1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file describes an abstract interface used to get information about a 10 // target machines register file. This information is used for a variety of 11 // purposed, especially register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H 16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/IR/CallingConv.h" 24 #include "llvm/MC/LaneBitmask.h" 25 #include "llvm/MC/MCRegisterInfo.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MachineValueType.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Printable.h" 30 #include <cassert> 31 #include <cstdint> 32 33 namespace llvm { 34 35 class BitVector; 36 class DIExpression; 37 class LiveRegMatrix; 38 class MachineFunction; 39 class MachineInstr; 40 class RegScavenger; 41 class VirtRegMap; 42 class LiveIntervals; 43 class LiveInterval; 44 45 class TargetRegisterClass { 46 public: 47 using iterator = const MCPhysReg *; 48 using const_iterator = const MCPhysReg *; 49 using sc_iterator = const TargetRegisterClass* const *; 50 51 // Instance variables filled by tablegen, do not use! 52 const MCRegisterClass *MC; 53 const uint32_t *SubClassMask; 54 const uint16_t *SuperRegIndices; 55 const LaneBitmask LaneMask; 56 /// Classes with a higher priority value are assigned first by register 57 /// allocators using a greedy heuristic. The value is in the range [0,31]. 58 const uint8_t AllocationPriority; 59 60 // Change allocation priority heuristic used by greedy. 61 const bool GlobalPriority; 62 63 /// Configurable target specific flags. 64 const uint8_t TSFlags; 65 /// Whether the class supports two (or more) disjunct subregister indices. 66 const bool HasDisjunctSubRegs; 67 /// Whether a combination of subregisters can cover every register in the 68 /// class. See also the CoveredBySubRegs description in Target.td. 69 const bool CoveredBySubRegs; 70 const sc_iterator SuperClasses; 71 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 72 73 /// Return the register class ID number. getID()74 unsigned getID() const { return MC->getID(); } 75 76 /// begin/end - Return all of the registers in this class. 77 /// begin()78 iterator begin() const { return MC->begin(); } end()79 iterator end() const { return MC->end(); } 80 81 /// Return the number of registers in this class. getNumRegs()82 unsigned getNumRegs() const { return MC->getNumRegs(); } 83 84 iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator> getRegisters()85 getRegisters() const { 86 return make_range(MC->begin(), MC->end()); 87 } 88 89 /// Return the specified register in the class. getRegister(unsigned i)90 MCRegister getRegister(unsigned i) const { 91 return MC->getRegister(i); 92 } 93 94 /// Return true if the specified register is included in this register class. 95 /// This does not include virtual registers. contains(Register Reg)96 bool contains(Register Reg) const { 97 /// FIXME: Historically this function has returned false when given vregs 98 /// but it should probably only receive physical registers 99 if (!Reg.isPhysical()) 100 return false; 101 return MC->contains(Reg.asMCReg()); 102 } 103 104 /// Return true if both registers are in this class. contains(Register Reg1,Register Reg2)105 bool contains(Register Reg1, Register Reg2) const { 106 /// FIXME: Historically this function has returned false when given a vregs 107 /// but it should probably only receive physical registers 108 if (!Reg1.isPhysical() || !Reg2.isPhysical()) 109 return false; 110 return MC->contains(Reg1.asMCReg(), Reg2.asMCReg()); 111 } 112 113 /// Return the cost of copying a value between two registers in this class. 114 /// A negative number means the register class is very expensive 115 /// to copy e.g. status flag register classes. getCopyCost()116 int getCopyCost() const { return MC->getCopyCost(); } 117 118 /// Return true if this register class may be used to create virtual 119 /// registers. isAllocatable()120 bool isAllocatable() const { return MC->isAllocatable(); } 121 122 /// Return true if the specified TargetRegisterClass 123 /// is a proper sub-class of this TargetRegisterClass. hasSubClass(const TargetRegisterClass * RC)124 bool hasSubClass(const TargetRegisterClass *RC) const { 125 return RC != this && hasSubClassEq(RC); 126 } 127 128 /// Returns true if RC is a sub-class of or equal to this class. hasSubClassEq(const TargetRegisterClass * RC)129 bool hasSubClassEq(const TargetRegisterClass *RC) const { 130 unsigned ID = RC->getID(); 131 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 132 } 133 134 /// Return true if the specified TargetRegisterClass is a 135 /// proper super-class of this TargetRegisterClass. hasSuperClass(const TargetRegisterClass * RC)136 bool hasSuperClass(const TargetRegisterClass *RC) const { 137 return RC->hasSubClass(this); 138 } 139 140 /// Returns true if RC is a super-class of or equal to this class. hasSuperClassEq(const TargetRegisterClass * RC)141 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 142 return RC->hasSubClassEq(this); 143 } 144 145 /// Returns a bit vector of subclasses, including this one. 146 /// The vector is indexed by class IDs. 147 /// 148 /// To use it, consider the returned array as a chunk of memory that 149 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk 150 /// contains a bitset of the ID of the subclasses in big-endian style. 