059    representation of the entity declared.  If MEMBER_P is TRUE, then
11060    this declarator appears in a class scope.  The new DECL created by
11061    this declarator is returned.
11062 
11063    The CHECKS are access checks that should be performed once we know
11064    what entity is being declared (and, therefore, what classes have
11065    befriended it).
11066 
11067    If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
11068    for a function-definition here as well.  If the declarator is a
11069    declarator for a function-definition, *FUNCTION_DEFINITION_P will
11070    be TRUE upon return.  By that point, the function-definition will
11071    have been completely parsed.
11072 
11073    FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
11074    is FALSE.  */
11075 
11076 static tree
cp_parser_init_declarator(cp_parser * parser,cp_decl_specifier_seq * decl_specifiers,VEC (deferred_access_check,gc)* checks,bool function_definition_allowed_p,bool member_p,int declares_class_or_enum,bool * function_definition_p)11077 cp_parser_init_declarator (cp_parser* parser,
11078 			   cp_decl_specifier_seq *decl_specifiers,
11079 			   VEC (deferred_access_check,gc)* checks,
11080 			   bool function_definition_allowed_p,
11081 			   bool member_p,
11082 			   int declares_class_or_enum,
11083 			   bool* function_definition_p)
11084 {
11085   cp_token *token;
11086   cp_declarator *declarator;
11087   tree prefix_attributes;
11088   tree attributes;
11089   tree asm_specification;
11090   tree initializer;
11091   tree decl = NULL_TREE;
11092   tree scope;
11093   bool is_initialized;
11094   /* Only valid if IS_INITIALIZED is true.  In that case, CPP_EQ if
11095      initialized with "= ..", CPP_OPEN_PAREN if initialized with
11096      "(...)".  */
11097   enum cpp_ttype initialization_kind;
11098   bool is_parenthesized_init = false;
11099   bool is_non_constant_init;
11100   int ctor_dtor_or_conv_p;
11101   bool friend_p;
11102   tree pushed_scope = NULL;
11103 
11104   /* Gather the attributes that were provided with the
11105      decl-specifiers.  */
11106   prefix_attributes = decl_specifiers->attributes;
11107 
11108   /* Assume that this is not the declarator for a function
11109      definition.  */
11110   if (function_definition_p)
11111     *function_definition_p = false;
11112 
11113   /* Defer access checks while parsing the declarator; we cannot know
11114      what names are accessible until we know what is being
11115      declared.  */
11116   resume_deferring_access_checks ();
11117 
11118   /* Parse the declarator.  */
11119   declarator
11120     = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
11121 			    &ctor_dtor_or_conv_p,
11122 			    /*parenthesized_p=*/NULL,
11123 			    /*member_p=*/false);
11124   /* Gather up the deferred checks.  */
11125   stop_deferring_access_checks ();
11126 
11127   /* If the DECLARATOR was erroneous, there's no need to go
11128      further.  */
11129   if (declarator == cp_error_declarator)
11130     return error_mark_node;
11131 
11132   /* Check that the number of template-parameter-lists is OK.  */
11133   if (!cp_parser_check_declarator_template_parameters (parser, declarator))
11134     return error_mark_node;
11135 
11136   if (declares_class_or_enum & 2)
11137     cp_parser_check_for_definition_in_return_type (declarator,
11138 						   decl_specifiers->type);
11139 
11140   /* Figure out what scope the entity declared by the DECLARATOR is
11141      located in.  `grokdeclarator' sometimes changes the scope, so
11142      we compute it now.  */
11143   scope = get_scope_of_declarator (declarator);
11144 
11145   /* If we're allowing GNU extensions, look for an asm-specification
11146      and attributes.  */
11147   if (cp_parser_allow_gnu_extensions_p (parser))
11148     {
11149       /* Look for an asm-specification.  */
11150       asm_specification = cp_parser_asm_specification_opt (parser);
11151       /* And attributes.  */
11152       attributes = cp_parser_attributes_opt (parser);
11153     }
11154   else
11155     {
11156       asm_specification = NULL_TREE;
11157       attributes = NULL_TREE;
11158     }
11159 
11160   /* Peek at the next token.  */
11161   token = cp_lexer_peek_token (parser->lexer);
11162   /* Check to see if the token indicates the start of a
11163      function-definition.  */
11164   if (cp_parser_token_starts_function_definition_p (token))
11165     {
11166       if (!function_definition_allowed_p)
11167 	{
11168 	  /* If a function-definition should not appear here, issue an
11169 	     error message.  */
11170 	  cp_parser_error (parser,
11171 			   "a function-definition is not allowed here");
11172 	  return error_mark_node;
11173 	}
11174       else
11175 	{
11176 	  /* Neither attributes nor an asm-specification are allowed
11177 	     on a function-definition.  */
11178 	  if (asm_specification)
11179 	    error ("an asm-specification is not allowed on a function-definition");
11180 	  if (attributes)
11181 	    error ("attributes are not allowed on a function-definition");
11182 	  /* This is a function-definition.  */
11183 	  *function_definition_p = true;
11184 
11185 	  /* Parse the function definition.  */
11186 	  if (member_p)
11187 	    decl = cp_parser_save_member_function_body (parser,
11188 							decl_specifiers,
11189 							declarator,
11190 							prefix_attributes);
11191 	  else
11192 	    decl
11193 	      = (cp_parser_function_definition_from_specifiers_and_declarator
11194 		 (parser, decl_specifiers, prefix_attributes, declarator));
11195 
11196 	  return decl;
11197 	}
11198     }
11199 
11200   /* [dcl.dcl]
11201 
11202      Only in function declarations for constructors, destructors, and
11203      type conversions can the decl-specifier-seq be omitted.
11204 
11205      We explicitly postpone this check past the point where we handle
11206      function-definitions because we tolerate function-definitions
11207      that are missing their return types in some modes.  */
11208   if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
11209     {
11210       cp_parser_error (parser,
11211 		       "expected constructor, destructor, or type conversion");
11212       return error_mark_node;
11213     }
11214 
11215   /* An `=' or an `(' indicates an initializer.  */
11216   if (token->type == CPP_EQ
11217       || token->type == CPP_OPEN_PAREN)
11218     {
11219       is_initialized = true;
11220       initialization_kind = token->type;
11221     }
11222   else
11223     {
11224       /* If the init-declarator isn't initialized and isn't followed by a
11225 	 `,' or `;', it's not a valid init-declarator.  */
11226       if (token->type != CPP_COMMA
11227 	  && token->type != CPP_SEMICOLON)
11228 	{
11229 	  cp_parser_error (parser, "expected initializer");
11230 	  return error_mark_node;
11231 	}
11232       is_initialized = false;
11233       initialization_kind = CPP_EOF;
11234     }
11235 
11236   /* Because start_decl has side-effects, we should only call it if we
11237      know we're going ahead.  By this point, we know that we cannot
11238      possibly be looking at any other construct.  */
11239   cp_parser_commit_to_tentative_parse (parser);
11240 
11241   /* If the decl specifiers were bad, issue an error now that we're
11242      sure this was intended to be a declarator.  Then continue
11243      declaring the variable(s), as int, to try to cut down on further
11244      errors.  */
11245   if (decl_specifiers->any_specifiers_p
11246       && decl_specifiers->type == error_mark_node)
11247     {
11248       cp_parser_error (parser, "invalid type in declaration");
11249       decl_specifiers->type = integer_type_node;
11250     }
11251 
11252   /* Check to see whether or not this declaration is a friend.  */
11253   friend_p = cp_parser_friend_p (decl_specifiers);
11254 
11255   /* Enter the newly declared entry in the symbol table.  If we're
11256      processing a declaration in a class-specifier, we wait until
11257      after processing the initializer.  */
11258   if (!member_p)
11259     {
11260       if (parser->in_unbraced_linkage_specification_p)
11261 	decl_specifiers->storage_class = sc_extern;
11262       decl = start_decl (declarator, decl_specifiers,
11263 			 is_initialized, attributes, prefix_attributes,
11264 			 &pushed_scope);
11265     }
11266   else if (scope)
11267     /* Enter the SCOPE.  That way unqualified names appearing in the
11268        initializer will be looked up in SCOPE.  */
11269     pushed_scope = push_scope (scope);
11270 
11271   /* Perform deferred access control checks, now that we know in which
11272      SCOPE the declared entity resides.  */
11273   if (!member_p && decl)
11274     {
11275       tree saved_current_function_decl = NULL_TREE;
11276 
11277       /* If the entity being declared is a function, pretend that we
11278 	 are in its scope.  If it is a `friend', it may have access to
11279 	 things that would not otherwise be accessible.  */
11280       if (TREE_CODE (decl) == FUNCTION_DECL)
11281 	{
11282 	  saved_current_function_decl = current_function_decl;
11283 	  current_function_decl = decl;
11284 	}
11285 
11286       /* Perform access checks for template parameters.  */
11287       cp_parser_perform_template_parameter_access_checks (checks);
11288 
11289       /* Perform the access control checks for the declarator and the
11290 	 the decl-specifiers.  */
11291       perform_deferred_access_checks ();
11292 
11293       /* Restore the saved value.  */
11294       if (TREE_CODE (decl) == FUNCTION_DECL)
11295 	current_function_decl = saved_current_function_decl;
11296     }
11297 
11298   /* Parse the initializer.  */
11299   initializer = NULL_TREE;
11300   is_parenthesized_init = false;
11301   is_non_constant_init = true;
11302   if (is_initialized)
11303     {
11304       if (function_declarator_p (declarator))
11305 	{
11306 	   if (initialization_kind == CPP_EQ)
11307 	     initializer = cp_parser_pure_specifier (parser);
11308 	   else
11309 	     {
11310 	       /* If the declaration was erroneous, we don't really
11311 		  know what the user intended, so just silently
11312 		  consume the initializer.  */
11313 	       if (decl != error_mark_node)
11314 		 error ("initializer provided for function");
11315 	       cp_parser_skip_to_closing_parenthesis (parser,
11316 						      /*recovering=*/true,
11317 						      /*or_comma=*/false,
11318 						      /*consume_paren=*/true);
11319 	     }
11320 	}
11321       else
11322 	initializer = cp_parser_initializer (parser,
11323 					     &is_parenthesized_init,
11324 					     &is_non_constant_init);
11325     }
11326 
11327   /* The old parser allows attributes to appear after a parenthesized
11328      initializer.  Mark Mitchell proposed removing this functionality
11329      on the GCC mailing lists on 2002-08-13.  This parser accepts the
11330      attributes -- but ignores them.  */
11331   if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
11332     if (cp_parser_attributes_opt (parser))
11333       warning (OPT_Wattributes,
11334 	       "attributes after parenthesized initializer ignored");
11335 
11336   /* For an in-class declaration, use `grokfield' to create the
11337      declaration.  */
11338   if (member_p)
11339     {
11340       if (pushed_scope)
11341 	{
11342 	  pop_scope (pushed_scope);
11343 	  pushed_scope = false;
11344 	}
11345       decl = grokfield (declarator, decl_specifiers,
11346 			initializer, !is_non_constant_init,
11347 			/*asmspec=*/NULL_TREE,
11348 			prefix_attributes);
11349       if (decl && TREE_CODE (decl) == FUNCTION_DECL)
11350 	cp_parser_save_default_args (parser, decl);
11351     }
11352 
11353   /* Finish processing the declaration.  But, skip friend
11354      declarations.  */
11355   if (!friend_p && decl && decl != error_mark_node)
11356     {
11357       cp_finish_decl (decl,
11358 		      initializer, !is_non_constant_init,
11359 		      asm_specification,
11360 		      /* If the initializer is in parentheses, then this is
11361 			 a direct-initialization, which means that an
11362 			 `explicit' constructor is OK.  Otherwise, an
11363 			 `explicit' constructor cannot be used.  */
11364 		      ((is_parenthesized_init || !is_initialized)
11365 		     ? 0 : LOOKUP_ONLYCONVERTING));
11366     }
11367   if (!friend_p && pushed_scope)
11368     pop_scope (pushed_scope);
11369 
11370   return decl;
11371 }
11372 
11373 /* Parse a declarator.
11374 
11375    declarator:
11376      direct-declarator
11377      ptr-operator declarator
11378 
11379    abstract-declarator:
11380      ptr-operator abstract-declarator [opt]
11381      direct-abstract-declarator
11382 
11383    GNU Extensions:
11384 
11385    declarator:
11386      attributes [opt] direct-declarator
11387      attributes [opt] ptr-operator declarator
11388 
11389    abstract-declarator:
11390      attributes [opt] ptr-operator abstract-declarator [opt]
11391      attributes [opt] direct-abstract-declarator
11392 
11393    If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
11394    detect constructor, destructor or conversion operators. It is set
11395    to -1 if the declarator is a name, and +1 if it is a
11396    function. Otherwise it is set to zero. Usually you just want to
11397    test for >0, but internally the negative value is used.
11398 
11399    (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
11400    a decl-specifier-seq unless it declares a constructor, destructor,
11401    or conversion.  It might seem that we could check this condition in
11402    semantic analysis, rather than parsing, but that makes it difficult
11403    to handle something like `f()'.  We want to notice that there are
11404    no decl-specifiers, and therefore realize that this is an
11405    expression, not a declaration.)
11406 
11407    If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
11408    the declarator is a direct-declarator of the form "(...)".
11409 
11410    MEMBER_P is true iff this declarator is a member-declarator.  */
11411 
11412 static cp_declarator *
cp_parser_declarator(cp_parser * parser,cp_parser_declarator_kind dcl_kind,int * ctor_dtor_or_conv_p,bool * parenthesized_p,bool member_p)11413 cp_parser_declarator (cp_parser* parser,
11414 		      cp_parser_declarator_kind dcl_kind,
11415 		      int* ctor_dtor_or_conv_p,
11416 		      bool* parenthesized_p,
11417 		      bool member_p)
11418 {
11419   cp_token *token;
11420   cp_declarator *declarator;
11421   enum tree_code code;
11422   cp_cv_quals cv_quals;
11423   tree class_type;
11424   tree attributes = NULL_TREE;
11425 
11426   /* Assume this is not a constructor, destructor, or type-conversion
11427      operator.  */
11428   if (ctor_dtor_or_conv_p)
11429     *ctor_dtor_or_conv_p = 0;
11430 
11431   if (cp_parser_allow_gnu_extensions_p (parser))
11432     attributes = cp_parser_attributes_opt (parser);
11433 
11434   /* Peek at the next token.  */
11435   token = cp_lexer_peek_token (parser->lexer);
11436 
11437   /* Check for the ptr-operator production.  */
11438   cp_parser_parse_tentatively (parser);
11439   /* Parse the ptr-operator.  */
11440   code = cp_parser_ptr_operator (parser,
11441 				 &class_type,
11442 				 &cv_quals);
11443   /* If that worked, then we have a ptr-operator.  */
11444   if (cp_parser_parse_definitely (parser))
11445     {
11446       /* If a ptr-operator was found, then this declarator was not
11447 	 parenthesized.  */
11448       if (parenthesized_p)
11449 	*parenthesized_p = true;
11450       /* The dependent declarator is optional if we are parsing an
11451 	 abstract-declarator.  */
11452       if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11453 	cp_parser_parse_tentatively (parser);
11454 
11455       /* Parse the dependent declarator.  */
11456       declarator = cp_parser_declarator (parser, dcl_kind,
11457 					 /*ctor_dtor_or_conv_p=*/NULL,
11458 					 /*parenthesized_p=*/NULL,
11459 					 /*member_p=*/false);
11460 
11461       /* If we are parsing an abstract-declarator, we must handle the
11462 	 case where the dependent declarator is absent.  */
11463       if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
11464 	  && !cp_parser_parse_definitely (parser))
11465 	declarator = NULL;
11466 
11467       /* Build the representation of the ptr-operator.  */
11468       if (class_type)
11469 	declarator = make_ptrmem_declarator (cv_quals,
11470 					     class_type,
11471 					     declarator);
11472       else if (code == INDIRECT_REF)
11473 	declarator = make_pointer_declarator (cv_quals, declarator);
11474       else
11475 	declarator = make_reference_declarator (cv_quals, declarator);
11476     }
11477   /* Everything else is a direct-declarator.  */
11478   else
11479     {
11480       if (parenthesized_p)
11481 	*parenthesized_p = cp_lexer_next_token_is (parser->lexer,
11482 						   CPP_OPEN_PAREN);
11483       declarator = cp_parser_direct_declarator (parser, dcl_kind,
11484 						ctor_dtor_or_conv_p,
11485 						member_p);
11486     }
11487 
11488   if (attributes && declarator && declarator != cp_error_declarator)
11489     declarator->attributes = attributes;
11490 
11491   return declarator;
11492 }
11493 
11494 /* Parse a direct-declarator or direct-abstract-declarator.
11495 
11496    direct-declarator:
11497      declarator-id
11498      direct-declarator ( parameter-declaration-clause )
11499        cv-qualifier-seq [opt]
11500        exception-specification [opt]
11501      direct-declarator [ constant-expression [opt] ]
11502      ( declarator )
11503 
11504    direct-abstract-declarator:
11505      direct-abstract-declarator [opt]
11506        ( parameter-declaration-clause )
11507        cv-qualifier-seq [opt]
11508        exception-specification [opt]
11509      direct-abstract-declarator [opt] [ constant-expression [opt] ]
11510      ( abstract-declarator )
11511 
11512    Returns a representation of the declarator.  DCL_KIND is
11513    CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
11514    direct-abstract-declarator.  It is CP_PARSER_DECLARATOR_NAMED, if
11515    we are parsing a direct-declarator.  It is
11516    CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
11517    of ambiguity we prefer an abstract declarator, as per
11518    [dcl.ambig.res].  CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
11519    cp_parser_declarator.  */
11520 
11521 static cp_declarator *
cp_parser_direct_declarator(cp_parser * parser,cp_parser_declarator_kind dcl_kind,int * ctor_dtor_or_conv_p,bool member_p)11522 cp_parser_direct_declarator (cp_parser* parser,
11523 			     cp_parser_declarator_kind dcl_kind,
11524 			     int* ctor_dtor_or_conv_p,
11525 			     bool member_p)
11526 {
11527   cp_token *token;
11528   cp_declarator *declarator = NULL;
11529   tree scope = NULL_TREE;
11530   bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11531   bool saved_in_declarator_p = parser->in_declarator_p;
11532   bool first = true;
11533   tree pushed_scope = NULL_TREE;
11534 
11535   while (true)
11536     {
11537       /* Peek at the next token.  */
11538       token = cp_lexer_peek_token (parser->lexer);
11539       if (token->type == CPP_OPEN_PAREN)
11540 	{
11541 	  /* This is either a parameter-declaration-clause, or a
11542 	     parenthesized declarator. When we know we are parsing a
11543 	     named declarator, it must be a parenthesized declarator
11544 	     if FIRST is true. For instance, `(int)' is a
11545 	     parameter-declaration-clause, with an omitted
11546 	     direct-abstract-declarator. But `((*))', is a
11547 	     parenthesized abstract declarator. Finally, when T is a
11548 	     template parameter `(T)' is a
11549 	     parameter-declaration-clause, and not a parenthesized
11550 	     named declarator.
11551 
11552 	     We first try and parse a parameter-declaration-clause,
11553 	     and then try a nested declarator (if FIRST is true).
11554 
11555 	     It is not an error for it not to be a
11556 	     parameter-declaration-clause, even when FIRST is
11557 	     false. Consider,
11558 
11559 	       int i (int);
11560 	       int i (3);
11561 
11562 	     The first is the declaration of a function while the
11563 	     second is a the definition of a variable, including its
11564 	     initializer.
11565 
11566 	     Having seen only the parenthesis, we cannot know which of
11567 	     these two alternatives should be selected.  Even more
11568 	     complex are examples like:
11569 
11570 	       int i (int (a));
11571 	       int i (int (3));
11572 
11573 	     The former is a function-declaration; the latter is a
11574 	     variable initialization.
11575 
11576 	     Thus again, we try a parameter-declaration-clause, and if
11577 	     that fails, we back out and return.  */
11578 
11579 	  if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11580 	    {
11581 	      cp_parameter_declarator *params;
11582 	      unsigned saved_num_template_parameter_lists;
11583 
11584 	      /* In a member-declarator, the only valid interpretation
11585 		 of a parenthesis is the start of a
11586 		 parameter-declaration-clause.  (It is invalid to
11587 		 initialize a static data member with a parenthesized
11588 		 initializer; only the "=" form of initialization is
11589 		 permitted.)  */
11590 	      if (!member_p)
11591 		cp_parser_parse_tentatively (parser);
11592 
11593 	      /* Consume the `('.  */
11594 	      cp_lexer_consume_token (parser->lexer);
11595 	      if (first)
11596 		{
11597 		  /* If this is going to be an abstract declarator, we're
11598 		     in a declarator and we can't have default args.  */
11599 		  parser->default_arg_ok_p = false;
11600 		  parser->in_declarator_p = true;
11601 		}
11602 
11603 	      /* Inside the function parameter list, surrounding
11604 		 template-parameter-lists do not apply.  */
11605 	      saved_num_template_parameter_lists
11606 		= parser->num_template_parameter_lists;
11607 	      parser->num_template_parameter_lists = 0;
11608 
11609 	      /* Parse the parameter-declaration-clause.  */
11610 	      params = cp_parser_parameter_declaration_clause (parser);
11611 
11612 	      parser->num_template_parameter_lists
11613 		= saved_num_template_parameter_lists;
11614 
11615 	      /* If all went well, parse the cv-qualifier-seq and the
11616 		 exception-specification.  */
11617 	      if (member_p || cp_parser_parse_definitely (parser))
11618 		{
11619 		  cp_cv_quals cv_quals;
11620 		  tree exception_specification;
11621 
11622 		  if (ctor_dtor_or_conv_p)
11623 		    *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
11624 		  first = false;
11625 		  /* Consume the `)'.  */
11626 		  cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
11627 
11628 		  /* Parse the cv-qualifier-seq.  */
11629 		  cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11630 		  /* And the exception-specification.  */
11631 		  exception_specification
11632 		    = cp_parser_exception_specification_opt (parser);
11633 
11634 		  /* Create the function-declarator.  */
11635 		  declarator = make_call_declarator (declarator,
11636 						     params,
11637 						     cv_quals,
11638 						     exception_specification);
11639 		  /* Any subsequent parameter lists are to do with
11640 		     return type, so are not those of the declared
11641 		     function.  */
11642 		  parser->default_arg_ok_p = false;
11643 
11644 		  /* Repeat the main loop.  */
11645 		  continue;
11646 		}
11647 	    }
11648 
11649 	  /* If this is the first, we can try a parenthesized
11650 	     declarator.  */
11651 	  if (first)
11652 	    {
11653 	      bool saved_in_type_id_in_expr_p;
11654 
11655 	      parser->default_arg_ok_p = saved_default_arg_ok_p;
11656 	      parser->in_declarator_p = saved_in_declarator_p;
11657 
11658 	      /* Consume the `('.  */
11659 	      cp_lexer_consume_token (parser->lexer);
11660 	      /* Parse the nested declarator.  */
11661 	      saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
11662 	      parser->in_type_id_in_expr_p = true;
11663 	      declarator
11664 		= cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
11665 					/*parenthesized_p=*/NULL,
11666 					member_p);
11667 	      parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
11668 	      first = false;
11669 	      /* Expect a `)'.  */
11670 	      if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
11671 		declarator = cp_error_declarator;
11672 	      if (declarator == cp_error_declarator)
11673 		break;
11674 
11675 	      goto handle_declarator;
11676 	    }
11677 	  /* Otherwise, we must be done.  */
11678 	  else
11679 	    break;
11680 	}
11681       else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11682 	       && token->type == CPP_OPEN_SQUARE)
11683 	{
11684 	  /* Parse an array-declarator.  */
11685 	  tree bounds;
11686 
11687 	  if (ctor_dtor_or_conv_p)
11688 	    *ctor_dtor_or_conv_p = 0;
11689 
11690 	  first = false;
11691 	  parser->default_arg_ok_p = false;
11692 	  parser->in_declarator_p = true;
11693 	  /* Consume the `['.  */
11694 	  cp_lexer_consume_token (parser->lexer);
11695 	  /* Peek at the next token.  */
11696 	  token = cp_lexer_peek_token (parser->lexer);
11697 	  /* If the next token is `]', then there is no
11698 	     constant-expression.  */
11699 	  if (token->type != CPP_CLOSE_SQUARE)
11700 	    {
11701 	      bool non_constant_p;
11702 
11703 	      bounds
11704 		= cp_parser_constant_expression (parser,
11705 						 /*allow_non_constant=*/true,
11706 						 &non_constant_p);
11707 	      if (!non_constant_p)
11708 		bounds = fold_non_dependent_expr (bounds);
11709 	      /* Normally, the array bound must be an integral constant
11710 		 expression.  However, as an extension, we allow VLAs
11711 		 in function scopes.  */
11712 	      else if (!parser->in_function_body)
11713 		{
11714 		  error ("array bound is not an integer constant");
11715 		  bounds = error_mark_node;
11716 		}
11717 	    }
11718 	  else
11719 	    bounds = NULL_TREE;
11720 	  /* Look for the closing `]'.  */
11721 	  if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
11722 	    {
11723 	      declarator = cp_error_declarator;
11724 	      break;
11725 	    }
11726 
11727 	  declarator = make_array_declarator (declarator, bounds);
11728 	}
11729       else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
11730 	{
11731 	  tree qualifying_scope;
11732 	  tree unqualified_name;
11733 	  special_function_kind sfk;
11734 	  bool abstract_ok;
11735 
11736 	  /* Parse a declarator-id */
11737 	  abstract_ok = (dcl_kind == CP_PARSER_DECLARATOR_EITHER);
11738 	  if (abstract_ok)
11739 	    cp_parser_parse_tentatively (parser);
11740 	  unqualified_name
11741 	    = cp_parser_declarator_id (parser, /*optional_p=*/abstract_ok);
11742 	  qualifying_scope = parser->scope;
11743 	  if (abstract_ok)
11744 	    {
11745 	      if (!cp_parser_parse_definitely (parser))
11746 		unqualified_name = error_mark_node;
11747 	      else if (unqualified_name
11748 		       && (qualifying_scope
11749 			   || (TREE_CODE (unqualified_name)
11750 			       != IDENTIFIER_NODE)))
11751 		{
11752 		  cp_parser_error (parser, "expected unqualified-id");
11753 		  unqualified_name = error_mark_node;
11754 		}
11755 	    }
11756 
11757 	  if (!unqualified_name)
11758 	    return NULL;
11759 	  if (unqualified_name == error_mark_node)
11760 	    {
11761 	      declarator = cp_error_declarator;
11762 	      break;
11763 	    }
11764 
11765 	  if (qualifying_scope && at_namespace_scope_p ()
11766 	      && TREE_CODE (qualifying_scope) == TYPENAME_TYPE)
11767 	    {
11768 	      /* In the declaration of a member of a template class
11769 		 outside of the class itself, the SCOPE will sometimes
11770 		 be a TYPENAME_TYPE.  For example, given:
11771 
11772 		 template <typename T>
11773 		 int S<T>::R::i = 3;
11774 
11775 		 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'.  In
11776 		 this context, we must resolve S<T>::R to an ordinary
11777 		 type, rather than a typename type.
11778 
11779 		 The reason we normally avoid resolving TYPENAME_TYPEs
11780 		 is that a specialization of `S' might render
11781 		 `S<T>::R' not a type.  However, if `S' is
11782 		 specialized, then this `i' will not be used, so there
11783 		 is no harm in resolving the types here.  */
11784 	      tree type;
11785 
11786 	      /* Resolve the TYPENAME_TYPE.  */
11787 	      type = resolve_typename_type (qualifying_scope,
11788 					    /*only_current_p=*/false);
11789 	      /* If that failed, the declarator is invalid.  */
11790 	      if (type == error_mark_node)
11791 		error ("%<%T::%D%> is not a type",
11792 		       TYPE_CONTEXT (qualifying_scope),
11793 		       TYPE_IDENTIFIER (qualifying_scope));
11794 	      qualifying_scope = type;
11795 	    }
11796 
11797 	  sfk = sfk_none;
11798 	  if (unqualified_name)
11799 	    {
11800 	      tree class_type;
11801 
11802 	      if (qualifying_scope
11803 		  && CLASS_TYPE_P (qualifying_scope))
11804 		class_type = qualifying_scope;
11805 	      else
11806 		class_type = current_class_type;
11807 
11808 	      if (TREE_CODE (unqualified_name) == TYPE_DECL)
11809 		{
11810 		  tree name_type = TREE_TYPE (unqualified_name);
11811 		  if (class_type && same_type_p (name_type, class_type))
11812 		    {
11813 		      if (qualifying_scope
11814 			  && CLASSTYPE_USE_TEMPLATE (name_type))
11815 			{
11816 			  error ("invalid use of constructor as a template");
11817 			  inform ("use %<%T::%D%> instead of %<%T::%D%> to "
11818 				  "name the constructor in a qualified name",
11819 				  class_type,
11820 				  DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11821 				  class_type, name_type);
11822 			  declarator = cp_error_declarator;
11823 			  break;
11824 			}
11825 		      else
11826 			unqualified_name = constructor_name (class_type);
11827 		    }
11828 		  else
11829 		    {
11830 		      /* We do not attempt to print the declarator
11831 			 here because we do not have enough
11832 			 information about its original syntactic
11833 			 form.  */
11834 		      cp_parser_error (parser, "invalid declarator");
11835 		      declarator = cp_error_declarator;
11836 		      break;
11837 		    }
11838 		}
11839 
11840 	      if (class_type)
11841 		{
11842 		  if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11843 		    sfk = sfk_destructor;
11844 		  else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11845 		    sfk = sfk_conversion;
11846 		  else if (/* There's no way to declare a constructor
11847 			      for an anonymous type, even if the type
11848 			      got a name for linkage purposes.  */
11849 			   !TYPE_WAS_ANONYMOUS (class_type)
11850 			   && constructor_name_p (unqualified_name,
11851 						  class_type))
11852 		    {
11853 		      unqualified_name = constructor_name (class_type);
11854 		      sfk = sfk_constructor;
11855 		    }
11856 
11857 		  if (ctor_dtor_or_conv_p && sfk != sfk_none)
11858 		    *ctor_dtor_or_conv_p = -1;
11859 		}
11860 	    }
11861 	  declarator = make_id_declarator (qualifying_scope,
11862 					   unqualified_name,
11863 					   sfk);
11864 	  declarator->id_loc = token->location;
11865 
11866 	handle_declarator:;
11867 	  scope = get_scope_of_declarator (declarator);
11868 	  if (scope)
11869 	    /* Any names that appear after the declarator-id for a
11870 	       member are looked up in the containing scope.  */
11871 	    pushed_scope = push_scope (scope);
11872 	  parser->in_declarator_p = true;
11873 	  if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11874 	      || (declarator && declarator->kind == cdk_id))
11875 	    /* Default args are only allowed on function
11876 	       declarations.  */
11877 	    parser->default_arg_ok_p = saved_default_arg_ok_p;
11878 	  else
11879 	    parser->default_arg_ok_p = false;
11880 
11881 	  first = false;
11882 	}
11883       /* We're done.  */
11884       else
11885 	break;
11886     }
11887 
11888   /* For an abstract declarator, we might wind up with nothing at this
11889      point.  That's an error; the declarator is not optional.  */
11890   if (!declarator)
11891     cp_parser_error (parser, "expected declarator");
11892 
11893   /* If we entered a scope, we must exit it now.  */
11894   if (pushed_scope)
11895     pop_scope (pushed_scope);
11896 
11897   parser->default_arg_ok_p = saved_default_arg_ok_p;
11898   parser->in_declarator_p = saved_in_declarator_p;
11899 
11900   return declarator;
11901 }
11902 
11903 /* Parse a ptr-operator.
11904 
11905    ptr-operator:
11906      * cv-qualifier-seq [opt]
11907      &
11908      :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11909 
11910    GNU Extension:
11911 
11912    ptr-operator:
11913      & cv-qualifier-seq [opt]
11914 
11915    Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11916    Returns ADDR_EXPR if a reference was used.  In the case of a
11917    pointer-to-member, *TYPE is filled in with the TYPE containing the
11918    member.  *CV_QUALS is filled in with the cv-qualifier-seq, or
11919    TYPE_UNQUALIFIED, if there are no cv-qualifiers.  Returns
11920    ERROR_MARK if an error occurred.  */
11921 
11922 static enum tree_code
cp_parser_ptr_operator(cp_parser * parser,tree * type,cp_cv_quals * cv_quals)11923 cp_parser_ptr_operator (cp_parser* parser,
11924 			tree* type,
11925 			cp_cv_quals *cv_quals)
11926 {
11927   enum tree_code code = ERROR_MARK;
11928   cp_token *token;
11929 
11930   /* Assume that it's not a pointer-to-member.  */
11931   *type = NULL_TREE;
11932   /* And that there are no cv-qualifiers.  */
11933   *cv_quals = TYPE_UNQUALIFIED;
11934 
11935   /* Peek at the next token.  */
11936   token = cp_lexer_peek_token (parser->lexer);
11937   /* If it's a `*' or `&' we have a pointer or reference.  */
11938   if (token->type == CPP_MULT || token->type == CPP_AND)
11939     {
11940       /* Remember which ptr-operator we were processing.  */
11941       code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11942 
11943       /* Consume the `*' or `&'.  */
11944       cp_lexer_consume_token (parser->lexer);
11945 
11946       /* A `*' can be followed by a cv-qualifier-seq, and so can a
11947 	 `&', if we are allowing GNU extensions.  (The only qualifier
11948 	 that can legally appear after `&' is `restrict', but that is
11949 	 enforced during semantic analysis.  */
11950       if (code == INDIRECT_REF
11951 	  || cp_parser_allow_gnu_extensions_p (parser))
11952 	*cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11953     }
11954   else
11955     {
11956       /* Try the pointer-to-member case.  */
11957       cp_parser_parse_tentatively (parser);
11958       /* Look for the optional `::' operator.  */
11959       cp_parser_global_scope_opt (parser,
11960 				  /*current_scope_valid_p=*/false);
11961       /* Look for the nested-name specifier.  */
11962       cp_parser_nested_name_specifier (parser,
11963 				       /*typename_keyword_p=*/false,
11964 				       /*check_dependency_p=*/true,
11965 				       /*type_p=*/false,
11966 				       /*is_declaration=*/false);
11967       /* If we found it, and the next token is a `*', then we are
11968 	 indeed looking at a pointer-to-member operator.  */
11969       if (!cp_parser_error_occurred (parser)
11970 	  && cp_parser_require (parser, CPP_MULT, "`*'"))
11971 	{
11972 	  /* Indicate that the `*' operator was used.  */
11973 	  code = INDIRECT_REF;
11974 
11975 	  if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
11976 	    error ("%qD is a namespace", parser->scope);
11977 	  else
11978 	    {
11979 	      /* The type of which the member is a member is given by the
11980 		 current SCOPE.  */
11981 	      *type = parser->scope;
11982 	      /* The next name will not be qualified.  */
11983 	      parser->scope = NULL_TREE;
11984 	      parser->qualifying_scope = NULL_TREE;
11985 	      parser->object_scope = NULL_TREE;
11986 	      /* Look for the optional cv-qualifier-seq.  */
11987 	      *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11988 	    }
11989 	}
11990       /* If that didn't work we don't have a ptr-operator.  */
11991       if (!cp_parser_parse_definitely (parser))
11992 	cp_parser_error (parser, "expected ptr-operator");
11993     }
11994 
11995   return code;
11996 }
11997 
11998 /* Parse an (optional) cv-qualifier-seq.
11999 
12000    cv-qualifier-seq:
12001      cv-qualifier cv-qualifier-seq [opt]
12002 
12003    cv-qualifier:
12004      const
12005      volatile
12006 
12007    GNU Extension:
12008 
12009    cv-qualifier:
12010      __restrict__
12011 
12012    Returns a bitmask representing the cv-qualifiers.  */
12013 
12014 static cp_cv_quals
cp_parser_cv_qualifier_seq_opt(cp_parser * parser)12015 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
12016 {
12017   cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
12018 
12019   while (true)
12020     {
12021       cp_token *token;
12022       cp_cv_quals cv_qualifier;
12023 
12024       /* Peek at the next token.  */
12025       token = cp_lexer_peek_token (parser->lexer);
12026       /* See if it's a cv-qualifier.  */
12027       switch (token->keyword)
12028 	{
12029 	case RID_CONST:
12030 	  cv_qualifier = TYPE_QUAL_CONST;
12031 	  break;
12032 
12033 	case RID_VOLATILE:
12034 	  cv_qualifier = TYPE_QUAL_VOLATILE;
12035 	  break;
12036 
12037 	case RID_RESTRICT:
12038 	  cv_qualifier = TYPE_QUAL_RESTRICT;
12039 	  break;
12040 
12041 	default:
12042 	  cv_qualifier = TYPE_UNQUALIFIED;
12043 	  break;
12044 	}
12045 
12046       if (!cv_qualifier)
12047 	break;
12048 
12049       if (cv_quals & cv_qualifier)
12050 	{
12051 	  error ("duplicate cv-qualifier");
12052 	  cp_lexer_purge_token (parser->lexer);
12053 	}
12054       else
12055 	{
12056 	  cp_lexer_consume_token (parser->lexer);
12057 	  cv_quals |= cv_qualifier;
12058 	}
12059     }
12060 
12061   return cv_quals;
12062 }
12063 
12064 /* Parse a declarator-id.
12065 
12066    declarator-id:
12067      id-expression
12068      :: [opt] nested-name-specifier [opt] type-name
12069 
12070    In the `id-expression' case, the value returned is as for
12071    cp_parser_id_expression if the id-expression was an unqualified-id.
12072    If the id-expression was a qualified-id, then a SCOPE_REF is
12073    returned.  The first operand is the scope (either a NAMESPACE_DECL
12074    or TREE_TYPE), but the second is still just a representation of an
12075    unqualified-id.  */
12076 
12077 static tree
cp_parser_declarator_id(cp_parser * parser,bool optional_p)12078 cp_parser_declarator_id (cp_parser* parser, bool optional_p)
12079 {
12080   tree id;
12081   /* The expression must be an id-expression.  Assume that qualified
12082      names are the names of types so that:
12083 
12084        template <class T>
12085        int S<T>::R::i = 3;
12086 
12087      will work; we must treat `S<T>::R' as the name of a type.
