1 /* $OpenBSD: dwc2_core.h,v 1.12 2022/09/04 08:42:39 mglocker Exp $ */
2 /* $NetBSD: dwc2_core.h,v 1.5 2014/04/03 06:34:58 skrll Exp $ */
3
4 /*
5 * core.h - DesignWare HS OTG Controller common declarations
6 *
7 * Copyright (C) 2004-2013 Synopsys, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions, and the following disclaimer,
14 * without modification.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The names of the above-listed copyright holders may not be used
19 * to endorse or promote products derived from this software without
20 * specific prior written permission.
21 *
22 * ALTERNATIVELY, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") as published by the Free Software
24 * Foundation; either version 2 of the License, or (at your option) any
25 * later version.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
28 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
29 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
31 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
32 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
33 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
34 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
35 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
36 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
37 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #ifndef __DWC2_CORE_H__
41 #define __DWC2_CORE_H__
42
43 #include <sys/stdint.h>
44 #include <sys/task.h>
45 #include <sys/pool.h>
46 #include <sys/queue.h>
47 #include <sys/device.h>
48
49 #include <machine/intr.h>
50 #include <machine/bus.h>
51
52 #include <dev/usb/dwc2/dwc2_hw.h>
53
54 #include <dev/usb/dwc2/list.h>
55
56 /*
57 * Suggested defines for tracers:
58 * - no_printk: Disable tracing
59 * - pr_info: Print this info to the console
60 * - trace_printk: Print this info to trace buffer (good for verbose logging)
61 */
62
63 #ifdef DWC2_DEBUG
64 /* Detailed scheduler tracing, but won't overwhelm console */
65 #define dwc2_sch_dbg(hsotg,fmt,...) do { \
66 if (dwc2debug >= 1) { \
67 printf("%s: " fmt, device_xname(hsotg->dev), \
68 ## __VA_ARGS__); \
69 } \
70 } while (0)
71
72 /* Verbose scheduler tracing */
73 #define dwc2_sch_vdbg(hsotg,fmt,...) do { \
74 if (dwc2debug >= 2) { \
75 printf("%s: " fmt, device_xname(hsotg->dev), \
76 ## __VA_ARGS__); \
77 } \
78 } while (0)
79 #else
80 #define dwc2_sch_dbg(...) do { } while (0)
81 #define dwc2_sch_vdbg(...) do { } while (0)
82 #endif
83
84 /* Maximum number of Endpoints/HostChannels */
85 #define MAX_EPS_CHANNELS 16
86
87 #if 0
88 /* dwc2-hsotg declarations */
89 STATIC const char * const dwc2_hsotg_supply_names[] = {
90 "vusb_d", /* digital USB supply, 1.2V */
91 "vusb_a", /* analog USB supply, 1.1V */
92 };
93
94 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
95 #endif
96
97 /*
98 * EP0_MPS_LIMIT
99 *
100 * Unfortunately there seems to be a limit of the amount of data that can
101 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
102 * packets (which practically means 1 packet and 63 bytes of data) when the
103 * MPS is set to 64.
104 *
105 * This means if we are wanting to move >127 bytes of data, we need to
106 * split the transactions up, but just doing one packet at a time does
107 * not work (this may be an implicit DATA0 PID on first packet of the
108 * transaction) and doing 2 packets is outside the controller's limits.
109 *
110 * If we try to lower the MPS size for EP0, then no transfers work properly
111 * for EP0, and the system will fail basic enumeration. As no cause for this
112 * has currently been found, we cannot support any large IN transfers for
113 * EP0.
114 */
115 #define EP0_MPS_LIMIT 64
116
117 struct dwc2_hsotg;
118 struct dwc2_hsotg_req;
119
120 /**
121 * struct dwc2_hsotg_ep - driver endpoint definition.
122 * @ep: The gadget layer representation of the endpoint.
123 * @name: The driver generated name for the endpoint.
124 * @queue: Queue of requests for this endpoint.
125 * @parent: Reference back to the parent device structure.
126 * @req: The current request that the endpoint is processing. This is
127 * used to indicate an request has been loaded onto the endpoint
128 * and has yet to be completed (maybe due to data move, or simply
129 * awaiting an ack from the core all the data has been completed).
130 * @debugfs: File entry for debugfs file for this endpoint.
131 * @dir_in: Set to true if this endpoint is of the IN direction, which
132 * means that it is sending data to the Host.
133 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
134 * @index: The index for the endpoint registers.
135 * @mc: Multi Count - number of transactions per microframe
136 * @interval: Interval for periodic endpoints, in frames or microframes.
137 * @name: The name array passed to the USB core.
138 * @halted: Set if the endpoint has been halted.
139 * @periodic: Set if this is a periodic ep, such as Interrupt
140 * @isochronous: Set if this is a isochronous ep
141 * @send_zlp: Set if we need to send a zero-length packet.
142 * @wedged: Set if ep is wedged.
143 * @desc_list_dma: The DMA address of descriptor chain currently in use.
144 * @desc_list: Pointer to descriptor DMA chain head currently in use.
145 * @desc_count: Count of entries within the DMA descriptor chain of EP.
146 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
147 * @compl_desc: index of next descriptor to be completed by xFerComplete
148 * @total_data: The total number of data bytes done.
149 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
150 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
151 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
152 * @last_load: The offset of data for the last start of request.
153 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
154 * @target_frame: Targeted frame num to setup next ISOC transfer
155 * @frame_overrun: Indicates SOF number overrun in DSTS
156 *
157 * This is the driver's state for each registered endpoint, allowing it
158 * to keep track of transactions that need doing. Each endpoint has a
159 * lock to protect the state, to try and avoid using an overall lock
160 * for the host controller as much as possible.
161 *
162 * For periodic IN endpoints, we have fifo_size and fifo_load to try
163 * and keep track of the amount of data in the periodic FIFO for each
164 * of these as we don't have a status register that tells us how much
165 * is in each of them. (note, this may actually be useless information
166 * as in shared-fifo mode periodic in acts like a single-frame packet
167 * buffer than a fifo)
168 */
169 struct dwc2_hsotg_ep {
170 // struct usb_ep ep;
171 struct list_head queue;
172 struct dwc2_hsotg *parent;
173 struct dwc2_hsotg_req *req;
174 struct dentry *debugfs;
175
176 unsigned long total_data;
177 unsigned int size_loaded;
178 unsigned int last_load;
179 unsigned int fifo_load;
180 unsigned short fifo_size;
181 unsigned short fifo_index;
182
183 unsigned char dir_in;
184 unsigned char map_dir;
185 unsigned char index;
186 unsigned char mc;
187 u16 interval;
188
189 unsigned int halted:1;
190 unsigned int periodic:1;
191 unsigned int isochronous:1;
192 unsigned int send_zlp:1;
193 unsigned int wedged:1;
194 unsigned int target_frame;
195 #define TARGET_FRAME_INITIAL 0xFFFFFFFF
196 bool frame_overrun;
197
198 // dma_addr_t desc_list_dma;
199 struct dwc2_dma_desc *desc_list;
200 u8 desc_count;
201
202 unsigned int next_desc;
203 unsigned int compl_desc;
204
205 char name[10];
206 };
207
208 /**
209 * struct dwc2_hsotg_req - data transfer request
210 * @req: The USB gadget request
211 * @queue: The list of requests for the endpoint this is queued for.