151 152 /// I.e., the representation of the memory from left to right at the 153 /// bit level looks like: 154 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ... 155 /// [ XXX NumRegClasses NumRegClasses - 1 ... ] 156 /// Where the number represents the class ID and XXX bits that 157 /// should be ignored. 158 /// 159 /// See the implementation of hasSubClassEq for an example of how it 160 /// can be used. getSubClassMask()161 const uint32_t *getSubClassMask() const { 162 return SubClassMask; 163 } 164 165 /// Returns a 0-terminated list of sub-register indices that project some 166 /// super-register class into this register class. The list has an entry for 167 /// each Idx such that: 168 /// 169 /// There exists SuperRC where: 170 /// For all Reg in SuperRC: 171 /// this->contains(Reg:Idx) getSuperRegIndices()172 const uint16_t *getSuperRegIndices() const { 173 return SuperRegIndices; 174 } 175 176 /// Returns a NULL-terminated list of super-classes. The 177 /// classes are ordered by ID which is also a topological ordering from large 178 /// to small classes. The list does NOT include the current class. getSuperClasses()179 sc_iterator getSuperClasses() const { 180 return SuperClasses; 181 } 182 183 /// Return true if this TargetRegisterClass is a subset 184 /// class of at least one other TargetRegisterClass. isASubClass()185 bool isASubClass() const { 186 return SuperClasses[0] != nullptr; 187 } 188 189 /// Returns the preferred order for allocating registers from this register 190 /// class in MF. The raw order comes directly from the .td file and may 191 /// include reserved registers that are not allocatable. 192 /// Register allocators should also make sure to allocate 193 /// callee-saved registers only after all the volatiles are used. The 194 /// RegisterClassInfo class provides filtered allocation orders with 195 /// callee-saved registers moved to the end. 196 /// 197 /// The MachineFunction argument can be used to tune the allocatable 198 /// registers based on the characteristics of the function, subtarget, or 199 /// other criteria. 200 /// 201 /// By default, this method returns all registers in the class. getRawAllocationOrder(const MachineFunction & MF)202 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 203 return OrderFunc ? OrderFunc(MF) : ArrayRef(begin(), getNumRegs()); 204 } 205 206 /// Returns the combination of all lane masks of register in this class. 207 /// The lane masks of the registers are the combination of all lane masks 208 /// of their subregisters. Returns 1 if there are no subregisters. getLaneMask()209 LaneBitmask getLaneMask() const { 210 return LaneMask; 211 } 212 }; 213 214 /// Extra information, not in MCRegisterDesc, about registers. 215 /// These are used by codegen, not by MC. 216 struct TargetRegisterInfoDesc { 217 const uint8_t *CostPerUse; // Extra cost of instructions using register. 218 unsigned NumCosts; // Number of cost values associated with each register. 219 const bool 220 *InAllocatableClass; // Register belongs to an allocatable regclass. 221 }; 222 223 /// Each TargetRegisterClass has a per register weight, and weight 224 /// limit which must be less than the limits of its pressure sets. 225 struct RegClassWeight { 226 unsigned RegWeight; 227 unsigned WeightLimit; 228 }; 229 230 /// TargetRegisterInfo base class - We assume that the target defines a static 231 /// array of TargetRegisterDesc objects that represent all of the machine 232 /// registers that the target has. As such, we simply have to track a pointer 233 /// to this array so that we can turn register number into a register 234 /// descriptor. 235 /// 236 class TargetRegisterInfo : public MCRegisterInfo { 237 public: 238 using regclass_iterator = const TargetRegisterClass * const *; 239 using vt_iterator = const MVT::SimpleValueType *; 240 struct RegClassInfo { 241 unsigned RegSize, SpillSize, SpillAlignment; 242 vt_iterator VTList; 243 }; 244 private: 245 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 246 const char *const *SubRegIndexNames; // Names of subreg indexes. 247 // Pointer to array of lane masks, one per sub-reg index. 