12088      Similarly, assume that qualified names are templates, where
12089      required, so that:
12090 
12091        template <class T>
12092        int S<T>::R<T>::i = 3;
12093 
12094      will work, too.  */
12095   id = cp_parser_id_expression (parser,
12096 				/*template_keyword_p=*/false,
12097 				/*check_dependency_p=*/false,
12098 				/*template_p=*/NULL,
12099 				/*declarator_p=*/true,
12100 				optional_p);
12101   if (id && BASELINK_P (id))
12102     id = BASELINK_FUNCTIONS (id);
12103   return id;
12104 }
12105 
12106 /* Parse a type-id.
12107 
12108    type-id:
12109      type-specifier-seq abstract-declarator [opt]
12110 
12111    Returns the TYPE specified.  */
12112 
12113 static tree
cp_parser_type_id(cp_parser * parser)12114 cp_parser_type_id (cp_parser* parser)
12115 {
12116   cp_decl_specifier_seq type_specifier_seq;
12117   cp_declarator *abstract_declarator;
12118 
12119   /* Parse the type-specifier-seq.  */
12120   cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
12121 				&type_specifier_seq);
12122   if (type_specifier_seq.type == error_mark_node)
12123     return error_mark_node;
12124 
12125   /* There might or might not be an abstract declarator.  */
12126   cp_parser_parse_tentatively (parser);
12127   /* Look for the declarator.  */
12128   abstract_declarator
12129     = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
12130 			    /*parenthesized_p=*/NULL,
12131 			    /*member_p=*/false);
12132   /* Check to see if there really was a declarator.  */
12133   if (!cp_parser_parse_definitely (parser))
12134     abstract_declarator = NULL;
12135 
12136   return groktypename (&type_specifier_seq, abstract_declarator);
12137 }
12138 
12139 /* Parse a type-specifier-seq.
12140 
12141    type-specifier-seq:
12142      type-specifier type-specifier-seq [opt]
12143 
12144    GNU extension:
12145 
12146    type-specifier-seq:
12147      attributes type-specifier-seq [opt]
12148 
12149    If IS_CONDITION is true, we are at the start of a "condition",
12150    e.g., we've just seen "if (".
12151 
12152    Sets *TYPE_SPECIFIER_SEQ to represent the sequence.  */
12153 
12154 static void
cp_parser_type_specifier_seq(cp_parser * parser,bool is_condition,cp_decl_specifier_seq * type_specifier_seq)12155 cp_parser_type_specifier_seq (cp_parser* parser,
12156 			      bool is_condition,
12157 			      cp_decl_specifier_seq *type_specifier_seq)
12158 {
12159   bool seen_type_specifier = false;
12160   cp_parser_flags flags = CP_PARSER_FLAGS_OPTIONAL;
12161 
12162   /* Clear the TYPE_SPECIFIER_SEQ.  */
12163   clear_decl_specs (type_specifier_seq);
12164 
12165   /* Parse the type-specifiers and attributes.  */
12166   while (true)
12167     {
12168       tree type_specifier;
12169       bool is_cv_qualifier;
12170 
12171       /* Check for attributes first.  */
12172       if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
12173 	{
12174 	  type_specifier_seq->attributes =
12175 	    chainon (type_specifier_seq->attributes,
12176 		     cp_parser_attributes_opt (parser));
12177 	  continue;
12178 	}
12179 
12180       /* Look for the type-specifier.  */
12181       type_specifier = cp_parser_type_specifier (parser,
12182 						 flags,
12183 						 type_specifier_seq,
12184 						 /*is_declaration=*/false,
12185 						 NULL,
12186 						 &is_cv_qualifier);
12187       if (!type_specifier)
12188 	{
12189 	  /* If the first type-specifier could not be found, this is not a
12190 	     type-specifier-seq at all.  */
12191 	  if (!seen_type_specifier)
12192 	    {
12193 	      cp_parser_error (parser, "expected type-specifier");
12194 	      type_specifier_seq->type = error_mark_node;
12195 	      return;
12196 	    }
12197 	  /* If subsequent type-specifiers could not be found, the
12198 	     type-specifier-seq is complete.  */
12199 	  break;
12200 	}
12201 
12202       seen_type_specifier = true;
12203       /* The standard says that a condition can be:
12204 
12205 	    type-specifier-seq declarator = assignment-expression
12206 
12207 	 However, given:
12208 
12209 	   struct S {};
12210 	   if (int S = ...)
12211 
12212 	 we should treat the "S" as a declarator, not as a
12213 	 type-specifier.  The standard doesn't say that explicitly for
12214 	 type-specifier-seq, but it does say that for
12215 	 decl-specifier-seq in an ordinary declaration.  Perhaps it
12216 	 would be clearer just to allow a decl-specifier-seq here, and
12217 	 then add a semantic restriction that if any decl-specifiers
12218 	 that are not type-specifiers appear, the program is invalid.  */
12219       if (is_condition && !is_cv_qualifier)
12220 	flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
12221     }
12222 
12223   cp_parser_check_decl_spec (type_specifier_seq);
12224 }
12225 
12226 /* Parse a parameter-declaration-clause.
12227 
12228    parameter-declaration-clause:
12229      parameter-declaration-list [opt] ... [opt]
12230      parameter-declaration-list , ...
12231 
12232    Returns a representation for the parameter declarations.  A return
12233    value of NULL indicates a parameter-declaration-clause consisting
12234    only of an ellipsis.  */
12235 
12236 static cp_parameter_declarator *
cp_parser_parameter_declaration_clause(cp_parser * parser)12237 cp_parser_parameter_declaration_clause (cp_parser* parser)
12238 {
12239   cp_parameter_declarator *parameters;
12240   cp_token *token;
12241   bool ellipsis_p;
12242   bool is_error;
12243 
12244   /* Peek at the next token.  */
12245   token = cp_lexer_peek_token (parser->lexer);
12246   /* Check for trivial parameter-declaration-clauses.  */
12247   if (token->type == CPP_ELLIPSIS)
12248     {
12249       /* Consume the `...' token.  */
12250       cp_lexer_consume_token (parser->lexer);
12251       return NULL;
12252     }
12253   else if (token->type == CPP_CLOSE_PAREN)
12254     /* There are no parameters.  */
12255     {
12256 #ifndef NO_IMPLICIT_EXTERN_C
12257       if (in_system_header && current_class_type == NULL
12258 	  && current_lang_name == lang_name_c)
12259 	return NULL;
12260       else
12261 #endif
12262 	return no_parameters;
12263     }
12264   /* Check for `(void)', too, which is a special case.  */
12265   else if (token->keyword == RID_VOID
12266 	   && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
12267 	       == CPP_CLOSE_PAREN))
12268     {
12269       /* Consume the `void' token.  */
12270       cp_lexer_consume_token (parser->lexer);
12271       /* There are no parameters.  */
12272       return no_parameters;
12273     }
12274 
12275   /* Parse the parameter-declaration-list.  */
12276   parameters = cp_parser_parameter_declaration_list (parser, &is_error);
12277   /* If a parse error occurred while parsing the
12278      parameter-declaration-list, then the entire
12279      parameter-declaration-clause is erroneous.  */
12280   if (is_error)
12281     return NULL;
12282 
12283   /* Peek at the next token.  */
12284   token = cp_lexer_peek_token (parser->lexer);
12285   /* If it's a `,', the clause should terminate with an ellipsis.  */
12286   if (token->type == CPP_COMMA)
12287     {
12288       /* Consume the `,'.  */
12289       cp_lexer_consume_token (parser->lexer);
12290       /* Expect an ellipsis.  */
12291       ellipsis_p
12292 	= (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
12293     }
12294   /* It might also be `...' if the optional trailing `,' was
12295      omitted.  */
12296   else if (token->type == CPP_ELLIPSIS)
12297     {
12298       /* Consume the `...' token.  */
12299       cp_lexer_consume_token (parser->lexer);
12300       /* And remember that we saw it.  */
12301       ellipsis_p = true;
12302     }
12303   else
12304     ellipsis_p = false;
12305 
12306   /* Finish the parameter list.  */
12307   if (parameters && ellipsis_p)
12308     parameters->ellipsis_p = true;
12309 
12310   return parameters;
12311 }
12312 
12313 /* Parse a parameter-declaration-list.
12314 
12315    parameter-declaration-list:
12316      parameter-declaration
12317      parameter-declaration-list , parameter-declaration
12318 
12319    Returns a representation of the parameter-declaration-list, as for
12320    cp_parser_parameter_declaration_clause.  However, the
12321    `void_list_node' is never appended to the list.  Upon return,
12322    *IS_ERROR will be true iff an error occurred.  */
12323 
12324 static cp_parameter_declarator *
cp_parser_parameter_declaration_list(cp_parser * parser,bool * is_error)12325 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
12326 {
12327   cp_parameter_declarator *parameters = NULL;
12328   cp_parameter_declarator **tail = &parameters;
12329   bool saved_in_unbraced_linkage_specification_p;
12330 
12331   /* Assume all will go well.  */
12332   *is_error = false;
12333   /* The special considerations that apply to a function within an
12334      unbraced linkage specifications do not apply to the parameters
12335      to the function.  */
12336   saved_in_unbraced_linkage_specification_p
12337     = parser->in_unbraced_linkage_specification_p;
12338   parser->in_unbraced_linkage_specification_p = false;
12339 
12340   /* Look for more parameters.  */
12341   while (true)
12342     {
12343       cp_parameter_declarator *parameter;
12344       bool parenthesized_p;
12345       /* Parse the parameter.  */
12346       parameter
12347 	= cp_parser_parameter_declaration (parser,
12348 					   /*template_parm_p=*/false,
12349 					   &parenthesized_p);
12350 
12351       /* If a parse error occurred parsing the parameter declaration,
12352 	 then the entire parameter-declaration-list is erroneous.  */
12353       if (!parameter)
12354 	{
12355 	  *is_error = true;
12356 	  parameters = NULL;
12357 	  break;
12358 	}
12359       /* Add the new parameter to the list.  */
12360       *tail = parameter;
12361       tail = &parameter->next;
12362 
12363       /* Peek at the next token.  */
12364       if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
12365 	  || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)
12366 	  /* These are for Objective-C++ */
12367 	  || cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
12368 	  || cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
12369 	/* The parameter-declaration-list is complete.  */
12370 	break;
12371       else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12372 	{
12373 	  cp_token *token;
12374 
12375 	  /* Peek at the next token.  */
12376 	  token = cp_lexer_peek_nth_token (parser->lexer, 2);
12377 	  /* If it's an ellipsis, then the list is complete.  */
12378 	  if (token->type == CPP_ELLIPSIS)
12379 	    break;
12380 	  /* Otherwise, there must be more parameters.  Consume the
12381 	     `,'.  */
12382 	  cp_lexer_consume_token (parser->lexer);
12383 	  /* When parsing something like:
12384 
12385 		int i(float f, double d)
12386 
12387 	     we can tell after seeing the declaration for "f" that we
12388 	     are not looking at an initialization of a variable "i",
12389 	     but rather at the declaration of a function "i".
12390 
12391 	     Due to the fact that the parsing of template arguments
12392 	     (as specified to a template-id) requires backtracking we
12393 	     cannot use this technique when inside a template argument
12394 	     list.  */
12395 	  if (!parser->in_template_argument_list_p
12396 	      && !parser->in_type_id_in_expr_p
12397 	      && cp_parser_uncommitted_to_tentative_parse_p (parser)
12398 	      /* However, a parameter-declaration of the form
12399 		 "foat(f)" (which is a valid declaration of a
12400 		 parameter "f") can also be interpreted as an
12401 		 expression (the conversion of "f" to "float").  */
12402 	      && !parenthesized_p)
12403 	    cp_parser_commit_to_tentative_parse (parser);
12404 	}
12405       else
12406 	{
12407 	  cp_parser_error (parser, "expected %<,%> or %<...%>");
12408 	  if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
12409 	    cp_parser_skip_to_closing_parenthesis (parser,
12410 						   /*recovering=*/true,
12411 						   /*or_comma=*/false,
12412 						   /*consume_paren=*/false);
12413 	  break;
12414 	}
12415     }
12416 
12417   parser->in_unbraced_linkage_specification_p
12418     = saved_in_unbraced_linkage_specification_p;
12419 
12420   return parameters;
12421 }
12422 
12423 /* Parse a parameter declaration.
12424 
12425    parameter-declaration:
12426      decl-specifier-seq declarator
12427      decl-specifier-seq declarator = assignment-expression
12428      decl-specifier-seq abstract-declarator [opt]
12429      decl-specifier-seq abstract-declarator [opt] = assignment-expression
12430 
12431    If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
12432    declares a template parameter.  (In that case, a non-nested `>'
12433    token encountered during the parsing of the assignment-expression
12434    is not interpreted as a greater-than operator.)
12435 
12436    Returns a representation of the parameter, or NULL if an error
12437    occurs.  If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
12438    true iff the declarator is of the form "(p)".  */
12439 
12440 static cp_parameter_declarator *
cp_parser_parameter_declaration(cp_parser * parser,bool template_parm_p,bool * parenthesized_p)12441 cp_parser_parameter_declaration (cp_parser *parser,
12442 				 bool template_parm_p,
12443 				 bool *parenthesized_p)
12444 {
12445   int declares_class_or_enum;
12446   bool greater_than_is_operator_p;
12447   cp_decl_specifier_seq decl_specifiers;
12448   cp_declarator *declarator;
12449   tree default_argument;
12450   cp_token *token;
12451   const char *saved_message;
12452 
12453   /* In a template parameter, `>' is not an operator.
12454 
12455      [temp.param]
12456 
12457      When parsing a default template-argument for a non-type
12458      template-parameter, the first non-nested `>' is taken as the end
12459      of the template parameter-list rather than a greater-than
12460      operator.  */
12461   greater_than_is_operator_p = !template_parm_p;
12462 
12463   /* Type definitions may not appear in parameter types.  */
12464   saved_message = parser->type_definition_forbidden_message;
12465   parser->type_definition_forbidden_message
12466     = "types may not be defined in parameter types";
12467 
12468   /* Parse the declaration-specifiers.  */
12469   cp_parser_decl_specifier_seq (parser,
12470 				CP_PARSER_FLAGS_NONE,
12471 				&decl_specifiers,
12472 				&declares_class_or_enum);
12473   /* If an error occurred, there's no reason to attempt to parse the
12474      rest of the declaration.  */
12475   if (cp_parser_error_occurred (parser))
12476     {
12477       parser->type_definition_forbidden_message = saved_message;
12478       return NULL;
12479     }
12480 
12481   /* Peek at the next token.  */
12482   token = cp_lexer_peek_token (parser->lexer);
12483   /* If the next token is a `)', `,', `=', `>', or `...', then there
12484      is no declarator.  */
12485   if (token->type == CPP_CLOSE_PAREN
12486       || token->type == CPP_COMMA
12487       || token->type == CPP_EQ
12488       || token->type == CPP_ELLIPSIS
12489       || token->type == CPP_GREATER)
12490     {
12491       declarator = NULL;
12492       if (parenthesized_p)
12493 	*parenthesized_p = false;
12494     }
12495   /* Otherwise, there should be a declarator.  */
12496   else
12497     {
12498       bool saved_default_arg_ok_p = parser->default_arg_ok_p;
12499       parser->default_arg_ok_p = false;
12500 
12501       /* After seeing a decl-specifier-seq, if the next token is not a
12502 	 "(", there is no possibility that the code is a valid
12503 	 expression.  Therefore, if parsing tentatively, we commit at
12504 	 this point.  */
12505       if (!parser->in_template_argument_list_p
12506 	  /* In an expression context, having seen:
12507 
12508 	       (int((char ...
12509 
12510 	     we cannot be sure whether we are looking at a
12511 	     function-type (taking a "char" as a parameter) or a cast
12512 	     of some object of type "char" to "int".  */
12513 	  && !parser->in_type_id_in_expr_p
12514 	  && cp_parser_uncommitted_to_tentative_parse_p (parser)
12515 	  && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
12516 	cp_parser_commit_to_tentative_parse (parser);
12517       /* Parse the declarator.  */
12518       declarator = cp_parser_declarator (parser,
12519 					 CP_PARSER_DECLARATOR_EITHER,
12520 					 /*ctor_dtor_or_conv_p=*/NULL,
12521 					 parenthesized_p,
12522 					 /*member_p=*/false);
12523       parser->default_arg_ok_p = saved_default_arg_ok_p;
12524       /* After the declarator, allow more attributes.  */
12525       decl_specifiers.attributes
12526 	= chainon (decl_specifiers.attributes,
12527 		   cp_parser_attributes_opt (parser));
12528     }
12529 
12530   /* The restriction on defining new types applies only to the type
12531      of the parameter, not to the default argument.  */
12532   parser->type_definition_forbidden_message = saved_message;
12533 
12534   /* If the next token is `=', then process a default argument.  */
12535   if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
12536     {
12537       bool saved_greater_than_is_operator_p;
12538       /* Consume the `='.  */
12539       cp_lexer_consume_token (parser->lexer);
12540 
12541       /* If we are defining a class, then the tokens that make up the
12542 	 default argument must be saved and processed later.  */
12543       if (!template_parm_p && at_class_scope_p ()
12544 	  && TYPE_BEING_DEFINED (current_class_type))
12545 	{
12546 	  unsigned depth = 0;
12547 	  cp_token *first_token;
12548 	  cp_token *token;
12549 
12550 	  /* Add tokens until we have processed the entire default
12551 	     argument.  We add the range [first_token, token).  */
12552 	  first_token = cp_lexer_peek_token (parser->lexer);
12553 	  while (true)
12554 	    {
12555 	      bool done = false;
12556 
12557 	      /* Peek at the next token.  */
12558 	      token = cp_lexer_peek_token (parser->lexer);
12559 	      /* What we do depends on what token we have.  */
12560 	      switch (token->type)
12561 		{
12562 		  /* In valid code, a default argument must be
12563 		     immediately followed by a `,' `)', or `...'.  */
12564 		case CPP_COMMA:
12565 		case CPP_CLOSE_PAREN:
12566 		case CPP_ELLIPSIS:
12567 		  /* If we run into a non-nested `;', `}', or `]',
12568 		     then the code is invalid -- but the default
12569 		     argument is certainly over.  */
12570 		case CPP_SEMICOLON:
12571 		case CPP_CLOSE_BRACE:
12572 		case CPP_CLOSE_SQUARE:
12573 		  if (depth == 0)
12574 		    done = true;
12575 		  /* Update DEPTH, if necessary.  */
12576 		  else if (token->type == CPP_CLOSE_PAREN
12577 			   || token->type == CPP_CLOSE_BRACE
12578 			   || token->type == CPP_CLOSE_SQUARE)
12579 		    --depth;
12580 		  break;
12581 
12582 		case CPP_OPEN_PAREN:
12583 		case CPP_OPEN_SQUARE:
12584 		case CPP_OPEN_BRACE:
12585 		  ++depth;
12586 		  break;
12587 
12588 		case CPP_GREATER:
12589 		  /* If we see a non-nested `>', and `>' is not an
12590 		     operator, then it marks the end of the default
12591 		     argument.  */
12592 		  if (!depth && !greater_than_is_operator_p)
12593 		    done = true;
12594 		  break;
12595 
12596 		  /* If we run out of tokens, issue an error message.  */
12597 		case CPP_EOF:
12598 		case CPP_PRAGMA_EOL:
12599 		  error ("file ends in default argument");
12600 		  done = true;
12601 		  break;
12602 
12603 		case CPP_NAME:
12604 		case CPP_SCOPE:
12605 		  /* In these cases, we should look for template-ids.
12606 		     For example, if the default argument is
12607 		     `X<int, double>()', we need to do name lookup to
12608 		     figure out whether or not `X' is a template; if
12609 		     so, the `,' does not end the default argument.
12610 
12611 		     That is not yet done.  */
12612 		  break;
12613 
12614 		default:
12615 		  break;
12616 		}
12617 
12618 	      /* If we've reached the end, stop.  */
12619 	      if (done)
12620 		break;
12621 
12622 	      /* Add the token to the token block.  */
12623 	      token = cp_lexer_consume_token (parser->lexer);
12624 	    }
12625 
12626 	  /* Create a DEFAULT_ARG to represented the unparsed default
12627 	     argument.  */
12628 	  default_argument = make_node (DEFAULT_ARG);
12629 	  DEFARG_TOKENS (default_argument)
12630 	    = cp_token_cache_new (first_token, token);
12631 	  DEFARG_INSTANTIATIONS (default_argument) = NULL;
12632 	}
12633       /* Outside of a class definition, we can just parse the
12634 	 assignment-expression.  */
12635       else
12636 	{
12637 	  bool saved_local_variables_forbidden_p;
12638 
12639 	  /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
12640 	     set correctly.  */
12641 	  saved_greater_than_is_operator_p
12642 	    = parser->greater_than_is_operator_p;
12643 	  parser->greater_than_is_operator_p = greater_than_is_operator_p;
12644 	  /* Local variable names (and the `this' keyword) may not
12645 	     appear in a default argument.  */
12646 	  saved_local_variables_forbidden_p
12647 	    = parser->local_variables_forbidden_p;
12648 	  parser->local_variables_forbidden_p = true;
12649 	  /* The default argument expression may cause implicitly
12650 	     defined member functions to be synthesized, which will
12651 	     result in garbage collection.  We must treat this
12652 	     situation as if we were within the body of function so as
12653 	     to avoid collecting live data on the stack.  */
12654 	  ++function_depth;
12655 	  /* Parse the assignment-expression.  */
12656 	  if (template_parm_p)
12657 	    push_deferring_access_checks (dk_no_deferred);
12658 	  default_argument
12659 	    = cp_parser_assignment_expression (parser, /*cast_p=*/false);
12660 	  if (template_parm_p)
12661 	    pop_deferring_access_checks ();
12662 	  /* Restore saved state.  */
12663 	  --function_depth;
12664 	  parser->greater_than_is_operator_p
12665 	    = saved_greater_than_is_operator_p;
12666 	  parser->local_variables_forbidden_p
12667 	    = saved_local_variables_forbidden_p;
12668 	}
12669       if (!parser->default_arg_ok_p)
12670 	{
12671 	  if (!flag_pedantic_errors)
12672 	    warning (0, "deprecated use of default argument for parameter of non-function");
12673 	  else
12674 	    {
12675 	      error ("default arguments are only permitted for function parameters");
12676 	      default_argument = NULL_TREE;
12677 	    }
12678 	}
12679     }
12680   else
12681     default_argument = NULL_TREE;
12682 
12683   return make_parameter_declarator (&decl_specifiers,
12684 				    declarator,
12685 				    default_argument);
12686 }
12687 
12688 /* Parse a function-body.
12689 
12690    function-body:
12691      compound_statement  */
12692 
12693 static void
cp_parser_function_body(cp_parser * parser)12694 cp_parser_function_body (cp_parser *parser)
12695 {
12696   cp_parser_compound_statement (parser, NULL, false);
12697 }
12698 
12699 /* Parse a ctor-initializer-opt followed by a function-body.  Return
12700    true if a ctor-initializer was present.  */
12701 
12702 static bool
cp_parser_ctor_initializer_opt_and_function_body(cp_parser * parser)12703 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
12704 {
12705   tree body;
12706   bool ctor_initializer_p;
12707 
12708   /* Begin the function body.  */
12709   body = begin_function_body ();
12710   /* Parse the optional ctor-initializer.  */
12711   ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
12712   /* Parse the function-body.  */
12713   cp_parser_function_body (parser);
12714   /* Finish the function body.  */
12715   finish_function_body (body);
12716 
12717   return ctor_initializer_p;
12718 }
12719 
12720 /* Parse an initializer.
12721 
12722    initializer:
12723      = initializer-clause
12724      ( expression-list )
12725 
12726    Returns an expression representing the initializer.  If no
12727    initializer is present, NULL_TREE is returned.
12728 
12729    *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
12730    production is used, and zero otherwise.  *IS_PARENTHESIZED_INIT is
12731    set to FALSE if there is no initializer present.  If there is an
12732    initializer, and it is not a constant-expression, *NON_CONSTANT_P
12733    is set to true; otherwise it is set to false.  */
12734 
12735 static tree
cp_parser_initializer(cp_parser * parser,bool * is_parenthesized_init,bool * non_constant_p)12736 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
12737 		       bool* non_constant_p)
12738 {
12739   cp_token *token;
12740   tree init;
12741 
12742   /* Peek at the next token.  */
12743   token = cp_lexer_peek_token (parser->lexer);
12744 
12745   /* Let our caller know whether or not this initializer was
12746      parenthesized.  */
12747   *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
12748   /* Assume that the initializer is constant.  */
12749   *non_constant_p = false;
12750 
12751   if (token->type == CPP_EQ)
12752     {
12753       /* Consume the `='.  */
12754       cp_lexer_consume_token (parser->lexer);
12755       /* Parse the initializer-clause.  */
12756       init = cp_parser_initializer_clause (parser, non_constant_p);
12757     }
12758   else if (token->type == CPP_OPEN_PAREN)
12759     init = cp_parser_parenthesized_expression_list (parser, false,
12760 						    /*cast_p=*/false,
12761 						    non_constant_p);
12762   else
12763     {
12764       /* Anything else is an error.  */
12765       cp_parser_error (parser, "expected initializer");
12766       init = error_mark_node;
12767     }
12768 
12769   return init;
12770 }
12771 
12772 /* Parse an initializer-clause.
12773 
12774    initializer-clause:
12775      assignment-expression
12776      { initializer-list , [opt] }
12777      { }
12778 
12779    Returns an expression representing the initializer.
12780 
12781    If the `assignment-expression' production is used the value
12782    returned is simply a representation for the expression.
12783 
12784    Otherwise, a CONSTRUCTOR is returned.  The CONSTRUCTOR_ELTS will be
12785    the elements of the initializer-list (or NULL, if the last
12786    production is used).  The TREE_TYPE for the CONSTRUCTOR will be
12787    NULL_TREE.  There is no way to detect whether or not the optional
12788    trailing `,' was provided.  NON_CONSTANT_P is as for
12789    cp_parser_initializer.  */
12790 
12791 static tree
cp_parser_initializer_clause(cp_parser * parser,bool * non_constant_p)12792 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
12793 {
12794   tree initializer;
12795 
12796   /* Assume the expression is constant.  */
12797   *non_constant_p = false;
12798 
12799   /* If it is not a `{', then we are looking at an
12800      assignment-expression.  */
12801   if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
12802     {
12803       initializer
12804 	= cp_parser_constant_expression (parser,
12805 					/*allow_non_constant_p=*/true,
12806 					non_constant_p);
12807       if (!*non_constant_p)
12808 	initializer = fold_non_dependent_expr (initializer);
12809     }
12810   else
12811     {
12812       /* Consume the `{' token.  */
12813       cp_lexer_consume_token (parser->lexer);
12814       /* Create a CONSTRUCTOR to represent the braced-initializer.  */
12815       initializer = make_node (CONSTRUCTOR);
12816       /* If it's not a `}', then there is a non-trivial initializer.  */
12817       if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
12818 	{
12819 	  /* Parse the initializer list.  */
12820 	  CONSTRUCTOR_ELTS (initializer)
12821 	    = cp_parser_initializer_list (parser, non_constant_p);
12822 	  /* A trailing `,' token is allowed.  */
12823 	  if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12824 	    cp_lexer_consume_token (parser->lexer);
12825 	}
12826       /* Now, there should be a trailing `}'.  */
12827       cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12828     }
12829 
12830   return initializer;
12831 }
12832 
12833 /* Parse an initializer-list.
12834 
12835    initializer-list:
12836      initializer-clause
12837      initializer-list , initializer-clause
12838 
12839    GNU Extension:
12840 
12841    initializer-list:
12842      identifier : initializer-clause
12843      initializer-list, identifier : initializer-clause
12844 
12845    Returns a VEC of constructor_elt.  The VALUE of each elt is an expression
12846    for the initializer.  If the INDEX of the elt is non-NULL, it is the
12847    IDENTIFIER_NODE naming the field to initialize.  NON_CONSTANT_P is
12848    as for cp_parser_initializer.  */
12849 
VEC(constructor_elt,gc)12850 static VEC(constructor_elt,gc) *
12851 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12852 {
12853   VEC(constructor_elt,gc) *v = NULL;
12854 
12855   /* Assume all of the expressions are constant.  */
12856   *non_constant_p = false;
12857 
12858   /* Parse the rest of the list.  */
12859   while (true)
12860     {
12861       cp_token *token;
12862       tree identifier;
12863       tree initializer;
12864       bool clause_non_constant_p;
12865 
12866       /* If the next token is an identifier and the following one is a
12867 	 colon, we are looking at the GNU designated-initializer
12868 	 syntax.  */
12869       if (cp_parser_allow_gnu_extensions_p (parser)
12870 	  && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12871 	  && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12872 	{
12873 	  /* Warn the user that they are using an extension.  */
12874 	  if (pedantic)
12875 	    pedwarn ("ISO C++ does not allow designated initializers");
12876 	  /* Consume the identifier.  */
12877 	  identifier = cp_lexer_consume_token (parser->lexer)->u.value;
12878 	  /* Consume the `:'.  */
12879 	  cp_lexer_consume_token (parser->lexer);
12880 	}
12881       else
12882 	identifier = NULL_TREE;
12883 
12884       /* Parse the initializer.  */
12885       initializer = cp_parser_initializer_clause (parser,
12886 						  &clause_non_constant_p);
12887       /* If any clause is non-constant, so is the entire initializer.  */
12888       if (clause_non_constant_p)
12889 	*non_constant_p = true;
12890 
12891       /* Add it to the vector.  */
12892       CONSTRUCTOR_APPEND_ELT(v, identifier, initializer);
12893 
12894       /* If the next token is not a comma, we have reached the end of
12895 	 the list.  */
12896       if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12897 	break;
12898 
12899       /* Peek at the next token.  */
12900       token = cp_lexer_peek_nth_token (parser->lexer, 2);
12901       /* If the next token is a `}', then we're still done.  An
12902 	 initializer-clause can have a trailing `,' after the
12903 	 initializer-list and before the closing `}'.  */
12904       if (token->type == CPP_CLOSE_BRACE)
12905 	break;
12906 
12907       /* Consume the `,' token.  */
12908       cp_lexer_consume_token (parser->lexer);
12909     }
12910 
12911   return v;
12912 }
12913 
12914 /* Classes [gram.class] */
12915 
12916 /* Parse a class-name.
12917 
12918    class-name:
12919      identifier
12920      template-id
12921 
12922    TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12923    to indicate that names looked up in dependent types should be
12924    assumed to be types.  TEMPLATE_KEYWORD_P is true iff the `template'
12925    keyword has been used to indicate that the name that appears next
12926    is a template.  TAG_TYPE indicates the explicit tag given before
12927    the type name, if any.  If CHECK_DEPENDENCY_P is FALSE, names are
12928    looked up in dependent scopes.  If CLASS_HEAD_P is TRUE, this class
12929    is the class being defined in a class-head.
12930 
12931    Returns the TYPE_DECL representing the class.  */
12932 
12933 static tree
cp_parser_class_name(cp_parser * parser,bool typename_keyword_p,bool template_keyword_p,enum tag_types tag_type,bool check_dependency_p,bool class_head_p,bool is_declaration)12934 cp_parser_class_name (cp_parser *parser,
12935 		      bool typename_keyword_p,
12936 		      bool template_keyword_p,
12937 		      enum tag_types tag_type,
12938 		      bool check_dependency_p,
12939 		      bool class_head_p,
12940 		      bool is_declaration)
12941 {
12942   tree decl;
12943   tree scope;
12944   bool typename_p;
12945   cp_token *token;
12946 
12947   /* All class-names start with an identifier.  */
12948   token = cp_lexer_peek_token (parser->lexer);
12949   if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12950     {
12951       cp_parser_error (parser, "expected class-name");
12952       return error_mark_node;
12953     }
12954 
12955   /* PARSER->SCOPE can be cleared when parsing the template-arguments
12956      to a template-id, so we save it here.  */
12957   scope = parser->scope;
12958   if (scope == error_mark_node)
12959     return error_mark_node;
12960 
12961   /* Any name names a type if we're following the `typename' keyword
12962      in a qualified name where the enclosing scope is type-dependent.  */
12963   typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12964 		&& dependent_type_p (scope));
12965   /* Handle the common case (an identifier, but not a template-id)
12966      efficiently.  */
12967   if (token->type == CPP_NAME
12968       && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12969     {
12970       cp_token *identifier_token;
12971       tree identifier;
12972       bool ambiguous_p;
12973 
12974       /* Look for the identifier.  */
12975       identifier_token = cp_lexer_peek_token (parser->lexer);
12976       ambiguous_p = identifier_token->ambiguous_p;
12977       identifier = cp_parser_identifier (parser);
12978       /* If the next token isn't an identifier, we are certainly not
12979 	 looking at a class-name.  */
12980       if (identifier == error_mark_node)
12981 	decl = error_mark_node;
12982       /* If we know this is a type-name, there's no need to look it
12983 	 up.  */
12984       else if (typename_p)
12985 	decl = identifier;
12986       else
12987 	{
12988 	  tree ambiguous_decls;
12989 	  /* If we already know that this lookup is ambiguous, then
12990 	     we've already issued an error message; there's no reason
12991 	     to check again.  */
12992 	  if (ambiguous_p)
12993 	    {
12994 	      cp_parser_simulate_error (parser);
12995 	      return error_mark_node;
12996 	    }
12997 	  /* If the next token is a `::', then the name must be a type
12998 	     name.
12999 
13000 	     [basic.lookup.qual]
13001 
13002 	     During the lookup for a name preceding the :: scope
13003 	     resolution operator, object, function, and enumerator
13004 	     names are ignored.  */
13005 	  if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
13006 	    tag_type = typename_type;
13007 	  /* Look up the name.  */
13008 	  decl = cp_parser_lookup_name (parser, identifier,
13009 					tag_type,
13010 					/*is_template=*/false,
13011 					/*is_namespace=*/false,
13012 					check_dependency_p,
13013 					&ambiguous_decls);
13014 	  if (ambiguous_decls)
13015 	    {
13016 	      error ("reference to %qD is ambiguous", identifier);
13017 	      print_candidates (ambiguous_decls);
13018 	      if (cp_parser_parsing_tentatively (parser))
13019 		{
13020 		  identifier_token->ambiguous_p = true;
13021 		  cp_parser_simulate_error (parser);
13022 		}
13023 	      return error_mark_node;
13024 	    }
13025 	}
13026     }
13027   else
13028     {
13029       /* Try a template-id.  */
13030       decl = cp_parser_template_id (parser, template_keyword_p,
13031 				    check_dependency_p,
13032 				    is_declaration);
13033       if (decl == error_mark_node)
13034 	return error_mark_node;
13035     }
13036 
13037   decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
13038 
13039   /* If this is a typename, create a TYPENAME_TYPE.  */
13040   if (typename_p && decl != error_mark_node)
13041     {
13042       decl = make_typename_type (scope, decl, typename_type,
13043 				 /*complain=*/tf_error);
13044       if (decl != error_mark_node)
13045 	decl = TYPE_NAME (decl);
13046     }
13047 
13048   /* Check to see that it is really the name of a class.  */
13049   if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
13050       && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
13051       && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
13052     /* Situations like this:
13053 
13054 	 template <typename T> struct A {
13055 	   typename T::template X<int>::I i;
13056 	 };
13057 
13058        are problematic.  Is `T::template X<int>' a class-name?  The
13059        standard does not seem to be definitive, but there is no other
13060        valid interpretation of the following `::'.  Therefore, those
13061        names are considered class-names.  */
13062     {
13063       decl = make_typename_type (scope, decl, tag_type, tf_error);
13064       if (decl != error_mark_node)
13065 	decl = TYPE_NAME (decl);
13066     }
13067   else if (TREE_CODE (decl) != TYPE_DECL
13068 	   || TREE_TYPE (decl) == error_mark_node
13069 	   || !IS_AGGR_TYPE (TREE_TYPE (decl)))
13070     decl = error_mark_node;
13071 
13072   if (decl == error_mark_node)
13073     cp_parser_error (parser, "expected class-name");
13074 
13075   return decl;
13076 }
13077 
13078 /* Parse a class-specifier.
13079 
13080    class-specifier:
13081      class-head { member-specification [opt] }
13082 
13083    Returns the TREE_TYPE representing the class.  */
13084 
13085 static tree
cp_parser_class_specifier(cp_parser * parser)13086 cp_parser_class_specifier (cp_parser* parser)
13087 {
13088   cp_token *token;
13089   tree type;
13090   tree attributes = NULL_TREE;
13091   int has_trailing_semicolon;
13092   bool nested_name_specifier_p;
13093   unsigned saved_num_template_parameter_lists;
13094   bool saved_in_function_body;
13095   tree old_scope = NULL_TREE;
13096   tree scope = NULL_TREE;
13097   tree bases;
13098 
13099   push_deferring_access_checks (dk_no_deferred);
13100 
13101   /* Parse the class-head.  */
13102   type = cp_parser_class_head (parser,
13103 			       &nested_name_specifier_p,
13104 			       &attributes,
13105 			       &bases);
13106   /* If the class-head was a semantic disaster, skip the entire body
13107      of the class.  */
13108   if (!type)
13109     {
13110       cp_parser_skip_to_end_of_block_or_statement (parser);
13111       pop_deferring_access_checks ();
13112       return error_mark_node;
13113     }
13114 
13115   /* Look for the `{'.  */
13116   if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
13117     {
13118       pop_deferring_access_checks ();
13119       return error_mark_node;
13120     }
13121 
13122   /* Process the base classes. If they're invalid, skip the
13123      entire class body.  */
13124   if (!xref_basetypes (type, bases))
13125     {
13126       cp_parser_skip_to_closing_brace (parser);
13127 
13128       /* Consuming the closing brace yields better error messages
13129          later on.  */
13130       cp_lexer_consume_token (parser->lexer);
13131       pop_deferring_access_checks ();
13132       return error_mark_node;
13133     }
13134 
13135   /* Issue an error message if type-definitions are forbidden here.  */
13136   cp_parser_check_type_definition (parser);
13137   /* Remember that we are defining one more class.  */
13138   ++parser->num_classes_being_defined;
13139   /* Inside the class, surrounding template-parameter-lists do not
13140      apply.  */
13141   saved_num_template_parameter_lists
13142     = parser->num_template_parameter_lists;
13143   parser->num_template_parameter_lists = 0;
13144   /* We are not in a function body.  */
13145   saved_in_function_body = parser->in_function_body;
13146   parser->in_function_body = false;
13147 
13148   /* Start the class.  */
13149   if (nested_name_specifier_p)
13150     {
13151       scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
13152       old_scope = push_inner_scope (scope);
13153     }
13154   type = begin_class_definition (type, attributes);
13155 
13156   if (type == error_mark_node)
13157     /* If the type is erroneous, skip the entire body of the class.  */
13158     cp_parser_skip_to_closing_brace (parser);
13159   else
13160     /* Parse the member-specification.  */
13161     cp_parser_member_specification_opt (parser);
13162 
13163   /* Look for the trailing `}'.  */
13164   cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13165   /* We get better error messages by noticing a common problem: a
13166      missing trailing `;'.  */
13167   token = cp_lexer_peek_token (parser->lexer);
13168   has_trailing_semicolon = (token->type == CPP_SEMICOLON);
13169   /* Look for trailing attributes to apply to this class.  */
13170   if (cp_parser_allow_gnu_extensions_p (parser))
13171     attributes = cp_parser_attributes_opt (parser);
13172   if (type != error_mark_node)
13173     type = finish_struct (type, attributes);
13174   if (nested_name_specifier_p)
13175     pop_inner_scope (old_scope, scope);
13176   /* If this class is not itself within the scope of another class,
13177      then we need to parse the bodies of all of the queued function
13178      definitions.  Note that the queued functions defined in a class
13179      are not always processed immediately following the
13180      class-specifier for that class.  Consider:
13181 
13182        struct A {
13183 	 struct B { void f() { sizeof (A); } };
13184        };
13185 
13186      If `f' were processed before the processing of `A' were
13187      completed, there would be no way to compute the size of `A'.