212 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
213 */
214 struct dwc2_hsotg_req {
215 // struct usb_request req;
216 struct list_head queue;
217 void *saved_req_buf;
218 };
219
220 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
221 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
222 #define call_gadget(_hs, _entry) \
223 do { \
224 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
225 (_hs)->driver && (_hs)->driver->_entry) { \
226 spin_unlock(&_hs->lock); \
227 (_hs)->driver->_entry(&(_hs)->gadget); \
228 spin_lock(&_hs->lock); \
229 } \
230 } while (0)
231 #else
232 #define call_gadget(_hs, _entry) do {} while (0)
233 #endif
234
235 struct dwc2_hsotg;
236 struct dwc2_host_chan;
237
238 /* Device States */
239 enum dwc2_lx_state {
240 DWC2_L0, /* On state */
241 DWC2_L1, /* LPM sleep state */
242 DWC2_L2, /* USB suspend state */
243 DWC2_L3, /* Off state */
244 };
245
246 /* Gadget ep0 states */
247 enum dwc2_ep0_state {
248 DWC2_EP0_SETUP,
249 DWC2_EP0_DATA_IN,
250 DWC2_EP0_DATA_OUT,
251 DWC2_EP0_STATUS_IN,
252 DWC2_EP0_STATUS_OUT,
253 };
254
255 /** XXX: From Linux USB stack.
256 * struct usb_otg_caps - describes the otg capabilities of the device
257 * @otg_rev: The OTG revision number the device is compliant with, it's
258 * in binary-coded decimal (i.e. 2.0 is 0200H).
259 * @hnp_support: Indicates if the device supports HNP.
260 * @srp_support: Indicates if the device supports SRP.
261 * @adp_support: Indicates if the device supports ADP.
262 */
263 struct usb_otg_caps {
264 u16 otg_rev;
265 bool hnp_support;
266 bool srp_support;
267 bool adp_support;
268 };
269
270 /**
271 * struct dwc2_core_params - Parameters for configuring the core
272 *
273 * @otg_caps: Specifies the OTG capabilities. OTG caps from the platform parameters,
274 * used to setup the:
275 * - HNP and SRP capable
276 * - SRP Only capable
277 * - No HNP/SRP capable (always available)
278 * Defaults to best available option
279 * - OTG revision number the device is compliant with, in binary-coded
280 * decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps)
281 * @host_dma: Specifies whether to use slave or DMA mode for accessing
282 * the data FIFOs. The driver will automatically detect the
283 * value for this parameter if none is specified.
284 * 0 - Slave (always available)
285 * 1 - DMA (default, if available)
286 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
287 * address DMA mode or descriptor DMA mode for accessing
288 * the data FIFOs. The driver will automatically detect the
289 * value for this if none is specified.
290 * 0 - Address DMA
291 * 1 - Descriptor DMA (default, if available)
292 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
293 * address DMA mode or descriptor DMA mode for accessing
294 * the data FIFOs in Full Speed mode only. The driver
295 * will automatically detect the value for this if none is
296 * specified.
297 * 0 - Address DMA
298 * 1 - Descriptor DMA in FS (default, if available)
299 * @speed: Specifies the maximum speed of operation in host and
300 * device mode. The actual speed depends on the speed of
301 * the attached device and the value of phy_type.
302 * 0 - High Speed
303 * (default when phy_type is UTMI+ or ULPI)
304 * 1 - Full Speed
305 * (default when phy_type is Full Speed)
306 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
307 * 1 - Allow dynamic FIFO sizing (default, if available)
308 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
309 * are enabled for non-periodic IN endpoints in device
310 * mode.
311 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
312 * dynamic FIFO sizing is enabled
313 * 16 to 32768
314 * Actual maximum value is autodetected and also
315 * the default.
316 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
317 * in host mode when dynamic FIFO sizing is enabled
318 * 16 to 32768
319 * Actual maximum value is autodetected and also
320 * the default.
321 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
322 * host mode when dynamic FIFO sizing is enabled
323 * 16 to 32768
324 * Actual maximum value is autodetected and also
325 * the default.
326 * @max_transfer_size: The maximum transfer size supported, in bytes
327 * 2047 to 65,535
328 * Actual maximum value is autodetected and also
329 * the default.
330 * @max_packet_count: The maximum number of packets in a transfer
331 * 15 to 511
332 * Actual maximum value is autodetected and also
333 * the default.
334 * @host_channels: The number of host channel registers to use
335 * 1 to 16
336 * Actual maximum value is autodetected and also
337 * the default.
338 * @phy_type: Specifies the type of PHY interface to use. By default,
339 * the driver will automatically detect the phy_type.
340 * 0 - Full Speed Phy
341 * 1 - UTMI+ Phy
342 * 2 - ULPI Phy
343 * Defaults to best available option (2, 1, then 0)
344 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
345 * is applicable for a phy_type of UTMI+ or ULPI. (For a
346 * ULPI phy_type, this parameter indicates the data width
347 * between the MAC and the ULPI Wrapper.) Also, this
348 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
349 * parameter was set to "8 and 16 bits", meaning that the
350 * core has been configured to work at either data path
351 * width.
352 * 8 or 16 (default 16 if available)
353 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
354 * data rate. This parameter is only applicable if phy_type
355 * is ULPI.
356 * 0 - single data rate ULPI interface with 8 bit wide
357 * data bus (default)
358 * 1 - double data rate ULPI interface with 4 bit wide
359 * data bus
360 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
361 * external supply to drive the VBus
362 * 0 - Internal supply (default)
363 * 1 - External supply
364 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
365 * speed PHY. This parameter is only applicable if phy_type
366 * is FS.
367 * 0 - No (default)
368 * 1 - Yes
369 * @ipg_isoc_en: Indicates the IPG supports is enabled or disabled.
370 * 0 - Disable (default)
371 * 1 - Enable
372 * @acg_enable: For enabling Active Clock Gating in the controller
373 * 0 - No
374 * 1 - Yes
375 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
376 * 0 - No (default)
377 * 1 - Yes
378 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
379 * when attached to a Full Speed or Low Speed device in
380 * host mode.
381 * 0 - Don't support low power mode (default)
382 * 1 - Support low power mode
383 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
384 * when connected to a Low Speed device in host
385 * mode. This parameter is applicable only if
386 * host_support_fs_ls_low_power is enabled.
387 * 0 - 48 MHz
388 * (default when phy_type is UTMI+ or ULPI)
389 * 1 - 6 MHz
390 * (default when phy_type is Full Speed)
391 * @oc_disable: Flag to disable overcurrent condition.
392 * 0 - Allow overcurrent condition to get detected
393 * 1 - Disable overcurrent condtion to get detected
394 * @ts_dline: Enable Term Select Dline pulsing
395 * 0 - No (default)
396 * 1 - Yes
397 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
398 * 0 - No (default for core < 2.92a)
399 * 1 - Yes (default for core >= 2.92a)
400 * @ahbcfg: This field allows the default value of the GAHBCFG
401 * register to be overridden
402 * -1 - GAHBCFG value will be set to 0x06
403 * (INCR, default)
404 * all others - GAHBCFG value will be overridden with
405 * this value
406 * Not all bits can be controlled like this, the
407 * bits defined by GAHBCFG_CTRL_MASK are controlled
408 * by the driver and are ignored in this
409 * configuration value.