248 const LaneBitmask *SubRegIndexLaneMasks; 249 250 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 251 LaneBitmask CoveringLanes; 252 const RegClassInfo *const RCInfos; 253 unsigned HwMode; 254 255 protected: 256 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 257 regclass_iterator RCB, 258 regclass_iterator RCE, 259 const char *const *SRINames, 260 const LaneBitmask *SRILaneMasks, 261 LaneBitmask CoveringLanes, 262 const RegClassInfo *const RCIs, 263 unsigned Mode = 0); 264 virtual ~TargetRegisterInfo(); 265 266 public: 267 // Register numbers can represent physical registers, virtual registers, and 268 // sometimes stack slots. The unsigned values are divided into these ranges: 269 // 270 // 0 Not a register, can be used as a sentinel. 271 // [1;2^30) Physical registers assigned by TableGen. 272 // [2^30;2^31) Stack slots. (Rarely used.) 273 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 274 // 275 // Further sentinels can be allocated from the small negative integers. 276 // DenseMapInfo<unsigned> uses -1u and -2u. 277 278 /// Return the size in bits of a register from class RC. getRegSizeInBits(const TargetRegisterClass & RC)279 unsigned getRegSizeInBits(const TargetRegisterClass &RC) const { 280 return getRegClassInfo(RC).RegSize; 281 } 282 283 /// Return the size in bytes of the stack slot allocated to hold a spilled 284 /// copy of a register from class RC. getSpillSize(const TargetRegisterClass & RC)285 unsigned getSpillSize(const TargetRegisterClass &RC) const { 286 return getRegClassInfo(RC).SpillSize / 8; 287 } 288 289 /// Return the minimum required alignment in bytes for a spill slot for 290 /// a register of this class. getSpillAlign(const TargetRegisterClass & RC)291 Align getSpillAlign(const TargetRegisterClass &RC) const { 292 return Align(getRegClassInfo(RC).SpillAlignment / 8); 293 } 294 295 /// Return true if the given TargetRegisterClass has the ValueType T. isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)296 bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const { 297 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) 298 if (MVT(*I) == T) 299 return true; 300 return false; 301 } 302 303 /// Return true if the given TargetRegisterClass is compatible with LLT T. isTypeLegalForClass(const TargetRegisterClass & RC,LLT T)304 bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const { 305 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) { 306 MVT VT(*I); 307 if (VT == MVT::Untyped) 308 return true; 309 310 if (LLT(VT) == T) 311 return true; 312 } 313 return false; 314 } 315 316 /// Loop over all of the value types that can be represented by values 317 /// in the given register class. legalclasstypes_begin(const TargetRegisterClass & RC)318 vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const { 319 return getRegClassInfo(RC).VTList; 320 } 321 legalclasstypes_end(const TargetRegisterClass & RC)322 vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const { 323 vt_iterator I = legalclasstypes_begin(RC); 324 while (*I != MVT::Other) 325 ++I; 326 return I; 327 } 328 329 /// Returns the Register Class of a physical register of the given type, 330 /// picking the most sub register class of the right type that contains this 331 /// physreg. 332 const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg, 333 MVT VT = MVT::Other) const; 334 335 /// Returns the Register Class of a physical register of the given type, 336 /// picking the most sub register class of the right type that contains this 337 /// physreg. If there is no register class compatible with the given type, 338 /// returns nullptr. 339 const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg, 340 LLT Ty = LLT()) const; 341 342 /// Return the maximal subclass of the given register class that is 343 /// allocatable or NULL. 344 const TargetRegisterClass * 345 getAllocatableClass(const TargetRegisterClass *RC) const; 346 347 /// Returns a bitset indexed by register number indicating if a register is 348 /// allocatable or not. If a register class is specified, returns the subset 349 /// for the class. 350 BitVector getAllocatableSet(const MachineFunction &MF, 351 const TargetRegisterClass *RC = nullptr) const; 352 353 /// Get a list of cost values for all registers that correspond to the index 354 /// returned by RegisterCostTableIndex. getRegisterCosts(const MachineFunction & MF)355 ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const { 356 unsigned Idx = getRegisterCostTableIndex(MF); 357 unsigned NumRegs = getNumRegs(); 358 assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds"); 359 360 return ArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs); 361 } 362 363 /// Return true if the register is in the allocation of any register class. isInAllocatableClass(MCRegister RegNo)364 bool isInAllocatableClass(MCRegister RegNo) const { 365 return InfoDesc->InAllocatableClass[RegNo]; 366 } 367 368 /// Return the human-readable symbolic target-specific 369 /// name for the specified SubRegIndex. getSubRegIndexName(unsigned SubIdx)370 const char *getSubRegIndexName(unsigned SubIdx) const { 371 assert(SubIdx && SubIdx < getNumSubRegIndices() && 372 "This is not a subregister index"); 373 return SubRegIndexNames[SubIdx-1]; 374 } 375 376 /// Return a bitmask representing the parts of a register that are covered by 377 /// SubIdx \see LaneBitmask. 