13188      Note that the nesting we are interested in here is lexical --
13189      not the semantic nesting given by TYPE_CONTEXT.  In particular,
13190      for:
13191 
13192        struct A { struct B; };
13193        struct A::B { void f() { } };
13194 
13195      there is no need to delay the parsing of `A::B::f'.  */
13196   if (--parser->num_classes_being_defined == 0)
13197     {
13198       tree queue_entry;
13199       tree fn;
13200       tree class_type = NULL_TREE;
13201       tree pushed_scope = NULL_TREE;
13202 
13203       /* In a first pass, parse default arguments to the functions.
13204 	 Then, in a second pass, parse the bodies of the functions.
13205 	 This two-phased approach handles cases like:
13206 
13207 	    struct S {
13208 	      void f() { g(); }
13209 	      void g(int i = 3);
13210 	    };
13211 
13212 	 */
13213       for (TREE_PURPOSE (parser->unparsed_functions_queues)
13214 	     = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
13215 	   (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
13216 	   TREE_PURPOSE (parser->unparsed_functions_queues)
13217 	     = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
13218 	{
13219 	  fn = TREE_VALUE (queue_entry);
13220 	  /* If there are default arguments that have not yet been processed,
13221 	     take care of them now.  */
13222 	  if (class_type != TREE_PURPOSE (queue_entry))
13223 	    {
13224 	      if (pushed_scope)
13225 		pop_scope (pushed_scope);
13226 	      class_type = TREE_PURPOSE (queue_entry);
13227 	      pushed_scope = push_scope (class_type);
13228 	    }
13229 	  /* Make sure that any template parameters are in scope.  */
13230 	  maybe_begin_member_template_processing (fn);
13231 	  /* Parse the default argument expressions.  */
13232 	  cp_parser_late_parsing_default_args (parser, fn);
13233 	  /* Remove any template parameters from the symbol table.  */
13234 	  maybe_end_member_template_processing ();
13235 	}
13236       if (pushed_scope)
13237 	pop_scope (pushed_scope);
13238       /* Now parse the body of the functions.  */
13239       for (TREE_VALUE (parser->unparsed_functions_queues)
13240 	     = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
13241 	   (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
13242 	   TREE_VALUE (parser->unparsed_functions_queues)
13243 	     = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
13244 	{
13245 	  /* Figure out which function we need to process.  */
13246 	  fn = TREE_VALUE (queue_entry);
13247 	  /* Parse the function.  */
13248 	  cp_parser_late_parsing_for_member (parser, fn);
13249 	}
13250     }
13251 
13252   /* Put back any saved access checks.  */
13253   pop_deferring_access_checks ();
13254 
13255   /* Restore saved state.  */
13256   parser->in_function_body = saved_in_function_body;
13257   parser->num_template_parameter_lists
13258     = saved_num_template_parameter_lists;
13259 
13260   return type;
13261 }
13262 
13263 /* Parse a class-head.
13264 
13265    class-head:
13266      class-key identifier [opt] base-clause [opt]
13267      class-key nested-name-specifier identifier base-clause [opt]
13268      class-key nested-name-specifier [opt] template-id
13269        base-clause [opt]
13270 
13271    GNU Extensions:
13272      class-key attributes identifier [opt] base-clause [opt]
13273      class-key attributes nested-name-specifier identifier base-clause [opt]
13274      class-key attributes nested-name-specifier [opt] template-id
13275        base-clause [opt]
13276 
13277    Returns the TYPE of the indicated class.  Sets
13278    *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
13279    involving a nested-name-specifier was used, and FALSE otherwise.
13280 
13281    Returns error_mark_node if this is not a class-head.
13282 
13283    Returns NULL_TREE if the class-head is syntactically valid, but
13284    semantically invalid in a way that means we should skip the entire
13285    body of the class.  */
13286 
13287 static tree
cp_parser_class_head(cp_parser * parser,bool * nested_name_specifier_p,tree * attributes_p,tree * bases)13288 cp_parser_class_head (cp_parser* parser,
13289 		      bool* nested_name_specifier_p,
13290 		      tree *attributes_p,
13291 		      tree *bases)
13292 {
13293   tree nested_name_specifier;
13294   enum tag_types class_key;
13295   tree id = NULL_TREE;
13296   tree type = NULL_TREE;
13297   tree attributes;
13298   bool template_id_p = false;
13299   bool qualified_p = false;
13300   bool invalid_nested_name_p = false;
13301   bool invalid_explicit_specialization_p = false;
13302   tree pushed_scope = NULL_TREE;
13303   unsigned num_templates;
13304 
13305   /* Assume no nested-name-specifier will be present.  */
13306   *nested_name_specifier_p = false;
13307   /* Assume no template parameter lists will be used in defining the
13308      type.  */
13309   num_templates = 0;
13310 
13311   /* Look for the class-key.  */
13312   class_key = cp_parser_class_key (parser);
13313   if (class_key == none_type)
13314     return error_mark_node;
13315 
13316   /* Parse the attributes.  */
13317   attributes = cp_parser_attributes_opt (parser);
13318 
13319   /* If the next token is `::', that is invalid -- but sometimes
13320      people do try to write:
13321 
13322        struct ::S {};
13323 
13324      Handle this gracefully by accepting the extra qualifier, and then
13325      issuing an error about it later if this really is a
13326      class-head.  If it turns out just to be an elaborated type
13327      specifier, remain silent.  */
13328   if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
13329     qualified_p = true;
13330 
13331   push_deferring_access_checks (dk_no_check);
13332 
13333   /* Determine the name of the class.  Begin by looking for an
13334      optional nested-name-specifier.  */
13335   nested_name_specifier
13336     = cp_parser_nested_name_specifier_opt (parser,
13337 					   /*typename_keyword_p=*/false,
13338 					   /*check_dependency_p=*/false,
13339 					   /*type_p=*/false,
13340 					   /*is_declaration=*/false);
13341   /* If there was a nested-name-specifier, then there *must* be an
13342      identifier.  */
13343   if (nested_name_specifier)
13344     {
13345       /* Although the grammar says `identifier', it really means
13346 	 `class-name' or `template-name'.  You are only allowed to
13347 	 define a class that has already been declared with this
13348 	 syntax.
13349 
13350 	 The proposed resolution for Core Issue 180 says that wherever
13351 	 you see `class T::X' you should treat `X' as a type-name.
13352 
13353 	 It is OK to define an inaccessible class; for example:
13354 
13355 	   class A { class B; };
13356 	   class A::B {};
13357 
13358 	 We do not know if we will see a class-name, or a
13359 	 template-name.  We look for a class-name first, in case the
13360 	 class-name is a template-id; if we looked for the
13361 	 template-name first we would stop after the template-name.  */
13362       cp_parser_parse_tentatively (parser);
13363       type = cp_parser_class_name (parser,
13364 				   /*typename_keyword_p=*/false,
13365 				   /*template_keyword_p=*/false,
13366 				   class_type,
13367 				   /*check_dependency_p=*/false,
13368 				   /*class_head_p=*/true,
13369 				   /*is_declaration=*/false);
13370       /* If that didn't work, ignore the nested-name-specifier.  */
13371       if (!cp_parser_parse_definitely (parser))
13372 	{
13373 	  invalid_nested_name_p = true;
13374 	  id = cp_parser_identifier (parser);
13375 	  if (id == error_mark_node)
13376 	    id = NULL_TREE;
13377 	}
13378       /* If we could not find a corresponding TYPE, treat this
13379 	 declaration like an unqualified declaration.  */
13380       if (type == error_mark_node)
13381 	nested_name_specifier = NULL_TREE;
13382       /* Otherwise, count the number of templates used in TYPE and its
13383 	 containing scopes.  */
13384       else
13385 	{
13386 	  tree scope;
13387 
13388 	  for (scope = TREE_TYPE (type);
13389 	       scope && TREE_CODE (scope) != NAMESPACE_DECL;
13390 	       scope = (TYPE_P (scope)
13391 			? TYPE_CONTEXT (scope)
13392 			: DECL_CONTEXT (scope)))
13393 	    if (TYPE_P (scope)
13394 		&& CLASS_TYPE_P (scope)
13395 		&& CLASSTYPE_TEMPLATE_INFO (scope)
13396 		&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
13397 		&& !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
13398 	      ++num_templates;
13399 	}
13400     }
13401   /* Otherwise, the identifier is optional.  */
13402   else
13403     {
13404       /* We don't know whether what comes next is a template-id,
13405 	 an identifier, or nothing at all.  */
13406       cp_parser_parse_tentatively (parser);
13407       /* Check for a template-id.  */
13408       id = cp_parser_template_id (parser,
13409 				  /*template_keyword_p=*/false,
13410 				  /*check_dependency_p=*/true,
13411 				  /*is_declaration=*/true);
13412       /* If that didn't work, it could still be an identifier.  */
13413       if (!cp_parser_parse_definitely (parser))
13414 	{
13415 	  if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
13416 	    id = cp_parser_identifier (parser);
13417 	  else
13418 	    id = NULL_TREE;
13419 	}
13420       else
13421 	{
13422 	  template_id_p = true;
13423 	  ++num_templates;
13424 	}
13425     }
13426 
13427   pop_deferring_access_checks ();
13428 
13429   if (id)
13430     cp_parser_check_for_invalid_template_id (parser, id);
13431 
13432   /* If it's not a `:' or a `{' then we can't really be looking at a
13433      class-head, since a class-head only appears as part of a
13434      class-specifier.  We have to detect this situation before calling
13435      xref_tag, since that has irreversible side-effects.  */
13436   if (!cp_parser_next_token_starts_class_definition_p (parser))
13437     {
13438       cp_parser_error (parser, "expected %<{%> or %<:%>");
13439       return error_mark_node;
13440     }
13441 
13442   /* At this point, we're going ahead with the class-specifier, even
13443      if some other problem occurs.  */
13444   cp_parser_commit_to_tentative_parse (parser);
13445   /* Issue the error about the overly-qualified name now.  */
13446   if (qualified_p)
13447     cp_parser_error (parser,
13448 		     "global qualification of class name is invalid");
13449   else if (invalid_nested_name_p)
13450     cp_parser_error (parser,
13451 		     "qualified name does not name a class");
13452   else if (nested_name_specifier)
13453     {
13454       tree scope;
13455 
13456       /* Reject typedef-names in class heads.  */
13457       if (!DECL_IMPLICIT_TYPEDEF_P (type))
13458 	{
13459 	  error ("invalid class name in declaration of %qD", type);
13460 	  type = NULL_TREE;
13461 	  goto done;
13462 	}
13463 
13464       /* Figure out in what scope the declaration is being placed.  */
13465       scope = current_scope ();
13466       /* If that scope does not contain the scope in which the
13467 	 class was originally declared, the program is invalid.  */
13468       if (scope && !is_ancestor (scope, nested_name_specifier))
13469 	{
13470 	  error ("declaration of %qD in %qD which does not enclose %qD",
13471 		 type, scope, nested_name_specifier);
13472 	  type = NULL_TREE;
13473 	  goto done;
13474 	}
13475       /* [dcl.meaning]
13476 
13477 	 A declarator-id shall not be qualified exception of the
13478 	 definition of a ... nested class outside of its class
13479 	 ... [or] a the definition or explicit instantiation of a
13480 	 class member of a namespace outside of its namespace.  */
13481       if (scope == nested_name_specifier)
13482 	{
13483 	  pedwarn ("extra qualification ignored");
13484 	  nested_name_specifier = NULL_TREE;
13485 	  num_templates = 0;
13486 	}
13487     }
13488   /* An explicit-specialization must be preceded by "template <>".  If
13489      it is not, try to recover gracefully.  */
13490   if (at_namespace_scope_p ()
13491       && parser->num_template_parameter_lists == 0
13492       && template_id_p)
13493     {
13494       error ("an explicit specialization must be preceded by %<template <>%>");
13495       invalid_explicit_specialization_p = true;
13496       /* Take the same action that would have been taken by
13497 	 cp_parser_explicit_specialization.  */
13498       ++parser->num_template_parameter_lists;
13499       begin_specialization ();
13500     }
13501   /* There must be no "return" statements between this point and the
13502      end of this function; set "type "to the correct return value and
13503      use "goto done;" to return.  */
13504   /* Make sure that the right number of template parameters were
13505      present.  */
13506   if (!cp_parser_check_template_parameters (parser, num_templates))
13507     {
13508       /* If something went wrong, there is no point in even trying to
13509 	 process the class-definition.  */
13510       type = NULL_TREE;
13511       goto done;
13512     }
13513 
13514   /* Look up the type.  */
13515   if (template_id_p)
13516     {
13517       type = TREE_TYPE (id);
13518       type = maybe_process_partial_specialization (type);
13519       if (nested_name_specifier)
13520 	pushed_scope = push_scope (nested_name_specifier);
13521     }
13522   else if (nested_name_specifier)
13523     {
13524       tree class_type;
13525 
13526       /* Given:
13527 
13528 	    template <typename T> struct S { struct T };
13529 	    template <typename T> struct S<T>::T { };
13530 
13531 	 we will get a TYPENAME_TYPE when processing the definition of
13532 	 `S::T'.  We need to resolve it to the actual type before we
13533 	 try to define it.  */
13534       if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
13535 	{
13536 	  class_type = resolve_typename_type (TREE_TYPE (type),
13537 					      /*only_current_p=*/false);
13538 	  if (class_type != error_mark_node)
13539 	    type = TYPE_NAME (class_type);
13540 	  else
13541 	    {
13542 	      cp_parser_error (parser, "could not resolve typename type");
13543 	      type = error_mark_node;
13544 	    }
13545 	}
13546 
13547       maybe_process_partial_specialization (TREE_TYPE (type));
13548       class_type = current_class_type;
13549       /* Enter the scope indicated by the nested-name-specifier.  */
13550       pushed_scope = push_scope (nested_name_specifier);
13551       /* Get the canonical version of this type.  */
13552       type = TYPE_MAIN_DECL (TREE_TYPE (type));
13553       if (PROCESSING_REAL_TEMPLATE_DECL_P ()
13554 	  && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
13555 	{
13556 	  type = push_template_decl (type);
13557 	  if (type == error_mark_node)
13558 	    {
13559 	      type = NULL_TREE;
13560 	      goto done;
13561 	    }
13562 	}
13563 
13564       type = TREE_TYPE (type);
13565       *nested_name_specifier_p = true;
13566     }
13567   else      /* The name is not a nested name.  */
13568     {
13569       /* If the class was unnamed, create a dummy name.  */
13570       if (!id)
13571 	id = make_anon_name ();
13572       type = xref_tag (class_key, id, /*tag_scope=*/ts_current,
13573 		       parser->num_template_parameter_lists);
13574     }
13575 
13576   /* Indicate whether this class was declared as a `class' or as a
13577      `struct'.  */
13578   if (TREE_CODE (type) == RECORD_TYPE)
13579     CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
13580   cp_parser_check_class_key (class_key, type);
13581 
13582   /* If this type was already complete, and we see another definition,
13583      that's an error.  */
13584   if (type != error_mark_node && COMPLETE_TYPE_P (type))
13585     {
13586       error ("redefinition of %q#T", type);
13587       error ("previous definition of %q+#T", type);
13588       type = NULL_TREE;
13589       goto done;
13590     }
13591   else if (type == error_mark_node)
13592     type = NULL_TREE;
13593 
13594   /* We will have entered the scope containing the class; the names of
13595      base classes should be looked up in that context.  For example:
13596 
13597        struct A { struct B {}; struct C; };
13598        struct A::C : B {};
13599 
13600      is valid.  */
13601   *bases = NULL_TREE;
13602 
13603   /* Get the list of base-classes, if there is one.  */
13604   if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
13605     *bases = cp_parser_base_clause (parser);
13606 
13607  done:
13608   /* Leave the scope given by the nested-name-specifier.  We will
13609      enter the class scope itself while processing the members.  */
13610   if (pushed_scope)
13611     pop_scope (pushed_scope);
13612 
13613   if (invalid_explicit_specialization_p)
13614     {
13615       end_specialization ();
13616       --parser->num_template_parameter_lists;
13617     }
13618   *attributes_p = attributes;
13619   return type;
13620 }
13621 
13622 /* Parse a class-key.
13623 
13624    class-key:
13625      class
13626      struct
13627      union
13628 
13629    Returns the kind of class-key specified, or none_type to indicate
13630    error.  */
13631 
13632 static enum tag_types
cp_parser_class_key(cp_parser * parser)13633 cp_parser_class_key (cp_parser* parser)
13634 {
13635   cp_token *token;
13636   enum tag_types tag_type;
13637 
13638   /* Look for the class-key.  */
13639   token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
13640   if (!token)
13641     return none_type;
13642 
13643   /* Check to see if the TOKEN is a class-key.  */
13644   tag_type = cp_parser_token_is_class_key (token);
13645   if (!tag_type)
13646     cp_parser_error (parser, "expected class-key");
13647   return tag_type;
13648 }
13649 
13650 /* Parse an (optional) member-specification.
13651 
13652    member-specification:
13653      member-declaration member-specification [opt]
13654      access-specifier : member-specification [opt]  */
13655 
13656 static void
cp_parser_member_specification_opt(cp_parser * parser)13657 cp_parser_member_specification_opt (cp_parser* parser)
13658 {
13659   while (true)
13660     {
13661       cp_token *token;
13662       enum rid keyword;
13663 
13664       /* Peek at the next token.  */
13665       token = cp_lexer_peek_token (parser->lexer);
13666       /* If it's a `}', or EOF then we've seen all the members.  */
13667       if (token->type == CPP_CLOSE_BRACE
13668 	  || token->type == CPP_EOF
13669 	  || token->type == CPP_PRAGMA_EOL)
13670 	break;
13671 
13672       /* See if this token is a keyword.  */
13673       keyword = token->keyword;
13674       switch (keyword)
13675 	{
13676 	case RID_PUBLIC:
13677 	case RID_PROTECTED:
13678 	case RID_PRIVATE:
13679 	  /* Consume the access-specifier.  */
13680 	  cp_lexer_consume_token (parser->lexer);
13681 	  /* Remember which access-specifier is active.  */
13682 	  current_access_specifier = token->u.value;
13683 	  /* Look for the `:'.  */
13684 	  cp_parser_require (parser, CPP_COLON, "`:'");
13685 	  break;
13686 
13687 	default:
13688 	  /* Accept #pragmas at class scope.  */
13689 	  if (token->type == CPP_PRAGMA)
13690 	    {
13691 	      cp_parser_pragma (parser, pragma_external);
13692 	      break;
13693 	    }
13694 
13695 	  /* Otherwise, the next construction must be a
13696 	     member-declaration.  */
13697 	  cp_parser_member_declaration (parser);
13698 	}
13699     }
13700 }
13701 
13702 /* Parse a member-declaration.
13703 
13704    member-declaration:
13705      decl-specifier-seq [opt] member-declarator-list [opt] ;
13706      function-definition ; [opt]
13707      :: [opt] nested-name-specifier template [opt] unqualified-id ;
13708      using-declaration
13709      template-declaration
13710 
13711    member-declarator-list:
13712      member-declarator
13713      member-declarator-list , member-declarator
13714 
13715    member-declarator:
13716      declarator pure-specifier [opt]
13717      declarator constant-initializer [opt]
13718      identifier [opt] : constant-expression
13719 
13720    GNU Extensions:
13721 
13722    member-declaration:
13723      __extension__ member-declaration
13724 
13725    member-declarator:
13726      declarator attributes [opt] pure-specifier [opt]
13727      declarator attributes [opt] constant-initializer [opt]
13728      identifier [opt] attributes [opt] : constant-expression  */
13729 
13730 static void
cp_parser_member_declaration(cp_parser * parser)13731 cp_parser_member_declaration (cp_parser* parser)
13732 {
13733   cp_decl_specifier_seq decl_specifiers;
13734   tree prefix_attributes;
13735   tree decl;
13736   int declares_class_or_enum;
13737   bool friend_p;
13738   cp_token *token;
13739   int saved_pedantic;
13740 
13741   /* Check for the `__extension__' keyword.  */
13742   if (cp_parser_extension_opt (parser, &saved_pedantic))
13743     {
13744       /* Recurse.  */
13745       cp_parser_member_declaration (parser);
13746       /* Restore the old value of the PEDANTIC flag.  */
13747       pedantic = saved_pedantic;
13748 
13749       return;
13750     }
13751 
13752   /* Check for a template-declaration.  */
13753   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
13754     {
13755       /* An explicit specialization here is an error condition, and we
13756 	 expect the specialization handler to detect and report this.  */
13757       if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
13758 	  && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
13759 	cp_parser_explicit_specialization (parser);
13760       else
13761 	cp_parser_template_declaration (parser, /*member_p=*/true);
13762 
13763       return;
13764     }
13765 
13766   /* Check for a using-declaration.  */
13767   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
13768     {
13769       /* Parse the using-declaration.  */
13770       cp_parser_using_declaration (parser,
13771 				   /*access_declaration_p=*/false);
13772       return;
13773     }
13774 
13775   /* Check for @defs.  */
13776   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_DEFS))
13777     {
13778       tree ivar, member;
13779       tree ivar_chains = cp_parser_objc_defs_expression (parser);
13780       ivar = ivar_chains;
13781       while (ivar)
13782 	{
13783 	  member = ivar;
13784 	  ivar = TREE_CHAIN (member);
13785 	  TREE_CHAIN (member) = NULL_TREE;
13786 	  finish_member_declaration (member);
13787 	}
13788       return;
13789     }
13790 
13791   if (cp_parser_using_declaration (parser, /*access_declaration=*/true))
13792     return;
13793 
13794   /* Parse the decl-specifier-seq.  */
13795   cp_parser_decl_specifier_seq (parser,
13796 				CP_PARSER_FLAGS_OPTIONAL,
13797 				&decl_specifiers,
13798 				&declares_class_or_enum);
13799   prefix_attributes = decl_specifiers.attributes;
13800   decl_specifiers.attributes = NULL_TREE;
13801   /* Check for an invalid type-name.  */
13802   if (!decl_specifiers.type
13803       && cp_parser_parse_and_diagnose_invalid_type_name (parser))
13804     return;
13805   /* If there is no declarator, then the decl-specifier-seq should
13806      specify a type.  */
13807   if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
13808     {
13809       /* If there was no decl-specifier-seq, and the next token is a
13810 	 `;', then we have something like:
13811 
13812 	   struct S { ; };
13813 
13814 	 [class.mem]
13815 
13816 	 Each member-declaration shall declare at least one member
13817 	 name of the class.  */
13818       if (!decl_specifiers.any_specifiers_p)
13819 	{
13820 	  cp_token *token = cp_lexer_peek_token (parser->lexer);
13821 	  if (pedantic && !token->in_system_header)
13822 	    pedwarn ("%Hextra %<;%>", &token->location);
13823 	}
13824       else
13825 	{
13826 	  tree type;
13827 
13828 	  /* See if this declaration is a friend.  */
13829 	  friend_p = cp_parser_friend_p (&decl_specifiers);
13830 	  /* If there were decl-specifiers, check to see if there was
13831 	     a class-declaration.  */
13832 	  type = check_tag_decl (&decl_specifiers);
13833 	  /* Nested classes have already been added to the class, but
13834 	     a `friend' needs to be explicitly registered.  */
13835 	  if (friend_p)
13836 	    {
13837 	      /* If the `friend' keyword was present, the friend must
13838 		 be introduced with a class-key.  */
13839 	       if (!declares_class_or_enum)
13840 		 error ("a class-key must be used when declaring a friend");
13841 	       /* In this case:
13842 
13843 		    template <typename T> struct A {
13844 		      friend struct A<T>::B;
13845 		    };
13846 
13847 		  A<T>::B will be represented by a TYPENAME_TYPE, and
13848 		  therefore not recognized by check_tag_decl.  */
13849 	       if (!type
13850 		   && decl_specifiers.type
13851 		   && TYPE_P (decl_specifiers.type))
13852 		 type = decl_specifiers.type;
13853 	       if (!type || !TYPE_P (type))
13854 		 error ("friend declaration does not name a class or "
13855 			"function");
13856 	       else
13857 		 make_friend_class (current_class_type, type,
13858 				    /*complain=*/true);
13859 	    }
13860 	  /* If there is no TYPE, an error message will already have
13861 	     been issued.  */
13862 	  else if (!type || type == error_mark_node)
13863 	    ;
13864 	  /* An anonymous aggregate has to be handled specially; such
13865 	     a declaration really declares a data member (with a
13866 	     particular type), as opposed to a nested class.  */
13867 	  else if (ANON_AGGR_TYPE_P (type))
13868 	    {
13869 	      /* Remove constructors and such from TYPE, now that we
13870 		 know it is an anonymous aggregate.  */
13871 	      fixup_anonymous_aggr (type);
13872 	      /* And make the corresponding data member.  */
13873 	      decl = build_decl (FIELD_DECL, NULL_TREE, type);
13874 	      /* Add it to the class.  */
13875 	      finish_member_declaration (decl);
13876 	    }
13877 	  else
13878 	    cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
13879 	}
13880     }
13881   else
13882     {
13883       /* See if these declarations will be friends.  */
13884       friend_p = cp_parser_friend_p (&decl_specifiers);
13885 
13886       /* Keep going until we hit the `;' at the end of the
13887 	 declaration.  */
13888       while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
13889 	{
13890 	  tree attributes = NULL_TREE;
13891 	  tree first_attribute;
13892 
13893 	  /* Peek at the next token.  */
13894 	  token = cp_lexer_peek_token (parser->lexer);
13895 
13896 	  /* Check for a bitfield declaration.  */
13897 	  if (token->type == CPP_COLON
13898 	      || (token->type == CPP_NAME
13899 		  && cp_lexer_peek_nth_token (parser->lexer, 2)->type
13900 		  == CPP_COLON))
13901 	    {
13902 	      tree identifier;
13903 	      tree width;
13904 
13905 	      /* Get the name of the bitfield.  Note that we cannot just
13906 		 check TOKEN here because it may have been invalidated by
13907 		 the call to cp_lexer_peek_nth_token above.  */
13908 	      if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
13909 		identifier = cp_parser_identifier (parser);
13910 	      else
13911 		identifier = NULL_TREE;
13912 
13913 	      /* Consume the `:' token.  */
13914 	      cp_lexer_consume_token (parser->lexer);
13915 	      /* Get the width of the bitfield.  */
13916 	      width
13917 		= cp_parser_constant_expression (parser,
13918 						 /*allow_non_constant=*/false,
13919 						 NULL);
13920 
13921 	      /* Look for attributes that apply to the bitfield.  */
13922 	      attributes = cp_parser_attributes_opt (parser);
13923 	      /* Remember which attributes are prefix attributes and
13924 		 which are not.  */
13925 	      first_attribute = attributes;
13926 	      /* Combine the attributes.  */
13927 	      attributes = chainon (prefix_attributes, attributes);
13928 
13929 	      /* Create the bitfield declaration.  */
13930 	      decl = grokbitfield (identifier
13931 				   ? make_id_declarator (NULL_TREE,
13932 							 identifier,
13933 							 sfk_none)
13934 				   : NULL,
13935 				   &decl_specifiers,
13936 				   width);
13937 	      /* Apply the attributes.  */
13938 	      cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13939 	    }
13940 	  else
13941 	    {
13942 	      cp_declarator *declarator;
13943 	      tree initializer;
13944 	      tree asm_specification;
13945 	      int ctor_dtor_or_conv_p;
13946 
13947 	      /* Parse the declarator.  */
13948 	      declarator
13949 		= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13950 					&ctor_dtor_or_conv_p,
13951 					/*parenthesized_p=*/NULL,
13952 					/*member_p=*/true);
13953 
13954 	      /* If something went wrong parsing the declarator, make sure
13955 		 that we at least consume some tokens.  */
13956 	      if (declarator == cp_error_declarator)
13957 		{
13958 		  /* Skip to the end of the statement.  */
13959 		  cp_parser_skip_to_end_of_statement (parser);
13960 		  /* If the next token is not a semicolon, that is
13961 		     probably because we just skipped over the body of
13962 		     a function.  So, we consume a semicolon if
13963 		     present, but do not issue an error message if it
13964 		     is not present.  */
13965 		  if (cp_lexer_next_token_is (parser->lexer,
13966 					      CPP_SEMICOLON))
13967 		    cp_lexer_consume_token (parser->lexer);
13968 		  return;
13969 		}
13970 
13971 	      if (declares_class_or_enum & 2)
13972 		cp_parser_check_for_definition_in_return_type
13973 		  (declarator, decl_specifiers.type);
13974 
13975 	      /* Look for an asm-specification.  */
13976 	      asm_specification = cp_parser_asm_specification_opt (parser);
13977 	      /* Look for attributes that apply to the declaration.  */
13978 	      attributes = cp_parser_attributes_opt (parser);
13979 	      /* Remember which attributes are prefix attributes and
13980 		 which are not.  */
13981 	      first_attribute = attributes;
13982 	      /* Combine the attributes.  */
13983 	      attributes = chainon (prefix_attributes, attributes);
13984 
13985 	      /* If it's an `=', then we have a constant-initializer or a
13986 		 pure-specifier.  It is not correct to parse the
13987 		 initializer before registering the member declaration
13988 		 since the member declaration should be in scope while
13989 		 its initializer is processed.  However, the rest of the
13990 		 front end does not yet provide an interface that allows
13991 		 us to handle this correctly.  */
13992 	      if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13993 		{
13994 		  /* In [class.mem]:
13995 
13996 		     A pure-specifier shall be used only in the declaration of
13997 		     a virtual function.
13998 
13999 		     A member-declarator can contain a constant-initializer
14000 		     only if it declares a static member of integral or
14001 		     enumeration type.
14002 
14003 		     Therefore, if the DECLARATOR is for a function, we look
14004 		     for a pure-specifier; otherwise, we look for a
14005 		     constant-initializer.  When we call `grokfield', it will
14006 		     perform more stringent semantics checks.  */
14007 		  if (function_declarator_p (declarator))
14008 		    initializer = cp_parser_pure_specifier (parser);
14009 		  else
14010 		    /* Parse the initializer.  */
14011 		    initializer = cp_parser_constant_initializer (parser);
14012 		}
14013 	      /* Otherwise, there is no initializer.  */
14014 	      else
14015 		initializer = NULL_TREE;
14016 
14017 	      /* See if we are probably looking at a function
14018 		 definition.  We are certainly not looking at a
14019 		 member-declarator.  Calling `grokfield' has
14020 		 side-effects, so we must not do it unless we are sure
14021 		 that we are looking at a member-declarator.  */
14022 	      if (cp_parser_token_starts_function_definition_p
14023 		  (cp_lexer_peek_token (parser->lexer)))
14024 		{
14025 		  /* The grammar does not allow a pure-specifier to be
14026 		     used when a member function is defined.  (It is
14027 		     possible that this fact is an oversight in the
14028 		     standard, since a pure function may be defined
14029 		     outside of the class-specifier.  */
14030 		  if (initializer)
14031 		    error ("pure-specifier on function-definition");
14032 		  decl = cp_parser_save_member_function_body (parser,
14033 							      &decl_specifiers,
14034 							      declarator,
14035 							      attributes);
14036 		  /* If the member was not a friend, declare it here.  */
14037 		  if (!friend_p)
14038 		    finish_member_declaration (decl);
14039 		  /* Peek at the next token.  */
14040 		  token = cp_lexer_peek_token (parser->lexer);
14041 		  /* If the next token is a semicolon, consume it.  */
14042 		  if (token->type == CPP_SEMICOLON)
14043 		    cp_lexer_consume_token (parser->lexer);
14044 		  return;
14045 		}
14046 	      else
14047 		/* Create the declaration.  */
14048 		decl = grokfield (declarator, &decl_specifiers,
14049 				  initializer, /*init_const_expr_p=*/true,
14050 				  asm_specification,
14051 				  attributes);
14052 	    }
14053 
14054 	  /* Reset PREFIX_ATTRIBUTES.  */
14055 	  while (attributes && TREE_CHAIN (attributes) != first_attribute)
14056 	    attributes = TREE_CHAIN (attributes);
14057 	  if (attributes)
14058 	    TREE_CHAIN (attributes) = NULL_TREE;
14059 
14060 	  /* If there is any qualification still in effect, clear it
14061 	     now; we will be starting fresh with the next declarator.  */
14062 	  parser->scope = NULL_TREE;
14063 	  parser->qualifying_scope = NULL_TREE;
14064 	  parser->object_scope = NULL_TREE;
14065 	  /* If it's a `,', then there are more declarators.  */
14066 	  if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
14067 	    cp_lexer_consume_token (parser->lexer);
14068 	  /* If the next token isn't a `;', then we have a parse error.  */
14069 	  else if (cp_lexer_next_token_is_not (parser->lexer,
14070 					       CPP_SEMICOLON))
14071 	    {
14072 	      cp_parser_error (parser, "expected %<;%>");
14073 	      /* Skip tokens until we find a `;'.  */
14074 	      cp_parser_skip_to_end_of_statement (parser);
14075 
14076 	      break;
14077 	    }
14078 
14079 	  if (decl)
14080 	    {
14081 	      /* Add DECL to the list of members.  */
14082 	      if (!friend_p)
14083 		finish_member_declaration (decl);
14084 
14085 	      if (TREE_CODE (decl) == FUNCTION_DECL)
14086 		cp_parser_save_default_args (parser, decl);
14087 	    }
14088 	}
14089     }
14090 
14091   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14092 }
14093 
14094 /* Parse a pure-specifier.
14095 
14096    pure-specifier:
14097      = 0
14098 
14099    Returns INTEGER_ZERO_NODE if a pure specifier is found.
14100    Otherwise, ERROR_MARK_NODE is returned.  */
14101 
14102 static tree
cp_parser_pure_specifier(cp_parser * parser)14103 cp_parser_pure_specifier (cp_parser* parser)
14104 {
14105   cp_token *token;
14106 
14107   /* Look for the `=' token.  */
14108   if (!cp_parser_require (parser, CPP_EQ, "`='"))
14109     return error_mark_node;
14110   /* Look for the `0' token.  */
14111   token = cp_lexer_consume_token (parser->lexer);
14112   /* c_lex_with_flags marks a single digit '0' with PURE_ZERO.  */
14113   if (token->type != CPP_NUMBER || !(token->flags & PURE_ZERO))
14114     {
14115       cp_parser_error (parser,
14116 		       "invalid pure specifier (only `= 0' is allowed)");
14117       cp_parser_skip_to_end_of_statement (parser);
14118       return error_mark_node;
14119     }
14120   if (PROCESSING_REAL_TEMPLATE_DECL_P ())
14121     {
14122       error ("templates may not be %<virtual%>");
14123       return error_mark_node;
14124     }
14125 
14126   return integer_zero_node;
14127 }
14128 
14129 /* Parse a constant-initializer.
14130 
14131    constant-initializer:
14132      = constant-expression
14133 
14134    Returns a representation of the constant-expression.  */
14135 
14136 static tree
cp_parser_constant_initializer(cp_parser * parser)14137 cp_parser_constant_initializer (cp_parser* parser)
14138 {
14139   /* Look for the `=' token.  */
14140   if (!cp_parser_require (parser, CPP_EQ, "`='"))
14141     return error_mark_node;
14142 
14143   /* It is invalid to write:
14144 
14145        struct S { static const int i = { 7 }; };
14146 
14147      */
14148   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
14149     {
14150       cp_parser_error (parser,
14151 		       "a brace-enclosed initializer is not allowed here");
14152       /* Consume the opening brace.  */
14153       cp_lexer_consume_token (parser->lexer);
14154       /* Skip the initializer.  */
14155       cp_parser_skip_to_closing_brace (parser);
14156       /* Look for the trailing `}'.  */
14157       cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
14158 
14159       return error_mark_node;
14160     }
14161 
14162   return cp_parser_constant_expression (parser,
14163 					/*allow_non_constant=*/false,
14164 					NULL);
14165 }
14166 
14167 /* Derived classes [gram.class.derived] */
14168 
14169 /* Parse a base-clause.
14170 
14171    base-clause:
14172      : base-specifier-list
14173 
14174    base-specifier-list:
14175      base-specifier
14176      base-specifier-list , base-specifier
14177 
14178    Returns a TREE_LIST representing the base-classes, in the order in
14179    which they were declared.  The representation of each node is as
14180    described by cp_parser_base_specifier.
14181 
14182    In the case that no bases are specified, this function will return
14183    NULL_TREE, not ERROR_MARK_NODE.  */
14184 
14185 static tree
cp_parser_base_clause(cp_parser * parser)14186 cp_parser_base_clause (cp_parser* parser)
14187 {
14188   tree bases = NULL_TREE;
14189 
14190   /* Look for the `:' that begins the list.  */
14191   cp_parser_require (parser, CPP_COLON, "`:'");
14192 
14193   /* Scan the base-specifier-list.  */
14194   while (true)
14195     {
14196       cp_token *token;
14197       tree base;
14198 
14199       /* Look for the base-specifier.  */
14200       base = cp_parser_base_specifier (parser);
14201       /* Add BASE to the front of the list.  */
14202       if (base != error_mark_node)
14203 	{
14204 	  TREE_CHAIN (base) = bases;
14205 	  bases = base;
14206 	}
14207       /* Peek at the next token.  */
14208       token = cp_lexer_peek_token (parser->lexer);
14209       /* If it's not a comma, then the list is complete.  */
14210       if (token->type != CPP_COMMA)
14211 	break;
14212       /* Consume the `,'.  */
14213       cp_lexer_consume_token (parser->lexer);
14214     }
14215 
14216   /* PARSER->SCOPE may still be non-NULL at this point, if the last
14217      base class had a qualified name.  However, the next name that
14218      appears is certainly not qualified.  */
14219   parser->scope = NULL_TREE;
14220   parser->qualifying_scope = NULL_TREE;
14221   parser->object_scope = NULL_TREE;
14222 
14223   return nreverse (bases);
14224 }
14225 
14226 /* Parse a base-specifier.