410 * @uframe_sched: True to enable the microframe scheduler
411 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
412 * Disable CONIDSTSCHNG controller interrupt in such
413 * case.
414 * 0 - No (default)
415 * 1 - Yes
416 * @power_down: Specifies whether the controller support power_down.
417 * If power_down is enabled, the controller will enter
418 * power_down in both peripheral and host mode when
419 * needed.
420 * 0 - No (default)
421 * 1 - Partial power down
422 * 2 - Hibernation
423 * @no_clock_gating: Specifies whether to avoid clock gating feature.
424 * 0 - No (use clock gating)
425 * 1 - Yes (avoid it)
426 * @lpm: Enable LPM support.
427 * 0 - No
428 * 1 - Yes
429 * @lpm_clock_gating: Enable core PHY clock gating.
430 * 0 - No
431 * 1 - Yes
432 * @besl: Enable LPM Errata support.
433 * 0 - No
434 * 1 - Yes
435 * @hird_threshold_en: HIRD or HIRD Threshold enable.
436 * 0 - No
437 * 1 - Yes
438 * @hird_threshold: Value of BESL or HIRD Threshold.
439 * @ref_clk_per: Indicates in terms of pico seconds the period
440 * of ref_clk.
441 * 62500 - 16MHz
442 * 58823 - 17MHz
443 * 52083 - 19.2MHz
444 * 50000 - 20MHz
445 * 41666 - 24MHz
446 * 33333 - 30MHz (default)
447 * 25000 - 40MHz
448 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
449 * the controller should generate an interrupt if the
450 * device had been in L1 state until that period.
451 * This is used by SW to initiate Remote WakeUp in the
452 * controller so as to sync to the uF number from the host.
453 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
454 * register.
455 * 0 - Deactivate the transceiver (default)
456 * 1 - Activate the transceiver
457 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
458 * detection using GGPIO register.
459 * 0 - Deactivate the external level detection (default)
460 * 1 - Activate the external level detection
461 * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent
462 * detection.
463 * 0 - Deactivate the overcurrent detection
464 * 1 - Activate the overcurrent detection (default)
465 * @g_dma: Enables gadget dma usage (default: autodetect).
466 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect).
467 * @g_rx_fifo_size: The periodic rx fifo size for the device, in
468 * DWORDS from 16-32768 (default: 2048 if
469 * possible, otherwise autodetect).
470 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in
471 * DWORDS from 16-32768 (default: 1024 if
472 * possible, otherwise autodetect).
473 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
474 * mode. Each value corresponds to one EP
475 * starting from EP1 (max 15 values). Sizes are
476 * in DWORDS with possible values from
477 * 16-32768 (default: 256, 256, 256, 256, 768,
478 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
479 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
480 * while full&low speed device connect. And change speed
481 * back to DWC2_SPEED_PARAM_HIGH while device is gone.
482 * 0 - No (default)
483 * 1 - Yes
484 * @service_interval: Enable service interval based scheduling.
485 * 0 - No
486 * 1 - Yes
487 *
488 * The following parameters may be specified when starting the module. These
489 * parameters define how the DWC_otg controller should be configured. A
490 * value of -1 (or any other out of range value) for any parameter means
491 * to read the value from hardware (if possible) or use the builtin
492 * default described above.
493 */
494 struct dwc2_core_params {
495 struct usb_otg_caps otg_caps;
496 u8 phy_type;
497 #define DWC2_PHY_TYPE_PARAM_FS 0
498 #define DWC2_PHY_TYPE_PARAM_UTMI 1
499 #define DWC2_PHY_TYPE_PARAM_ULPI 2
500
501 u8 speed;
502 #define DWC2_SPEED_PARAM_HIGH 0
503 #define DWC2_SPEED_PARAM_FULL 1
504 #define DWC2_SPEED_PARAM_LOW 2
505
506 u8 phy_utmi_width;
507 bool phy_ulpi_ddr;
508 bool phy_ulpi_ext_vbus;
509 bool enable_dynamic_fifo;
510 bool en_multiple_tx_fifo;
511 bool i2c_enable;
512 bool acg_enable;
513 bool ulpi_fs_ls;
514 bool ts_dline;
515 bool reload_ctl;
516 bool uframe_sched;
517 bool external_id_pin_ctl;
518
519 int power_down;
520 #define DWC2_POWER_DOWN_PARAM_NONE 0
521 #define DWC2_POWER_DOWN_PARAM_PARTIAL 1
522 #define DWC2_POWER_DOWN_PARAM_HIBERNATION 2
523 bool no_clock_gating;
524
525 bool lpm;
526 bool lpm_clock_gating;
527 bool besl;
528 bool hird_threshold_en;
529 bool service_interval;
530 u8 hird_threshold;
531 bool activate_stm_fs_transceiver;
532 bool activate_stm_id_vb_detection;
533 bool activate_ingenic_overcurrent_detection;
534 bool ipg_isoc_en;
535 u16 max_packet_count;
536 u32 max_transfer_size;
537 u32 ahbcfg;
538
539 /* GREFCLK parameters */
540 u32 ref_clk_per;
541 u16 sof_cnt_wkup_alert;
542
543 /* Host parameters */
544 bool host_dma;
545 bool dma_desc_enable;
546 bool dma_desc_fs_enable;
547 bool host_support_fs_ls_low_power;
548 bool host_ls_low_power_phy_clk;
549 bool oc_disable;
550
551 u8 host_channels;
552 u16 host_rx_fifo_size;
553 u16 host_nperio_tx_fifo_size;
554 u16 host_perio_tx_fifo_size;
555
556 /* Gadget parameters */
557 bool g_dma;
558 bool g_dma_desc;
559 u32 g_rx_fifo_size;
560 u32 g_np_tx_fifo_size;
561 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
562
563 bool change_speed_quirk;
564 };
565
566 /**
567 * struct dwc2_hw_params - Autodetected parameters.
568 *
569 * These parameters are the various parameters read from hardware
570 * registers during initialization. They typically contain the best
571 * supported or maximum value that can be configured in the
572 * corresponding dwc2_core_params value.
573 *
574 * The values that are not in dwc2_core_params are documented below.
575 *
576 * @op_mode: Mode of Operation
577 * 0 - HNP- and SRP-Capable OTG (Host & Device)
578 * 1 - SRP-Capable OTG (Host & Device)
579 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
580 * 3 - SRP-Capable Device
581 * 4 - Non-OTG Device
582 * 5 - SRP-Capable Host
583 * 6 - Non-OTG Host
584 * @arch: Architecture
585 * 0 - Slave only
586 * 1 - External DMA
587 * 2 - Internal DMA
588 * @ipg_isoc_en: This feature indicates that the controller supports
589 * the worst-case scenario of Rx followed by Rx
590 * Interpacket Gap (IPG) (32 bitTimes) as per the utmi
591 * specification for any token following ISOC OUT token.
592 * 0 - Don't support
593 * 1 - Support
594 * @power_optimized: Are power optimizations enabled?