378 /// 379 /// SubIdx == 0 is allowed, it has the lane mask ~0u. getSubRegIndexLaneMask(unsigned SubIdx)380 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const { 381 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 382 return SubRegIndexLaneMasks[SubIdx]; 383 } 384 385 /// Try to find one or more subregister indexes to cover \p LaneMask. 386 /// 387 /// If this is possible, returns true and appends the best matching set of 388 /// indexes to \p Indexes. If this is not possible, returns false. 389 bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI, 390 const TargetRegisterClass *RC, 391 LaneBitmask LaneMask, 392 SmallVectorImpl<unsigned> &Indexes) const; 393 394 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 395 /// used to determine if sub-registers overlap - they can't be used to 396 /// determine if a set of sub-registers completely cover another 397 /// sub-register. 398 /// 399 /// The X86 general purpose registers have two lanes corresponding to the 400 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 401 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 402 /// sub_32bit sub-register. 403 /// 404 /// On the other hand, the ARM NEON lanes fully cover their registers: The 405 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 406 /// This is related to the CoveredBySubRegs property on register definitions. 407 /// 408 /// This function returns a bit mask of lanes that completely cover their 409 /// sub-registers. More precisely, given: 410 /// 411 /// Covering = getCoveringLanes(); 412 /// MaskA = getSubRegIndexLaneMask(SubA); 413 /// MaskB = getSubRegIndexLaneMask(SubB); 414 /// 415 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 416 /// SubB. getCoveringLanes()417 LaneBitmask getCoveringLanes() const { return CoveringLanes; } 418 419 /// Returns true if the two registers are equal or alias each other. 420 /// The registers may be virtual registers. regsOverlap(Register RegA,Register RegB)421 bool regsOverlap(Register RegA, Register RegB) const { 422 if (RegA == RegB) 423 return true; 424 if (RegA.isPhysical() && RegB.isPhysical()) 425 return MCRegisterInfo::regsOverlap(RegA.asMCReg(), RegB.asMCReg()); 426 return false; 427 } 428 429 /// Returns true if Reg contains RegUnit. hasRegUnit(MCRegister Reg,Register RegUnit)430 bool hasRegUnit(MCRegister Reg, Register RegUnit) const { 431 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 432 if (Register(*Units) == RegUnit) 433 return true; 434 return false; 435 } 436 437 /// Returns the original SrcReg unless it is the target of a copy-like 438 /// operation, in which case we chain backwards through all such operations 439 /// to the ultimate source register. If a physical register is encountered, 440 /// we stop the search. 441 virtual Register lookThruCopyLike(Register SrcReg, 442 const MachineRegisterInfo *MRI) const; 443 444 /// Find the original SrcReg unless it is the target of a copy-like operation, 445 /// in which case we chain backwards through all such operations to the 446 /// ultimate source register. If a physical register is encountered, we stop 447 /// the search. 448 /// Return the original SrcReg if all the definitions in the chain only have 449 /// one user and not a physical register. 450 virtual Register 451 lookThruSingleUseCopyChain(Register SrcReg, 452 const MachineRegisterInfo *MRI) const; 453 454 /// Return a null-terminated list of all of the callee-saved registers on 455 /// this target. The register should be in the order of desired callee-save 456 /// stack frame offset. The first register is closest to the incoming stack 457 /// pointer if stack grows down, and vice versa. 458 /// Notice: This function does not take into account disabled CSRs. 459 /// In most cases you will want to use instead the function 460 /// getCalleeSavedRegs that is implemented in MachineRegisterInfo. 