14227 
14228    base-specifier:
14229      :: [opt] nested-name-specifier [opt] class-name
14230      virtual access-specifier [opt] :: [opt] nested-name-specifier
14231        [opt] class-name
14232      access-specifier virtual [opt] :: [opt] nested-name-specifier
14233        [opt] class-name
14234 
14235    Returns a TREE_LIST.  The TREE_PURPOSE will be one of
14236    ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
14237    indicate the specifiers provided.  The TREE_VALUE will be a TYPE
14238    (or the ERROR_MARK_NODE) indicating the type that was specified.  */
14239 
14240 static tree
cp_parser_base_specifier(cp_parser * parser)14241 cp_parser_base_specifier (cp_parser* parser)
14242 {
14243   cp_token *token;
14244   bool done = false;
14245   bool virtual_p = false;
14246   bool duplicate_virtual_error_issued_p = false;
14247   bool duplicate_access_error_issued_p = false;
14248   bool class_scope_p, template_p;
14249   tree access = access_default_node;
14250   tree type;
14251 
14252   /* Process the optional `virtual' and `access-specifier'.  */
14253   while (!done)
14254     {
14255       /* Peek at the next token.  */
14256       token = cp_lexer_peek_token (parser->lexer);
14257       /* Process `virtual'.  */
14258       switch (token->keyword)
14259 	{
14260 	case RID_VIRTUAL:
14261 	  /* If `virtual' appears more than once, issue an error.  */
14262 	  if (virtual_p && !duplicate_virtual_error_issued_p)
14263 	    {
14264 	      cp_parser_error (parser,
14265 			       "%<virtual%> specified more than once in base-specified");
14266 	      duplicate_virtual_error_issued_p = true;
14267 	    }
14268 
14269 	  virtual_p = true;
14270 
14271 	  /* Consume the `virtual' token.  */
14272 	  cp_lexer_consume_token (parser->lexer);
14273 
14274 	  break;
14275 
14276 	case RID_PUBLIC:
14277 	case RID_PROTECTED:
14278 	case RID_PRIVATE:
14279 	  /* If more than one access specifier appears, issue an
14280 	     error.  */
14281 	  if (access != access_default_node
14282 	      && !duplicate_access_error_issued_p)
14283 	    {
14284 	      cp_parser_error (parser,
14285 			       "more than one access specifier in base-specified");
14286 	      duplicate_access_error_issued_p = true;
14287 	    }
14288 
14289 	  access = ridpointers[(int) token->keyword];
14290 
14291 	  /* Consume the access-specifier.  */
14292 	  cp_lexer_consume_token (parser->lexer);
14293 
14294 	  break;
14295 
14296 	default:
14297 	  done = true;
14298 	  break;
14299 	}
14300     }
14301   /* It is not uncommon to see programs mechanically, erroneously, use
14302      the 'typename' keyword to denote (dependent) qualified types
14303      as base classes.  */
14304   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
14305     {
14306       if (!processing_template_decl)
14307 	error ("keyword %<typename%> not allowed outside of templates");
14308       else
14309 	error ("keyword %<typename%> not allowed in this context "
14310 	       "(the base class is implicitly a type)");
14311       cp_lexer_consume_token (parser->lexer);
14312     }
14313 
14314   /* Look for the optional `::' operator.  */
14315   cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
14316   /* Look for the nested-name-specifier.  The simplest way to
14317      implement:
14318 
14319        [temp.res]
14320 
14321        The keyword `typename' is not permitted in a base-specifier or
14322        mem-initializer; in these contexts a qualified name that
14323        depends on a template-parameter is implicitly assumed to be a
14324        type name.
14325 
14326      is to pretend that we have seen the `typename' keyword at this
14327      point.  */
14328   cp_parser_nested_name_specifier_opt (parser,
14329 				       /*typename_keyword_p=*/true,
14330 				       /*check_dependency_p=*/true,
14331 				       typename_type,
14332 				       /*is_declaration=*/true);
14333   /* If the base class is given by a qualified name, assume that names
14334      we see are type names or templates, as appropriate.  */
14335   class_scope_p = (parser->scope && TYPE_P (parser->scope));
14336   template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
14337 
14338   /* Finally, look for the class-name.  */
14339   type = cp_parser_class_name (parser,
14340 			       class_scope_p,
14341 			       template_p,
14342 			       typename_type,
14343 			       /*check_dependency_p=*/true,
14344 			       /*class_head_p=*/false,
14345 			       /*is_declaration=*/true);
14346 
14347   if (type == error_mark_node)
14348     return error_mark_node;
14349 
14350   return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
14351 }
14352 
14353 /* Exception handling [gram.exception] */
14354 
14355 /* Parse an (optional) exception-specification.
14356 
14357    exception-specification:
14358      throw ( type-id-list [opt] )
14359 
14360    Returns a TREE_LIST representing the exception-specification.  The
14361    TREE_VALUE of each node is a type.  */
14362 
14363 static tree
cp_parser_exception_specification_opt(cp_parser * parser)14364 cp_parser_exception_specification_opt (cp_parser* parser)
14365 {
14366   cp_token *token;
14367   tree type_id_list;
14368 
14369   /* Peek at the next token.  */
14370   token = cp_lexer_peek_token (parser->lexer);
14371   /* If it's not `throw', then there's no exception-specification.  */
14372   if (!cp_parser_is_keyword (token, RID_THROW))
14373     return NULL_TREE;
14374 
14375   /* Consume the `throw'.  */
14376   cp_lexer_consume_token (parser->lexer);
14377 
14378   /* Look for the `('.  */
14379   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14380 
14381   /* Peek at the next token.  */
14382   token = cp_lexer_peek_token (parser->lexer);
14383   /* If it's not a `)', then there is a type-id-list.  */
14384   if (token->type != CPP_CLOSE_PAREN)
14385     {
14386       const char *saved_message;
14387 
14388       /* Types may not be defined in an exception-specification.  */
14389       saved_message = parser->type_definition_forbidden_message;
14390       parser->type_definition_forbidden_message
14391 	= "types may not be defined in an exception-specification";
14392       /* Parse the type-id-list.  */
14393       type_id_list = cp_parser_type_id_list (parser);
14394       /* Restore the saved message.  */
14395       parser->type_definition_forbidden_message = saved_message;
14396     }
14397   else
14398     type_id_list = empty_except_spec;
14399 
14400   /* Look for the `)'.  */
14401   cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14402 
14403   return type_id_list;
14404 }
14405 
14406 /* Parse an (optional) type-id-list.
14407 
14408    type-id-list:
14409      type-id
14410      type-id-list , type-id
14411 
14412    Returns a TREE_LIST.  The TREE_VALUE of each node is a TYPE,
14413    in the order that the types were presented.  */
14414 
14415 static tree
cp_parser_type_id_list(cp_parser * parser)14416 cp_parser_type_id_list (cp_parser* parser)
14417 {
14418   tree types = NULL_TREE;
14419 
14420   while (true)
14421     {
14422       cp_token *token;
14423       tree type;
14424 
14425       /* Get the next type-id.  */
14426       type = cp_parser_type_id (parser);
14427       /* Add it to the list.  */
14428       types = add_exception_specifier (types, type, /*complain=*/1);
14429       /* Peek at the next token.  */
14430       token = cp_lexer_peek_token (parser->lexer);
14431       /* If it is not a `,', we are done.  */
14432       if (token->type != CPP_COMMA)
14433 	break;
14434       /* Consume the `,'.  */
14435       cp_lexer_consume_token (parser->lexer);
14436     }
14437 
14438   return nreverse (types);
14439 }
14440 
14441 /* Parse a try-block.
14442 
14443    try-block:
14444      try compound-statement handler-seq  */
14445 
14446 static tree
cp_parser_try_block(cp_parser * parser)14447 cp_parser_try_block (cp_parser* parser)
14448 {
14449   tree try_block;
14450 
14451   cp_parser_require_keyword (parser, RID_TRY, "`try'");
14452   try_block = begin_try_block ();
14453   cp_parser_compound_statement (parser, NULL, true);
14454   finish_try_block (try_block);
14455   cp_parser_handler_seq (parser);
14456   finish_handler_sequence (try_block);
14457 
14458   return try_block;
14459 }
14460 
14461 /* Parse a function-try-block.
14462 
14463    function-try-block:
14464      try ctor-initializer [opt] function-body handler-seq  */
14465 
14466 static bool
cp_parser_function_try_block(cp_parser * parser)14467 cp_parser_function_try_block (cp_parser* parser)
14468 {
14469   tree compound_stmt;
14470   tree try_block;
14471   bool ctor_initializer_p;
14472 
14473   /* Look for the `try' keyword.  */
14474   if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
14475     return false;
14476   /* Let the rest of the front-end know where we are.  */
14477   try_block = begin_function_try_block (&compound_stmt);
14478   /* Parse the function-body.  */
14479   ctor_initializer_p
14480     = cp_parser_ctor_initializer_opt_and_function_body (parser);
14481   /* We're done with the `try' part.  */
14482   finish_function_try_block (try_block);
14483   /* Parse the handlers.  */
14484   cp_parser_handler_seq (parser);
14485   /* We're done with the handlers.  */
14486   finish_function_handler_sequence (try_block, compound_stmt);
14487 
14488   return ctor_initializer_p;
14489 }
14490 
14491 /* Parse a handler-seq.
14492 
14493    handler-seq:
14494      handler handler-seq [opt]  */
14495 
14496 static void
cp_parser_handler_seq(cp_parser * parser)14497 cp_parser_handler_seq (cp_parser* parser)
14498 {
14499   while (true)
14500     {
14501       cp_token *token;
14502 
14503       /* Parse the handler.  */
14504       cp_parser_handler (parser);
14505       /* Peek at the next token.  */
14506       token = cp_lexer_peek_token (parser->lexer);
14507       /* If it's not `catch' then there are no more handlers.  */
14508       if (!cp_parser_is_keyword (token, RID_CATCH))
14509 	break;
14510     }
14511 }
14512 
14513 /* Parse a handler.
14514 
14515    handler:
14516      catch ( exception-declaration ) compound-statement  */
14517 
14518 static void
cp_parser_handler(cp_parser * parser)14519 cp_parser_handler (cp_parser* parser)
14520 {
14521   tree handler;
14522   tree declaration;
14523 
14524   cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
14525   handler = begin_handler ();
14526   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14527   declaration = cp_parser_exception_declaration (parser);
14528   finish_handler_parms (declaration, handler);
14529   cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14530   cp_parser_compound_statement (parser, NULL, false);
14531   finish_handler (handler);
14532 }
14533 
14534 /* Parse an exception-declaration.
14535 
14536    exception-declaration:
14537      type-specifier-seq declarator
14538      type-specifier-seq abstract-declarator
14539      type-specifier-seq
14540      ...
14541 
14542    Returns a VAR_DECL for the declaration, or NULL_TREE if the
14543    ellipsis variant is used.  */
14544 
14545 static tree
cp_parser_exception_declaration(cp_parser * parser)14546 cp_parser_exception_declaration (cp_parser* parser)
14547 {
14548   cp_decl_specifier_seq type_specifiers;
14549   cp_declarator *declarator;
14550   const char *saved_message;
14551 
14552   /* If it's an ellipsis, it's easy to handle.  */
14553   if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
14554     {
14555       /* Consume the `...' token.  */
14556       cp_lexer_consume_token (parser->lexer);
14557       return NULL_TREE;
14558     }
14559 
14560   /* Types may not be defined in exception-declarations.  */
14561   saved_message = parser->type_definition_forbidden_message;
14562   parser->type_definition_forbidden_message
14563     = "types may not be defined in exception-declarations";
14564 
14565   /* Parse the type-specifier-seq.  */
14566   cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
14567 				&type_specifiers);
14568   /* If it's a `)', then there is no declarator.  */
14569   if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
14570     declarator = NULL;
14571   else
14572     declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
14573 				       /*ctor_dtor_or_conv_p=*/NULL,
14574 				       /*parenthesized_p=*/NULL,
14575 				       /*member_p=*/false);
14576 
14577   /* Restore the saved message.  */
14578   parser->type_definition_forbidden_message = saved_message;
14579 
14580   if (!type_specifiers.any_specifiers_p)
14581     return error_mark_node;
14582 
14583   return grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
14584 }
14585 
14586 /* Parse a throw-expression.
14587 
14588    throw-expression:
14589      throw assignment-expression [opt]
14590 
14591    Returns a THROW_EXPR representing the throw-expression.  */
14592 
14593 static tree
cp_parser_throw_expression(cp_parser * parser)14594 cp_parser_throw_expression (cp_parser* parser)
14595 {
14596   tree expression;
14597   cp_token* token;
14598 
14599   cp_parser_require_keyword (parser, RID_THROW, "`throw'");
14600   token = cp_lexer_peek_token (parser->lexer);
14601   /* Figure out whether or not there is an assignment-expression
14602      following the "throw" keyword.  */
14603   if (token->type == CPP_COMMA
14604       || token->type == CPP_SEMICOLON
14605       || token->type == CPP_CLOSE_PAREN
14606       || token->type == CPP_CLOSE_SQUARE
14607       || token->type == CPP_CLOSE_BRACE
14608       || token->type == CPP_COLON)
14609     expression = NULL_TREE;
14610   else
14611     expression = cp_parser_assignment_expression (parser,
14612 						  /*cast_p=*/false);
14613 
14614   return build_throw (expression);
14615 }
14616 
14617 /* GNU Extensions */
14618 
14619 /* Parse an (optional) asm-specification.
14620 
14621    asm-specification:
14622      asm ( string-literal )
14623 
14624    If the asm-specification is present, returns a STRING_CST
14625    corresponding to the string-literal.  Otherwise, returns
14626    NULL_TREE.  */
14627 
14628 static tree
cp_parser_asm_specification_opt(cp_parser * parser)14629 cp_parser_asm_specification_opt (cp_parser* parser)
14630 {
14631   cp_token *token;
14632   tree asm_specification;
14633 
14634   /* Peek at the next token.  */
14635   token = cp_lexer_peek_token (parser->lexer);
14636   /* If the next token isn't the `asm' keyword, then there's no
14637      asm-specification.  */
14638   if (!cp_parser_is_keyword (token, RID_ASM))
14639     return NULL_TREE;
14640 
14641   /* Consume the `asm' token.  */
14642   cp_lexer_consume_token (parser->lexer);
14643   /* Look for the `('.  */
14644   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14645 
14646   /* Look for the string-literal.  */
14647   asm_specification = cp_parser_string_literal (parser, false, false);
14648 
14649   /* Look for the `)'.  */
14650   cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
14651 
14652   return asm_specification;
14653 }
14654 
14655 /* Parse an asm-operand-list.
14656 
14657    asm-operand-list:
14658      asm-operand
14659      asm-operand-list , asm-operand
14660 
14661    asm-operand:
14662      string-literal ( expression )
14663      [ string-literal ] string-literal ( expression )
14664 
14665    Returns a TREE_LIST representing the operands.  The TREE_VALUE of
14666    each node is the expression.  The TREE_PURPOSE is itself a
14667    TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
14668    string-literal (or NULL_TREE if not present) and whose TREE_VALUE
14669    is a STRING_CST for the string literal before the parenthesis.  */
14670 
14671 static tree
cp_parser_asm_operand_list(cp_parser * parser)14672 cp_parser_asm_operand_list (cp_parser* parser)
14673 {
14674   tree asm_operands = NULL_TREE;
14675 
14676   while (true)
14677     {
14678       tree string_literal;
14679       tree expression;
14680       tree name;
14681 
14682       if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
14683 	{
14684 	  /* Consume the `[' token.  */
14685 	  cp_lexer_consume_token (parser->lexer);
14686 	  /* Read the operand name.  */
14687 	  name = cp_parser_identifier (parser);
14688 	  if (name != error_mark_node)
14689 	    name = build_string (IDENTIFIER_LENGTH (name),
14690 				 IDENTIFIER_POINTER (name));
14691 	  /* Look for the closing `]'.  */
14692 	  cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
14693 	}
14694       else
14695 	name = NULL_TREE;
14696       /* Look for the string-literal.  */
14697       string_literal = cp_parser_string_literal (parser, false, false);
14698 
14699       /* Look for the `('.  */
14700       cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14701       /* Parse the expression.  */
14702       expression = cp_parser_expression (parser, /*cast_p=*/false);
14703       /* Look for the `)'.  */
14704       cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14705 
14706       /* Add this operand to the list.  */
14707       asm_operands = tree_cons (build_tree_list (name, string_literal),
14708 				expression,
14709 				asm_operands);
14710       /* If the next token is not a `,', there are no more
14711 	 operands.  */
14712       if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
14713 	break;
14714       /* Consume the `,'.  */
14715       cp_lexer_consume_token (parser->lexer);
14716     }
14717 
14718   return nreverse (asm_operands);
14719 }
14720 
14721 /* Parse an asm-clobber-list.
14722 
14723    asm-clobber-list:
14724      string-literal
14725      asm-clobber-list , string-literal
14726 
14727    Returns a TREE_LIST, indicating the clobbers in the order that they
14728    appeared.  The TREE_VALUE of each node is a STRING_CST.  */
14729 
14730 static tree
cp_parser_asm_clobber_list(cp_parser * parser)14731 cp_parser_asm_clobber_list (cp_parser* parser)
14732 {
14733   tree clobbers = NULL_TREE;
14734 
14735   while (true)
14736     {
14737       tree string_literal;
14738 
14739       /* Look for the string literal.  */
14740       string_literal = cp_parser_string_literal (parser, false, false);
14741       /* Add it to the list.  */
14742       clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
14743       /* If the next token is not a `,', then the list is
14744 	 complete.  */
14745       if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
14746 	break;
14747       /* Consume the `,' token.  */
14748       cp_lexer_consume_token (parser->lexer);
14749     }
14750 
14751   return clobbers;
14752 }
14753 
14754 /* Parse an (optional) series of attributes.
14755 
14756    attributes:
14757      attributes attribute
14758 
14759    attribute:
14760      __attribute__ (( attribute-list [opt] ))
14761 
14762    The return value is as for cp_parser_attribute_list.  */
14763 
14764 static tree
cp_parser_attributes_opt(cp_parser * parser)14765 cp_parser_attributes_opt (cp_parser* parser)
14766 {
14767   tree attributes = NULL_TREE;
14768 
14769   while (true)
14770     {
14771       cp_token *token;
14772       tree attribute_list;
14773 
14774       /* Peek at the next token.  */
14775       token = cp_lexer_peek_token (parser->lexer);
14776       /* If it's not `__attribute__', then we're done.  */
14777       if (token->keyword != RID_ATTRIBUTE)
14778 	break;
14779 
14780       /* Consume the `__attribute__' keyword.  */
14781       cp_lexer_consume_token (parser->lexer);
14782       /* Look for the two `(' tokens.  */
14783       cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14784       cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14785 
14786       /* Peek at the next token.  */
14787       token = cp_lexer_peek_token (parser->lexer);
14788       if (token->type != CPP_CLOSE_PAREN)
14789 	/* Parse the attribute-list.  */
14790 	attribute_list = cp_parser_attribute_list (parser);
14791       else
14792 	/* If the next token is a `)', then there is no attribute
14793 	   list.  */
14794 	attribute_list = NULL;
14795 
14796       /* Look for the two `)' tokens.  */
14797       cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14798       cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14799 
14800       /* Add these new attributes to the list.  */
14801       attributes = chainon (attributes, attribute_list);
14802     }
14803 
14804   return attributes;
14805 }
14806 
14807 /* Parse an attribute-list.
14808 
14809    attribute-list:
14810      attribute
14811      attribute-list , attribute
14812 
14813    attribute:
14814      identifier
14815      identifier ( identifier )
14816      identifier ( identifier , expression-list )
14817      identifier ( expression-list )
14818 
14819    Returns a TREE_LIST, or NULL_TREE on error.  Each node corresponds
14820    to an attribute.  The TREE_PURPOSE of each node is the identifier
14821    indicating which attribute is in use.  The TREE_VALUE represents
14822    the arguments, if any.  */
14823 
14824 static tree
cp_parser_attribute_list(cp_parser * parser)14825 cp_parser_attribute_list (cp_parser* parser)
14826 {
14827   tree attribute_list = NULL_TREE;
14828   bool save_translate_strings_p = parser->translate_strings_p;
14829 
14830   parser->translate_strings_p = false;
14831   while (true)
14832     {
14833       cp_token *token;
14834       tree identifier;
14835       tree attribute;
14836 
14837       /* Look for the identifier.  We also allow keywords here; for
14838 	 example `__attribute__ ((const))' is legal.  */
14839       token = cp_lexer_peek_token (parser->lexer);
14840       if (token->type == CPP_NAME
14841 	  || token->type == CPP_KEYWORD)
14842 	{
14843 	  tree arguments = NULL_TREE;
14844 
14845 	  /* Consume the token.  */
14846 	  token = cp_lexer_consume_token (parser->lexer);
14847 
14848 	  /* Save away the identifier that indicates which attribute
14849 	     this is.  */
14850 	  identifier = token->u.value;
14851 	  attribute = build_tree_list (identifier, NULL_TREE);
14852 
14853 	  /* Peek at the next token.  */
14854 	  token = cp_lexer_peek_token (parser->lexer);
14855 	  /* If it's an `(', then parse the attribute arguments.  */
14856 	  if (token->type == CPP_OPEN_PAREN)
14857 	    {
14858 	      arguments = cp_parser_parenthesized_expression_list
14859 			  (parser, true, /*cast_p=*/false,
14860 			   /*non_constant_p=*/NULL);
14861 	      /* Save the arguments away.  */
14862 	      TREE_VALUE (attribute) = arguments;
14863 	    }
14864 
14865 	  if (arguments != error_mark_node)
14866 	    {
14867 	      /* Add this attribute to the list.  */
14868 	      TREE_CHAIN (attribute) = attribute_list;
14869 	      attribute_list = attribute;
14870 	    }
14871 
14872 	  token = cp_lexer_peek_token (parser->lexer);
14873 	}
14874       /* Now, look for more attributes.  If the next token isn't a
14875 	 `,', we're done.  */
14876       if (token->type != CPP_COMMA)
14877 	break;
14878 
14879       /* Consume the comma and keep going.  */
14880       cp_lexer_consume_token (parser->lexer);
14881     }
14882   parser->translate_strings_p = save_translate_strings_p;
14883 
14884   /* We built up the list in reverse order.  */
14885   return nreverse (attribute_list);
14886 }
14887 
14888 /* Parse an optional `__extension__' keyword.  Returns TRUE if it is
14889    present, and FALSE otherwise.  *SAVED_PEDANTIC is set to the
14890    current value of the PEDANTIC flag, regardless of whether or not
14891    the `__extension__' keyword is present.  The caller is responsible
14892    for restoring the value of the PEDANTIC flag.  */
14893 
14894 static bool
cp_parser_extension_opt(cp_parser * parser,int * saved_pedantic)14895 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
14896 {
14897   /* Save the old value of the PEDANTIC flag.  */
14898   *saved_pedantic = pedantic;
14899 
14900   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
14901     {
14902       /* Consume the `__extension__' token.  */
14903       cp_lexer_consume_token (parser->lexer);
14904       /* We're not being pedantic while the `__extension__' keyword is
14905 	 in effect.  */
14906       pedantic = 0;
14907 
14908       return true;
14909     }
14910 
14911   return false;
14912 }
14913 
14914 /* Parse a label declaration.
14915 
14916    label-declaration:
14917      __label__ label-declarator-seq ;
14918 
14919    label-declarator-seq:
14920      identifier , label-declarator-seq
14921      identifier  */
14922 
14923 static void
cp_parser_label_declaration(cp_parser * parser)14924 cp_parser_label_declaration (cp_parser* parser)
14925 {
14926   /* Look for the `__label__' keyword.  */
14927   cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14928 
14929   while (true)
14930     {
14931       tree identifier;
14932 
14933       /* Look for an identifier.  */
14934       identifier = cp_parser_identifier (parser);
14935       /* If we failed, stop.  */
14936       if (identifier == error_mark_node)
14937 	break;
14938       /* Declare it as a label.  */
14939       finish_label_decl (identifier);
14940       /* If the next token is a `;', stop.  */
14941       if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14942 	break;
14943       /* Look for the `,' separating the label declarations.  */
14944       cp_parser_require (parser, CPP_COMMA, "`,'");
14945     }
14946 
14947   /* Look for the final `;'.  */
14948   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14949 }
14950 
14951 /* Support Functions */
14952 
14953 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14954    NAME should have one of the representations used for an
14955    id-expression.  If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14956    is returned.  If PARSER->SCOPE is a dependent type, then a
14957    SCOPE_REF is returned.
14958 
14959    If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14960    returned; the name was already resolved when the TEMPLATE_ID_EXPR
14961    was formed.  Abstractly, such entities should not be passed to this
14962    function, because they do not need to be looked up, but it is
14963    simpler to check for this special case here, rather than at the
14964    call-sites.
14965 
14966    In cases not explicitly covered above, this function returns a
14967    DECL, OVERLOAD, or baselink representing the result of the lookup.
14968    If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14969    is returned.
14970 
14971    If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword
14972    (e.g., "struct") that was used.  In that case bindings that do not
14973    refer to types are ignored.
14974 
14975    If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14976    ignored.
14977 
14978    If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14979    are ignored.
14980 
14981    If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14982    types.
14983 
14984    If AMBIGUOUS_DECLS is non-NULL, *AMBIGUOUS_DECLS is set to a
14985    TREE_LIST of candidates if name-lookup results in an ambiguity, and
14986    NULL_TREE otherwise.  */
14987 
14988 static tree
cp_parser_lookup_name(cp_parser * parser,tree name,enum tag_types tag_type,bool is_template,bool is_namespace,bool check_dependency,tree * ambiguous_decls)14989 cp_parser_lookup_name (cp_parser *parser, tree name,
14990 		       enum tag_types tag_type,
14991 		       bool is_template,
14992 		       bool is_namespace,
14993 		       bool check_dependency,
14994 		       tree *ambiguous_decls)
14995 {
14996   int flags = 0;
14997   tree decl;
14998   tree object_type = parser->context->object_type;
14999 
15000   if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
15001     flags |= LOOKUP_COMPLAIN;
15002 
15003   /* Assume that the lookup will be unambiguous.  */
15004   if (ambiguous_decls)
15005     *ambiguous_decls = NULL_TREE;
15006 
15007   /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
15008      no longer valid.  Note that if we are parsing tentatively, and
15009      the parse fails, OBJECT_TYPE will be automatically restored.  */
15010   parser->context->object_type = NULL_TREE;
15011 
15012   if (name == error_mark_node)
15013     return error_mark_node;
15014 
15015   /* A template-id has already been resolved; there is no lookup to
15016      do.  */
15017   if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
15018     return name;
15019   if (BASELINK_P (name))
15020     {
15021       gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
15022 		  == TEMPLATE_ID_EXPR);
15023       return name;
15024     }
15025 
15026   /* A BIT_NOT_EXPR is used to represent a destructor.  By this point,
15027      it should already have been checked to make sure that the name
15028      used matches the type being destroyed.  */
15029   if (TREE_CODE (name) == BIT_NOT_EXPR)
15030     {
15031       tree type;
15032 
15033       /* Figure out to which type this destructor applies.  */
15034       if (parser->scope)
15035 	type = parser->scope;
15036       else if (object_type)
15037 	type = object_type;
15038       else
15039 	type = current_class_type;
15040       /* If that's not a class type, there is no destructor.  */
15041       if (!type || !CLASS_TYPE_P (type))
15042 	return error_mark_node;
15043       if (CLASSTYPE_LAZY_DESTRUCTOR (type))
15044 	lazily_declare_fn (sfk_destructor, type);
15045       if (!CLASSTYPE_DESTRUCTORS (type))
15046 	  return error_mark_node;
15047       /* If it was a class type, return the destructor.  */
15048       return CLASSTYPE_DESTRUCTORS (type);
15049     }
15050 
15051   /* By this point, the NAME should be an ordinary identifier.  If
15052      the id-expression was a qualified name, the qualifying scope is
15053      stored in PARSER->SCOPE at this point.  */
15054   gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
15055 
15056   /* Perform the lookup.  */
15057   if (parser->scope)
15058     {
15059       bool dependent_p;
15060 
15061       if (parser->scope == error_mark_node)
15062 	return error_mark_node;
15063 
15064       /* If the SCOPE is dependent, the lookup must be deferred until
15065 	 the template is instantiated -- unless we are explicitly
15066 	 looking up names in uninstantiated templates.  Even then, we
15067 	 cannot look up the name if the scope is not a class type; it
15068 	 might, for example, be a template type parameter.  */
15069       dependent_p = (TYPE_P (parser->scope)
15070 		     && !(parser->in_declarator_p
15071 			  && currently_open_class (parser->scope))
15072 		     && dependent_type_p (parser->scope));
15073       if ((check_dependency || !CLASS_TYPE_P (parser->scope))
15074 	   && dependent_p)
15075 	{
15076 	  if (tag_type)
15077 	    {
15078 	      tree type;
15079 
15080 	      /* The resolution to Core Issue 180 says that `struct
15081 		 A::B' should be considered a type-name, even if `A'
15082 		 is dependent.  */
15083 	      type = make_typename_type (parser->scope, name, tag_type,
15084 					 /*complain=*/tf_error);
15085 	      decl = TYPE_NAME (type);
15086 	    }
15087 	  else if (is_template
15088 		   && (cp_parser_next_token_ends_template_argument_p (parser)
15089 		       || cp_lexer_next_token_is (parser->lexer,
15090 						  CPP_CLOSE_PAREN)))
15091 	    decl = make_unbound_class_template (parser->scope,
15092 						name, NULL_TREE,
15093 						/*complain=*/tf_error);
15094 	  else
15095 	    decl = build_qualified_name (/*type=*/NULL_TREE,
15096 					 parser->scope, name,
15097 					 is_template);
15098 	}
15099       else
15100 	{
15101 	  tree pushed_scope = NULL_TREE;
15102 
15103 	  /* If PARSER->SCOPE is a dependent type, then it must be a
15104 	     class type, and we must not be checking dependencies;
15105 	     otherwise, we would have processed this lookup above.  So
15106 	     that PARSER->SCOPE is not considered a dependent base by
15107 	     lookup_member, we must enter the scope here.  */
15108 	  if (dependent_p)
15109 	    pushed_scope = push_scope (parser->scope);
15110 	  /* If the PARSER->SCOPE is a template specialization, it
15111 	     may be instantiated during name lookup.  In that case,
15112 	     errors may be issued.  Even if we rollback the current
15113 	     tentative parse, those errors are valid.  */
15114 	  decl = lookup_qualified_name (parser->scope, name,
15115 					tag_type != none_type,
15116 					/*complain=*/true);
15117 	  if (pushed_scope)
15118 	    pop_scope (pushed_scope);
15119 	}
15120       parser->qualifying_scope = parser->scope;
15121       parser->object_scope = NULL_TREE;
15122     }
15123   else if (object_type)
15124     {
15125       tree object_decl = NULL_TREE;
15126       /* Look up the name in the scope of the OBJECT_TYPE, unless the
15127 	 OBJECT_TYPE is not a class.  */
15128       if (CLASS_TYPE_P (object_type))
15129 	/* If the OBJECT_TYPE is a template specialization, it may
15130 	   be instantiated during name lookup.  In that case, errors
15131 	   may be issued.  Even if we rollback the current tentative
15132 	   parse, those errors are valid.  */
15133 	object_decl = lookup_member (object_type,
15134 				     name,
15135 				     /*protect=*/0,
15136 				     tag_type != none_type);
15137       /* Look it up in the enclosing context, too.  */
15138       decl = lookup_name_real (name, tag_type != none_type,
15139 			       /*nonclass=*/0,
15140 			       /*block_p=*/true, is_namespace, flags);
15141       parser->object_scope = object_type;
15142       parser->qualifying_scope = NULL_TREE;
15143       if (object_decl)
15144 	decl = object_decl;
15145     }
15146   else
15147     {
15148       decl = lookup_name_real (name, tag_type != none_type,
15149 			       /*nonclass=*/0,
15150 			       /*block_p=*/true, is_namespace, flags);
15151       parser->qualifying_scope = NULL_TREE;
15152       parser->object_scope = NULL_TREE;
15153     }
15154 
15155   /* If the lookup failed, let our caller know.  */
15156   if (!decl || decl == error_mark_node)
15157     return error_mark_node;
15158 
15159   /* If it's a TREE_LIST, the result of the lookup was ambiguous.  */
15160   if (TREE_CODE (decl) == TREE_LIST)
15161     {
15162       if (ambiguous_decls)
15163 	*ambiguous_decls = decl;
15164       /* The error message we have to print is too complicated for
15165 	 cp_parser_error, so we incorporate its actions directly.  */
15166       if (!cp_parser_simulate_error (parser))
15167 	{
15168 	  error ("reference to %qD is ambiguous", name);
15169 	  print_candidates (decl);
15170 	}
15171       return error_mark_node;
15172     }
15173 
15174   gcc_assert (DECL_P (decl)
15175 	      || TREE_CODE (decl) == OVERLOAD
15176 	      || TREE_CODE (decl) == SCOPE_REF
15177 	      || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
15178 	      || BASELINK_P (decl));
15179 
15180   /* If we have resolved the name of a member declaration, check to
15181      see if the declaration is accessible.  When the name resolves to
15182      set of overloaded functions, accessibility is checked when
15183      overload resolution is done.
15184 
15185      During an explicit instantiation, access is not checked at all,
15186      as per [temp.explicit].  */
15187   if (DECL_P (decl))
15188     check_accessibility_of_qualified_id (decl, object_type, parser->scope);
15189 
15190   return decl;
15191 }
15192 
15193 /* Like cp_parser_lookup_name, but for use in the typical case where
15194    CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
15195    IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE.  */
15196 
15197 static tree
cp_parser_lookup_name_simple(cp_parser * parser,tree name)15198 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
15199 {
15200   return cp_parser_lookup_name (parser, name,
15201 				none_type,
15202 				/*is_template=*/false,
15203 				/*is_namespace=*/false,
15204 				/*check_dependency=*/true,
15205 				/*ambiguous_decls=*/NULL);
15206 }
15207 
15208 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
15209    the current context, return the TYPE_DECL.  If TAG_NAME_P is
15210    true, the DECL indicates the class being defined in a class-head,
15211    or declared in an elaborated-type-specifier.