595 * @num_dev_ep: Number of device endpoints available
596 * @num_dev_in_eps: Number of device IN endpoints available
597 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
598 * available
599 * @dev_token_q_depth: Device Mode IN Token Sequence Learning Queue
600 * Depth
601 * 0 to 30
602 * @host_perio_tx_q_depth:
603 * Host Mode Periodic Request Queue Depth
604 * 2, 4 or 8
605 * @nperio_tx_q_depth:
606 * Non-Periodic Request Queue Depth
607 * 2, 4 or 8
608 * @hs_phy_type: High-speed PHY interface type
609 * 0 - High-speed interface not supported
610 * 1 - UTMI+
611 * 2 - ULPI
612 * 3 - UTMI+ and ULPI
613 * @fs_phy_type: Full-speed PHY interface type
614 * 0 - Full speed interface not supported
615 * 1 - Dedicated full speed interface
616 * 2 - FS pins shared with UTMI+ pins
617 * 3 - FS pins shared with ULPI pins
618 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
619 * @hibernation: Is hibernation enabled?
620 * @utmi_phy_data_width: UTMI+ PHY data width
621 * 0 - 8 bits
622 * 1 - 16 bits
623 * 2 - 8 or 16 bits
624 * @snpsid: Value from SNPSID register
625 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
626 * @g_tx_fifo_size: Power-on values of TxFIFO sizes
627 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
628 * address DMA mode or descriptor DMA mode for accessing
629 * the data FIFOs. The driver will automatically detect the
630 * value for this if none is specified.
631 * 0 - Address DMA
632 * 1 - Descriptor DMA (default, if available)
633 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
634 * 1 - Allow dynamic FIFO sizing (default, if available)
635 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
636 * are enabled for non-periodic IN endpoints in device
637 * mode.
638 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
639 * in host mode when dynamic FIFO sizing is enabled
640 * 16 to 32768
641 * Actual maximum value is autodetected and also
642 * the default.
643 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
644 * host mode when dynamic FIFO sizing is enabled
645 * 16 to 32768
646 * Actual maximum value is autodetected and also
647 * the default.
648 * @max_transfer_size: The maximum transfer size supported, in bytes
649 * 2047 to 65,535
650 * Actual maximum value is autodetected and also
651 * the default.
652 * @max_packet_count: The maximum number of packets in a transfer
653 * 15 to 511
654 * Actual maximum value is autodetected and also
655 * the default.
656 * @host_channels: The number of host channel registers to use
657 * 1 to 16
658 * Actual maximum value is autodetected and also
659 * the default.
660 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
661 * in device mode when dynamic FIFO sizing is enabled
662 * 16 to 32768
663 * Actual maximum value is autodetected and also
664 * the default.
665 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
666 * speed PHY. This parameter is only applicable if phy_type
667 * is FS.
668 * 0 - No (default)
669 * 1 - Yes
670 * @acg_enable: For enabling Active Clock Gating in the controller
671 * 0 - Disable
672 * 1 - Enable
673 * @lpm_mode: For enabling Link Power Management in the controller
674 * 0 - Disable
675 * 1 - Enable
676 * @rx_fifo_size: Number of 4-byte words in the Rx FIFO when dynamic
677 * FIFO sizing is enabled 16 to 32768
678 * Actual maximum value is autodetected and also
679 * the default.
680 * @service_interval_mode: For enabling service interval based scheduling in the
681 * controller.
682 * 0 - Disable
683 * 1 - Enable
684 */
685 struct dwc2_hw_params {
686 unsigned op_mode:3;
687 unsigned arch:2;
688 unsigned dma_desc_enable:1;
689 unsigned enable_dynamic_fifo:1;
690 unsigned en_multiple_tx_fifo:1;
691 unsigned rx_fifo_size:16;
692 unsigned host_nperio_tx_fifo_size:16;
693 unsigned dev_nperio_tx_fifo_size:16;
694 unsigned host_perio_tx_fifo_size:16;
695 unsigned nperio_tx_q_depth:3;
696 unsigned host_perio_tx_q_depth:3;
697 unsigned dev_token_q_depth:5;
698 unsigned max_transfer_size:26;
699 unsigned max_packet_count:11;
700 unsigned host_channels:5;
701 unsigned hs_phy_type:2;
702 unsigned fs_phy_type:2;
703 unsigned i2c_enable:1;
704 unsigned acg_enable:1;
705 unsigned num_dev_ep:4;
706 unsigned num_dev_in_eps : 4;
707 unsigned num_dev_perio_in_ep:4;
708 unsigned total_fifo_size:16;
709 unsigned power_optimized:1;
710 unsigned hibernation:1;
711 unsigned utmi_phy_data_width:2;
712 unsigned lpm_mode:1;
713 unsigned ipg_isoc_en:1;
714 unsigned service_interval_mode:1;
715 u32 snpsid;
716 u32 dev_ep_dirs;
717 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
718 };
719
720 /* Size of control and EP0 buffers */
721 #define DWC2_CTRL_BUFF_SIZE 8
722
723 /**
724 * struct dwc2_gregs_backup - Holds global registers state before
725 * entering partial power down
726 * @gotgctl: Backup of GOTGCTL register
727 * @gintmsk: Backup of GINTMSK register
728 * @gahbcfg: Backup of GAHBCFG register
729 * @gusbcfg: Backup of GUSBCFG register
730 * @grxfsiz: Backup of GRXFSIZ register
731 * @gnptxfsiz: Backup of GNPTXFSIZ register
732 * @gi2cctl: Backup of GI2CCTL register
733 * @glpmcfg: Backup of GLPMCFG register
734 * @gdfifocfg: Backup of GDFIFOCFG register
735 * @pcgcctl: Backup of PCGCCTL register
736 * @pcgcctl1: Backup of PCGCCTL1 register
737 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
738 * @gpwrdn: Backup of GPWRDN register
739 * @valid: True if registers values backuped.
740 */
741 struct dwc2_gregs_backup {
742 u32 gotgctl;
743 u32 gintmsk;
744 u32 gahbcfg;
745 u32 gusbcfg;
746 u32 grxfsiz;
747 u32 gnptxfsiz;
748 u32 gi2cctl;
749 u32 glpmcfg;
750 u32 pcgcctl;
751 u32 pcgcctl1;
752 u32 gdfifocfg;
753 u32 gpwrdn;
754 bool valid;
755 };
756
757 /**
758 * struct dwc2_dregs_backup - Holds device registers state before
759 * entering partial power down
760 * @dcfg: Backup of DCFG register
761 * @dctl: Backup of DCTL register
762 * @daintmsk: Backup of DAINTMSK register
763 * @diepmsk: Backup of DIEPMSK register
764 * @doepmsk: Backup of DOEPMSK register
765 * @diepctl: Backup of DIEPCTL register
766 * @dieptsiz: Backup of DIEPTSIZ register
767 * @diepdma: Backup of DIEPDMA register
768 * @doepctl: Backup of DOEPCTL register
769 * @doeptsiz: Backup of DOEPTSIZ register
770 * @doepdma: Backup of DOEPDMA register
771 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
772 * @valid: True if registers values backuped.
773 */
774 struct dwc2_dregs_backup {
775 u32 dcfg;
776 u32 dctl;
777 u32 daintmsk;
778 u32 diepmsk;
779 u32 doepmsk;
780 u32 diepctl[MAX_EPS_CHANNELS];
781 u32 dieptsiz[MAX_EPS_CHANNELS];
782 u32 diepdma[MAX_EPS_CHANNELS];
783 u32 doepctl[MAX_EPS_CHANNELS];
784 u32 doeptsiz[MAX_EPS_CHANNELS];
785 u32 doepdma[MAX_EPS_CHANNELS];
786 u32 dtxfsiz[MAX_EPS_CHANNELS];
787 bool valid;
788 };
789
790 /**
791 * struct dwc2_hregs_backup - Holds host registers state before
792 * entering partial power down
793 * @hcfg: Backup of HCFG register
794 * @haintmsk: Backup of HAINTMSK register
795 * @hcintmsk: Backup of HCINTMSK register
796 * @hprt0: Backup of HPTR0 register
797 * @hfir: Backup of HFIR register
798 * @hptxfsiz: Backup of HPTXFSIZ register
799 * @valid: True if registers values backuped.