461 virtual const MCPhysReg* 462 getCalleeSavedRegs(const MachineFunction *MF) const = 0; 463 464 /// Return a mask of call-preserved registers for the given calling convention 465 /// on the current function. The mask should include all call-preserved 466 /// aliases. This is used by the register allocator to determine which 467 /// registers can be live across a call. 468 /// 469 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 470 /// A set bit indicates that all bits of the corresponding register are 471 /// preserved across the function call. The bit mask is expected to be 472 /// sub-register complete, i.e. if A is preserved, so are all its 473 /// sub-registers. 474 /// 475 /// Bits are numbered from the LSB, so the bit for physical register Reg can 476 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 477 /// 478 /// A NULL pointer means that no register mask will be used, and call 479 /// instructions should use implicit-def operands to indicate call clobbered 480 /// registers. 481 /// getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)482 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF, 483 CallingConv::ID) const { 484 // The default mask clobbers everything. All targets should override. 485 return nullptr; 486 } 487 488 /// Return a register mask for the registers preserved by the unwinder, 489 /// or nullptr if no custom mask is needed. 490 virtual const uint32_t * getCustomEHPadPreservedMask(const MachineFunction & MF)491 getCustomEHPadPreservedMask(const MachineFunction &MF) const { 492 return nullptr; 493 } 494 495 /// Return a register mask that clobbers everything. getNoPreservedMask()496 virtual const uint32_t *getNoPreservedMask() const { 497 llvm_unreachable("target does not provide no preserved mask"); 498 } 499 500 /// Return a list of all of the registers which are clobbered "inside" a call 501 /// to the given function. For example, these might be needed for PLT 502 /// sequences of long-branch veneers. 503 virtual ArrayRef<MCPhysReg> getIntraCallClobberedRegs(const MachineFunction * MF)504 getIntraCallClobberedRegs(const MachineFunction *MF) const { 505 return {}; 506 } 507 508 /// Return true if all bits that are set in mask \p mask0 are also set in 509 /// \p mask1. 510 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const; 511 512 /// Return all the call-preserved register masks defined for this target. 513 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0; 514 virtual ArrayRef<const char *> getRegMaskNames() const = 0; 515 516 /// Returns a bitset indexed by physical register number indicating if a 517 /// register is a special register that has particular uses and should be 518 /// considered unavailable at all times, e.g. stack pointer, return address. 519 /// A reserved register: 520 /// - is not allocatable 521 /// - is considered always live 522 /// - is ignored by liveness tracking 523 /// It is often necessary to reserve the super registers of a reserved 524 /// register as well, to avoid them getting allocated indirectly. You may use 525 /// markSuperRegs() and checkAllSuperRegsMarked() in this case. 526 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 527 528 /// Returns either a string explaining why the given register is reserved for 529 /// this function, or an empty optional if no explanation has been written. 530 /// The absence of an explanation does not mean that the register is not 531 /// reserved (meaning, you should check that PhysReg is in fact reserved 532 /// before calling this). 533 virtual std::optional<std::string> explainReservedReg(const MachineFunction & MF,MCRegister PhysReg)534 explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const { 535 return {}; 536 } 537 538 /// Returns false if we can't guarantee that Physreg, specified as an IR asm 539 /// clobber constraint, will be preserved across the statement. isAsmClobberable(const MachineFunction & MF,MCRegister PhysReg)540 virtual bool isAsmClobberable(const MachineFunction &MF, 541 MCRegister PhysReg) const { 542 return true; 543 } 544 545 /// Returns true if PhysReg cannot be written to in inline asm statements. isInlineAsmReadOnlyReg(const MachineFunction & MF,unsigned PhysReg)546 virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF, 547 unsigned PhysReg) const { 548 return false; 549 } 550 551 /// Returns true if PhysReg is unallocatable and constant throughout the 552 /// function. Used by MachineRegisterInfo::isConstantPhysReg(). isConstantPhysReg(MCRegister PhysReg)553 virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; } 554 555 /// Returns true if the register class is considered divergent. isDivergentRegClass(const TargetRegisterClass * RC)556 virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const { 557 return false; 558 } 559 560 /// Physical registers that may be modified within a function but are 561 /// guaranteed to be restored before any uses. This is useful for targets that 562 /// have call sequences where a GOT register may be updated by the caller 563 /// prior to a call and is guaranteed to be restored (also by the caller) 564 /// after the call. isCallerPreservedPhysReg(MCRegister PhysReg,const MachineFunction & MF)565 virtual bool isCallerPreservedPhysReg(MCRegister PhysReg, 566 const MachineFunction &MF) const { 567 return false; 568 } 569 570 /// This is a wrapper around getCallPreservedMask(). 