15212 
15213    Otherwise, return DECL.  */
15214 
15215 static tree
cp_parser_maybe_treat_template_as_class(tree decl,bool tag_name_p)15216 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
15217 {
15218   /* If the TEMPLATE_DECL is being declared as part of a class-head,
15219      the translation from TEMPLATE_DECL to TYPE_DECL occurs:
15220 
15221        struct A {
15222 	 template <typename T> struct B;
15223        };
15224 
15225        template <typename T> struct A::B {};
15226 
15227      Similarly, in an elaborated-type-specifier:
15228 
15229        namespace N { struct X{}; }
15230 
15231        struct A {
15232 	 template <typename T> friend struct N::X;
15233        };
15234 
15235      However, if the DECL refers to a class type, and we are in
15236      the scope of the class, then the name lookup automatically
15237      finds the TYPE_DECL created by build_self_reference rather
15238      than a TEMPLATE_DECL.  For example, in:
15239 
15240        template <class T> struct S {
15241 	 S s;
15242        };
15243 
15244      there is no need to handle such case.  */
15245 
15246   if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
15247     return DECL_TEMPLATE_RESULT (decl);
15248 
15249   return decl;
15250 }
15251 
15252 /* If too many, or too few, template-parameter lists apply to the
15253    declarator, issue an error message.  Returns TRUE if all went well,
15254    and FALSE otherwise.  */
15255 
15256 static bool
cp_parser_check_declarator_template_parameters(cp_parser * parser,cp_declarator * declarator)15257 cp_parser_check_declarator_template_parameters (cp_parser* parser,
15258 						cp_declarator *declarator)
15259 {
15260   unsigned num_templates;
15261 
15262   /* We haven't seen any classes that involve template parameters yet.  */
15263   num_templates = 0;
15264 
15265   switch (declarator->kind)
15266     {
15267     case cdk_id:
15268       if (declarator->u.id.qualifying_scope)
15269 	{
15270 	  tree scope;
15271 	  tree member;
15272 
15273 	  scope = declarator->u.id.qualifying_scope;
15274 	  member = declarator->u.id.unqualified_name;
15275 
15276 	  while (scope && CLASS_TYPE_P (scope))
15277 	    {
15278 	      /* You're supposed to have one `template <...>'
15279 		 for every template class, but you don't need one
15280 		 for a full specialization.  For example:
15281 
15282 		 template <class T> struct S{};
15283 		 template <> struct S<int> { void f(); };
15284 		 void S<int>::f () {}
15285 
15286 		 is correct; there shouldn't be a `template <>' for
15287 		 the definition of `S<int>::f'.  */
15288 	      if (!CLASSTYPE_TEMPLATE_INFO (scope))
15289 		/* If SCOPE does not have template information of any
15290 		   kind, then it is not a template, nor is it nested
15291 		   within a template.  */
15292 		break;
15293 	      if (explicit_class_specialization_p (scope))
15294 		break;
15295 	      if (PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
15296 		++num_templates;
15297 
15298 	      scope = TYPE_CONTEXT (scope);
15299 	    }
15300 	}
15301       else if (TREE_CODE (declarator->u.id.unqualified_name)
15302 	       == TEMPLATE_ID_EXPR)
15303 	/* If the DECLARATOR has the form `X<y>' then it uses one
15304 	   additional level of template parameters.  */
15305 	++num_templates;
15306 
15307       return cp_parser_check_template_parameters (parser,
15308 						  num_templates);
15309 
15310     case cdk_function:
15311     case cdk_array:
15312     case cdk_pointer:
15313     case cdk_reference:
15314     case cdk_ptrmem:
15315       return (cp_parser_check_declarator_template_parameters
15316 	      (parser, declarator->declarator));
15317 
15318     case cdk_error:
15319       return true;
15320 
15321     default:
15322       gcc_unreachable ();
15323     }
15324   return false;
15325 }
15326 
15327 /* NUM_TEMPLATES were used in the current declaration.  If that is
15328    invalid, return FALSE and issue an error messages.  Otherwise,
15329    return TRUE.  */
15330 
15331 static bool
cp_parser_check_template_parameters(cp_parser * parser,unsigned num_templates)15332 cp_parser_check_template_parameters (cp_parser* parser,
15333 				     unsigned num_templates)
15334 {
15335   /* If there are more template classes than parameter lists, we have
15336      something like:
15337 
15338        template <class T> void S<T>::R<T>::f ();  */
15339   if (parser->num_template_parameter_lists < num_templates)
15340     {
15341       error ("too few template-parameter-lists");
15342       return false;
15343     }
15344   /* If there are the same number of template classes and parameter
15345      lists, that's OK.  */
15346   if (parser->num_template_parameter_lists == num_templates)
15347     return true;
15348   /* If there are more, but only one more, then we are referring to a
15349      member template.  That's OK too.  */
15350   if (parser->num_template_parameter_lists == num_templates + 1)
15351       return true;
15352   /* Otherwise, there are too many template parameter lists.  We have
15353      something like:
15354 
15355      template <class T> template <class U> void S::f();  */
15356   error ("too many template-parameter-lists");
15357   return false;
15358 }
15359 
15360 /* Parse an optional `::' token indicating that the following name is
15361    from the global namespace.  If so, PARSER->SCOPE is set to the
15362    GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
15363    unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
15364    Returns the new value of PARSER->SCOPE, if the `::' token is
15365    present, and NULL_TREE otherwise.  */
15366 
15367 static tree
cp_parser_global_scope_opt(cp_parser * parser,bool current_scope_valid_p)15368 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
15369 {
15370   cp_token *token;
15371 
15372   /* Peek at the next token.  */
15373   token = cp_lexer_peek_token (parser->lexer);
15374   /* If we're looking at a `::' token then we're starting from the
15375      global namespace, not our current location.  */
15376   if (token->type == CPP_SCOPE)
15377     {
15378       /* Consume the `::' token.  */
15379       cp_lexer_consume_token (parser->lexer);
15380       /* Set the SCOPE so that we know where to start the lookup.  */
15381       parser->scope = global_namespace;
15382       parser->qualifying_scope = global_namespace;
15383       parser->object_scope = NULL_TREE;
15384 
15385       return parser->scope;
15386     }
15387   else if (!current_scope_valid_p)
15388     {
15389       parser->scope = NULL_TREE;
15390       parser->qualifying_scope = NULL_TREE;
15391       parser->object_scope = NULL_TREE;
15392     }
15393 
15394   return NULL_TREE;
15395 }
15396 
15397 /* Returns TRUE if the upcoming token sequence is the start of a
15398    constructor declarator.  If FRIEND_P is true, the declarator is
15399    preceded by the `friend' specifier.  */
15400 
15401 static bool
cp_parser_constructor_declarator_p(cp_parser * parser,bool friend_p)15402 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
15403 {
15404   bool constructor_p;
15405   tree type_decl = NULL_TREE;
15406   bool nested_name_p;
15407   cp_token *next_token;
15408 
15409   /* The common case is that this is not a constructor declarator, so
15410      try to avoid doing lots of work if at all possible.  It's not
15411      valid declare a constructor at function scope.  */
15412   if (parser->in_function_body)
15413     return false;
15414   /* And only certain tokens can begin a constructor declarator.  */
15415   next_token = cp_lexer_peek_token (parser->lexer);
15416   if (next_token->type != CPP_NAME
15417       && next_token->type != CPP_SCOPE
15418       && next_token->type != CPP_NESTED_NAME_SPECIFIER
15419       && next_token->type != CPP_TEMPLATE_ID)
15420     return false;
15421 
15422   /* Parse tentatively; we are going to roll back all of the tokens
15423      consumed here.  */
15424   cp_parser_parse_tentatively (parser);
15425   /* Assume that we are looking at a constructor declarator.  */
15426   constructor_p = true;
15427 
15428   /* Look for the optional `::' operator.  */
15429   cp_parser_global_scope_opt (parser,
15430 			      /*current_scope_valid_p=*/false);
15431   /* Look for the nested-name-specifier.  */
15432   nested_name_p
15433     = (cp_parser_nested_name_specifier_opt (parser,
15434 					    /*typename_keyword_p=*/false,
15435 					    /*check_dependency_p=*/false,
15436 					    /*type_p=*/false,
15437 					    /*is_declaration=*/false)
15438        != NULL_TREE);
15439   /* Outside of a class-specifier, there must be a
15440      nested-name-specifier.  */
15441   if (!nested_name_p &&
15442       (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
15443        || friend_p))
15444     constructor_p = false;
15445   /* If we still think that this might be a constructor-declarator,
15446      look for a class-name.  */
15447   if (constructor_p)
15448     {
15449       /* If we have:
15450 
15451 	   template <typename T> struct S { S(); };
15452 	   template <typename T> S<T>::S ();
15453 
15454 	 we must recognize that the nested `S' names a class.
15455 	 Similarly, for:
15456 
15457 	   template <typename T> S<T>::S<T> ();
15458 
15459 	 we must recognize that the nested `S' names a template.  */
15460       type_decl = cp_parser_class_name (parser,
15461 					/*typename_keyword_p=*/false,
15462 					/*template_keyword_p=*/false,
15463 					none_type,
15464 					/*check_dependency_p=*/false,
15465 					/*class_head_p=*/false,
15466 					/*is_declaration=*/false);
15467       /* If there was no class-name, then this is not a constructor.  */
15468       constructor_p = !cp_parser_error_occurred (parser);
15469     }
15470 
15471   /* If we're still considering a constructor, we have to see a `(',
15472      to begin the parameter-declaration-clause, followed by either a
15473      `)', an `...', or a decl-specifier.  We need to check for a
15474      type-specifier to avoid being fooled into thinking that:
15475 
15476        S::S (f) (int);
15477 
15478      is a constructor.  (It is actually a function named `f' that
15479      takes one parameter (of type `int') and returns a value of type
15480      `S::S'.  */
15481   if (constructor_p
15482       && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
15483     {
15484       if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
15485 	  && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
15486 	  /* A parameter declaration begins with a decl-specifier,
15487 	     which is either the "attribute" keyword, a storage class
15488 	     specifier, or (usually) a type-specifier.  */
15489 	  && !cp_lexer_next_token_is_decl_specifier_keyword (parser->lexer))
15490 	{
15491 	  tree type;
15492 	  tree pushed_scope = NULL_TREE;
15493 	  unsigned saved_num_template_parameter_lists;
15494 
15495 	  /* Names appearing in the type-specifier should be looked up
15496 	     in the scope of the class.  */
15497 	  if (current_class_type)
15498 	    type = NULL_TREE;
15499 	  else
15500 	    {
15501 	      type = TREE_TYPE (type_decl);
15502 	      if (TREE_CODE (type) == TYPENAME_TYPE)
15503 		{
15504 		  type = resolve_typename_type (type,
15505 						/*only_current_p=*/false);
15506 		  if (type == error_mark_node)
15507 		    {
15508 		      cp_parser_abort_tentative_parse (parser);
15509 		      return false;
15510 		    }
15511 		}
15512 	      pushed_scope = push_scope (type);
15513 	    }
15514 
15515 	  /* Inside the constructor parameter list, surrounding
15516 	     template-parameter-lists do not apply.  */
15517 	  saved_num_template_parameter_lists
15518 	    = parser->num_template_parameter_lists;
15519 	  parser->num_template_parameter_lists = 0;
15520 
15521 	  /* Look for the type-specifier.  */
15522 	  cp_parser_type_specifier (parser,
15523 				    CP_PARSER_FLAGS_NONE,
15524 				    /*decl_specs=*/NULL,
15525 				    /*is_declarator=*/true,
15526 				    /*declares_class_or_enum=*/NULL,
15527 				    /*is_cv_qualifier=*/NULL);
15528 
15529 	  parser->num_template_parameter_lists
15530 	    = saved_num_template_parameter_lists;
15531 
15532 	  /* Leave the scope of the class.  */
15533 	  if (pushed_scope)
15534 	    pop_scope (pushed_scope);
15535 
15536 	  constructor_p = !cp_parser_error_occurred (parser);
15537 	}
15538     }
15539   else
15540     constructor_p = false;
15541   /* We did not really want to consume any tokens.  */
15542   cp_parser_abort_tentative_parse (parser);
15543 
15544   return constructor_p;
15545 }
15546 
15547 /* Parse the definition of the function given by the DECL_SPECIFIERS,
15548    ATTRIBUTES, and DECLARATOR.  The access checks have been deferred;
15549    they must be performed once we are in the scope of the function.
15550 
15551    Returns the function defined.  */
15552 
15553 static tree
cp_parser_function_definition_from_specifiers_and_declarator(cp_parser * parser,cp_decl_specifier_seq * decl_specifiers,tree attributes,const cp_declarator * declarator)15554 cp_parser_function_definition_from_specifiers_and_declarator
15555   (cp_parser* parser,
15556    cp_decl_specifier_seq *decl_specifiers,
15557    tree attributes,
15558    const cp_declarator *declarator)
15559 {
15560   tree fn;
15561   bool success_p;
15562 
15563   /* Begin the function-definition.  */
15564   success_p = start_function (decl_specifiers, declarator, attributes);
15565 
15566   /* The things we're about to see are not directly qualified by any
15567      template headers we've seen thus far.  */
15568   reset_specialization ();
15569 
15570   /* If there were names looked up in the decl-specifier-seq that we
15571      did not check, check them now.  We must wait until we are in the
15572      scope of the function to perform the checks, since the function
15573      might be a friend.  */
15574   perform_deferred_access_checks ();
15575 
15576   if (!success_p)
15577     {
15578       /* Skip the entire function.  */
15579       cp_parser_skip_to_end_of_block_or_statement (parser);
15580       fn = error_mark_node;
15581     }
15582   else
15583     fn = cp_parser_function_definition_after_declarator (parser,
15584 							 /*inline_p=*/false);
15585 
15586   return fn;
15587 }
15588 
15589 /* Parse the part of a function-definition that follows the
15590    declarator.  INLINE_P is TRUE iff this function is an inline
15591    function defined with a class-specifier.
15592 
15593    Returns the function defined.  */
15594 
15595 static tree
cp_parser_function_definition_after_declarator(cp_parser * parser,bool inline_p)15596 cp_parser_function_definition_after_declarator (cp_parser* parser,
15597 						bool inline_p)
15598 {
15599   tree fn;
15600   bool ctor_initializer_p = false;
15601   bool saved_in_unbraced_linkage_specification_p;
15602   bool saved_in_function_body;
15603   unsigned saved_num_template_parameter_lists;
15604 
15605   saved_in_function_body = parser->in_function_body;
15606   parser->in_function_body = true;
15607   /* If the next token is `return', then the code may be trying to
15608      make use of the "named return value" extension that G++ used to
15609      support.  */
15610   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
15611     {
15612       /* Consume the `return' keyword.  */
15613       cp_lexer_consume_token (parser->lexer);
15614       /* Look for the identifier that indicates what value is to be
15615 	 returned.  */
15616       cp_parser_identifier (parser);
15617       /* Issue an error message.  */
15618       error ("named return values are no longer supported");
15619       /* Skip tokens until we reach the start of the function body.  */
15620       while (true)
15621 	{
15622 	  cp_token *token = cp_lexer_peek_token (parser->lexer);
15623 	  if (token->type == CPP_OPEN_BRACE
15624 	      || token->type == CPP_EOF
15625 	      || token->type == CPP_PRAGMA_EOL)
15626 	    break;
15627 	  cp_lexer_consume_token (parser->lexer);
15628 	}
15629     }
15630   /* The `extern' in `extern "C" void f () { ... }' does not apply to
15631      anything declared inside `f'.  */
15632   saved_in_unbraced_linkage_specification_p
15633     = parser->in_unbraced_linkage_specification_p;
15634   parser->in_unbraced_linkage_specification_p = false;
15635   /* Inside the function, surrounding template-parameter-lists do not
15636      apply.  */
15637   saved_num_template_parameter_lists
15638     = parser->num_template_parameter_lists;
15639   parser->num_template_parameter_lists = 0;
15640   /* If the next token is `try', then we are looking at a
15641      function-try-block.  */
15642   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
15643     ctor_initializer_p = cp_parser_function_try_block (parser);
15644   /* A function-try-block includes the function-body, so we only do
15645      this next part if we're not processing a function-try-block.  */
15646   else
15647     ctor_initializer_p
15648       = cp_parser_ctor_initializer_opt_and_function_body (parser);
15649 
15650   /* Finish the function.  */
15651   fn = finish_function ((ctor_initializer_p ? 1 : 0) |
15652 			(inline_p ? 2 : 0));
15653   /* Generate code for it, if necessary.  */
15654   expand_or_defer_fn (fn);
15655   /* Restore the saved values.  */
15656   parser->in_unbraced_linkage_specification_p
15657     = saved_in_unbraced_linkage_specification_p;
15658   parser->num_template_parameter_lists
15659     = saved_num_template_parameter_lists;
15660   parser->in_function_body = saved_in_function_body;
15661 
15662   return fn;
15663 }
15664 
15665 /* Parse a template-declaration, assuming that the `export' (and
15666    `extern') keywords, if present, has already been scanned.  MEMBER_P
15667    is as for cp_parser_template_declaration.  */
15668 
15669 static void
cp_parser_template_declaration_after_export(cp_parser * parser,bool member_p)15670 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
15671 {
15672   tree decl = NULL_TREE;
15673   VEC (deferred_access_check,gc) *checks;
15674   tree parameter_list;
15675   bool friend_p = false;
15676   bool need_lang_pop;
15677 
15678   /* Look for the `template' keyword.  */
15679   if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
15680     return;
15681 
15682   /* And the `<'.  */
15683   if (!cp_parser_require (parser, CPP_LESS, "`<'"))
15684     return;
15685   if (at_class_scope_p () && current_function_decl)
15686     {
15687       /* 14.5.2.2 [temp.mem]
15688 
15689          A local class shall not have member templates.  */
15690       error ("invalid declaration of member template in local class");
15691       cp_parser_skip_to_end_of_block_or_statement (parser);
15692       return;
15693     }
15694   /* [temp]
15695 
15696      A template ... shall not have C linkage.  */
15697   if (current_lang_name == lang_name_c)
15698     {
15699       error ("template with C linkage");
15700       /* Give it C++ linkage to avoid confusing other parts of the
15701 	 front end.  */
15702       push_lang_context (lang_name_cplusplus);
15703       need_lang_pop = true;
15704     }
15705   else
15706     need_lang_pop = false;
15707 
15708   /* We cannot perform access checks on the template parameter
15709      declarations until we know what is being declared, just as we
15710      cannot check the decl-specifier list.  */
15711   push_deferring_access_checks (dk_deferred);
15712 
15713   /* If the next token is `>', then we have an invalid
15714      specialization.  Rather than complain about an invalid template
15715      parameter, issue an error message here.  */
15716   if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15717     {
15718       cp_parser_error (parser, "invalid explicit specialization");
15719       begin_specialization ();
15720       parameter_list = NULL_TREE;
15721     }
15722   else
15723     /* Parse the template parameters.  */
15724     parameter_list = cp_parser_template_parameter_list (parser);
15725 
15726   /* Get the deferred access checks from the parameter list.  These
15727      will be checked once we know what is being declared, as for a
15728      member template the checks must be performed in the scope of the
15729      class containing the member.  */
15730   checks = get_deferred_access_checks ();
15731 
15732   /* Look for the `>'.  */
15733   cp_parser_skip_to_end_of_template_parameter_list (parser);
15734   /* We just processed one more parameter list.  */
15735   ++parser->num_template_parameter_lists;
15736   /* If the next token is `template', there are more template
15737      parameters.  */
15738   if (cp_lexer_next_token_is_keyword (parser->lexer,
15739 				      RID_TEMPLATE))
15740     cp_parser_template_declaration_after_export (parser, member_p);
15741   else
15742     {
15743       /* There are no access checks when parsing a template, as we do not
15744 	 know if a specialization will be a friend.  */
15745       push_deferring_access_checks (dk_no_check);
15746       decl = cp_parser_single_declaration (parser,
15747 					   checks,
15748 					   member_p,
15749 					   &friend_p);
15750       pop_deferring_access_checks ();
15751 
15752       /* If this is a member template declaration, let the front
15753 	 end know.  */
15754       if (member_p && !friend_p && decl)
15755 	{
15756 	  if (TREE_CODE (decl) == TYPE_DECL)
15757 	    cp_parser_check_access_in_redeclaration (decl);
15758 
15759 	  decl = finish_member_template_decl (decl);
15760 	}
15761       else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
15762 	make_friend_class (current_class_type, TREE_TYPE (decl),
15763 			   /*complain=*/true);
15764     }
15765   /* We are done with the current parameter list.  */
15766   --parser->num_template_parameter_lists;
15767 
15768   pop_deferring_access_checks ();
15769 
15770   /* Finish up.  */
15771   finish_template_decl (parameter_list);
15772 
15773   /* Register member declarations.  */
15774   if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
15775     finish_member_declaration (decl);
15776   /* For the erroneous case of a template with C linkage, we pushed an
15777      implicit C++ linkage scope; exit that scope now.  */
15778   if (need_lang_pop)
15779     pop_lang_context ();
15780   /* If DECL is a function template, we must return to parse it later.
15781      (Even though there is no definition, there might be default
15782      arguments that need handling.)  */
15783   if (member_p && decl
15784       && (TREE_CODE (decl) == FUNCTION_DECL
15785 	  || DECL_FUNCTION_TEMPLATE_P (decl)))
15786     TREE_VALUE (parser->unparsed_functions_queues)
15787       = tree_cons (NULL_TREE, decl,
15788 		   TREE_VALUE (parser->unparsed_functions_queues));
15789 }
15790 
15791 /* Perform the deferred access checks from a template-parameter-list.
15792    CHECKS is a TREE_LIST of access checks, as returned by
15793    get_deferred_access_checks.  */
15794 
15795 static void
cp_parser_perform_template_parameter_access_checks(VEC (deferred_access_check,gc)* checks)15796 cp_parser_perform_template_parameter_access_checks (VEC (deferred_access_check,gc)* checks)
15797 {
15798   ++processing_template_parmlist;
15799   perform_access_checks (checks);
15800   --processing_template_parmlist;
15801 }
15802 
15803 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
15804    `function-definition' sequence.  MEMBER_P is true, this declaration
15805    appears in a class scope.
15806 
15807    Returns the DECL for the declared entity.  If FRIEND_P is non-NULL,
15808    *FRIEND_P is set to TRUE iff the declaration is a friend.  */
15809 
15810 static tree
cp_parser_single_declaration(cp_parser * parser,VEC (deferred_access_check,gc)* checks,bool member_p,bool * friend_p)15811 cp_parser_single_declaration (cp_parser* parser,
15812 			      VEC (deferred_access_check,gc)* checks,
15813 			      bool member_p,
15814 			      bool* friend_p)
15815 {
15816   int declares_class_or_enum;
15817   tree decl = NULL_TREE;
15818   cp_decl_specifier_seq decl_specifiers;
15819   bool function_definition_p = false;
15820 
15821   /* This function is only used when processing a template
15822      declaration.  */
15823   gcc_assert (innermost_scope_kind () == sk_template_parms
15824 	      || innermost_scope_kind () == sk_template_spec);
15825 
15826   /* Defer access checks until we know what is being declared.  */
15827   push_deferring_access_checks (dk_deferred);
15828 
15829   /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
15830      alternative.  */
15831   cp_parser_decl_specifier_seq (parser,
15832 				CP_PARSER_FLAGS_OPTIONAL,
15833 				&decl_specifiers,
15834 				&declares_class_or_enum);
15835   if (friend_p)
15836     *friend_p = cp_parser_friend_p (&decl_specifiers);
15837 
15838   /* There are no template typedefs.  */
15839   if (decl_specifiers.specs[(int) ds_typedef])
15840     {
15841       error ("template declaration of %qs", "typedef");
15842       decl = error_mark_node;
15843     }
15844 
15845   /* Gather up the access checks that occurred the
15846      decl-specifier-seq.  */
15847   stop_deferring_access_checks ();
15848 
15849   /* Check for the declaration of a template class.  */
15850   if (declares_class_or_enum)
15851     {
15852       if (cp_parser_declares_only_class_p (parser))
15853 	{
15854 	  decl = shadow_tag (&decl_specifiers);
15855 
15856 	  /* In this case:
15857 
15858 	       struct C {
15859 		 friend template <typename T> struct A<T>::B;
15860 	       };
15861 
15862 	     A<T>::B will be represented by a TYPENAME_TYPE, and
15863 	     therefore not recognized by shadow_tag.  */
15864 	  if (friend_p && *friend_p
15865 	      && !decl
15866 	      && decl_specifiers.type
15867 	      && TYPE_P (decl_specifiers.type))
15868 	    decl = decl_specifiers.type;
15869 
15870 	  if (decl && decl != error_mark_node)
15871 	    decl = TYPE_NAME (decl);
15872 	  else
15873 	    decl = error_mark_node;
15874 
15875 	  /* Perform access checks for template parameters.  */
15876 	  cp_parser_perform_template_parameter_access_checks (checks);
15877 	}
15878     }
15879   /* If it's not a template class, try for a template function.  If
15880      the next token is a `;', then this declaration does not declare
15881      anything.  But, if there were errors in the decl-specifiers, then
15882      the error might well have come from an attempted class-specifier.
15883      In that case, there's no need to warn about a missing declarator.  */
15884   if (!decl
15885       && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
15886 	  || decl_specifiers.type != error_mark_node))
15887     decl = cp_parser_init_declarator (parser,
15888 				      &decl_specifiers,
15889 				      checks,
15890 				      /*function_definition_allowed_p=*/true,
15891 				      member_p,
15892 				      declares_class_or_enum,
15893 				      &function_definition_p);
15894 
15895   pop_deferring_access_checks ();
15896 
15897   /* Clear any current qualification; whatever comes next is the start
15898      of something new.  */
15899   parser->scope = NULL_TREE;
15900   parser->qualifying_scope = NULL_TREE;
15901   parser->object_scope = NULL_TREE;
15902   /* Look for a trailing `;' after the declaration.  */
15903   if (!function_definition_p
15904       && (decl == error_mark_node
15905 	  || !cp_parser_require (parser, CPP_SEMICOLON, "`;'")))
15906     cp_parser_skip_to_end_of_block_or_statement (parser);
15907 
15908   return decl;
15909 }
15910 
15911 /* Parse a cast-expression that is not the operand of a unary "&".  */
15912 
15913 static tree
cp_parser_simple_cast_expression(cp_parser * parser)15914 cp_parser_simple_cast_expression (cp_parser *parser)
15915 {
15916   return cp_parser_cast_expression (parser, /*address_p=*/false,
15917 				    /*cast_p=*/false);
15918 }
15919 
15920 /* Parse a functional cast to TYPE.  Returns an expression
15921    representing the cast.  */
15922 
15923 static tree
cp_parser_functional_cast(cp_parser * parser,tree type)15924 cp_parser_functional_cast (cp_parser* parser, tree type)
15925 {
15926   tree expression_list;
15927   tree cast;
15928 
15929   expression_list
15930     = cp_parser_parenthesized_expression_list (parser, false,
15931 					       /*cast_p=*/true,
15932 					       /*non_constant_p=*/NULL);
15933 
15934   cast = build_functional_cast (type, expression_list);
15935   /* [expr.const]/1: In an integral constant expression "only type
15936      conversions to integral or enumeration type can be used".  */
15937   if (TREE_CODE (type) == TYPE_DECL)
15938     type = TREE_TYPE (type);
15939   if (cast != error_mark_node
15940       && !cast_valid_in_integral_constant_expression_p (type)
15941       && (cp_parser_non_integral_constant_expression
15942 	  (parser, "a call to a constructor")))
15943     return error_mark_node;
15944   return cast;
15945 }
15946 
15947 /* Save the tokens that make up the body of a member function defined
15948    in a class-specifier.  The DECL_SPECIFIERS and DECLARATOR have
15949    already been parsed.  The ATTRIBUTES are any GNU "__attribute__"
15950    specifiers applied to the declaration.  Returns the FUNCTION_DECL
15951    for the member function.  */
15952 
15953 static tree
cp_parser_save_member_function_body(cp_parser * parser,cp_decl_specifier_seq * decl_specifiers,cp_declarator * declarator,tree attributes)15954 cp_parser_save_member_function_body (cp_parser* parser,
15955 				     cp_decl_specifier_seq *decl_specifiers,
15956 				     cp_declarator *declarator,
15957 				     tree attributes)
15958 {
15959   cp_token *first;
15960   cp_token *last;
15961   tree fn;
15962 
15963   /* Create the function-declaration.  */
15964   fn = start_method (decl_specifiers, declarator, attributes);
15965   /* If something went badly wrong, bail out now.  */
15966   if (fn == error_mark_node)
15967     {
15968       /* If there's a function-body, skip it.  */
15969       if (cp_parser_token_starts_function_definition_p
15970 	  (cp_lexer_peek_token (parser->lexer)))
15971 	cp_parser_skip_to_end_of_block_or_statement (parser);
15972       return error_mark_node;
15973     }
15974 
15975   /* Remember it, if there default args to post process.  */
15976   cp_parser_save_default_args (parser, fn);
15977 
15978   /* Save away the tokens that make up the body of the
15979      function.  */
15980   first = parser->lexer->next_token;
15981   cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15982   /* Handle function try blocks.  */
15983   while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
15984     cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15985   last = parser->lexer->next_token;
15986 
15987   /* Save away the inline definition; we will process it when the
15988      class is complete.  */
15989   DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
15990   DECL_PENDING_INLINE_P (fn) = 1;
15991 
15992   /* We need to know that this was defined in the class, so that
15993      friend templates are handled correctly.  */
15994   DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
15995 
15996   /* We're done with the inline definition.  */
15997   finish_method (fn);
15998 
15999   /* Add FN to the queue of functions to be parsed later.  */
16000   TREE_VALUE (parser->unparsed_functions_queues)
16001     = tree_cons (NULL_TREE, fn,
16002 		 TREE_VALUE (parser->unparsed_functions_queues));
16003 
16004   return fn;
16005 }
16006 
16007 /* Parse a template-argument-list, as well as the trailing ">" (but
16008    not the opening ">").  See cp_parser_template_argument_list for the
16009    return value.  */
16010 
16011 static tree
cp_parser_enclosed_template_argument_list(cp_parser * parser)16012 cp_parser_enclosed_template_argument_list (cp_parser* parser)
16013 {
16014   tree arguments;
16015   tree saved_scope;
16016   tree saved_qualifying_scope;
16017   tree saved_object_scope;
16018   bool saved_greater_than_is_operator_p;
16019   bool saved_skip_evaluation;
16020 
16021   /* [temp.names]
16022 
16023      When parsing a template-id, the first non-nested `>' is taken as
16024      the end of the template-argument-list rather than a greater-than
16025      operator.  */
16026   saved_greater_than_is_operator_p
16027     = parser->greater_than_is_operator_p;
16028   parser->greater_than_is_operator_p = false;
16029   /* Parsing the argument list may modify SCOPE, so we save it
16030      here.  */
16031   saved_scope = parser->scope;
16032   saved_qualifying_scope = parser->qualifying_scope;
16033   saved_object_scope = parser->object_scope;
16034   /* We need to evaluate the template arguments, even though this
16035      template-id may be nested within a "sizeof".  */
16036   saved_skip_evaluation = skip_evaluation;
16037   skip_evaluation = false;
16038   /* Parse the template-argument-list itself.  */
16039   if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
16040     arguments = NULL_TREE;
16041   else
16042     arguments = cp_parser_template_argument_list (parser);
16043   /* Look for the `>' that ends the template-argument-list. If we find
16044      a '>>' instead, it's probably just a typo.  */
16045   if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
16046     {
16047       if (!saved_greater_than_is_operator_p)
16048 	{
16049 	  /* If we're in a nested template argument list, the '>>' has
16050 	    to be a typo for '> >'. We emit the error message, but we
16051 	    continue parsing and we push a '>' as next token, so that
16052 	    the argument list will be parsed correctly.  Note that the
16053 	    global source location is still on the token before the
16054 	    '>>', so we need to say explicitly where we want it.  */
16055 	  cp_token *token = cp_lexer_peek_token (parser->lexer);
16056 	  error ("%H%<>>%> should be %<> >%> "
16057 		 "within a nested template argument list",
16058 		 &token->location);
16059 
16060 	  /* ??? Proper recovery should terminate two levels of
16061 	     template argument list here.  */
16062 	  token->type = CPP_GREATER;
16063 	}
16064       else
16065 	{
16066 	  /* If this is not a nested template argument list, the '>>'
16067 	    is a typo for '>'. Emit an error message and continue.
16068 	    Same deal about the token location, but here we can get it
16069 	    right by consuming the '>>' before issuing the diagnostic.  */
16070 	  cp_lexer_consume_token (parser->lexer);
16071 	  error ("spurious %<>>%>, use %<>%> to terminate "
16072 		 "a template argument list");
16073 	}
16074     }
16075   else
16076     cp_parser_skip_to_end_of_template_parameter_list (parser);
16077   /* The `>' token might be a greater-than operator again now.  */
16078   parser->greater_than_is_operator_p
16079     = saved_greater_than_is_operator_p;
16080   /* Restore the SAVED_SCOPE.  */
16081   parser->scope = saved_scope;
16082   parser->qualifying_scope = saved_qualifying_scope;
16083   parser->object_scope = saved_object_scope;
16084   skip_evaluation = saved_skip_evaluation;
16085 
16086   return arguments;
16087 }
16088 
16089 /* MEMBER_FUNCTION is a member function, or a friend.  If default
16090    arguments, or the body of the function have not yet been parsed,
16091    parse them now.  */
16092 
16093 static void
cp_parser_late_parsing_for_member(cp_parser * parser,tree member_function)16094 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
16095 {
16096   /* If this member is a template, get the underlying
16097      FUNCTION_DECL.  */
16098   if (DECL_FUNCTION_TEMPLATE_P (member_function))
16099     member_function = DECL_TEMPLATE_RESULT (member_function);
16100 
16101   /* There should not be any class definitions in progress at this
16102      point; the bodies of members are only parsed outside of all class
16103      definitions.  */
16104   gcc_assert (parser->num_classes_being_defined == 0);
16105   /* While we're parsing the member functions we might encounter more
16106      classes.  We want to handle them right away, but we don't want
16107      them getting mixed up with functions that are currently in the
16108      queue.  */
16109   parser->unparsed_functions_queues
16110     = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
16111 
16112   /* Make sure that any template parameters are in scope.  */
16113   maybe_begin_member_template_processing (member_function);
16114 
16115   /* If the body of the function has not yet been parsed, parse it
16116      now.  */
16117   if (DECL_PENDING_INLINE_P (member_function))
16118     {
16119       tree function_scope;
16120       cp_token_cache *tokens;
16121 
16122       /* The function is no longer pending; we are processing it.  */
16123       tokens = DECL_PENDING_INLINE_INFO (member_function);
16124       DECL_PENDING_INLINE_INFO (member_function) = NULL;
16125       DECL_PENDING_INLINE_P (member_function) = 0;
16126 
16127       /* If this is a local class, enter the scope of the containing
16128 	 function.  */
16129       function_scope = current_function_decl;
16130       if (function_scope)
16131 	push_function_context_to (function_scope);
16132 
16133 
16134       /* Push the body of the function onto the lexer stack.  */
16135       cp_parser_push_lexer_for_tokens (parser, tokens);
16136 
16137       /* Let the front end know that we going to be defining this
16138 	 function.  */
16139       start_preparsed_function (member_function, NULL_TREE,
16140 				SF_PRE_PARSED | SF_INCLASS_INLINE);
16141 
16142       /* Don't do access checking if it is a templated function.  */
16143       if (processing_template_decl)
16144 	push_deferring_access_checks (dk_no_check);
16145 
16146       /* Now, parse the body of the function.  */
16147       cp_parser_function_definition_after_declarator (parser,
16148 						      /*inline_p=*/true);
16149 
16150       if (processing_template_decl)
16151 	pop_deferring_access_checks ();
16152 
16153       /* Leave the scope of the containing function.  */
16154       if (function_scope)
16155 	pop_function_context_from (function_scope);
16156       cp_parser_pop_lexer (parser);
16157     }
16158 
16159   /* Remove any template parameters from the symbol table.  */
16160   maybe_end_member_template_processing ();
16161 
16162   /* Restore the queue.  */
16163   parser->unparsed_functions_queues
16164     = TREE_CHAIN (parser->unparsed_functions_queues);
16165 }
16166 
16167 /* If DECL contains any default args, remember it on the unparsed
16168    functions queue.  */
16169 
16170 static void
cp_parser_save_default_args(cp_parser * parser,tree decl)16171 cp_parser_save_default_args (cp_parser* parser, tree decl)
16172 {
16173   tree probe;
16174 
16175   for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
16176        probe;
16177        probe = TREE_CHAIN (probe))
16178     if (TREE_PURPOSE (probe))
16179       {
16180 	TREE_PURPOSE (parser->unparsed_functions_queues)
16181 	  = tree_cons (current_class_type, decl,
16182 		       TREE_PURPOSE (parser->unparsed_functions_queues));
16183 	break;
16184       }
16185 }
16186 
16187 /* FN is a FUNCTION_DECL which may contains a parameter with an
16188    unparsed DEFAULT_ARG.  Parse the default args now.  This function
16189    assumes that the current scope is the scope in which the default
16190    argument should be processed.  */
16191 
16192 static void
cp_parser_late_parsing_default_args(cp_parser * parser,tree fn)16193 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
16194 {
16195   bool saved_local_variables_forbidden_p;
16196   tree parm;
16197 
16198   /* While we're parsing the default args, we might (due to the
16199      statement expression extension) encounter more classes.  We want
16200      to handle them right away, but we don't want them getting mixed
16201      up with default args that are currently in the queue.  */
16202   parser->unparsed_functions_queues
16203     = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
16204 
16205   /* Local variable names (and the `this' keyword) may not appear
16206      in a default argument.  */
16207   saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
16208   parser->local_variables_forbidden_p = true;
16209 
16210   for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
16211        parm;
16212        parm = TREE_CHAIN (parm))
16213     {
16214       cp_token_cache *tokens;
16215       tree default_arg = TREE_PURPOSE (parm);
16216       tree parsed_arg;
16217       VEC(tree,gc) *insts;
16218       tree copy;
16219       unsigned ix;
16220 
16221       if (!default_arg)
16222 	continue;
16223 
16224       if (TREE_CODE (default_arg) != DEFAULT_ARG)
16225 	/* This can happen for a friend declaration for a function
16226 	   already declared with default arguments.  */
16227 	continue;
16228 
16229        /* Push the saved tokens for the default argument onto the parser's
16230 	  lexer stack.  */
16231       tokens = DEFARG_TOKENS (default_arg);
16232       cp_parser_push_lexer_for_tokens (parser, tokens);
16233 
16234       /* Parse the assignment-expression.  */
16235       parsed_arg = cp_parser_assignment_expression (parser, /*cast_p=*/false);
16236 
16237       if (!processing_template_decl)
16238 	parsed_arg = check_default_argument (TREE_VALUE (parm), parsed_arg);
16239 
16240       TREE_PURPOSE (parm) = parsed_arg;
16241 
16242       /* Update any instantiations we've already created.  */
16243       for (insts = DEFARG_INSTANTIATIONS (default_arg), ix = 0;
16244 	   VEC_iterate (tree, insts, ix, copy); ix++)
16245 	TREE_PURPOSE (copy) = parsed_arg;
16246 
16247       /* If the token stream has not been completely used up, then
16248 	 there was extra junk after the end of the default
16249 	 argument.  */
16250       if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
16251 	cp_parser_error (parser, "expected %<,%>");
16252 
16253       /* Revert to the main lexer.  */
16254       cp_parser_pop_lexer (parser);
16255     }
16256 
16257   /* Make sure no default arg is missing.  */
16258   check_default_args (fn);
16259 
16260   /* Restore the state of local_variables_forbidden_p.  */
16261   parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
16262 
16263   /* Restore the queue.  */
16264   parser->unparsed_functions_queues
16265     = TREE_CHAIN (parser->unparsed_functions_queues);
16266 }
16267 
16268 /* Parse the operand of `sizeof' (or a similar operator).  Returns
16269    either a TYPE or an expression, depending on the form of the
16270    input.  The KEYWORD indicates which kind of expression we have
16271    encountered.  */
16272 
16273 static tree
cp_parser_sizeof_operand(cp_parser * parser,enum rid keyword)16274 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
16275 {
16276   static const char *format;
16277   tree expr = NULL_TREE;
16278   const char *saved_message;
16279   bool saved_integral_constant_expression_p;
16280   bool saved_non_integral_constant_expression_p;
16281 
16282   /* Initialize FORMAT the first time we get here.  */
16283   if (!format)
16284     format = "types may not be defined in '%s' expressions";
16285 
16286   /* Types cannot be defined in a `sizeof' expression.  Save away the
16287      old message.  */
16288   saved_message = parser->type_definition_forbidden_message;
16289   /* And create the new one.  */
16290   parser->type_definition_forbidden_message
16291     = XNEWVEC (const char, strlen (format)
16292 	       + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
16293 	       + 1 /* `\0' */);
16294   sprintf ((char *) parser->type_definition_forbidden_message,
16295 	   format, IDENTIFIER_POINTER (ridpointers[keyword]));
16296 
16297   /* The restrictions on constant-expressions do not apply inside
16298      sizeof expressions.  */
16299   saved_integral_constant_expression_p
16300     = parser->integral_constant_expression_p;
16301   saved_non_integral_constant_expression_p
16302     = parser->non_integral_constant_expression_p;
16303   parser->integral_constant_expression_p = false;
16304 
16305   /* Do not actually evaluate the expression.  */
16306   ++skip_evaluation;
16307   /* If it's a `(', then we might be looking at the type-id
16308      construction.  */
16309   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
16310     {
16311       tree type;
16312       bool saved_in_type_id_in_expr_p;
16313 
16314       /* We can't be sure yet whether we're looking at a type-id or an
16315 	 expression.  */
16316       cp_parser_parse_tentatively (parser);
16317       /* Consume the `('.  */
16318       cp_lexer_consume_token (parser->lexer);
16319       /* Parse the type-id.  */
16320       saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
16321       parser->in_type_id_in_expr_p = true;
16322       type = cp_parser_type_id (parser);
16323       parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
16324       /* Now, look for the trailing `)'.  */
16325       cp_parser_require (parser, CPP_CLOSE_PAREN, "%<)%>");
16326       /* If all went well, then we're done.  */
16327       if (cp_parser_parse_definitely (parser))
16328 	{
16329 	  cp_decl_specifier_seq decl_specs;
16330 
16331 	  /* Build a trivial decl-specifier-seq.  */
16332 	  clear_decl_specs (&decl_specs);
16333 	  decl_specs.type = type;
16334 
16335 	  /* Call grokdeclarator to figure out what type this is.  */
16336 	  expr = grokdeclarator (NULL,
16337 				 &decl_specs,
16338 				 TYPENAME,
16339 				 /*initialized=*/0,
16340 				 /*attrlist=*/NULL);
16341 	}
16342     }
16343 
16344   /* If the type-id production did not work out, then we must be
16345      looking at the unary-expression production.  */
16346   if (!expr)
16347     expr = cp_parser_unary_expression (parser, /*address_p=*/false,
16348 				       /*cast_p=*/false);
16349   /* Go back to evaluating expressions.  */
16350   --skip_evaluation;
16351 
16352   /* Free the message we created.  */
16353   free ((char *) parser->type_definition_forbidden_message);
16354   /* And restore the old one.  */
16355   parser->type_definition_forbidden_message = saved_message;
16356   parser->integral_constant_expression_p
16357     = saved_integral_constant_expression_p;
16358   parser->non_integral_constant_expression_p
16359     = saved_non_integral_constant_expression_p;
16360 
16361   return expr;
16362 }
16363 
16364 /* If the current declaration has no declarator, return true.  */
16365 
16366 static bool
cp_parser_declares_only_class_p(cp_parser * parser)16367 cp_parser_declares_only_class_p (cp_parser *parser)
16368 {
16369   /* If the next token is a `;' or a `,' then there is no
16370      declarator.  */
16371   return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
16372 	  || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
16373 }
16374 
16375 /* Update the DECL_SPECS to reflect the storage class indicated by
16376    KEYWORD.  */
16377 
16378 static void
cp_parser_set_storage_class(cp_parser * parser,cp_decl_specifier_seq * decl_specs,enum rid keyword)16379 cp_parser_set_storage_class (cp_parser *parser,
16380 			     cp_decl_specifier_seq *decl_specs,
16381 			     enum rid keyword)
16382 {
16383   cp_storage_class storage_class;
16384 
16385   if (parser->in_unbraced_linkage_specification_p)
16386     {
16387       error ("invalid use of %qD in linkage specification",
16388 	     ridpointers[keyword]);
16389       return;
16390     }
16391   else if (decl_specs->storage_class != sc_none)
16392     {
16393       decl_specs->conflicting_specifiers_p = true;
16394       return;
16395     }
16396 
16397   if ((keyword == RID_EXTERN || keyword == RID_STATIC)
16398       && decl_specs->specs[(int) ds_thread])
16399     {
16400       error ("%<__thread%> before %qD", ridpointers[keyword]);
16401       decl_specs->specs[(int) ds_thread] = 0;
16402     }
16403 
16404   switch (keyword)
16405     {
16406     case RID_AUTO:
16407       storage_class = sc_auto;
16408       break;
16409     case RID_REGISTER:
16410       storage_class = sc_register;
16411       break;
16412     case RID_STATIC:
16413       storage_class = sc_static;
16414       break;
16415     case RID_EXTERN:
16416       storage_class = sc_extern;
16417       break;
16418     case RID_MUTABLE:
16419       storage_class = sc_mutable;
16420       break;
16421     default:
16422       gcc_unreachable ();
16423     }
16424   decl_specs->storage_class = storage_class;
16425 
16426   /* A storage class specifier cannot be applied alongside a typedef
16427      specifier. If there is a typedef specifier present then set
16428      conflicting_specifiers_p which will trigger an error later
16429      on in grokdeclarator. */
16430   if (decl_specs->specs[(int)ds_typedef])
16431     decl_specs->conflicting_specifiers_p = true;
16432 }
16433 
16434 /* Update the DECL_SPECS to reflect the TYPE_SPEC.  If USER_DEFINED_P
16435    is true, the type is a user-defined type; otherwise it is a
16436    built-in type specified by a keyword.  */
16437 
16438 static void
cp_parser_set_decl_spec_type(cp_decl_specifier_seq * decl_specs,tree type_spec,bool user_defined_p)16439 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
16440 			      tree type_spec,
16441 			      bool user_defined_p)
16442 {
16443   decl_specs->any_specifiers_p = true;
16444 
16445   /* If the user tries to redeclare bool or wchar_t (with, for
16446      example, in "typedef int wchar_t;") we remember that this is what
16447      happened.  In system headers, we ignore these declarations so
16448      that G++ can work with system headers that are not C++-safe.  */
16449   if (decl_specs->specs[(int) ds_typedef]
16450       && !user_defined_p
16451       && (type_spec == boolean_type_node
16452 	  || type_spec == wchar_type_node)
16453       && (decl_specs->type
16454 	  || decl_specs->specs[(int) ds_long]
16455 	  || decl_specs->specs[(int) ds_short]
16456 	  || decl_specs->specs[(int) ds_unsigned]
16457 	  || decl_specs->specs[(int) ds_signed]))
16458     {
16459       decl_specs->redefined_builtin_type = type_spec;
16460       if (!decl_specs->type)
16461 	{
16462 	  decl_specs->type = type_spec;
16463 	  decl_specs->user_defined_type_p = false;
16464 	}
16465     }
16466   else if (decl_specs->type)
16467     decl_specs->multiple_types_p = true;
16468   else
16469     {
16470       decl_specs->type = type_spec;
16471       decl_specs->user_defined_type_p = user_defined_p;
16472       decl_specs->redefined_builtin_type = NULL_TREE;
16473     }
16474 }
16475 
16476 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
16477    Returns TRUE iff `friend' appears among the DECL_SPECIFIERS.  */
16478 
16479 static bool
cp_parser_friend_p(const cp_decl_specifier_seq * decl_specifiers)16480 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
16481 {
16482   return decl_specifiers->specs[(int) ds_friend] != 0;
16483 }
16484 
16485 /* If the next token is of the indicated TYPE, consume it.  Otherwise,
16486    issue an error message indicating that TOKEN_DESC was expected.