800 */
801 struct dwc2_hregs_backup {
802 u32 hcfg;
803 u32 haintmsk;
804 u32 hcintmsk[MAX_EPS_CHANNELS];
805 u32 hprt0;
806 u32 hfir;
807 u32 hptxfsiz;
808 bool valid;
809 };
810
811 /*
812 * Constants related to high speed periodic scheduling
813 *
814 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
815 * reservation point of view it's assumed that the schedule goes right back to
816 * the beginning after the end of the schedule.
817 *
818 * What does that mean for scheduling things with a long interval? It means
819 * we'll reserve time for them in every possible microframe that they could
820 * ever be scheduled in. ...but we'll still only actually schedule them as
821 * often as they were requested.
822 *
823 * We keep our schedule in a "bitmap" structure. This simplifies having
824 * to keep track of and merge intervals: we just let the bitmap code do most
825 * of the heavy lifting. In a way scheduling is much like memory allocation.
826 *
827 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
828 * supposed to schedule for periodic transfers). That's according to spec.
829 *
830 * Note that though we only schedule 80% of each microframe, the bitmap that we
831 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
832 * space for each uFrame).
833 *
834 * Requirements:
835 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
836 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
837 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
838 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
839 */
840 #define DWC2_US_PER_UFRAME 125
841 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100
842
843 #define DWC2_HS_SCHEDULE_UFRAMES 8
844 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
845 DWC2_HS_PERIODIC_US_PER_UFRAME)
846
847 /*
848 * Constants related to low speed scheduling
849 *
850 * For high speed we schedule every 1us. For low speed that's a bit overkill,
851 * so we make up a unit called a "slice" that's worth 25us. There are 40
852 * slices in a full frame and we can schedule 36 of those (90%) for periodic
853 * transfers.
854 *
855 * Our low speed schedule can be as short as 1 frame or could be longer. When
856 * we only schedule 1 frame it means that we'll need to reserve a time every
857 * frame even for things that only transfer very rarely, so something that runs
858 * every 2048 frames will get time reserved in every frame. Our low speed
859 * schedule can be longer and we'll be able to handle more overlap, but that
860 * will come at increased memory cost and increased time to schedule.
861 *
862 * Note: one other advantage of a short low speed schedule is that if we mess
863 * up and miss scheduling we can jump in and use any of the slots that we
864 * happened to reserve.
865 *
866 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
867 * the schedule. There will be one schedule per TT.
868 *
869 * Requirements:
870 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
871 */
872 #define DWC2_US_PER_SLICE 25
873 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
874
875 #define DWC2_ROUND_US_TO_SLICE(us) \
876 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
877 DWC2_US_PER_SLICE)
878
879 #define DWC2_LS_PERIODIC_US_PER_FRAME \
880 900
881 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
882 (DWC2_LS_PERIODIC_US_PER_FRAME / \
883 DWC2_US_PER_SLICE)
884
885 #define DWC2_LS_SCHEDULE_FRAMES 1
886 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
887 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
888
889 /**
890 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
891 * and periodic schedules
892 *
893 * These are common for both host and peripheral modes:
894 *
895 * @dev: The struct device pointer
896 * @regs: Pointer to controller regs
897 * @hw_params: Parameters that were autodetected from the
898 * hardware registers
899 * @params: Parameters that define how the core should be configured
900 * @op_state: The operational State, during transitions (a_host=>
901 * a_peripheral and b_device=>b_host) this may not match
902 * the core, but allows the software to determine
903 * transitions
904 * @dr_mode: Requested mode of operation, one of following:
905 * - USB_DR_MODE_PERIPHERAL
906 * - USB_DR_MODE_HOST
907 * - USB_DR_MODE_OTG
908 * @role_sw: usb_role_switch handle
909 * @role_sw_default_mode: default operation mode of controller while usb role
910 * is USB_ROLE_NONE
911 * @hcd_enabled: Host mode sub-driver initialization indicator.
912 * @gadget_enabled: Peripheral mode sub-driver initialization indicator.
913 * @ll_hw_enabled: Status of low-level hardware resources.
914 * @hibernated: True if core is hibernated
915 * @in_ppd: True if core is partial power down mode.
916 * @bus_suspended: True if bus is suspended
917 * @reset_phy_on_wake: Quirk saying that we should assert PHY reset on a
918 * remote wakeup.
919 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
920 * @need_phy_for_wake: Quirk saying that we should keep the PHY on at
921 * suspend if we need USB to wake us up.
922 * @frame_number: Frame number read from the core. For both device
923 * and host modes. The value ranges are from 0
924 * to HFNUM_MAX_FRNUM.
925 * @phy: The otg phy transceiver structure for phy control.
926 * @uphy: The otg phy transceiver structure for old USB phy
927 * control.
928 * @plat: The platform specific configuration data. This can be
929 * removed once all SoCs support usb transceiver.
930 * @supplies: Definition of USB power supplies
931 * @vbus_supply: Regulator supplying vbus.
932 * @usb33d: Optional 3.3v regulator used on some stm32 devices to
933 * supply ID and VBUS detection hardware.
934 * @lock: Spinlock that protects all the driver data structures
935 * @priv: Stores a pointer to the struct usb_hcd
936 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
937 * transfer are in process of being queued
938 * @srp_success: Stores status of SRP request in the case of a FS PHY
939 * with an I2C interface
940 * @wq_otg: Workqueue object used for handling of some interrupts
941 * @wf_otg: Work object for handling Connector ID Status Change
942 * interrupt
943 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
944 * @lx_state: Lx state of connected device
945 * @gr_backup: Backup of global registers during suspend
946 * @dr_backup: Backup of device registers during suspend
947 * @hr_backup: Backup of host registers during suspend
948 * @needs_byte_swap: Specifies whether the opposite endianness.
949 *
950 * These are for host mode:
951 *
952 * @flags: Flags for handling root port state changes
953 * @flags.d32: Contain all root port flags
954 * @flags.b: Separate root port flags from each other
955 * @flags.b.port_connect_status_change: True if root port connect status
956 * changed
957 * @flags.b.port_connect_status: True if device connected to root port
958 * @flags.b.port_reset_change: True if root port reset status changed
959 * @flags.b.port_enable_change: True if root port enable status changed
960 * @flags.b.port_suspend_change: True if root port suspend status changed
961 * @flags.b.port_over_current_change: True if root port over current state
962 * changed.
963 * @flags.b.port_l1_change: True if root port l1 status changed
964 * @flags.b.reserved: Reserved bits of root port register
965 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
966 * Transfers associated with these QHs are not currently
967 * assigned to a host channel.
968 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
969 * Transfers associated with these QHs are currently
970 * assigned to a host channel.
971 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
972 * non-periodic schedule
973 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
974 * Transfers associated with these QHs are not currently
975 * assigned to a host channel.