16487 
16488    Returns the token consumed, if the token had the appropriate type.
16489    Otherwise, returns NULL.  */
16490 
16491 static cp_token *
cp_parser_require(cp_parser * parser,enum cpp_ttype type,const char * token_desc)16492 cp_parser_require (cp_parser* parser,
16493 		   enum cpp_ttype type,
16494 		   const char* token_desc)
16495 {
16496   if (cp_lexer_next_token_is (parser->lexer, type))
16497     return cp_lexer_consume_token (parser->lexer);
16498   else
16499     {
16500       /* Output the MESSAGE -- unless we're parsing tentatively.  */
16501       if (!cp_parser_simulate_error (parser))
16502 	{
16503 	  char *message = concat ("expected ", token_desc, NULL);
16504 	  cp_parser_error (parser, message);
16505 	  free (message);
16506 	}
16507       return NULL;
16508     }
16509 }
16510 
16511 /* An error message is produced if the next token is not '>'.
16512    All further tokens are skipped until the desired token is
16513    found or '{', '}', ';' or an unbalanced ')' or ']'.  */
16514 
16515 static void
cp_parser_skip_to_end_of_template_parameter_list(cp_parser * parser)16516 cp_parser_skip_to_end_of_template_parameter_list (cp_parser* parser)
16517 {
16518   /* Current level of '< ... >'.  */
16519   unsigned level = 0;
16520   /* Ignore '<' and '>' nested inside '( ... )' or '[ ... ]'.  */
16521   unsigned nesting_depth = 0;
16522 
16523   /* Are we ready, yet?  If not, issue error message.  */
16524   if (cp_parser_require (parser, CPP_GREATER, "%<>%>"))
16525     return;
16526 
16527   /* Skip tokens until the desired token is found.  */
16528   while (true)
16529     {
16530       /* Peek at the next token.  */
16531       switch (cp_lexer_peek_token (parser->lexer)->type)
16532 	{
16533 	case CPP_LESS:
16534 	  if (!nesting_depth)
16535 	    ++level;
16536 	  break;
16537 
16538 	case CPP_GREATER:
16539 	  if (!nesting_depth && level-- == 0)
16540 	    {
16541 	      /* We've reached the token we want, consume it and stop.  */
16542 	      cp_lexer_consume_token (parser->lexer);
16543 	      return;
16544 	    }
16545 	  break;
16546 
16547 	case CPP_OPEN_PAREN:
16548 	case CPP_OPEN_SQUARE:
16549 	  ++nesting_depth;
16550 	  break;
16551 
16552 	case CPP_CLOSE_PAREN:
16553 	case CPP_CLOSE_SQUARE:
16554 	  if (nesting_depth-- == 0)
16555 	    return;
16556 	  break;
16557 
16558 	case CPP_EOF:
16559 	case CPP_PRAGMA_EOL:
16560 	case CPP_SEMICOLON:
16561 	case CPP_OPEN_BRACE:
16562 	case CPP_CLOSE_BRACE:
16563 	  /* The '>' was probably forgotten, don't look further.  */
16564 	  return;
16565 
16566 	default:
16567 	  break;
16568 	}
16569 
16570       /* Consume this token.  */
16571       cp_lexer_consume_token (parser->lexer);
16572     }
16573 }
16574 
16575 /* If the next token is the indicated keyword, consume it.  Otherwise,
16576    issue an error message indicating that TOKEN_DESC was expected.
16577 
16578    Returns the token consumed, if the token had the appropriate type.
16579    Otherwise, returns NULL.  */
16580 
16581 static cp_token *
cp_parser_require_keyword(cp_parser * parser,enum rid keyword,const char * token_desc)16582 cp_parser_require_keyword (cp_parser* parser,
16583 			   enum rid keyword,
16584 			   const char* token_desc)
16585 {
16586   cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
16587 
16588   if (token && token->keyword != keyword)
16589     {
16590       dyn_string_t error_msg;
16591 
16592       /* Format the error message.  */
16593       error_msg = dyn_string_new (0);
16594       dyn_string_append_cstr (error_msg, "expected ");
16595       dyn_string_append_cstr (error_msg, token_desc);
16596       cp_parser_error (parser, error_msg->s);
16597       dyn_string_delete (error_msg);
16598       return NULL;
16599     }
16600 
16601   return token;
16602 }
16603 
16604 /* Returns TRUE iff TOKEN is a token that can begin the body of a
16605    function-definition.  */
16606 
16607 static bool
cp_parser_token_starts_function_definition_p(cp_token * token)16608 cp_parser_token_starts_function_definition_p (cp_token* token)
16609 {
16610   return (/* An ordinary function-body begins with an `{'.  */
16611 	  token->type == CPP_OPEN_BRACE
16612 	  /* A ctor-initializer begins with a `:'.  */
16613 	  || token->type == CPP_COLON
16614 	  /* A function-try-block begins with `try'.  */
16615 	  || token->keyword == RID_TRY
16616 	  /* The named return value extension begins with `return'.  */
16617 	  || token->keyword == RID_RETURN);
16618 }
16619 
16620 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
16621    definition.  */
16622 
16623 static bool
cp_parser_next_token_starts_class_definition_p(cp_parser * parser)16624 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
16625 {
16626   cp_token *token;
16627 
16628   token = cp_lexer_peek_token (parser->lexer);
16629   return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
16630 }
16631 
16632 /* Returns TRUE iff the next token is the "," or ">" ending a
16633    template-argument.  */
16634 
16635 static bool
cp_parser_next_token_ends_template_argument_p(cp_parser * parser)16636 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
16637 {
16638   cp_token *token;
16639 
16640   token = cp_lexer_peek_token (parser->lexer);
16641   return (token->type == CPP_COMMA || token->type == CPP_GREATER);
16642 }
16643 
16644 /* Returns TRUE iff the n-th token is a "<", or the n-th is a "[" and the
16645    (n+1)-th is a ":" (which is a possible digraph typo for "< ::").  */
16646 
16647 static bool
cp_parser_nth_token_starts_template_argument_list_p(cp_parser * parser,size_t n)16648 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
16649 						     size_t n)
16650 {
16651   cp_token *token;
16652 
16653   token = cp_lexer_peek_nth_token (parser->lexer, n);
16654   if (token->type == CPP_LESS)
16655     return true;
16656   /* Check for the sequence `<::' in the original code. It would be lexed as
16657      `[:', where `[' is a digraph, and there is no whitespace before
16658      `:'.  */
16659   if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
16660     {
16661       cp_token *token2;
16662       token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
16663       if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
16664 	return true;
16665     }
16666   return false;
16667 }
16668 
16669 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
16670    or none_type otherwise.  */
16671 
16672 static enum tag_types
cp_parser_token_is_class_key(cp_token * token)16673 cp_parser_token_is_class_key (cp_token* token)
16674 {
16675   switch (token->keyword)
16676     {
16677     case RID_CLASS:
16678       return class_type;
16679     case RID_STRUCT:
16680       return record_type;
16681     case RID_UNION:
16682       return union_type;
16683 
16684     default:
16685       return none_type;
16686     }
16687 }
16688 
16689 /* Issue an error message if the CLASS_KEY does not match the TYPE.  */
16690 
16691 static void
cp_parser_check_class_key(enum tag_types class_key,tree type)16692 cp_parser_check_class_key (enum tag_types class_key, tree type)
16693 {
16694   if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
16695     pedwarn ("%qs tag used in naming %q#T",
16696 	    class_key == union_type ? "union"
16697 	     : class_key == record_type ? "struct" : "class",
16698 	     type);
16699 }
16700 
16701 /* Issue an error message if DECL is redeclared with different
16702    access than its original declaration [class.access.spec/3].
16703    This applies to nested classes and nested class templates.
16704    [class.mem/1].  */
16705 
16706 static void
cp_parser_check_access_in_redeclaration(tree decl)16707 cp_parser_check_access_in_redeclaration (tree decl)
16708 {
16709   if (!CLASS_TYPE_P (TREE_TYPE (decl)))
16710     return;
16711 
16712   if ((TREE_PRIVATE (decl)
16713        != (current_access_specifier == access_private_node))
16714       || (TREE_PROTECTED (decl)
16715 	  != (current_access_specifier == access_protected_node)))
16716     error ("%qD redeclared with different access", decl);
16717 }
16718 
16719 /* Look for the `template' keyword, as a syntactic disambiguator.
16720    Return TRUE iff it is present, in which case it will be
16721    consumed.  */
16722 
16723 static bool
cp_parser_optional_template_keyword(cp_parser * parser)16724 cp_parser_optional_template_keyword (cp_parser *parser)
16725 {
16726   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
16727     {
16728       /* The `template' keyword can only be used within templates;
16729 	 outside templates the parser can always figure out what is a
16730 	 template and what is not.  */
16731       if (!processing_template_decl)
16732 	{
16733 	  error ("%<template%> (as a disambiguator) is only allowed "
16734 		 "within templates");
16735 	  /* If this part of the token stream is rescanned, the same
16736 	     error message would be generated.  So, we purge the token
16737 	     from the stream.  */
16738 	  cp_lexer_purge_token (parser->lexer);
16739 	  return false;
16740 	}
16741       else
16742 	{
16743 	  /* Consume the `template' keyword.  */
16744 	  cp_lexer_consume_token (parser->lexer);
16745 	  return true;
16746 	}
16747     }
16748 
16749   return false;
16750 }
16751 
16752 /* The next token is a CPP_NESTED_NAME_SPECIFIER.  Consume the token,
16753    set PARSER->SCOPE, and perform other related actions.  */
16754 
16755 static void
cp_parser_pre_parsed_nested_name_specifier(cp_parser * parser)16756 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
16757 {
16758   int i;
16759   struct tree_check *check_value;
16760   deferred_access_check *chk;
16761   VEC (deferred_access_check,gc) *checks;
16762 
16763   /* Get the stored value.  */
16764   check_value = cp_lexer_consume_token (parser->lexer)->u.tree_check_value;
16765   /* Perform any access checks that were deferred.  */
16766   checks = check_value->checks;
16767   if (checks)
16768     {
16769       for (i = 0 ;
16770 	   VEC_iterate (deferred_access_check, checks, i, chk) ;
16771 	   ++i)
16772 	{
16773 	  perform_or_defer_access_check (chk->binfo,
16774 					 chk->decl,
16775 					 chk->diag_decl);
16776 	}
16777     }
16778   /* Set the scope from the stored value.  */
16779   parser->scope = check_value->value;
16780   parser->qualifying_scope = check_value->qualifying_scope;
16781   parser->object_scope = NULL_TREE;
16782 }
16783 
16784 /* Consume tokens up through a non-nested END token.  */
16785 
16786 static void
cp_parser_cache_group(cp_parser * parser,enum cpp_ttype end,unsigned depth)16787 cp_parser_cache_group (cp_parser *parser,
16788 		       enum cpp_ttype end,
16789 		       unsigned depth)
16790 {
16791   while (true)
16792     {
16793       cp_token *token;
16794 
16795       /* Abort a parenthesized expression if we encounter a brace.  */
16796       if ((end == CPP_CLOSE_PAREN || depth == 0)
16797 	  && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
16798 	return;
16799       /* If we've reached the end of the file, stop.  */
16800       if (cp_lexer_next_token_is (parser->lexer, CPP_EOF)
16801 	  || (end != CPP_PRAGMA_EOL
16802 	      && cp_lexer_next_token_is (parser->lexer, CPP_PRAGMA_EOL)))
16803 	return;
16804       /* Consume the next token.  */
16805       token = cp_lexer_consume_token (parser->lexer);
16806       /* See if it starts a new group.  */
16807       if (token->type == CPP_OPEN_BRACE)
16808 	{
16809 	  cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
16810 	  if (depth == 0)
16811 	    return;
16812 	}
16813       else if (token->type == CPP_OPEN_PAREN)
16814 	cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
16815       else if (token->type == CPP_PRAGMA)
16816 	cp_parser_cache_group (parser, CPP_PRAGMA_EOL, depth + 1);
16817       else if (token->type == end)
16818 	return;
16819     }
16820 }
16821 
16822 /* Begin parsing tentatively.  We always save tokens while parsing
16823    tentatively so that if the tentative parsing fails we can restore the
16824    tokens.  */
16825 
16826 static void
cp_parser_parse_tentatively(cp_parser * parser)16827 cp_parser_parse_tentatively (cp_parser* parser)
16828 {
16829   /* Enter a new parsing context.  */
16830   parser->context = cp_parser_context_new (parser->context);
16831   /* Begin saving tokens.  */
16832   cp_lexer_save_tokens (parser->lexer);
16833   /* In order to avoid repetitive access control error messages,
16834      access checks are queued up until we are no longer parsing
16835      tentatively.  */
16836   push_deferring_access_checks (dk_deferred);
16837 }
16838 
16839 /* Commit to the currently active tentative parse.  */
16840 
16841 static void
cp_parser_commit_to_tentative_parse(cp_parser * parser)16842 cp_parser_commit_to_tentative_parse (cp_parser* parser)
16843 {
16844   cp_parser_context *context;
16845   cp_lexer *lexer;
16846 
16847   /* Mark all of the levels as committed.  */
16848   lexer = parser->lexer;
16849   for (context = parser->context; context->next; context = context->next)
16850     {
16851       if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
16852 	break;
16853       context->status = CP_PARSER_STATUS_KIND_COMMITTED;
16854       while (!cp_lexer_saving_tokens (lexer))
16855 	lexer = lexer->next;
16856       cp_lexer_commit_tokens (lexer);
16857     }
16858 }
16859 
16860 /* Abort the currently active tentative parse.  All consumed tokens
16861    will be rolled back, and no diagnostics will be issued.  */
16862 
16863 static void
cp_parser_abort_tentative_parse(cp_parser * parser)16864 cp_parser_abort_tentative_parse (cp_parser* parser)
16865 {
16866   cp_parser_simulate_error (parser);
16867   /* Now, pretend that we want to see if the construct was
16868      successfully parsed.  */
16869   cp_parser_parse_definitely (parser);
16870 }
16871 
16872 /* Stop parsing tentatively.  If a parse error has occurred, restore the
16873    token stream.  Otherwise, commit to the tokens we have consumed.
16874    Returns true if no error occurred; false otherwise.  */
16875 
16876 static bool
cp_parser_parse_definitely(cp_parser * parser)16877 cp_parser_parse_definitely (cp_parser* parser)
16878 {
16879   bool error_occurred;
16880   cp_parser_context *context;
16881 
16882   /* Remember whether or not an error occurred, since we are about to
16883      destroy that information.  */
16884   error_occurred = cp_parser_error_occurred (parser);
16885   /* Remove the topmost context from the stack.  */
16886   context = parser->context;
16887   parser->context = context->next;
16888   /* If no parse errors occurred, commit to the tentative parse.  */
16889   if (!error_occurred)
16890     {
16891       /* Commit to the tokens read tentatively, unless that was
16892 	 already done.  */
16893       if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
16894 	cp_lexer_commit_tokens (parser->lexer);
16895 
16896       pop_to_parent_deferring_access_checks ();
16897     }
16898   /* Otherwise, if errors occurred, roll back our state so that things
16899      are just as they were before we began the tentative parse.  */
16900   else
16901     {
16902       cp_lexer_rollback_tokens (parser->lexer);
16903       pop_deferring_access_checks ();
16904     }
16905   /* Add the context to the front of the free list.  */
16906   context->next = cp_parser_context_free_list;
16907   cp_parser_context_free_list = context;
16908 
16909   return !error_occurred;
16910 }
16911 
16912 /* Returns true if we are parsing tentatively and are not committed to
16913    this tentative parse.  */
16914 
16915 static bool
cp_parser_uncommitted_to_tentative_parse_p(cp_parser * parser)16916 cp_parser_uncommitted_to_tentative_parse_p (cp_parser* parser)
16917 {
16918   return (cp_parser_parsing_tentatively (parser)
16919 	  && parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED);
16920 }
16921 
16922 /* Returns nonzero iff an error has occurred during the most recent
16923    tentative parse.  */
16924 
16925 static bool
cp_parser_error_occurred(cp_parser * parser)16926 cp_parser_error_occurred (cp_parser* parser)
16927 {
16928   return (cp_parser_parsing_tentatively (parser)
16929 	  && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
16930 }
16931 
16932 /* Returns nonzero if GNU extensions are allowed.  */
16933 
16934 static bool
cp_parser_allow_gnu_extensions_p(cp_parser * parser)16935 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
16936 {
16937   return parser->allow_gnu_extensions_p;
16938 }
16939 
16940 /* Objective-C++ Productions */
16941 
16942 
16943 /* Parse an Objective-C expression, which feeds into a primary-expression
16944    above.
16945 
16946    objc-expression:
16947      objc-message-expression
16948      objc-string-literal
16949      objc-encode-expression
16950      objc-protocol-expression
16951      objc-selector-expression
16952 
16953   Returns a tree representation of the expression.  */
16954 
16955 static tree
cp_parser_objc_expression(cp_parser * parser)16956 cp_parser_objc_expression (cp_parser* parser)
16957 {
16958   /* Try to figure out what kind of declaration is present.  */
16959   cp_token *kwd = cp_lexer_peek_token (parser->lexer);
16960 
16961   switch (kwd->type)
16962     {
16963     case CPP_OPEN_SQUARE:
16964       return cp_parser_objc_message_expression (parser);
16965 
16966     case CPP_OBJC_STRING:
16967       kwd = cp_lexer_consume_token (parser->lexer);
16968       return objc_build_string_object (kwd->u.value);
16969 
16970     case CPP_KEYWORD:
16971       switch (kwd->keyword)
16972 	{
16973 	case RID_AT_ENCODE:
16974 	  return cp_parser_objc_encode_expression (parser);
16975 
16976 	case RID_AT_PROTOCOL:
16977 	  return cp_parser_objc_protocol_expression (parser);
16978 
16979 	case RID_AT_SELECTOR:
16980 	  return cp_parser_objc_selector_expression (parser);
16981 
16982 	default:
16983 	  break;
16984 	}
16985     default:
16986       error ("misplaced %<@%D%> Objective-C++ construct", kwd->u.value);
16987       cp_parser_skip_to_end_of_block_or_statement (parser);
16988     }
16989 
16990   return error_mark_node;
16991 }
16992 
16993 /* Parse an Objective-C message expression.
16994 
16995    objc-message-expression:
16996      [ objc-message-receiver objc-message-args ]
16997 
16998    Returns a representation of an Objective-C message.  */
16999 
17000 static tree
cp_parser_objc_message_expression(cp_parser * parser)17001 cp_parser_objc_message_expression (cp_parser* parser)
17002 {
17003   tree receiver, messageargs;
17004 
17005   cp_lexer_consume_token (parser->lexer);  /* Eat '['.  */
17006   receiver = cp_parser_objc_message_receiver (parser);
17007   messageargs = cp_parser_objc_message_args (parser);
17008   cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
17009 
17010   return objc_build_message_expr (build_tree_list (receiver, messageargs));
17011 }
17012 
17013 /* Parse an objc-message-receiver.
17014 
17015    objc-message-receiver:
17016      expression
17017      simple-type-specifier
17018 
17019   Returns a representation of the type or expression.  */
17020 
17021 static tree
cp_parser_objc_message_receiver(cp_parser * parser)17022 cp_parser_objc_message_receiver (cp_parser* parser)
17023 {
17024   tree rcv;
17025 
17026   /* An Objective-C message receiver may be either (1) a type
17027      or (2) an expression.  */
17028   cp_parser_parse_tentatively (parser);
17029   rcv = cp_parser_expression (parser, false);
17030 
17031   if (cp_parser_parse_definitely (parser))
17032     return rcv;
17033 
17034   rcv = cp_parser_simple_type_specifier (parser,
17035 					 /*decl_specs=*/NULL,
17036 					 CP_PARSER_FLAGS_NONE);
17037 
17038   return objc_get_class_reference (rcv);
17039 }
17040 
17041 /* Parse the arguments and selectors comprising an Objective-C message.
17042 
17043    objc-message-args:
17044      objc-selector
17045      objc-selector-args
17046      objc-selector-args , objc-comma-args
17047 
17048    objc-selector-args:
17049      objc-selector [opt] : assignment-expression
17050      objc-selector-args objc-selector [opt] : assignment-expression
17051 
17052    objc-comma-args:
17053      assignment-expression
17054      objc-comma-args , assignment-expression
17055 
17056    Returns a TREE_LIST, with TREE_PURPOSE containing a list of
17057    selector arguments and TREE_VALUE containing a list of comma
17058    arguments.  */
17059 
17060 static tree
cp_parser_objc_message_args(cp_parser * parser)17061 cp_parser_objc_message_args (cp_parser* parser)
17062 {
17063   tree sel_args = NULL_TREE, addl_args = NULL_TREE;
17064   bool maybe_unary_selector_p = true;
17065   cp_token *token = cp_lexer_peek_token (parser->lexer);
17066 
17067   while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
17068     {
17069       tree selector = NULL_TREE, arg;
17070 
17071       if (token->type != CPP_COLON)
17072 	selector = cp_parser_objc_selector (parser);
17073 
17074       /* Detect if we have a unary selector.  */
17075       if (maybe_unary_selector_p
17076 	  && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
17077 	return build_tree_list (selector, NULL_TREE);
17078 
17079       maybe_unary_selector_p = false;
17080       cp_parser_require (parser, CPP_COLON, "`:'");
17081       arg = cp_parser_assignment_expression (parser, false);
17082 
17083       sel_args
17084 	= chainon (sel_args,
17085 		   build_tree_list (selector, arg));
17086 
17087       token = cp_lexer_peek_token (parser->lexer);
17088     }
17089 
17090   /* Handle non-selector arguments, if any. */
17091   while (token->type == CPP_COMMA)
17092     {
17093       tree arg;
17094 
17095       cp_lexer_consume_token (parser->lexer);
17096       arg = cp_parser_assignment_expression (parser, false);
17097 
17098       addl_args
17099 	= chainon (addl_args,
17100 		   build_tree_list (NULL_TREE, arg));
17101 
17102       token = cp_lexer_peek_token (parser->lexer);
17103     }
17104 
17105   return build_tree_list (sel_args, addl_args);
17106 }
17107 
17108 /* Parse an Objective-C encode expression.
17109 
17110    objc-encode-expression:
17111      @encode objc-typename
17112 
17113    Returns an encoded representation of the type argument.  */
17114 
17115 static tree
cp_parser_objc_encode_expression(cp_parser * parser)17116 cp_parser_objc_encode_expression (cp_parser* parser)
17117 {
17118   tree type;
17119 
17120   cp_lexer_consume_token (parser->lexer);  /* Eat '@encode'.  */
17121   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17122   type = complete_type (cp_parser_type_id (parser));
17123   cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17124 
17125   if (!type)
17126     {
17127       error ("%<@encode%> must specify a type as an argument");
17128       return error_mark_node;
17129     }
17130 
17131   return objc_build_encode_expr (type);
17132 }
17133 
17134 /* Parse an Objective-C @defs expression.  */
17135 
17136 static tree
cp_parser_objc_defs_expression(cp_parser * parser)17137 cp_parser_objc_defs_expression (cp_parser *parser)
17138 {
17139   tree name;
17140 
17141   cp_lexer_consume_token (parser->lexer);  /* Eat '@defs'.  */
17142   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17143   name = cp_parser_identifier (parser);
17144   cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17145 
17146   return objc_get_class_ivars (name);
17147 }
17148 
17149 /* Parse an Objective-C protocol expression.
17150 
17151   objc-protocol-expression:
17152     @protocol ( identifier )
17153 
17154   Returns a representation of the protocol expression.  */
17155 
17156 static tree
cp_parser_objc_protocol_expression(cp_parser * parser)17157 cp_parser_objc_protocol_expression (cp_parser* parser)
17158 {
17159   tree proto;
17160 
17161   cp_lexer_consume_token (parser->lexer);  /* Eat '@protocol'.  */
17162   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17163   proto = cp_parser_identifier (parser);
17164   cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17165 
17166   return objc_build_protocol_expr (proto);
17167 }
17168 
17169 /* Parse an Objective-C selector expression.
17170 
17171    objc-selector-expression:
17172      @selector ( objc-method-signature )
17173 
17174    objc-method-signature:
17175      objc-selector
17176      objc-selector-seq
17177 
17178    objc-selector-seq:
17179      objc-selector :
17180      objc-selector-seq objc-selector :
17181 
17182   Returns a representation of the method selector.  */
17183 
17184 static tree
cp_parser_objc_selector_expression(cp_parser * parser)17185 cp_parser_objc_selector_expression (cp_parser* parser)
17186 {
17187   tree sel_seq = NULL_TREE;
17188   bool maybe_unary_selector_p = true;
17189   cp_token *token;
17190 
17191   cp_lexer_consume_token (parser->lexer);  /* Eat '@selector'.  */
17192   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17193   token = cp_lexer_peek_token (parser->lexer);
17194 
17195   while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON
17196 	 || token->type == CPP_SCOPE)
17197     {
17198       tree selector = NULL_TREE;
17199 
17200       if (token->type != CPP_COLON
17201 	  || token->type == CPP_SCOPE)
17202 	selector = cp_parser_objc_selector (parser);
17203 
17204       if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON)
17205 	  && cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE))
17206 	{
17207 	  /* Detect if we have a unary selector.  */
17208 	  if (maybe_unary_selector_p)
17209 	    {
17210 	      sel_seq = selector;
17211 	      goto finish_selector;
17212 	    }
17213 	  else
17214 	    {
17215 	      cp_parser_error (parser, "expected %<:%>");
17216 	    }
17217 	}
17218       maybe_unary_selector_p = false;
17219       token = cp_lexer_consume_token (parser->lexer);
17220 
17221       if (token->type == CPP_SCOPE)
17222 	{
17223 	  sel_seq
17224 	    = chainon (sel_seq,
17225 		       build_tree_list (selector, NULL_TREE));
17226 	  sel_seq
17227 	    = chainon (sel_seq,
17228 		       build_tree_list (NULL_TREE, NULL_TREE));
17229 	}
17230       else
17231 	sel_seq
17232 	  = chainon (sel_seq,
17233 		     build_tree_list (selector, NULL_TREE));
17234 
17235       token = cp_lexer_peek_token (parser->lexer);
17236     }
17237 
17238  finish_selector:
17239   cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17240 
17241   return objc_build_selector_expr (sel_seq);
17242 }
17243 
17244 /* Parse a list of identifiers.
17245 
17246    objc-identifier-list:
17247      identifier
17248      objc-identifier-list , identifier
17249 
17250    Returns a TREE_LIST of identifier nodes.  */
17251 
17252 static tree
cp_parser_objc_identifier_list(cp_parser * parser)17253 cp_parser_objc_identifier_list (cp_parser* parser)
17254 {
17255   tree list = build_tree_list (NULL_TREE, cp_parser_identifier (parser));
17256   cp_token *sep = cp_lexer_peek_token (parser->lexer);
17257 
17258   while (sep->type == CPP_COMMA)
17259     {
17260       cp_lexer_consume_token (parser->lexer);  /* Eat ','.  */
17261       list = chainon (list,
17262 		      build_tree_list (NULL_TREE,
17263 				       cp_parser_identifier (parser)));
17264       sep = cp_lexer_peek_token (parser->lexer);
17265     }
17266 
17267   return list;
17268 }
17269 
17270 /* Parse an Objective-C alias declaration.
17271 
17272    objc-alias-declaration:
17273      @compatibility_alias identifier identifier ;
17274 
17275    This function registers the alias mapping with the Objective-C front-end.
17276    It returns nothing.  */
17277 
17278 static void
cp_parser_objc_alias_declaration(cp_parser * parser)17279 cp_parser_objc_alias_declaration (cp_parser* parser)
17280 {
17281   tree alias, orig;
17282 
17283   cp_lexer_consume_token (parser->lexer);  /* Eat '@compatibility_alias'.  */
17284   alias = cp_parser_identifier (parser);
17285   orig = cp_parser_identifier (parser);
17286   objc_declare_alias (alias, orig);
17287   cp_parser_consume_semicolon_at_end_of_statement (parser);
17288 }
17289 
17290 /* Parse an Objective-C class forward-declaration.
17291 
17292    objc-class-declaration:
17293      @class objc-identifier-list ;
17294 
17295    The function registers the forward declarations with the Objective-C
17296    front-end.  It returns nothing.  */
17297 
17298 static void
cp_parser_objc_class_declaration(cp_parser * parser)17299 cp_parser_objc_class_declaration (cp_parser* parser)
17300 {
17301   cp_lexer_consume_token (parser->lexer);  /* Eat '@class'.  */
17302   objc_declare_class (cp_parser_objc_identifier_list (parser));
17303   cp_parser_consume_semicolon_at_end_of_statement (parser);
17304 }
17305 
17306 /* Parse a list of Objective-C protocol references.