976 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
977 * list of QHs for periodic transfers that are _not_
978 * scheduled for the next frame. Each QH in the list has an
979 * interval counter that determines when it needs to be
980 * scheduled for execution. This scheduling mechanism
981 * allows only a simple calculation for periodic bandwidth
982 * used (i.e. must assume that all periodic transfers may
983 * need to execute in the same frame). However, it greatly
984 * simplifies scheduling and should be sufficient for the
985 * vast majority of OTG hosts, which need to connect to a
986 * small number of peripherals at one time. Items move from
987 * this list to periodic_sched_ready when the QH interval
988 * counter is 0 at SOF.
989 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
990 * the next frame, but have not yet been assigned to host
991 * channels. Items move from this list to
992 * periodic_sched_assigned as host channels become
993 * available during the current frame.
994 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
995 * frame that are assigned to host channels. Items move
996 * from this list to periodic_sched_queued as the
997 * transactions for the QH are queued to the DWC_otg
998 * controller.
999 * @periodic_sched_queued: List of periodic QHs that have been queued for
1000 * execution. Items move from this list to either
1001 * periodic_sched_inactive or periodic_sched_ready when the
1002 * channel associated with the transfer is released. If the
1003 * interval for the QH is 1, the item moves to
1004 * periodic_sched_ready because it must be rescheduled for
1005 * the next frame. Otherwise, the item moves to
1006 * periodic_sched_inactive.
1007 * @split_order: List keeping track of channels doing splits, in order.
1008 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
1009 * This value is in microseconds per (micro)frame. The
1010 * assumption is that all periodic transfers may occur in
1011 * the same (micro)frame.
1012 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
1013 * host is in high speed mode; low speed schedules are
1014 * stored elsewhere since we need one per TT.
1015 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
1016 * SOF enable/disable.
1017 * @free_hc_list: Free host channels in the controller. This is a list of
1018 * struct dwc2_host_chan items.
1019 * @periodic_channels: Number of host channels assigned to periodic transfers.
1020 * Currently assuming that there is a dedicated host
1021 * channel for each periodic transaction and at least one
1022 * host channel is available for non-periodic transactions.
1023 * @non_periodic_channels: Number of host channels assigned to non-periodic
1024 * transfers
1025 * @available_host_channels: Number of host channels available for the
1026 * microframe scheduler to use
1027 * @hc_ptr_array: Array of pointers to the host channel descriptors.
1028 * Allows accessing a host channel descriptor given the
1029 * host channel number. This is useful in interrupt
1030 * handlers.
1031 * @status_buf: Buffer used for data received during the status phase of
1032 * a control transfer.
1033 * @status_buf_dma: DMA address for status_buf
1034 * @start_work: Delayed work for handling host A-cable connection
1035 * @reset_work: Delayed work for handling a port reset
1036 * @phy_reset_work: Work structure for doing a PHY reset
1037 * @otg_port: OTG port number
1038 * @frame_list: Frame list
1039 * @frame_list_dma: Frame list DMA address
1040 * @frame_list_sz: Frame list size
1041 * @desc_gen_cache: Kmem cache for generic descriptors
1042 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
1043 * @unaligned_cache: Kmem cache for DMA mode to handle non-aligned buf
1044 *
1045 * These are for peripheral mode:
1046 *
1047 * @driver: USB gadget driver
1048 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
1049 * @num_of_eps: Number of available EPs (excluding EP0)
1050 * @debug_root: Root directrory for debugfs.
1051 * @ep0_reply: Request used for ep0 reply.
1052 * @ep0_buff: Buffer for EP0 reply data, if needed.
1053 * @ctrl_buff: Buffer for EP0 control requests.
1054 * @ctrl_req: Request for EP0 control packets.
1055 * @ep0_state: EP0 control transfers state
1056 * @delayed_status: true when gadget driver asks for delayed status
1057 * @test_mode: USB test mode requested by the host
1058 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1059 * remote-wakeup signalling
1060 * @setup_desc_dma: EP0 setup stage desc chain DMA address
1061 * @setup_desc: EP0 setup stage desc chain pointer
1062 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address
1063 * @ctrl_in_desc: EP0 IN data phase desc chain pointer
1064 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address
1065 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer
1066 * @irq: Interrupt request line number
1067 * @clk: Pointer to otg clock
1068 * @reset: Pointer to dwc2 reset controller
1069 * @reset_ecc: Pointer to dwc2 optional reset controller in Stratix10.
1070 * @regset: A pointer to a struct debugfs_regset32, which contains
1071 * a pointer to an array of register definitions, the
1072 * array size and the base address where the register bank
1073 * is to be found.
1074 * @last_frame_num: Number of last frame. Range from 0 to 32768
1075 * @frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1076 * defined, for missed SOFs tracking. Array holds that
1077 * frame numbers, which not equal to last_frame_num +1
1078 * @last_frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1079 * defined, for missed SOFs tracking.
1080 * If current_frame_number != last_frame_num+1
1081 * then last_frame_num added to this array
1082 * @frame_num_idx: Actual size of frame_num_array and last_frame_num_array
1083 * @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed
1084 * 0 - if missed SOFs frame numbers not dumbed
1085 * @fifo_mem: Total internal RAM for FIFOs (bytes)
1086 * @fifo_map: Each bit intend for concrete fifo. If that bit is set,
1087 * then that fifo is used
1088 * @gadget: Represents a usb gadget device
1089 * @connected: Used in slave mode. True if device connected with host
1090 * @eps_in: The IN endpoints being supplied to the gadget framework
1091 * @eps_out: The OUT endpoints being supplied to the gadget framework
1092 * @new_connection: Used in host mode. True if there are new connected
1093 * device
1094 * @enabled: Indicates the enabling state of controller
1095 *
1096 */
1097 struct dwc2_hsotg {
1098 struct device *dev;
1099 // void __iomem *regs;
1100 struct dwc2_softc *hsotg_sc;
1101 /** Params detected from hardware */
1102 struct dwc2_hw_params hw_params;
1103 /** Params to actually use */
1104 struct dwc2_core_params params;
1105 enum usb_otg_state op_state;
1106 enum usb_dr_mode dr_mode;
1107 // struct usb_role_switch *role_sw;
1108 // enum usb_dr_mode role_sw_default_mode;
1109 unsigned int hcd_enabled:1;
1110 unsigned int gadget_enabled:1;
1111 unsigned int ll_hw_enabled:1;
1112 unsigned int hibernated:1;
1113 unsigned int in_ppd:1;
1114 bool bus_suspended;
1115 unsigned int reset_phy_on_wake:1;
1116 unsigned int need_phy_for_wake:1;
1117 unsigned int phy_off_for_suspend:1;
1118 u16 frame_number;
1119
1120 struct phy *phy;
1121 struct usb_phy *uphy;
1122 struct dwc2_hsotg_plat *plat;
1123 // struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1124 struct regulator *vbus_supply;
1125 struct regulator *usb33d;
1126
1127 spinlock_t lock;