17307 
17308    objc-protocol-refs-opt:
17309      objc-protocol-refs [opt]
17310 
17311    objc-protocol-refs:
17312      < objc-identifier-list >
17313 
17314    Returns a TREE_LIST of identifiers, if any.  */
17315 
17316 static tree
cp_parser_objc_protocol_refs_opt(cp_parser * parser)17317 cp_parser_objc_protocol_refs_opt (cp_parser* parser)
17318 {
17319   tree protorefs = NULL_TREE;
17320 
17321   if(cp_lexer_next_token_is (parser->lexer, CPP_LESS))
17322     {
17323       cp_lexer_consume_token (parser->lexer);  /* Eat '<'.  */
17324       protorefs = cp_parser_objc_identifier_list (parser);
17325       cp_parser_require (parser, CPP_GREATER, "`>'");
17326     }
17327 
17328   return protorefs;
17329 }
17330 
17331 /* Parse a Objective-C visibility specification.  */
17332 
17333 static void
cp_parser_objc_visibility_spec(cp_parser * parser)17334 cp_parser_objc_visibility_spec (cp_parser* parser)
17335 {
17336   cp_token *vis = cp_lexer_peek_token (parser->lexer);
17337 
17338   switch (vis->keyword)
17339     {
17340     case RID_AT_PRIVATE:
17341       objc_set_visibility (2);
17342       break;
17343     case RID_AT_PROTECTED:
17344       objc_set_visibility (0);
17345       break;
17346     case RID_AT_PUBLIC:
17347       objc_set_visibility (1);
17348       break;
17349     default:
17350       return;
17351     }
17352 
17353   /* Eat '@private'/'@protected'/'@public'.  */
17354   cp_lexer_consume_token (parser->lexer);
17355 }
17356 
17357 /* Parse an Objective-C method type.  */
17358 
17359 static void
cp_parser_objc_method_type(cp_parser * parser)17360 cp_parser_objc_method_type (cp_parser* parser)
17361 {
17362   objc_set_method_type
17363    (cp_lexer_consume_token (parser->lexer)->type == CPP_PLUS
17364     ? PLUS_EXPR
17365     : MINUS_EXPR);
17366 }
17367 
17368 /* Parse an Objective-C protocol qualifier.  */
17369 
17370 static tree
cp_parser_objc_protocol_qualifiers(cp_parser * parser)17371 cp_parser_objc_protocol_qualifiers (cp_parser* parser)
17372 {
17373   tree quals = NULL_TREE, node;
17374   cp_token *token = cp_lexer_peek_token (parser->lexer);
17375 
17376   node = token->u.value;
17377 
17378   while (node && TREE_CODE (node) == IDENTIFIER_NODE
17379 	 && (node == ridpointers [(int) RID_IN]
17380 	     || node == ridpointers [(int) RID_OUT]
17381 	     || node == ridpointers [(int) RID_INOUT]
17382 	     || node == ridpointers [(int) RID_BYCOPY]
17383 	     || node == ridpointers [(int) RID_BYREF]
17384 	     || node == ridpointers [(int) RID_ONEWAY]))
17385     {
17386       quals = tree_cons (NULL_TREE, node, quals);
17387       cp_lexer_consume_token (parser->lexer);
17388       token = cp_lexer_peek_token (parser->lexer);
17389       node = token->u.value;
17390     }
17391 
17392   return quals;
17393 }
17394 
17395 /* Parse an Objective-C typename.  */
17396 
17397 static tree
cp_parser_objc_typename(cp_parser * parser)17398 cp_parser_objc_typename (cp_parser* parser)
17399 {
17400   tree typename = NULL_TREE;
17401 
17402   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
17403     {
17404       tree proto_quals, cp_type = NULL_TREE;
17405 
17406       cp_lexer_consume_token (parser->lexer);  /* Eat '('.  */
17407       proto_quals = cp_parser_objc_protocol_qualifiers (parser);
17408 
17409       /* An ObjC type name may consist of just protocol qualifiers, in which
17410 	 case the type shall default to 'id'.  */
17411       if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
17412 	cp_type = cp_parser_type_id (parser);
17413 
17414       cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17415       typename = build_tree_list (proto_quals, cp_type);
17416     }
17417 
17418   return typename;
17419 }
17420 
17421 /* Check to see if TYPE refers to an Objective-C selector name.  */
17422 
17423 static bool
cp_parser_objc_selector_p(enum cpp_ttype type)17424 cp_parser_objc_selector_p (enum cpp_ttype type)
17425 {
17426   return (type == CPP_NAME || type == CPP_KEYWORD
17427 	  || type == CPP_AND_AND || type == CPP_AND_EQ || type == CPP_AND
17428 	  || type == CPP_OR || type == CPP_COMPL || type == CPP_NOT
17429 	  || type == CPP_NOT_EQ || type == CPP_OR_OR || type == CPP_OR_EQ
17430 	  || type == CPP_XOR || type == CPP_XOR_EQ);
17431 }
17432 
17433 /* Parse an Objective-C selector.  */
17434 
17435 static tree
cp_parser_objc_selector(cp_parser * parser)17436 cp_parser_objc_selector (cp_parser* parser)
17437 {
17438   cp_token *token = cp_lexer_consume_token (parser->lexer);
17439 
17440   if (!cp_parser_objc_selector_p (token->type))
17441     {
17442       error ("invalid Objective-C++ selector name");
17443       return error_mark_node;
17444     }
17445 
17446   /* C++ operator names are allowed to appear in ObjC selectors.  */
17447   switch (token->type)
17448     {
17449     case CPP_AND_AND: return get_identifier ("and");
17450     case CPP_AND_EQ: return get_identifier ("and_eq");
17451     case CPP_AND: return get_identifier ("bitand");
17452     case CPP_OR: return get_identifier ("bitor");
17453     case CPP_COMPL: return get_identifier ("compl");
17454     case CPP_NOT: return get_identifier ("not");
17455     case CPP_NOT_EQ: return get_identifier ("not_eq");
17456     case CPP_OR_OR: return get_identifier ("or");
17457     case CPP_OR_EQ: return get_identifier ("or_eq");
17458     case CPP_XOR: return get_identifier ("xor");
17459     case CPP_XOR_EQ: return get_identifier ("xor_eq");
17460     default: return token->u.value;
17461     }
17462 }
17463 
17464 /* Parse an Objective-C params list.  */
17465 
17466 static tree
cp_parser_objc_method_keyword_params(cp_parser * parser)17467 cp_parser_objc_method_keyword_params (cp_parser* parser)
17468 {
17469   tree params = NULL_TREE;
17470   bool maybe_unary_selector_p = true;
17471   cp_token *token = cp_lexer_peek_token (parser->lexer);
17472 
17473   while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
17474     {
17475       tree selector = NULL_TREE, typename, identifier;
17476 
17477       if (token->type != CPP_COLON)
17478 	selector = cp_parser_objc_selector (parser);
17479 
17480       /* Detect if we have a unary selector.  */
17481       if (maybe_unary_selector_p
17482 	  && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
17483 	return selector;
17484 
17485       maybe_unary_selector_p = false;
17486       cp_parser_require (parser, CPP_COLON, "`:'");
17487       typename = cp_parser_objc_typename (parser);
17488       identifier = cp_parser_identifier (parser);
17489 
17490       params
17491 	= chainon (params,
17492 		   objc_build_keyword_decl (selector,
17493 					    typename,
17494 					    identifier));
17495 
17496       token = cp_lexer_peek_token (parser->lexer);
17497     }
17498 
17499   return params;
17500 }
17501 
17502 /* Parse the non-keyword Objective-C params.  */
17503 
17504 static tree
cp_parser_objc_method_tail_params_opt(cp_parser * parser,bool * ellipsisp)17505 cp_parser_objc_method_tail_params_opt (cp_parser* parser, bool *ellipsisp)
17506 {
17507   tree params = make_node (TREE_LIST);
17508   cp_token *token = cp_lexer_peek_token (parser->lexer);
17509   *ellipsisp = false;  /* Initially, assume no ellipsis.  */
17510 
17511   while (token->type == CPP_COMMA)
17512     {
17513       cp_parameter_declarator *parmdecl;
17514       tree parm;
17515 
17516       cp_lexer_consume_token (parser->lexer);  /* Eat ','.  */
17517       token = cp_lexer_peek_token (parser->lexer);
17518 
17519       if (token->type == CPP_ELLIPSIS)
17520 	{
17521 	  cp_lexer_consume_token (parser->lexer);  /* Eat '...'.  */
17522 	  *ellipsisp = true;
17523 	  break;
17524 	}
17525 
17526       parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
17527       parm = grokdeclarator (parmdecl->declarator,
17528 			     &parmdecl->decl_specifiers,
17529 			     PARM, /*initialized=*/0,
17530 			     /*attrlist=*/NULL);
17531 
17532       chainon (params, build_tree_list (NULL_TREE, parm));
17533       token = cp_lexer_peek_token (parser->lexer);
17534     }
17535 
17536   return params;
17537 }
17538 
17539 /* Parse a linkage specification, a pragma, an extra semicolon or a block.  */
17540 
17541 static void
cp_parser_objc_interstitial_code(cp_parser * parser)17542 cp_parser_objc_interstitial_code (cp_parser* parser)
17543 {
17544   cp_token *token = cp_lexer_peek_token (parser->lexer);
17545 
17546   /* If the next token is `extern' and the following token is a string
17547      literal, then we have a linkage specification.  */
17548   if (token->keyword == RID_EXTERN
17549       && cp_parser_is_string_literal (cp_lexer_peek_nth_token (parser->lexer, 2)))
17550     cp_parser_linkage_specification (parser);
17551   /* Handle #pragma, if any.  */
17552   else if (token->type == CPP_PRAGMA)
17553     cp_parser_pragma (parser, pragma_external);
17554   /* Allow stray semicolons.  */
17555   else if (token->type == CPP_SEMICOLON)
17556     cp_lexer_consume_token (parser->lexer);
17557   /* Finally, try to parse a block-declaration, or a function-definition.  */
17558   else
17559     cp_parser_block_declaration (parser, /*statement_p=*/false);
17560 }
17561 
17562 /* Parse a method signature.  */
17563 
17564 static tree
cp_parser_objc_method_signature(cp_parser * parser)17565 cp_parser_objc_method_signature (cp_parser* parser)
17566 {
17567   tree rettype, kwdparms, optparms;
17568   bool ellipsis = false;
17569 
17570   cp_parser_objc_method_type (parser);
17571   rettype = cp_parser_objc_typename (parser);
17572   kwdparms = cp_parser_objc_method_keyword_params (parser);
17573   optparms = cp_parser_objc_method_tail_params_opt (parser, &ellipsis);
17574 
17575   return objc_build_method_signature (rettype, kwdparms, optparms, ellipsis);
17576 }
17577 
17578 /* Pars an Objective-C method prototype list.  */
17579 
17580 static void
cp_parser_objc_method_prototype_list(cp_parser * parser)17581 cp_parser_objc_method_prototype_list (cp_parser* parser)
17582 {
17583   cp_token *token = cp_lexer_peek_token (parser->lexer);
17584 
17585   while (token->keyword != RID_AT_END)
17586     {
17587       if (token->type == CPP_PLUS || token->type == CPP_MINUS)
17588 	{
17589 	  objc_add_method_declaration
17590 	   (cp_parser_objc_method_signature (parser));
17591 	  cp_parser_consume_semicolon_at_end_of_statement (parser);
17592 	}
17593       else
17594 	/* Allow for interspersed non-ObjC++ code.  */
17595 	cp_parser_objc_interstitial_code (parser);
17596 
17597       token = cp_lexer_peek_token (parser->lexer);
17598     }
17599 
17600   cp_lexer_consume_token (parser->lexer);  /* Eat '@end'.  */
17601   objc_finish_interface ();
17602 }
17603 
17604 /* Parse an Objective-C method definition list.  */
17605 
17606 static void
cp_parser_objc_method_definition_list(cp_parser * parser)17607 cp_parser_objc_method_definition_list (cp_parser* parser)
17608 {
17609   cp_token *token = cp_lexer_peek_token (parser->lexer);
17610 
17611   while (token->keyword != RID_AT_END)
17612     {
17613       tree meth;
17614 
17615       if (token->type == CPP_PLUS || token->type == CPP_MINUS)
17616 	{
17617 	  push_deferring_access_checks (dk_deferred);
17618 	  objc_start_method_definition
17619 	   (cp_parser_objc_method_signature (parser));
17620 
17621 	  /* For historical reasons, we accept an optional semicolon.  */
17622 	  if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
17623 	    cp_lexer_consume_token (parser->lexer);
17624 
17625 	  perform_deferred_access_checks ();
17626 	  stop_deferring_access_checks ();
17627 	  meth = cp_parser_function_definition_after_declarator (parser,
17628 								 false);
17629 	  pop_deferring_access_checks ();
17630 	  objc_finish_method_definition (meth);
17631 	}
17632       else
17633 	/* Allow for interspersed non-ObjC++ code.  */
17634 	cp_parser_objc_interstitial_code (parser);
17635 
17636       token = cp_lexer_peek_token (parser->lexer);
17637     }
17638 
17639   cp_lexer_consume_token (parser->lexer);  /* Eat '@end'.  */
17640   objc_finish_implementation ();
17641 }
17642 
17643 /* Parse Objective-C ivars.  */
17644 
17645 static void
cp_parser_objc_class_ivars(cp_parser * parser)17646 cp_parser_objc_class_ivars (cp_parser* parser)
17647 {
17648   cp_token *token = cp_lexer_peek_token (parser->lexer);
17649 
17650   if (token->type != CPP_OPEN_BRACE)
17651     return;	/* No ivars specified.  */
17652 
17653   cp_lexer_consume_token (parser->lexer);  /* Eat '{'.  */
17654   token = cp_lexer_peek_token (parser->lexer);
17655 
17656   while (token->type != CPP_CLOSE_BRACE)
17657     {
17658       cp_decl_specifier_seq declspecs;
17659       int decl_class_or_enum_p;
17660       tree prefix_attributes;
17661 
17662       cp_parser_objc_visibility_spec (parser);
17663 
17664       if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
17665 	break;
17666 
17667       cp_parser_decl_specifier_seq (parser,
17668 				    CP_PARSER_FLAGS_OPTIONAL,
17669 				    &declspecs,
17670 				    &decl_class_or_enum_p);
17671       prefix_attributes = declspecs.attributes;
17672       declspecs.attributes = NULL_TREE;
17673 
17674       /* Keep going until we hit the `;' at the end of the
17675 	 declaration.  */
17676       while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
17677 	{
17678 	  tree width = NULL_TREE, attributes, first_attribute, decl;
17679 	  cp_declarator *declarator = NULL;
17680 	  int ctor_dtor_or_conv_p;
17681 
17682 	  /* Check for a (possibly unnamed) bitfield declaration.  */
17683 	  token = cp_lexer_peek_token (parser->lexer);
17684 	  if (token->type == CPP_COLON)
17685 	    goto eat_colon;
17686 
17687 	  if (token->type == CPP_NAME
17688 	      && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
17689 		  == CPP_COLON))
17690 	    {
17691 	      /* Get the name of the bitfield.  */
17692 	      declarator = make_id_declarator (NULL_TREE,
17693 					       cp_parser_identifier (parser),
17694 					       sfk_none);
17695 
17696 	     eat_colon:
17697 	      cp_lexer_consume_token (parser->lexer);  /* Eat ':'.  */
17698 	      /* Get the width of the bitfield.  */
17699 	      width
17700 		= cp_parser_constant_expression (parser,
17701 						 /*allow_non_constant=*/false,
17702 						 NULL);
17703 	    }
17704 	  else
17705 	    {
17706 	      /* Parse the declarator.  */
17707 	      declarator
17708 		= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
17709 					&ctor_dtor_or_conv_p,
17710 					/*parenthesized_p=*/NULL,
17711 					/*member_p=*/false);
17712 	    }
17713 
17714 	  /* Look for attributes that apply to the ivar.  */
17715 	  attributes = cp_parser_attributes_opt (parser);
17716 	  /* Remember which attributes are prefix attributes and
17717 	     which are not.  */
17718 	  first_attribute = attributes;
17719 	  /* Combine the attributes.  */
17720 	  attributes = chainon (prefix_attributes, attributes);
17721 
17722 	  if (width)
17723 	    {
17724 	      /* Create the bitfield declaration.  */
17725 	      decl = grokbitfield (declarator, &declspecs, width);
17726 	      cplus_decl_attributes (&decl, attributes, /*flags=*/0);
17727 	    }
17728 	  else
17729 	    decl = grokfield (declarator, &declspecs,
17730 			      NULL_TREE, /*init_const_expr_p=*/false,
17731 			      NULL_TREE, attributes);
17732 
17733 	  /* Add the instance variable.  */
17734 	  objc_add_instance_variable (decl);
17735 
17736 	  /* Reset PREFIX_ATTRIBUTES.  */
17737 	  while (attributes && TREE_CHAIN (attributes) != first_attribute)
17738 	    attributes = TREE_CHAIN (attributes);
17739 	  if (attributes)
17740 	    TREE_CHAIN (attributes) = NULL_TREE;
17741 
17742 	  token = cp_lexer_peek_token (parser->lexer);
17743 
17744 	  if (token->type == CPP_COMMA)
17745 	    {
17746 	      cp_lexer_consume_token (parser->lexer);  /* Eat ','.  */
17747 	      continue;
17748 	    }
17749 	  break;
17750 	}
17751 
17752       cp_parser_consume_semicolon_at_end_of_statement (parser);
17753       token = cp_lexer_peek_token (parser->lexer);
17754     }
17755 
17756   cp_lexer_consume_token (parser->lexer);  /* Eat '}'.  */
17757   /* For historical reasons, we accept an optional semicolon.  */
17758   if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
17759     cp_lexer_consume_token (parser->lexer);
17760 }
17761 
17762 /* Parse an Objective-C protocol declaration.  */
17763 
17764 static void
cp_parser_objc_protocol_declaration(cp_parser * parser)17765 cp_parser_objc_protocol_declaration (cp_parser* parser)
17766 {
17767   tree proto, protorefs;
17768   cp_token *tok;
17769 
17770   cp_lexer_consume_token (parser->lexer);  /* Eat '@protocol'.  */
17771   if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME))
17772     {
17773       error ("identifier expected after %<@protocol%>");
17774       goto finish;
17775     }
17776 
17777   /* See if we have a forward declaration or a definition.  */
17778   tok = cp_lexer_peek_nth_token (parser->lexer, 2);
17779 
17780   /* Try a forward declaration first.  */
17781   if (tok->type == CPP_COMMA || tok->type == CPP_SEMICOLON)
17782     {
17783       objc_declare_protocols (cp_parser_objc_identifier_list (parser));
17784      finish:
17785       cp_parser_consume_semicolon_at_end_of_statement (parser);
17786     }
17787 
17788   /* Ok, we got a full-fledged definition (or at least should).  */
17789   else
17790     {
17791       proto = cp_parser_identifier (parser);
17792       protorefs = cp_parser_objc_protocol_refs_opt (parser);
17793       objc_start_protocol (proto, protorefs);
17794       cp_parser_objc_method_prototype_list (parser);
17795     }
17796 }
17797 
17798 /* Parse an Objective-C superclass or category.  */
17799 
17800 static void
cp_parser_objc_superclass_or_category(cp_parser * parser,tree * super,tree * categ)17801 cp_parser_objc_superclass_or_category (cp_parser *parser, tree *super,
17802 							  tree *categ)
17803 {
17804   cp_token *next = cp_lexer_peek_token (parser->lexer);
17805 
17806   *super = *categ = NULL_TREE;
17807   if (next->type == CPP_COLON)
17808     {
17809       cp_lexer_consume_token (parser->lexer);  /* Eat ':'.  */
17810       *super = cp_parser_identifier (parser);
17811     }
17812   else if (next->type == CPP_OPEN_PAREN)
17813     {
17814       cp_lexer_consume_token (parser->lexer);  /* Eat '('.  */
17815       *categ = cp_parser_identifier (parser);
17816       cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17817     }
17818 }
17819 
17820 /* Parse an Objective-C class interface.  */
17821 
17822 static void
cp_parser_objc_class_interface(cp_parser * parser)17823 cp_parser_objc_class_interface (cp_parser* parser)
17824 {
17825   tree name, super, categ, protos;
17826 
17827   cp_lexer_consume_token (parser->lexer);  /* Eat '@interface'.  */
17828   name = cp_parser_identifier (parser);
17829   cp_parser_objc_superclass_or_category (parser, &super, &categ);
17830   protos = cp_parser_objc_protocol_refs_opt (parser);
17831 
17832   /* We have either a class or a category on our hands.  */
17833   if (categ)
17834     objc_start_category_interface (name, categ, protos);
17835   else
17836     {
17837       objc_start_class_interface (name, super, protos);
17838       /* Handle instance variable declarations, if any.  */
17839       cp_parser_objc_class_ivars (parser);
17840       objc_continue_interface ();
17841     }
17842 
17843   cp_parser_objc_method_prototype_list (parser);
17844 }
17845 
17846 /* Parse an Objective-C class implementation.  */
17847 
17848 static void
cp_parser_objc_class_implementation(cp_parser * parser)17849 cp_parser_objc_class_implementation (cp_parser* parser)
17850 {
17851   tree name, super, categ;
17852 
17853   cp_lexer_consume_token (parser->lexer);  /* Eat '@implementation'.  */
17854   name = cp_parser_identifier (parser);
17855   cp_parser_objc_superclass_or_category (parser, &super, &categ);
17856 
17857   /* We have either a class or a category on our hands.  */
17858   if (categ)
17859     objc_start_category_implementation (name, categ);
17860   else
17861     {
17862       objc_start_class_implementation (name, super);
17863       /* Handle instance variable declarations, if any.  */
17864       cp_parser_objc_class_ivars (parser);
17865       objc_continue_implementation ();
17866     }
17867 
17868   cp_parser_objc_method_definition_list (parser);
17869 }
17870 
17871 /* Consume the @end token and finish off the implementation.  */
17872 
17873 static void
cp_parser_objc_end_implementation(cp_parser * parser)17874 cp_parser_objc_end_implementation (cp_parser* parser)
17875 {
17876   cp_lexer_consume_token (parser->lexer);  /* Eat '@end'.  */
17877   objc_finish_implementation ();
17878 }
17879 
17880 /* Parse an Objective-C declaration.  */
17881 
17882 static void
cp_parser_objc_declaration(cp_parser * parser)17883 cp_parser_objc_declaration (cp_parser* parser)
17884 {
17885   /* Try to figure out what kind of declaration is present.  */
17886   cp_token *kwd = cp_lexer_peek_token (parser->lexer);
17887 
17888   switch (kwd->keyword)
17889     {
17890     case RID_AT_ALIAS:
17891       cp_parser_objc_alias_declaration (parser);
17892       break;
17893     case RID_AT_CLASS:
17894       cp_parser_objc_class_declaration (parser);
17895       break;
17896     case RID_AT_PROTOCOL:
17897       cp_parser_objc_protocol_declaration (parser);
17898       break;
17899     case RID_AT_INTERFACE:
17900       cp_parser_objc_class_interface (parser);
17901       break;
17902     case RID_AT_IMPLEMENTATION:
17903       cp_parser_objc_class_implementation (parser);
17904       break;
17905     case RID_AT_END:
17906       cp_parser_objc_end_implementation (parser);
17907       break;
17908     default:
17909       error ("misplaced %<@%D%> Objective-C++ construct", kwd->u.value);
17910       cp_parser_skip_to_end_of_block_or_statement (parser);
17911     }
17912 }
17913 
17914 /* Parse an Objective-C try-catch-finally statement.
17915 
17916    objc-try-catch-finally-stmt:
17917      @try compound-statement objc-catch-clause-seq [opt]
17918        objc-finally-clause [opt]
17919 
17920    objc-catch-clause-seq:
17921      objc-catch-clause objc-catch-clause-seq [opt]
17922 
17923    objc-catch-clause:
17924      @catch ( exception-declaration ) compound-statement
17925 
17926    objc-finally-clause
17927      @finally compound-statement
17928 
17929    Returns NULL_TREE.  */
17930 
17931 static tree
cp_parser_objc_try_catch_finally_statement(cp_parser * parser)17932 cp_parser_objc_try_catch_finally_statement (cp_parser *parser) {
17933   location_t location;
17934   tree stmt;
17935 
17936   cp_parser_require_keyword (parser, RID_AT_TRY, "`@try'");
17937   location = cp_lexer_peek_token (parser->lexer)->location;
17938   /* NB: The @try block needs to be wrapped in its own STATEMENT_LIST
17939      node, lest it get absorbed into the surrounding block.  */
17940   stmt = push_stmt_list ();
17941   cp_parser_compound_statement (parser, NULL, false);
17942   objc_begin_try_stmt (location, pop_stmt_list (stmt));
17943 
17944   while (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_CATCH))
17945     {
17946       cp_parameter_declarator *parmdecl;
17947       tree parm;
17948 
17949       cp_lexer_consume_token (parser->lexer);
17950       cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17951       parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
17952       parm = grokdeclarator (parmdecl->declarator,
17953 			     &parmdecl->decl_specifiers,
17954 			     PARM, /*initialized=*/0,
17955 			     /*attrlist=*/NULL);
17956       cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17957       objc_begin_catch_clause (parm);
17958       cp_parser_compound_statement (parser, NULL, false);
17959       objc_finish_catch_clause ();
17960     }
17961 
17962   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_FINALLY))
17963     {
17964       cp_lexer_consume_token (parser->lexer);
17965       location = cp_lexer_peek_token (parser->lexer)->location;
17966       /* NB: The @finally block needs to be wrapped in its own STATEMENT_LIST
17967 	 node, lest it get absorbed into the surrounding block.  */
17968       stmt = push_stmt_list ();
17969       cp_parser_compound_statement (parser, NULL, false);
17970       objc_build_finally_clause (location, pop_stmt_list (stmt));
17971     }
17972 
17973   return objc_finish_try_stmt ();
17974 }
17975 
17976 /* Parse an Objective-C synchronized statement.
17977 
17978    objc-synchronized-stmt:
17979      @synchronized ( expression ) compound-statement
17980 
17981    Returns NULL_TREE.  */
17982 
17983 static tree
cp_parser_objc_synchronized_statement(cp_parser * parser)17984 cp_parser_objc_synchronized_statement (cp_parser *parser) {
17985   location_t location;
17986   tree lock, stmt;
17987 
17988   cp_parser_require_keyword (parser, RID_AT_SYNCHRONIZED, "`@synchronized'");
17989 
17990   location = cp_lexer_peek_token (parser->lexer)->location;
17991   cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17992   lock = cp_parser_expression (parser, false);
17993   cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17994 
17995   /* NB: The @synchronized block needs to be wrapped in its own STATEMENT_LIST
17996      node, lest it get absorbed into the surrounding block.  */
17997   stmt = push_stmt_list ();
17998   cp_parser_compound_statement (parser, NULL, false);
17999 
18000   return objc_build_synchronized (location, lock, pop_stmt_list (stmt));
18001 }
18002 
18003 /* Parse an Objective-C throw statement.
18004 
18005    objc-throw-stmt:
18006      @throw assignment-expression [opt] ;
18007 
18008    Returns a constructed '@throw' statement.  */
18009 
18010 static tree
cp_parser_objc_throw_statement(cp_parser * parser)18011 cp_parser_objc_throw_statement (cp_parser *parser) {
18012   tree expr = NULL_TREE;
18013 
18014   cp_parser_require_keyword (parser, RID_AT_THROW, "`@throw'");
18015 
18016   if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
18017     expr = cp_parser_assignment_expression (parser, false);
18018 
18019   cp_parser_consume_semicolon_at_end_of_statement (parser);
18020 
18021   return objc_build_throw_stmt (expr);
18022 }
18023 
18024 /* Parse an Objective-C statement.  */
18025 
18026 static tree
cp_parser_objc_statement(cp_parser * parser)18027 cp_parser_objc_statement (cp_parser * parser) {
18028   /* Try to figure out what kind of declaration is present.  */
18029   cp_token *kwd = cp_lexer_peek_token (parser->lexer);
18030 
18031   switch (kwd->keyword)
18032     {
18033     case RID_AT_TRY:
18034       return cp_parser_objc_try_catch_finally_statement (parser);
18035     case RID_AT_SYNCHRONIZED:
18036       return cp_parser_objc_synchronized_statement (parser);
18037     case RID_AT_THROW:
18038       return cp_parser_objc_throw_statement (parser);
18039     default:
18040       error ("misplaced %<@%D%> Objective-C++ construct", kwd->u.value);
18041       cp_parser_skip_to_end_of_block_or_statement (parser);
18042     }
18043 
18044   return error_mark_node;
18045 }
18046 
18047 /* OpenMP 2.5 parsing routines.  */
18048 
18049 /* All OpenMP clauses.  OpenMP 2.5.  */
18050 typedef enum pragma_omp_clause {
18051   PRAGMA_OMP_CLAUSE_NONE = 0,
18052 
18053   PRAGMA_OMP_CLAUSE_COPYIN,
18054   PRAGMA_OMP_CLAUSE_COPYPRIVATE,
18055   PRAGMA_OMP_CLAUSE_DEFAULT,
18056   PRAGMA_OMP_CLAUSE_FIRSTPRIVATE,
18057   PRAGMA_OMP_CLAUSE_IF,
18058   PRAGMA_OMP_CLAUSE_LASTPRIVATE,
18059   PRAGMA_OMP_CLAUSE_NOWAIT,
18060   PRAGMA_OMP_CLAUSE_NUM_THREADS,
18061   PRAGMA_OMP_CLAUSE_ORDERED,
18062   PRAGMA_OMP_CLAUSE_PRIVATE,
18063   PRAGMA_OMP_CLAUSE_REDUCTION,
18064   PRAGMA_OMP_CLAUSE_SCHEDULE,
18065   PRAGMA_OMP_CLAUSE_SHARED
18066 } pragma_omp_clause;
18067 
18068 /* Returns name of the next clause.
18069    If the clause is not recognized PRAGMA_OMP_CLAUSE_NONE is returned and
18070    the token is not consumed.  Otherwise appropriate pragma_omp_clause is
18071    returned and the token is consumed.  */
18072 
18073 static pragma_omp_clause
cp_parser_omp_clause_name(cp_parser * parser)18074 cp_parser_omp_clause_name (cp_parser *parser)
18075 {
18076   pragma_omp_clause result = PRAGMA_OMP_CLAUSE_NONE;
18077 
18078   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_IF))
18079     result = PRAGMA_OMP_CLAUSE_IF;
18080   else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_DEFAULT))
18081     result = PRAGMA_OMP_CLAUSE_DEFAULT;
18082   else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_PRIVATE))
18083     result = PRAGMA_OMP_CLAUSE_PRIVATE;
18084   else if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
18085     {
18086       tree id = cp_lexer_peek_token (parser->lexer)->u.value;
18087       const char *p = IDENTIFIER_POINTER (id);
18088 
18089       switch (p[0])
18090 	{
18091 	case 'c':
18092 	  if (!strcmp ("copyin", p))
18093 	    result = PRAGMA_OMP_CLAUSE_COPYIN;
18094 	  else if (!strcmp ("copyprivate", p))
18095 	    result = PRAGMA_OMP_CLAUSE_COPYPRIVATE;
18096 	  break;
18097 	case 'f':
18098 	  if (!strcmp ("firstprivate", p))
18099 	    result = PRAGMA_OMP_CLAUSE_FIRSTPRIVATE;
18100 	  break;
18101 	case 'l':
18102 	  if (!strcmp ("lastprivate", p))
18103 	    result = PRAGMA_OMP_CLAUSE_LASTPRIVATE;
18104 	  break;
18105 	case 'n':
18106 	  if (!strcmp ("nowait", p))
18107 	    result = PRAGMA_OMP_CLAUSE_NOWAIT;
18108 	  else if (!strcmp ("num_threads", p))
18109 	    result = PRAGMA_OMP_CLAUSE_NUM_THREADS;
18110 	  break;
18111 	case 'o':
18112 	  if (!strcmp ("ordered", p))
18113 	    result = PRAGMA_OMP_CLAUSE_ORDERED;
18114 	  break;
18115 	case 'r':
18116 	  if (!strcmp ("reduction", p))
18117 	    result = PRAGMA_OMP_CLAUSE_REDUCTION;
18118 	  break;
18119 	case 's':
18120 	  if (!strcmp ("schedule", p))
18121 	    result = PRAGMA_OMP_CLAUSE_SCHEDULE;
18122 	  else if (!strcmp ("shared", p))
18123 	    result = PRAGMA_OMP_CLAUSE_SHARED;
18124 	  break;
18125 	}
18126     }
18127 
18128   if (result != PRAGMA_OMP_CLAUSE_NONE)
18129     cp_lexer_consume_token (parser->lexer);
18130 
18131   return result;
18132 }
18133 
18134 /* Validate that a clause of the given type does not already exist.  */
18135 
18136 static void
check_no_duplicate_clause(tree clauses,enum tree_code code,const char * name)18137 check_no_duplicate_clause (tree clauses, enum tree_code code, const char *name)
18138 {
18139   tree c;
18140 
18141   for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
18142     if (OMP_CLAUSE_CODE (c) == code)
18143       {
18144 	error ("too many %qs clauses", name);
18145 	break;
18146       }
18147 }
18148 
18149 /* OpenMP 2.5:
18150    variable-list:
18151      identifier
18152      variable-list , identifier
18153 
18154    In addition, we match a closing parenthesis.  An opening parenthesis
18155    will have been consumed by the caller.
18156 
18157    If KIND is nonzero, create the appropriate node and install the decl
18158    in OMP_CLAUSE_DECL and add the node to the head of the list.
18159 
18160    If KIND is zero, create a TREE_LIST with the decl in TREE_PURPOSE;
18161    return the list created.  */
18162 
18163 static tree
cp_parser_omp_var_list_no_open(cp_parser * parser,enum omp_clause_code kind,tree list)18164 cp_parser_omp_var_list_no_open (cp_parser *parser, enum omp_clause_code kind,
18165 				tree list)
18166 {
18167   while (1)
18168     {
18169       tree name, decl;
18170 
18171       name = cp_parser_id_expression (parser, /*template_p=*/false,
18172 				      /*check_dependency_p=*/true,
18173 				      /*template_p=*/NULL,
18174 				      /*declarator_p=*/false,
18175 				      /*optional_p=*/false);
18176       if (name == error_mark_node)
18177 	goto skip_comma;
18178 
18179       decl = cp_parser_lookup_name_simple (parser, name);
18180       if (decl == error_mark_node)
18181 	cp_parser_name_lookup_error (parser, name, decl, NULL);
18182       else if (kind != 0)
18183 	{
18184 	  tree u = build_omp_clause (kind);
18185 	  OMP_CLAUSE_DECL (u) = decl;
18186 	  OMP_CLAUSE_CHAIN (u) = list;
18187 	  list = u;
18188 	}
18189       else
18190 	list = tree_cons (decl, NULL_TREE, list);
18191 
18192     get_comma:
18193       if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
18194 	break;
18195       cp_lexer_consume_token (parser->lexer);
18196     }
18197 
18198   if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
18199     {
18200       int ending;
18201 
18202       /* Try to resync to an unnested comma.  Copied from
18203 	 cp_parser_parenthesized_expression_list.  */
18204     skip_comma:
18205       ending = cp_parser_skip_to_closing_parenthesis (parser,
18206 						      /*recovering=*/true,
18207 						      /*or_comma=*/true,
18208 						      /*consume_paren=*/true);
18209       if (ending < 0)
18210 	goto get_comma;
18211     }
18212 
18213   return list;
18214 }
18215 
18216 /* Similarly, but expect leading and trailing parenthesis.  This is a very
18217    common case for omp clauses.  */
18218 
18219 static tree
cp_parser_omp_var_list(cp_parser * parser,enum omp_clause_code kind,tree list)18220 cp_parser_omp_var_list (cp_parser *parser, enum omp_clause_code kind, tree list)
18221 {
18222   if (cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
18223     return cp_parser_omp_var_list_no_open (parser, kind, list);
18224   return list;
18225 }
18226 
18227 /* OpenMP 2.5:
18228    default ( shared | none ) */
18229 
18230 static tree
cp_parser_omp_clause_default(cp_parser * parser,tree list)18231 cp_parser_omp_clause_default (cp_parser *parser, tree list)
18232 {
18233   enum omp_clause_default_kind kind = OMP_CLAUSE_DEFAULT_UNSPECIFIED;
18234   tree c;
18235 
18236   if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
18237     return list;
18238   if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
18239     {
18240       tree id = cp_lexer_peek_token (parser->lexer)->u.value;
18241       const char *p = IDENTIFIER_POINTER (id);
18242 
18243       switch (p[0])
18244 	{
18245 	case 'n':
18246 	  if (strcmp ("none", p) != 0)
18247 	    goto invalid_kind;
18248 	  kind = OMP_CLAUSE_DEFAULT_NONE;
18249 	  break;
18250 
18251 	case 's':
18252 	  if (strcmp ("shared", p) != 0)
18253 	    goto invalid_kind;
18254 	  kind = OMP_CLAUSE_DEFAULT_SHARED;
18255 	  break;
18256 
18257 	default:
18258 	  goto invalid_kind;
18259 	}
18260 
18261       cp_lexer_consume_token (parser->lexer);
18262     }
18263   else
18264     {
18265     invalid_kind:
18266       cp_parser_error (parser, "expected %<none%> or %<shared%>");
18267     }
18268 
18269   if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
18270     cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
18271 					   /*or_comma=*/false,
18272 					   /*consume_paren=*/true);
18273 
18274   if (kind == OMP_CLAUSE_DEFAULT_UNSPECIFIED)
18275     return list;
18276 
18277   check_no_duplicate_clause (list, OMP_CLAUSE_DEFAULT, "default");
18278   c = build_omp_clause (OMP_CLAUSE_DEFAULT);
18279   OMP_CLAUSE_CHAIN (c) = list;
18280   OMP_CLAUSE_DEFAULT_KIND (c) = kind;
18281 
18282   return c;
18283 }
18284 
18285 /* OpenMP 2.5:
18286    if ( expression ) */
18287 
18288 static tree
cp_parser_omp_clause_if(cp_parser * parser,tree list)18289 cp_parser_omp_clause_if (cp_parser *parser, tree list)
18290 {
18291   tree t, c;
18292 
18293   if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
18294     return list;
18295 
18296   t = cp_parser_condition (parser);
18297 
18298   if (t == error_mark_node
18299       || !cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
18300     cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
18301 					   /*or_comma=*/false,
18302 					   /*consume_paren=*/true);
18303 
18304   check_no_duplicate_clause (list, OMP_CLAUSE_IF, "if");
18305 
18306   c = build_omp_clause (OMP_CLAUSE_IF);
18307   OMP_CLAUSE_IF_EXPR (c) = t;
18308   OMP_CLAUSE_CHAIN (c) = list;
18309 
18310   return c;
18311 }
18312 
18313 /* OpenMP 2.5:
18314    nowait */
18315 
18316 static tree
cp_parser_omp_clause_nowait(cp_parser * parser ATTRIBUTE_UNUSED,tree list)18317 cp_parser_omp_clause_nowait (cp_parser *parser ATTRIBUTE_UNUSED, tree list)
18318 {
18319   tree c;
18320 
18321   check_no_duplicate_clause (list, OMP_CLAUSE_NOWAIT, "nowait");
18322 
18323   c = build_omp_clause (OMP_CLAUSE_NOWAIT);
18324   OMP_CLAUSE_CHAIN (c) = list;
18325   return c;
18326 }
18327 
18328 /* OpenMP 2.5:
18329    num_threads ( expression ) */
18330 
18331 static tree
cp_parser_omp_clause_num_threads(cp_parser * parser,tree list)18332 cp_parser_omp_clause_num_threads (cp_parser *parser, tree list)
18333 {
18334   tree t, c;
18335 
18336   if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
18337     return list;
18338 
18339   t = cp_parser_expression (parser, false);
18340 
18341   if (t == error_mark_node
18342       || !cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
18343     cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
18344 					   /*or_comma=*/false,
18345 					   /*consume_paren=*/true);
18346 
18347   check_no_duplicate_clause (list, OMP_CLAUSE_NUM_THREADS, "num_threads");
18348 
18349   c = build_omp_clause (OMP_CLAUSE_NUM_THREADS);
18350   OMP_CLAUSE_NUM_THREADS_EXPR (c) = t;
18351   OMP_CLAUSE_CHAIN (c) = list;
18352 
18353   return c;
18354 }
18355 
18356 /* OpenMP 2.5:
18357    ordered */
18358 
18359 static tree
cp_parser_omp_clause_ordered(cp_parser * parser ATTRIBUTE_UNUSED,tree list)18360 cp_parser_omp_clause_ordered (cp_parser *parser ATTRIBUTE_UNUSED, tree list)
18361 {
18362   tree c;
18363 
18364   check_no_duplicate_clause (list, OMP_CLAUSE_ORDERED, "ordered");
18365 
18366   c = build_omp_clause (OMP_CLAUSE_ORDERED);
18367   OMP_CLAUSE_CHAIN (c) = list;
18368   return c;
18369 }
18370 
18371 /* OpenMP 2.5:
18372    reduction ( reduction-operator : variable-list )
18373 
18374    reduction-operator:
18375      One of: + * - & ^ | && || */
18376 
18377 static tree
cp_parser_omp_clause_reduction(cp_parser * parser,tree list)18378 cp_parser_omp_clause_reduction (cp_parser *parser, tree list)
18379 {
18380   enum tree_code code;
18381   tree nlist, c;
18382 
18383   if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
18384     return list;
18385 
18386   switch (cp_lexer_peek_token (parser->lexer)->type)
18387     {
18388     case CPP_PLUS:
18389       code = PLUS_EXPR;
18390       break;
18391     case CPP_MULT:
18392       code = MULT_EXPR;
18393       break;
18394     case CPP_MINUS:
18395       code = MINUS_EXPR;
18396       break;
18397     case CPP_AND:
18398       code = BIT_AND_EXPR;
18399       break;
18400     case CPP_XOR:
18401       code = BIT_XOR_EXPR;
18402       break;
18403     case CPP_OR:
18404       code = BIT_IOR_EXPR;
18405       break;
18406     case CPP_AND_AND:
18407       code = TRUTH_ANDIF_EXPR;
18408       break;
18409     case CPP_OR_OR:
18410       code = TRUTH_ORIF_EXPR;
18411       break;
18412     default:
18413       cp_parser_error (parser, "`+', `*', `-', `&', `^', `|', `&&', or `||'");
18414     resync_fail:
18415       cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
18416 					     /*or_comma=*/false,
18417 					     /*consume_paren=*/true);
18418       return list;
18419     }
18420   cp_lexer_consume_token (parser->lexer);
18421 
18422   if (!cp_parser_require (parser, CPP_COLON, "`:'"))
18423     goto resync_fail;
18424 
18425   nlist = cp_parser_omp_var_list_no_open (parser, OMP_CLAUSE_REDUCTION, list);
18426   for (c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c))
18427     OMP_CLAUSE_REDUCTION_CODE (c) = code;
18428 
18429   return nlist;
18430 }
18431 
18432 /* OpenMP 2.5:
18433    schedule ( schedule-kind )
18434    schedule ( schedule-kind , expression )
18435 
18436    schedule-kind:
18437      static | dynamic | guided | runtime  */
18438 
18439 static tree
cp_parser_omp_clause_schedule(cp_parser * parser,tree list)18440 cp_parser_omp_clause_schedule (cp_parser *parser, tree list)
18441 {
18442   tree c, t;
18443 
18444   if (!cp_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
18445     return list;
18446 
18447   c = build_omp_clause (OMP_CLAUSE_SCHEDULE);
18448 
18449   if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
18450     {
18451       tree id = cp_lexer_peek_token (parser->lexer)->u.value;
18452       const char *p = IDENTIFIER_POINTER (id);
18453 
18454       switch (p[0])
18455 	{
18456 	case 'd':
18457 	  if (strcmp ("dynamic", p) != 0)
18458 	    goto invalid_kind;
18459 	  OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
18460 	  break;
18461 
18462 	case 'g':
18463 	  if (strcmp ("guided", p) != 0)
18464 	    goto invalid_kind;
18465 	  OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_GUIDED;
18466 	  break;
18467 
18468 	case 'r':
18469 	  if (strcmp ("runtime", p) != 0)
18470 	    goto invalid_kind;
18471 	  OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_RUNTIME;
18472 	  break;
18473 
18474 	default:
18475 	  goto invalid_kind;
18476 	}
18477     }
18478   else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_STATIC))
18479     OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_STATIC;
18480   else
18481     goto invalid_kind;
18482   cp_lexer_consume_token (parser->lexer);
18483 
18484   if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
18485     {
18486       cp_lexer_consume_token (parser->lexer);
18487 
18488       t = cp_parser_assignment_expression (parser, false);
18489 
18490       if (t == error_mark_node)
18491 	goto resync_fail;
18492       else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_RUNTIME)
18493 	error ("schedule %<runtime%> does not take "
18494 	       "a %<chunk_size%> parameter");
18495       else
18496 	OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c) = t;
18497 
18498       if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
18499 	goto resync_fail;
18500     }
18501   else if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`,' or `)'"))
18502     goto resync_fail;
18503 
18504   check_no_duplicate_clause (list, OMP_CLAUSE_SCHEDULE, "schedule");
18505   OMP_CLAUSE_CHAIN (c) = list;
18506   return c;
18507 
18508  invalid_kind:
18509   cp_parser_error (parser, "invalid schedule kind");
18510  resync_fail:
18511   cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
18512 					 /*or_comma=*/false,
18513 					 /*consume_paren=*/true);
18514   return list;
18515 }
18516 
18517 /* Parse all OpenMP clauses.  The set clauses allowed by the directive
18518    is a bitmask in MASK.  Return the list of clauses found; the result
18519    of clause default goes in *pdefault.  */
18520 
18521 static tree
cp_parser_omp_all_clauses(cp_parser * parser,unsigned int mask,const char * where,cp_token * pragma_tok)18522 cp_parser_omp_all_clauses (cp_parser *parser, unsigned int mask,
18523 			   const char *where, cp_token *pragma_tok)
18524 {
18525   tree clauses = NULL;
18526 
18527   while (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL))
18528     {
18529       pragma_omp_clause c_kind = cp_parser_omp_clause_name (parser);
18530       const char *c_name;
18531       tree prev = clauses;
18532 
18533       switch (c_kind)
18534 	{
18535 	case PRAGMA_OMP_CLAUSE_COPYIN:
18536 	  clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_COPYIN, clauses);
18537 	  c_name = "copyin";
18538 	  break;
18539 	case PRAGMA_OMP_CLAUSE_COPYPRIVATE:
18540 	  clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_COPYPRIVATE,
18541 					    clauses);
18542 	  c_name = "copyprivate";
18543 	  break;
18544 	case PRAGMA_OMP_CLAUSE_DEFAULT:
18545 	  clauses = cp_parser_omp_clause_default (parser, clauses);
18546 	  c_name = "default";
18547 	  break;
18548 	case PRAGMA_OMP_CLAUSE_FIRSTPRIVATE:
18549 	  clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_FIRSTPRIVATE,
18550 					    clauses);
18551 	  c_name = "firstprivate";
18552 	  break;
18553 	case PRAGMA_OMP_CLAUSE_IF:
18554 	  clauses = cp_parser_omp_clause_if (parser, clauses);
18555 	  c_name = "if";
18556 	  break;
18557 	case PRAGMA_OMP_CLAUSE_LASTPRIVATE:
18558 	  clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_LASTPRIVATE,
18559 					    clauses);
18560 	  c_name = "lastprivate";
18561 	  break;
18562 	case PRAGMA_OMP_CLAUSE_NOWAIT:
18563 	  clauses = cp_parser_omp_clause_nowait (parser, clauses);
18564 	  c_name = "nowait";
18565 	  break;
18566 	case PRAGMA_OMP_CLAUSE_NUM_THREADS:
18567 	  clauses = cp_parser_omp_clause_num_threads (parser, clauses);
18568 	  c_name = "num_threads";
18569 	  break;
18570 	case PRAGMA_OMP_CLAUSE_ORDERED:
18571 	  clauses = cp_parser_omp_clause_ordered (parser, clauses);
18572 	  c_name = "ordered";
18573 	  break;
18574 	case PRAGMA_OMP_CLAUSE_PRIVATE:
18575 	  clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_PRIVATE,
18576 					    clauses);
18577 	  c_name = "private";
18578 	  break;
18579 	case PRAGMA_OMP_CLAUSE_REDUCTION:
18580 	  clauses = cp_parser_omp_clause_reduction (parser, clauses);
18581 	  c_name = "reduction";
18582 	  break;
18583 	case PRAGMA_OMP_CLAUSE_SCHEDULE:
18584 	  clauses = cp_parser_omp_clause_schedule (parser, clauses);
18585 	  c_name = "schedule";
18586 	  break;
18587 	case PRAGMA_OMP_CLAUSE_SHARED:
18588 	  clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_SHARED,
18589 					    clauses);
18590 	  c_name = "shared";
18591 	  break;
18592 	default:
18593 	  cp_parser_error (parser, "expected %<#pragma omp%> clause");
18594 	  goto saw_error;
18595 	}
18596 
18597       if (((mask >> c_kind) & 1) == 0)
18598 	{
18599 	  /* Remove the invalid clause(s) from the list to avoid
18600 	     confusing the rest of the compiler.  */
18601 	  clauses = prev;
18602 	  error ("%qs is not valid for %qs", c_name, where);
18603 	}
18604     }
18605  saw_error:
18606   cp_parser_skip_to_pragma_eol (parser, pragma_tok);
18607   return finish_omp_clauses (clauses);
18608 }
18609 
18610 /* OpenMP 2.5:
18611    structured-block:
18612      statement
18613 
18614    In practice, we're also interested in adding the statement to an
18615    outer node.  So it is convenient if we work around the fact that
18616    cp_parser_statement calls add_stmt.  */
18617 
18618 static unsigned
cp_parser_begin_omp_structured_block(cp_parser * parser)18619 cp_parser_begin_omp_structured_block (cp_parser *parser)
18620 {
18621   unsigned save = parser->in_statement;
18622 
18623   /* Only move the values to IN_OMP_BLOCK if they weren't false.
18624      This preserves the "not within loop or switch" style error messages
18625      for nonsense cases like
18626 	void foo() {
18627 	#pragma omp single
18628 	  break;
18629 	}
18630   */
18631   if (parser->in_statement)
18632     parser->in_statement = IN_OMP_BLOCK;
18633 
18634   return save;
18635 }
18636 
18637 static void
cp_parser_end_omp_structured_block(cp_parser * parser,unsigned save)18638 cp_parser_end_omp_structured_block (cp_parser *parser, unsigned save)
18639 {
18640   parser->in_statement = save;
18641 }
18642 
18643 static tree
cp_parser_omp_structured_block(cp_parser * parser)18644 cp_parser_omp_structured_block (cp_parser *parser)
18645 {
18646   tree stmt = begin_omp_structured_block ();
18647   unsigned int save = cp_parser_begin_omp_structured_block (parser);
18648 
18649   cp_parser_statement (parser, NULL_TREE, false);
18650 
18651   cp_parser_end_omp_structured_block (parser, save);
18652   return finish_omp_structured_block (stmt);
18653 }
18654 
18655 /* OpenMP 2.5:
18656    # pragma omp atomic new-line
18657      expression-stmt
18658 
18659    expression-stmt:
18660      x binop= expr | x++ | ++x | x-- | --x
18661    binop:
18662      +, *, -, /, &, ^, |, <<, >>
18663 
18664   where x is an lvalue expression with scalar type.  */
18665 
18666 static void
cp_parser_omp_atomic(cp_parser * parser,cp_token * pragma_tok)18667 cp_parser_omp_atomic (cp_parser *parser, cp_token *pragma_tok)
18668 {
18669   tree lhs, rhs;
18670   enum tree_code code;
18671 
18672   cp_parser_require_pragma_eol (parser, pragma_tok);
18673 
18674   lhs = cp_parser_unary_expression (parser, /*address_p=*/false,
18675 				    /*cast_p=*/false);
18676   switch (TREE_CODE (lhs))
18677     {
18678     case ERROR_MARK:
18679       goto saw_error;
18680 
18681     case PREINCREMENT_EXPR:
18682     case POSTINCREMENT_EXPR:
18683       lhs = TREE_OPERAND (lhs, 0);
18684       code = PLUS_EXPR;
18685       rhs = integer_one_node;
18686       break;
18687 
18688     case PREDECREMENT_EXPR:
18689     case POSTDECREMENT_EXPR:
18690       lhs = TREE_OPERAND (lhs, 0);
18691       code = MINUS_EXPR;
18692       rhs = integer_one_node;
18693       break;
18694 
18695     default:
18696       switch (cp_lexer_peek_token (parser->lexer)->type)
18697 	{
18698 	case CPP_MULT_EQ:
18699 	  code = MULT_EXPR;
18700 	  break;
18701 	case CPP_DIV_EQ:
18702 	  code = TRUNC_DIV_EXPR;
18703 	  break;
18704 	case CPP_PLUS_EQ:
18705 	  code = PLUS_EXPR;
18706 	  break;
18707 	case CPP_MINUS_EQ:
18708 	  code = MINUS_EXPR;
18709 	  break;
18710 	case CPP_LSHIFT_EQ:
18711 	  code = LSHIFT_EXPR;
18712 	  break;
18713 	case CPP_RSHIFT_EQ:
18714 	  code = RSHIFT_EXPR;
18715 	  break;
18716 	case CPP_AND_EQ:
18717 	  code = BIT_AND_EXPR;
18718 	  break;
18719 	case CPP_OR_EQ:
18720 	  code = BIT_IOR_EXPR;
18721 	  break;
18722 	case CPP_XOR_EQ:
18723 	  code = BIT_XOR_EXPR;
18724 	  break;
18725 	default:
18726 	  cp_parser_error (parser,
18727 			   "invalid operator for %<#pragma omp atomic%>");
18728 	  goto saw_error;
18729 	}
18730       cp_lexer_consume_token (parser->lexer);
18731 
18732       rhs = cp_parser_expression (parser, false);
18733       if (rhs == error_mark_node)
18734 	goto saw_error;
18735       break;
18736     }
18737   finish_omp_atomic (code, lhs, rhs);
18738   cp_parser_consume_semicolon_at_end_of_statement (parser);
18739   return;
18740 
18741  saw_error:
18742   cp_parser_skip_to_end_of_block_or_statement (parser);
18743 }
18744 
18745 
18746 /* OpenMP 2.5:
18747    # pragma omp barrier new-line  */
18748 
18749 static void
cp_parser_omp_barrier(cp_parser * parser,cp_token * pragma_tok)18750 cp_parser_omp_barrier (cp_parser *parser, cp_token *pragma_tok)
18751 {
18752   cp_parser_require_pragma_eol (parser, pragma_tok);
18753   finish_omp_barrier ();
18754 }
18755 
18756 /* OpenMP 2.5:
18757    # pragma omp critical [(name)] new-line
18758      structured-block  */
18759 
18760 static tree
cp_parser_omp_critical(cp_parser * parser,cp_token * pragma_tok)18761 cp_parser_omp_critical (cp_parser *parser, cp_token *pragma_tok)
18762 {
18763   tree stmt, name = NULL;
18764 
18765   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
18766     {
18767       cp_lexer_consume_token (parser->lexer);
18768 
18769       name = cp_parser_identifier (parser);
18770 
18771       if (name == error_mark_node
18772 	  || !cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
18773 	cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
18774 					       /*or_comma=*/false,
18775 					       /*consume_paren=*/true);
18776       if (name == error_mark_node)
18777 	name = NULL;
18778     }
18779   cp_parser_require_pragma_eol (parser, pragma_tok);
18780 
18781   stmt = cp_parser_omp_structured_block (parser);
18782   return c_finish_omp_critical (stmt, name);
18783 }
18784 
18785 /* OpenMP 2.5:
18786    # pragma omp flush flush-vars[opt] new-line
18787 
18788    flush-vars:
18789      ( variable-list ) */
18790 
18791 static void
cp_parser_omp_flush(cp_parser * parser,cp_token * pragma_tok)18792 cp_parser_omp_flush (cp_parser *parser, cp_token *pragma_tok)
18793 {
18794   if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
18795     (void) cp_parser_omp_var_list (parser, 0, NULL);
18796   cp_parser_require_pragma_eol (parser, pragma_tok);
18797 
18798   finish_omp_flush ();
18799 }
18800 
18801 /* Parse the restricted form of the for statment allowed by OpenMP.  */
18802 
18803 static tree
cp_parser_omp_for_loop(cp_parser * parser)18804 cp_parser_omp_for_loop (cp_parser *parser)
18805 {
18806   tree init, cond, incr, body, decl, pre_body;
18807   location_t loc;
18808 
18809   if (!cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR))
18810     {
18811       cp_parser_error (parser, "for statement expected");
18812       return NULL;
18813     }
18814   loc = cp_lexer_consume_token (parser->lexer)->location;
18815   if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
18816     return NULL;
18817 
18818   init = decl = NULL;
18819   pre_body = push_stmt_list ();
18820   if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
18821     {
18822       cp_decl_specifier_seq type_specifiers;
18823 
18824       /* First, try to parse as an initialized declaration.  See
18825 	 cp_parser_condition, from whence the bulk of this is copied.  */
18826 
18827       cp_parser_parse_tentatively (parser);
18828       cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
18829 				    &type_specifiers);
18830       if (!cp_parser_error_occurred (parser))
18831 	{
18832 	  tree asm_specification, attributes;
18833 	  cp_declarator *declarator;
18834 
18835 	  declarator = cp_parser_declarator (parser,
18836 					     CP_PARSER_DECLARATOR_NAMED,
18837 					     /*ctor_dtor_or_conv_p=*/NULL,
18838 					     /*parenthesized_p=*/NULL,
18839 					     /*member_p=*/false);
18840 	  attributes = cp_parser_attributes_opt (parser);
18841 	  asm_specification = cp_parser_asm_specification_opt (parser);
18842 
18843 	  cp_parser_require (parser, CPP_EQ, "`='");
18844 	  if (cp_parser_parse_definitely (parser))
18845 	    {
18846 	      tree pushed_scope;
18847 
18848 	      decl = start_decl (declarator, &type_specifiers,
18849 				 /*initialized_p=*/false, attributes,
18850 				 /*prefix_attributes=*/NULL_TREE,
18851 				 &pushed_scope);
18852 
18853 	      init = cp_parser_assignment_expression (parser, false);
18854 
18855 	      cp_finish_decl (decl, NULL_TREE, /*init_const_expr_p=*/false,
18856 			      asm_specification, LOOKUP_ONLYCONVERTING);
18857 
18858 	      if (pushed_scope)
18859 		pop_scope (pushed_scope);
18860 	    }
18861 	}
18862       else
18863 	cp_parser_abort_tentative_parse (parser);
18864 
18865       /* If parsing as an initialized declaration failed, try again as
18866 	 a simple expression.  */
18867       if (decl == NULL)
18868 	init = cp_parser_expression (parser, false);
18869     }
18870   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
18871   pre_body = pop_stmt_list (pre_body);
18872 
18873   cond = NULL;
18874   if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
18875     cond = cp_parser_condition (parser);
18876   cp_parser_require (parser, CPP_SEMICOLON, "`;'");
18877 
18878   incr = NULL;
18879   if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
18880     incr = cp_parser_expression (parser, false);
18881 
18882   if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
18883     cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
18884 					   /*or_comma=*/false,
18885 					   /*consume_paren=*/true);
18886 
18887   /* Note that we saved the original contents of this flag when we entered
18888      the structured block, and so we don't need to re-save it here.  */
18889   parser->in_statement = IN_OMP_FOR;
18890 
18891   /* Note that the grammar doesn't call for a structured block here,
18892      though the loop as a whole is a structured block.  */
18893   body = push_stmt_list ();
18894   cp_parser_statement (parser, NULL_TREE, false);
18895   body = pop_stmt_list (body);
18896 
18897   return finish_omp_for (loc, decl, init, cond, incr, body, pre_body);
18898 }
18899 
18900 /* OpenMP 2.5:
18901    #pragma omp for for-clause[optseq] new-line
18902      for-loop  */
18903 
18904 #define OMP_FOR_CLAUSE_MASK				\
18905 	( (1u << PRAGMA_OMP_CLAUSE_PRIVATE)		\
18906 	| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE)	\
18907 	| (1u << PRAGMA_OMP_CLAUSE_LASTPRIVATE)		\
18908 	| (1u << PRAGMA_OMP_CLAUSE_REDUCTION)		\
18909 	| (1u << PRAGMA_OMP_CLAUSE_ORDERED)		\
18910 	| (1u << PRAGMA_OMP_CLAUSE_SCHEDULE)		\
18911 	| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
18912 
18913 static tree
cp_parser_omp_for(cp_parser * parser,cp_token * pragma_tok)18914 cp_parser_omp_for (cp_parser *parser, cp_token *pragma_tok)
18915 {
18916   tree clauses, sb, ret;
18917   unsigned int save;
18918 
18919   clauses = cp_parser_omp_all_clauses (parser, OMP_FOR_CLAUSE_MASK,
18920 				       "#pragma omp for", pragma_tok);
18921 
18922   sb = begin_omp_structured_block ();
18923   save = cp_parser_begin_omp_structured_block (parser);
18924 
18925   ret = cp_parser_omp_for_loop (parser);
18926   if (ret)
18927     OMP_FOR_CLAUSES (ret) = clauses;
18928 
18929   cp_parser_end_omp_structured_block (parser, save);
18930   add_stmt (finish_omp_structured_block (sb));
18931 
18932   return ret;
18933 }
18934 
18935 /* OpenMP 2.5:
18936    # pragma omp master new-line
18937      structured-block  */
18938 
18939 static tree
cp_parser_omp_master(cp_parser * parser,cp_token * pragma_tok)18940 cp_parser_omp_master (cp_parser *parser, cp_token *pragma_tok)
18941 {
18942   cp_parser_require_pragma_eol (parser, pragma_tok);
18943   return c_finish_omp_master (cp_parser_omp_structured_block (parser));
18944 }
18945 
18946 /* OpenMP 2.5:
18947    # pragma omp ordered new-line
18948      structured-block  */
18949 
18950 static tree
cp_parser_omp_ordered(cp_parser * parser,cp_token * pragma_tok)18951 cp_parser_omp_ordered (cp_parser *parser, cp_token *pragma_tok)
18952 {
18953   cp_parser_require_pragma_eol (parser, pragma_tok);
18954   return c_finish_omp_ordered (cp_parser_omp_structured_block (parser));
18955 }
18956 
18957 /* OpenMP 2.5:
18958 
18959    section-scope:
18960      { section-sequence }
18961 
18962    section-sequence:
18963      section-directive[opt] structured-block
18964      section-sequence section-directive structured-block  */
18965 
18966 static tree
cp_parser_omp_sections_scope(cp_parser * parser)18967 cp_parser_omp_sections_scope (cp_parser *parser)
18968 {
18969   tree stmt, substmt;
18970   bool error_suppress = false;
18971   cp_token *tok;
18972 
18973   if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
18974     return NULL_TREE;
18975 
18976   stmt = push_stmt_list ();
18977 
18978   if (cp_lexer_peek_token (parser->lexer)->pragma_kind != PRAGMA_OMP_SECTION)
18979     {
18980       unsigned save;
18981 
18982       substmt = begin_omp_structured_block ();
18983       save = cp_parser_begin_omp_structured_block (parser);
18984 
18985       while (1)
18986 	{
18987 	  cp_parser_statement (parser, NULL_TREE, false);
18988 
18989 	  tok = cp_lexer_peek_token (parser->lexer);
18990 	  if (tok->pragma_kind == PRAGMA_OMP_SECTION)
18991 	    break;
18992 	  if (tok->type == CPP_CLOSE_BRACE)
18993 	    break;
18994 	  if (tok->type == CPP_EOF)
18995 	    break;
18996 	}
18997 
18998       cp_parser_end_omp_structured_block (parser, save);
18999       substmt = finish_omp_structured_block (substmt);
19000       substmt = build1 (OMP_SECTION, void_type_node, substmt);
19001       add_stmt (substmt);
19002     }
19003 
19004   while (1)
19005     {
19006       tok = cp_lexer_peek_token (parser->lexer);
19007       if (tok->type == CPP_CLOSE_BRACE)
19008 	break;
19009       if (tok->type == CPP_EOF)
19010 	break;
19011 
19012       if (tok->pragma_kind == PRAGMA_OMP_SECTION)
19013 	{
19014 	  cp_lexer_consume_token (parser->lexer);
19015 	  cp_parser_require_pragma_eol (parser, tok);
19016 	  error_suppress = false;
19017 	}
19018       else if (!error_suppress)
19019 	{
19020 	  cp_parser_error (parser, "expected %<#pragma omp section%> or %<}%>");
19021 	  error_suppress = true;
19022 	}
19023 
19024       substmt = cp_parser_omp_structured_block (parser);
19025       substmt = build1 (OMP_SECTION, void_type_node, substmt);
19026       add_stmt (substmt);
19027     }
19028   cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
19029 
19030   substmt = pop_stmt_list (stmt);
19031 
19032   stmt = make_node (OMP_SECTIONS);
19033   TREE_TYPE (stmt) = void_type_node;
19034   OMP_SECTIONS_BODY (stmt) = substmt;
19035 
19036   add_stmt (stmt);
19037   return stmt;
19038 }
19039 
19040 /* OpenMP 2.5:
19041    # pragma omp sections sections-clause[optseq] newline
19042      sections-scope  */
19043 
19044 #define OMP_SECTIONS_CLAUSE_MASK			\
19045 	( (1u << PRAGMA_OMP_CLAUSE_PRIVATE)		\
19046 	| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE)	\
19047 	| (1u << PRAGMA_OMP_CLAUSE_LASTPRIVATE)		\
19048 	| (1u << PRAGMA_OMP_CLAUSE_REDUCTION)		\
19049 	| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
19050 
19051 static tree
cp_parser_omp_sections(cp_parser * parser,cp_token * pragma_tok)19052 cp_parser_omp_sections (cp_parser *parser, cp_token *pragma_tok)
19053 {
19054   tree clauses, ret;
19055 
19056   clauses = cp_parser_omp_all_clauses (parser, OMP_SECTIONS_CLAUSE_MASK,
19057 				       "#pragma omp sections", pragma_tok);
19058 
19059   ret = cp_parser_omp_sections_scope (parser);
19060   if (ret)
19061     OMP_SECTIONS_CLAUSES (ret) = clauses;
19062 
19063   return ret;
19064 }
19065 
19066 /* OpenMP 2.5:
19067    # pragma parallel parallel-clause new-line
19068    # pragma parallel for parallel-for-clause new-line
19069    # pragma parallel sections parallel-sections-clause new-line  */
19070 
19071 #define OMP_PARALLEL_CLAUSE_MASK			\
19072 	( (1u << PRAGMA_OMP_CLAUSE_IF)			\
19073 	| (1u << PRAGMA_OMP_CLAUSE_PRIVATE)		\
19074 	| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE)	\
19075 	| (1u << PRAGMA_OMP_CLAUSE_DEFAULT)		\
19076 	| (1u << PRAGMA_OMP_CLAUSE_SHARED)		\
19077 	| (1u << PRAGMA_OMP_CLAUSE_COPYIN)		\
19078 	| (1u << PRAGMA_OMP_CLAUSE_REDUCTION)		\
19079 	| (1u << PRAGMA_OMP_CLAUSE_NUM_THREADS))
19080 
19081 static tree
cp_parser_omp_parallel(cp_parser * parser,cp_token * pragma_tok)19082 cp_parser_omp_parallel (cp_parser *parser, cp_token *pragma_tok)
19083 {
19084   enum pragma_kind p_kind = PRAGMA_OMP_PARALLEL;
19085   const char *p_name = "#pragma omp parallel";
19086   tree stmt, clauses, par_clause, ws_clause, block;
19087   unsigned int mask = OMP_PARALLEL_CLAUSE_MASK;
19088   unsigned int save;
19089 
19090   if (cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR))
19091     {
19092       cp_lexer_consume_token (parser->lexer);
19093       p_kind = PRAGMA_OMP_PARALLEL_FOR;
19094       p_name = "#pragma omp parallel for";
19095       mask |= OMP_FOR_CLAUSE_MASK;
19096       mask &= ~(1u << PRAGMA_OMP_CLAUSE_NOWAIT);
19097     }
19098   else if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
19099     {
19100       tree id = cp_lexer_peek_token (parser->lexer)->u.value;
19101       const char *p = IDENTIFIER_POINTER (id);
19102       if (strcmp (p, "sections") == 0)
19103 	{
19104 	  cp_lexer_consume_token (parser->lexer);
19105 	  p_kind = PRAGMA_OMP_PARALLEL_SECTIONS;
19106 	  p_name = "#pragma omp parallel sections";
19107 	  mask |= OMP_SECTIONS_CLAUSE_MASK;
19108 	  mask &= ~(1u << PRAGMA_OMP_CLAUSE_NOWAIT);
19109 	}
19110     }
19111 
19112   clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok);
19113   block = begin_omp_parallel ();
19114   save = cp_parser_begin_omp_structured_block (parser);
19115 
19116   switch (p_kind)
19117     {
19118     case PRAGMA_OMP_PARALLEL:
19119       cp_parser_already_scoped_statement (parser);
19120       par_clause = clauses;
19121       break;
19122 
19123     case PRAGMA_OMP_PARALLEL_FOR:
19124       c_split_parallel_clauses (clauses, &par_clause, &ws_clause);
19125       stmt = cp_parser_omp_for_loop (parser);
19126       if (stmt)
19127 	OMP_FOR_CLAUSES (stmt) = ws_clause;
19128       break;
19129 
19130     case PRAGMA_OMP_PARALLEL_SECTIONS:
19131       c_split_parallel_clauses (clauses, &par_clause, &ws_clause);
19132       stmt = cp_parser_omp_sections_scope (parser);
19133       if (stmt)
19134 	OMP_SECTIONS_CLAUSES (stmt) = ws_clause;
19135       break;
19136 
19137     default:
19138       gcc_unreachable ();
19139     }
19140 
19141   cp_parser_end_omp_structured_block (parser, save);
19142   stmt = finish_omp_parallel (par_clause, block);
19143   if (p_kind != PRAGMA_OMP_PARALLEL)
19144     OMP_PARALLEL_COMBINED (stmt) = 1;
19145   return stmt;
19146 }
19147 
19148 /* OpenMP 2.5:
19149    # pragma omp single single-clause[optseq] new-line
19150      structured-block  */
19151 
19152 #define OMP_SINGLE_CLAUSE_MASK				\
19153 	( (1u << PRAGMA_OMP_CLAUSE_PRIVATE)		\
19154 	| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE)	\
19155 	| (1u << PRAGMA_OMP_CLAUSE_COPYPRIVATE)		\
19156 	| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
19157 
19158 static tree
cp_parser_omp_single(cp_parser * parser,cp_token * pragma_tok)19159 cp_parser_omp_single (cp_parser *parser, cp_token *pragma_tok)
19160 {
19161   tree stmt = make_node (OMP_SINGLE);
19162   TREE_TYPE (stmt) = void_type_node;
19163 
19164   OMP_SINGLE_CLAUSES (stmt)
19165     = cp_parser_omp_all_clauses (parser, OMP_SINGLE_CLAUSE_MASK,
19166 				 "#pragma omp single", pragma_tok);
19167   OMP_SINGLE_BODY (stmt) = cp_parser_omp_structured_block (parser);
19168 
19169   return add_stmt (stmt);
19170 }
19171 
19172 /* OpenMP 2.5:
19173    # pragma omp threadprivate (variable-list) */
19174 
19175 static void
cp_parser_omp_threadprivate(cp_parser * parser,cp_token * pragma_tok)19176 cp_parser_omp_threadprivate (cp_parser *parser, cp_token *pragma_tok)
19177 {
19178   tree vars;
19179 
19180   vars = cp_parser_omp_var_list (parser, 0, NULL);
19181   cp_parser_require_pragma_eol (parser, pragma_tok);
19182 
19183   if (!targetm.have_tls)
19184     sorry ("threadprivate variables not supported in this target");
19185 
19186   finish_omp_threadprivate (vars);
19187 }
19188 
19189 /* Main entry point to OpenMP statement pragmas.  */
19190 
19191 static void
cp_parser_omp_construct(cp_parser * parser,cp_token * pragma_tok)19192 cp_parser_omp_construct (cp_parser *parser, cp_token *pragma_tok)
19193 {
19194   tree stmt;
19195 
19196   switch (pragma_tok->pragma_kind)
19197     {
19198     case PRAGMA_OMP_ATOMIC:
19199       cp_parser_omp_atomic (parser, pragma_tok);
19200       return;
19201     case PRAGMA_OMP_CRITICAL:
19202       stmt = cp_parser_omp_critical (parser, pragma_tok);
19203       break;
19204     case PRAGMA_OMP_FOR:
19205       stmt = cp_parser_omp_for (parser, pragma_tok);
19206       break;
19207     case PRAGMA_OMP_MASTER:
19208       stmt = cp_parser_omp_master (parser, pragma_tok);
19209       break;
19210     case PRAGMA_OMP_ORDERED:
19211       stmt = cp_parser_omp_ordered (parser, pragma_tok);
19212       break;
19213     case PRAGMA_OMP_PARALLEL:
19214       stmt = cp_parser_omp_parallel (parser, pragma_tok);
19215       break;
19216     case PRAGMA_OMP_SECTIONS:
19217       stmt = cp_parser_omp_sections (parser, pragma_tok);
19218       break;
19219     case PRAGMA_OMP_SINGLE:
19220       stmt = cp_parser_omp_single (parser, pragma_tok);
19221       break;
19222     default:
19223       gcc_unreachable ();
19224     }
19225 
19226   if (stmt)
19227     SET_EXPR_LOCATION (stmt, pragma_tok->location);
19228 }
19229 
19230 /* The parser.  */
19231 
19232 static GTY (()) cp_parser *the_parser;
19233 
19234 
19235 /* Special handling for the first token or line in the file.  The first
19236    thing in the file might be #pragma GCC pch_preprocess, which loads a
19237    PCH file, which is a GC collection point.  So we need to handle this
19238    first pragma without benefit of an existing lexer structure.
19239 
19240    Always returns one token to the caller in *FIRST_TOKEN.  This is
19241    either the true first token of the file, or the first token after
19242    the initial pragma.  */
19243 
19244 static void
cp_parser_initial_pragma(cp_token * first_token)19245 cp_parser_initial_pragma (cp_token *first_token)
19246 {
19247   tree name = NULL;
19248 
19249   cp_lexer_get_preprocessor_token (NULL, first_token);
19250   if (first_token->pragma_kind != PRAGMA_GCC_PCH_PREPROCESS)
19251     return;
19252 
19253   cp_lexer_get_preprocessor_token (NULL, first_token);
19254   if (first_token->type == CPP_STRING)
19255     {
19256       name = first_token->u.value;
19257 
19258       cp_lexer_get_preprocessor_token (NULL, first_token);
19259       if (first_token->type != CPP_PRAGMA_EOL)
19260 	error ("junk at end of %<#pragma GCC pch_preprocess%>");
19261     }
19262   else
19263     error ("expected string literal");
19264 
19265   /* Skip to the end of the pragma.  */
19266   while (first_token->type != CPP_PRAGMA_EOL && first_token->type != CPP_EOF)
19267     cp_lexer_get_preprocessor_token (NULL, first_token);
19268 
19269   /* Now actually load the PCH file.  */
19270   if (name)
19271     c_common_pch_pragma (parse_in, TREE_STRING_POINTER (name));
19272 
19273   /* Read one more token to return to our caller.  We have to do this
19274      after reading the PCH file in, since its pointers have to be
19275      live.  */
19276   cp_lexer_get_preprocessor_token (NULL, first_token);
19277 }
19278 
19279 /* Normal parsing of a pragma token.  Here we can (and must) use the
19280    regular lexer.  */
19281 
19282 static bool
cp_parser_pragma(cp_parser * parser,enum pragma_context context)19283 cp_parser_pragma (cp_parser *parser, enum pragma_context context)
19284 {
19285   cp_token *pragma_tok;
19286   unsigned int id;
19287 
19288   pragma_tok = cp_lexer_consume_token (parser->lexer);
19289   gcc_assert (pragma_tok->type == CPP_PRAGMA);
19290   parser->lexer->in_pragma = true;
19291 
19292   id = pragma_tok->pragma_kind;
19293   switch (id)
19294     {
19295     case PRAGMA_GCC_PCH_PREPROCESS:
19296       error ("%<#pragma GCC pch_preprocess%> must be first");
19297       break;
19298 
19299     case PRAGMA_OMP_BARRIER:
19300       switch (context)
19301 	{
19302 	case pragma_compound:
19303 	  cp_parser_omp_barrier (parser, pragma_tok);
19304 	  return false;
19305 	case pragma_stmt:
19306 	  error ("%<#pragma omp barrier%> may only be "
19307 		 "used in compound statements");
19308 	  break;
19309 	default:
19310 	  goto bad_stmt;
19311 	}
19312       break;
19313 
19314     case PRAGMA_OMP_FLUSH:
19315       switch (context)
19316 	{
19317 	case pragma_compound:
19318 	  cp_parser_omp_flush (parser, pragma_tok);
19319 	  return false;
19320 	case pragma_stmt:
19321 	  error ("%<#pragma omp flush%> may only be "
19322 		 "used in compound statements");
19323 	  break;
19324 	default:
19325 	  goto bad_stmt;
19326 	}
19327       break;
19328 
19329     case PRAGMA_OMP_THREADPRIVATE:
19330       cp_parser_omp_threadprivate (parser, pragma_tok);
19331       return false;
19332 
19333     case PRAGMA_OMP_ATOMIC:
19334     case PRAGMA_OMP_CRITICAL:
19335     case PRAGMA_OMP_FOR:
19336     case PRAGMA_OMP_MASTER:
19337     case PRAGMA_OMP_ORDERED:
19338     case PRAGMA_OMP_PARALLEL:
19339     case PRAGMA_OMP_SECTIONS:
19340     case PRAGMA_OMP_SINGLE:
19341       if (context == pragma_external)
19342 	goto bad_stmt;
19343       cp_parser_omp_construct (parser, pragma_tok);
19344       return true;
19345 
19346     case PRAGMA_OMP_SECTION:
19347       error ("%<#pragma omp section%> may only be used in "
19348 	     "%<#pragma omp sections%> construct");
19349       break;
19350 
19351     default:
19352       gcc_assert (id >= PRAGMA_FIRST_EXTERNAL);
19353       c_invoke_pragma_handler (id);
19354       break;
19355 
19356     bad_stmt:
19357       cp_parser_error (parser, "expected declaration specifiers");
19358       break;
19359     }
19360 
19361   cp_parser_skip_to_pragma_eol (parser, pragma_tok);
19362   return false;
19363 }
19364 
19365 /* The interface the pragma parsers have to the lexer.  */
19366 
19367 enum cpp_ttype
pragma_lex(tree * value)19368 pragma_lex (tree *value)
19369 {
19370   cp_token *tok;
19371   enum cpp_ttype ret;
19372 
19373   tok = cp_lexer_peek_token (the_parser->lexer);
19374 
19375   ret = tok->type;
19376   *value = tok->u.value;
19377 
19378   if (ret == CPP_PRAGMA_EOL || ret == CPP_EOF)
19379     ret = CPP_EOF;
19380   else if (ret == CPP_STRING)
19381     *value = cp_parser_string_literal (the_parser, false, false);
19382   else
19383     {
19384       cp_lexer_consume_token (the_parser->lexer);
19385       if (ret == CPP_KEYWORD)
19386 	ret = CPP_NAME;
19387     }
19388 
19389   return ret;
19390 }
19391 
19392 
19393 /* External interface.  */
19394 
19395 /* Parse one entire translation unit.  */
19396 
19397 void
c_parse_file(void)19398 c_parse_file (void)
19399 {
19400   bool error_occurred;
19401   static bool already_called = false;
19402 
19403   if (already_called)
19404     {
19405       sorry ("inter-module optimizations not implemented for C++");
19406       return;
19407     }
19408   already_called = true;
19409 
19410   the_parser = cp_parser_new ();
19411   push_deferring_access_checks (flag_access_control
19412 				? dk_no_deferred : dk_no_check);
19413   error_occurred = cp_parser_translation_unit (the_parser);
19414   the_parser = NULL;
19415 }
19416 
19417 /* This variable must be provided by every front end.  */
19418 
19419 int yydebug;
19420 
19421 #include "gt-cp-parser.h"
19422