1128 void *priv;
1129 int irq;
1130 // struct clk clk;
1131 // struct reset_control *reset;
1132 // struct reset_control *reset_ecc;
1133
1134 unsigned int queuing_high_bandwidth:1;
1135 unsigned int srp_success:1;
1136
1137 struct taskq *wq_otg;
1138 struct task wf_otg;
1139 struct timeout wkp_timer;
1140 enum dwc2_lx_state lx_state;
1141 struct dwc2_gregs_backup gr_backup;
1142 struct dwc2_dregs_backup dr_backup;
1143 struct dwc2_hregs_backup hr_backup;
1144
1145 struct dentry *debug_root;
1146 struct debugfs_regset32 *regset;
1147 bool needs_byte_swap;
1148
1149 /* DWC OTG HW Release versions */
1150 #define DWC2_CORE_REV_2_71a 0x4f54271a
1151 #define DWC2_CORE_REV_2_72a 0x4f54272a
1152 #define DWC2_CORE_REV_2_80a 0x4f54280a
1153 #define DWC2_CORE_REV_2_90a 0x4f54290a
1154 #define DWC2_CORE_REV_2_91a 0x4f54291a
1155 #define DWC2_CORE_REV_2_92a 0x4f54292a
1156 #define DWC2_CORE_REV_2_94a 0x4f54294a
1157 #define DWC2_CORE_REV_3_00a 0x4f54300a
1158 #define DWC2_CORE_REV_3_10a 0x4f54310a
1159 #define DWC2_CORE_REV_4_00a 0x4f54400a
1160 #define DWC2_CORE_REV_4_20a 0x4f54420a
1161 #define DWC2_FS_IOT_REV_1_00a 0x5531100a
1162 #define DWC2_HS_IOT_REV_1_00a 0x5532100a
1163 #define DWC2_CORE_REV_MASK 0x0000ffff
1164
1165 /* DWC OTG HW Core ID */
1166 #define DWC2_OTG_ID 0x4f540000
1167 #define DWC2_FS_IOT_ID 0x55310000
1168 #define DWC2_HS_IOT_ID 0x55320000
1169
1170 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1171 union dwc2_hcd_internal_flags {
1172 u32 d32;
1173 struct {
1174 unsigned port_connect_status_change:1;
1175 unsigned port_connect_status:1;
1176 unsigned port_reset_change:1;
1177 unsigned port_enable_change:1;
1178 unsigned port_suspend_change:1;
1179 unsigned port_over_current_change:1;
1180 unsigned port_l1_change:1;
1181 unsigned reserved:25;
1182 } b;
1183 } flags;
1184
1185 struct list_head non_periodic_sched_inactive;
1186 struct list_head non_periodic_sched_waiting;
1187 struct list_head non_periodic_sched_active;
1188 struct list_head *non_periodic_qh_ptr;
1189 struct list_head periodic_sched_inactive;
1190 struct list_head periodic_sched_ready;
1191 struct list_head periodic_sched_assigned;
1192 struct list_head periodic_sched_queued;
1193 struct list_head split_order;
1194 u16 periodic_usecs;
1195 unsigned long hs_periodic_bitmap[
1196 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1197 u16 periodic_qh_count;
1198 bool new_connection;
1199
1200 u16 last_frame_num;
1201
1202 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1203 #define FRAME_NUM_ARRAY_SIZE 1000
1204 u16 *frame_num_array;
1205 u16 *last_frame_num_array;
1206 int frame_num_idx;
1207 int dumped_frame_num_array;
1208 #endif
1209
1210 struct list_head free_hc_list;
1211 int periodic_channels;
1212 int non_periodic_channels;
1213 int available_host_channels;
1214 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1215 u8 *status_buf;
1216 struct usb_dma status_buf_dma_usb;
1217 dma_addr_t status_buf_dma;
1218 #define DWC2_HCD_STATUS_BUF_SIZE 64
1219
1220 struct delayed_work start_work;
1221 struct delayed_work reset_work;
1222 // struct work_struct phy_reset_work;
1223 u8 otg_port;
1224 struct usb_dma frame_list_usbdma;
1225 u32 *frame_list;
1226 dma_addr_t frame_list_dma;
1227 u32 frame_list_sz;
1228 struct kmem_cache *desc_gen_cache;
1229 struct kmem_cache *desc_hsisoc_cache;
1230 struct kmem_cache *unaligned_cache;
1231 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1232
1233 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1234
1235 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1236 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1237 /* Gadget structures */
1238 struct usb_gadget_driver *driver;
1239 int fifo_mem;
1240 unsigned int dedicated_fifos:1;
1241 unsigned char num_of_eps;
1242 u32 fifo_map;
1243
1244 struct usb_request *ep0_reply;
1245 struct usb_request *ctrl_req;
1246 void *ep0_buff;
1247 void *ctrl_buff;
1248 enum dwc2_ep0_state ep0_state;
1249 unsigned delayed_status : 1;
1250 u8 test_mode;
1251
1252 // dma_addr_t setup_desc_dma[2];
1253 // struct dwc2_dma_desc *setup_desc[2];
1254 // dma_addr_t ctrl_in_desc_dma;
1255 // struct dwc2_dma_desc *ctrl_in_desc;
1256 // dma_addr_t ctrl_out_desc_dma;
1257 // struct dwc2_dma_desc *ctrl_out_desc;
1258
1259 struct usb_gadget gadget;
1260 unsigned int enabled:1;
1261 unsigned int connected:1;
1262 unsigned int remote_wakeup_allowed:1;
1263 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1264 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1265 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1266 };
1267
1268 #define dwc2_readl(hsotg, reg) \
1269 bus_space_read_4((hsotg)->hsotg_sc->sc_iot, (hsotg)->hsotg_sc->sc_ioh, \
1270 (reg))
1271 #define dwc2_writel(hsotg, data, reg) \
1272 bus_space_write_4((hsotg)->hsotg_sc->sc_iot, (hsotg)->hsotg_sc->sc_ioh, \
1273 (reg), (data))
1274
1275 #ifdef DWC2_LOG_WRITES
1276 pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1277 #endif
1278
1279 #if 0
1280 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1281 void *buffer, unsigned int count)
1282 {
1283 if (count) {
1284 u32 *buf = buffer;
1285
1286 do {
1287 u32 x = dwc2_readl(hsotg, offset);
1288 *buf++ = x;
1289 } while (--count);
1290 }
1291 }
1292
1293 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1294 const void *buffer, unsigned int count)
1295 {
1296 if (count) {
1297 const u32 *buf = buffer;
1298
1299 do {
1300 dwc2_writel(hsotg, *buf++, offset);
1301 } while (--count);
1302 }
1303 }
1304 #endif
1305
1306 /* Reasons for halting a host channel */
1307 enum dwc2_halt_status {
1308 DWC2_HC_XFER_NO_HALT_STATUS,
1309 DWC2_HC_XFER_COMPLETE,
1310 DWC2_HC_XFER_URB_COMPLETE,
1311 DWC2_HC_XFER_ACK,
1312 DWC2_HC_XFER_NAK,
1313 DWC2_HC_XFER_NYET,
1314 DWC2_HC_XFER_STALL,
1315 DWC2_HC_XFER_XACT_ERR,
1316 DWC2_HC_XFER_FRAME_OVERRUN,
1317 DWC2_HC_XFER_BABBLE_ERR,
1318 DWC2_HC_XFER_DATA_TOGGLE_ERR,
1319 DWC2_HC_XFER_AHB_ERR,
1320 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1321 DWC2_HC_XFER_URB_DEQUEUE,
1322 };
1323
1324 /* Core version information */
dwc2_is_iot(struct dwc2_hsotg * hsotg)1325 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1326 {
1327 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1328 }
1329
dwc2_is_fs_iot(struct dwc2_hsotg * hsotg)1330 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1331 {
1332 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1333 }
1334
dwc2_is_hs_iot(struct dwc2_hsotg * hsotg)1335 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1336 {
1337 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1338 }
1339
1340 /*
1341 * The following functions support initialization of the core driver component
1342 * and the DWC_otg controller
1343 */
1344 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1345 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1346 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1347 bool restore);
1348 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1349 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1350 int reset, int is_host);
1351 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1352 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1353
1354 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1355 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1356
1357 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1358
1359 int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1360
1361 /*
1362 * Common core Functions.
1363 * The following functions support managing the DWC_otg controller in either
1364 * device or host mode.
1365 */
1366 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1367 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1368 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1369
1370 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1371 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1372
1373 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1374 int is_host);
1375 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1376 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1377
1378 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1379
1380 /* This function should be called on every hardware interrupt. */
1381 irqreturn_t dwc2_handle_common_intr(void *dev);
1382
1383 /* The device ID match table */
1384 //extern const struct of_device_id dwc2_of_match_table[];
1385 //extern const struct acpi_device_id dwc2_acpi_match[];
1386
1387 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1388 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1389
1390 /* Common polling functions */
1391 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1392 u32 timeout);
1393 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1394 u32 timeout);
1395 /* Parameters */
1396 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1397 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1398 void dwc2_set_default_params(struct dwc2_hsotg *);
1399 void dwc2_check_params(struct dwc2_hsotg *);
1400
1401 /*
1402 * The following functions check the controller's OTG operation mode
1403 * capability (GHWCFG2.OTG_MODE).
1404 *
1405 * These functions can be used before the internal hsotg->hw_params
1406 * are read in and cached so they always read directly from the
1407 * GHWCFG2 register.
1408 */
1409 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1410 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1411 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1412 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1413
1414 /*
1415 * Returns the mode of operation, host or device
1416 */
dwc2_is_host_mode(struct dwc2_hsotg * hsotg)1417 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1418 {
1419 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1420 }
1421
dwc2_is_device_mode(struct dwc2_hsotg * hsotg)1422 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1423 {
1424 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1425 }
1426
1427 int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1428 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1429 void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1430 void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1431
1432 /*
1433 * Dump core registers and SPRAM
1434 */
1435 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1436 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1437 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1438
1439 /* Gadget defines */
1440 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1441 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1442 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1443 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1444 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1445 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1446 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1447 bool reset);
1448 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1449 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1450 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1451 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1452 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1453 #define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
1454 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1455 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1456 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1457 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1458 int rem_wakeup, int reset);
1459 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1460 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1461 bool restore);
1462 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1463 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1464 int rem_wakeup);
1465 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1466 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1467 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1468 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1469 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
dwc2_clear_fifo_map(struct dwc2_hsotg * hsotg)1470 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1471 { hsotg->fifo_map = 0; }
1472 #else
dwc2_hsotg_remove(struct dwc2_hsotg * dwc2)1473 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1474 { return 0; }
dwc2_hsotg_suspend(struct dwc2_hsotg * dwc2)1475 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1476 { return 0; }
dwc2_hsotg_resume(struct dwc2_hsotg * dwc2)1477 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1478 { return 0; }
dwc2_gadget_init(struct dwc2_hsotg * hsotg)1479 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1480 { return 0; }
dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg * dwc2,bool reset)1481 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1482 bool reset) {}
dwc2_hsotg_core_disconnect(struct dwc2_hsotg * hsotg)1483 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
dwc2_hsotg_core_connect(struct dwc2_hsotg * hsotg)1484 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hsotg_disconnect(struct dwc2_hsotg * dwc2)1485 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
dwc2_hsotg_set_test_mode(struct dwc2_hsotg * hsotg,int testmode)1486 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1487 int testmode)
1488 { return 0; }
1489 #define dwc2_is_device_connected(hsotg) (0)
1490 #define dwc2_is_device_enabled(hsotg) (0)
dwc2_backup_device_registers(struct dwc2_hsotg * hsotg)1491 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1492 { return 0; }
dwc2_restore_device_registers(struct dwc2_hsotg * hsotg,int remote_wakeup)1493 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1494 int remote_wakeup)
1495 { return 0; }
dwc2_gadget_enter_hibernation(struct dwc2_hsotg * hsotg)1496 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1497 { return 0; }
dwc2_gadget_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)1498 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1499 int rem_wakeup, int reset)
1500 { return 0; }
dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg * hsotg)1501 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1502 { return 0; }
dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg * hsotg,bool restore)1503 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1504 bool restore)
1505 { return 0; }
dwc2_gadget_enter_clock_gating(struct dwc2_hsotg * hsotg)1506 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
dwc2_gadget_exit_clock_gating(struct dwc2_hsotg * hsotg,int rem_wakeup)1507 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1508 int rem_wakeup) {}
dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg * hsotg)1509 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1510 { return 0; }
dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg * hsotg)1511 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1512 { return 0; }
dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg * hsotg)1513 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1514 { return 0; }
dwc2_gadget_init_lpm(struct dwc2_hsotg * hsotg)1515 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
dwc2_gadget_program_ref_clk(struct dwc2_hsotg * hsotg)1516 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
dwc2_clear_fifo_map(struct dwc2_hsotg * hsotg)1517 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1518 #endif
1519
1520 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1521 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1522 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1523 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1524 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1525 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1526 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1527 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1528 int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1529 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1530 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1531 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1532 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1533 int rem_wakeup, int reset);
1534 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1535 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1536 int rem_wakeup, bool restore);
1537 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1538 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1539 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
dwc2_host_schedule_phy_reset(struct dwc2_hsotg * hsotg)1540 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1541 {
1542 // schedule_work(&hsotg->phy_reset_work);
1543 }
1544 #else
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)1545 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1546 { return 0; }
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)1547 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1548 int us)
1549 { return 0; }
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1550 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1551 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1552 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1553 //static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
dwc2_core_init(struct dwc2_hsotg * hsotg,bool initial_setup)1554 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1555 { return 0; }
dwc2_port_suspend(struct dwc2_hsotg * hsotg,u16 windex)1556 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1557 { return 0; }
dwc2_port_resume(struct dwc2_hsotg * hsotg)1558 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1559 { return 0; }
dwc2_hcd_init(struct dwc2_hsotg * hsotg)1560 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1561 { return 0; }
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)1562 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1563 { return 0; }
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)1564 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1565 { return 0; }
dwc2_host_enter_hibernation(struct dwc2_hsotg * hsotg)1566 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1567 { return 0; }
dwc2_host_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)1568 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1569 int rem_wakeup, int reset)
1570 { return 0; }
dwc2_host_enter_partial_power_down(struct dwc2_hsotg * hsotg)1571 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1572 { return 0; }
dwc2_host_exit_partial_power_down(struct dwc2_hsotg * hsotg,int rem_wakeup,bool restore)1573 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1574 int rem_wakeup, bool restore)
1575 { return 0; }
dwc2_host_enter_clock_gating(struct dwc2_hsotg * hsotg)1576 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
dwc2_host_exit_clock_gating(struct dwc2_hsotg * hsotg,int rem_wakeup)1577 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1578 int rem_wakeup) {}
dwc2_host_can_poweroff_phy(struct dwc2_hsotg * dwc2)1579 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1580 { return false; }
dwc2_host_schedule_phy_reset(struct dwc2_hsotg * hsotg)1581 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1582
1583 #endif
1584
1585 #endif /* __DWC2_CORE_H__ */
1586