571 /// Return true if the register is preserved after the call. 572 virtual bool isCalleeSavedPhysReg(MCRegister PhysReg, 573 const MachineFunction &MF) const; 574 575 /// Returns true if PhysReg can be used as an argument to a function. isArgumentRegister(const MachineFunction & MF,MCRegister PhysReg)576 virtual bool isArgumentRegister(const MachineFunction &MF, 577 MCRegister PhysReg) const { 578 return false; 579 } 580 581 /// Returns true if PhysReg is a fixed register. isFixedRegister(const MachineFunction & MF,MCRegister PhysReg)582 virtual bool isFixedRegister(const MachineFunction &MF, 583 MCRegister PhysReg) const { 584 return false; 585 } 586 587 /// Returns true if PhysReg is a general purpose register. isGeneralPurposeRegister(const MachineFunction & MF,MCRegister PhysReg)588 virtual bool isGeneralPurposeRegister(const MachineFunction &MF, 589 MCRegister PhysReg) const { 590 return false; 591 } 592 593 /// Prior to adding the live-out mask to a stackmap or patchpoint 594 /// instruction, provide the target the opportunity to adjust it (mainly to 595 /// remove pseudo-registers that should be ignored). adjustStackMapLiveOutMask(uint32_t * Mask)596 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {} 597 598 /// Return a super-register of the specified register 599 /// Reg so its sub-register of index SubIdx is Reg. getMatchingSuperReg(MCRegister Reg,unsigned SubIdx,const TargetRegisterClass * RC)600 MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx, 601 const TargetRegisterClass *RC) const { 602 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 603 } 604 605 /// Return a subclass of the specified register 606 /// class A so that each register in it has a sub-register of the 607 /// specified sub-register index which is in the specified register class B. 608 /// 609 /// TableGen will synthesize missing A sub-classes. 610 virtual const TargetRegisterClass * 611 getMatchingSuperRegClass(const TargetRegisterClass *A, 612 const TargetRegisterClass *B, unsigned Idx) const; 613 614 // For a copy-like instruction that defines a register of class DefRC with 615 // subreg index DefSubReg, reading from another source with class SrcRC and 616 // subregister SrcSubReg return true if this is a preferable copy 617 // instruction or an earlier use should be used. 618 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, 619 unsigned DefSubReg, 620 const TargetRegisterClass *SrcRC, 621 unsigned SrcSubReg) const; 622 623 /// Returns the largest legal sub-class of RC that 624 /// supports the sub-register index Idx. 625 /// If no such sub-class exists, return NULL. 626 /// If all registers in RC already have an Idx sub-register, return RC. 627 /// 628 /// TableGen generates a version of this function that is good enough in most 629 /// cases. Targets can override if they have constraints that TableGen 630 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 631 /// supported by the full GR32 register class in 64-bit mode, but only by the 632 /// GR32_ABCD regiister class in 32-bit mode. 633 /// 634 /// TableGen will synthesize missing RC sub-classes. 635 virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)636 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 637 assert(Idx == 0 && "Target has no sub-registers"); 638 return RC; 639 } 640 641 /// Return a register class that can be used for a subregister copy from/into 642 /// \p SuperRC at \p SubRegIdx. 643 virtual const TargetRegisterClass * getSubRegisterClass(const TargetRegisterClass * SuperRC,unsigned SubRegIdx)644 getSubRegisterClass(const TargetRegisterClass *SuperRC, 645 unsigned SubRegIdx) const { 646 return nullptr; 647 } 648 649 /// Return the subregister index you get from composing 650 /// two subregister indices. 651 /// 652 /// The special null sub-register index composes as the identity. 653 /// 654 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 655 /// returns c. Note that composeSubRegIndices does not tell you about illegal 656 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 657 /// b, composeSubRegIndices doesn't tell you. 658 /// 659 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 660 /// ssub_0:S0 - ssub_3:S3 subregs. 661 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. composeSubRegIndices(unsigned a,unsigned b)662 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 663 if (!a) return b; 664 if (!b) return a; 665 return composeSubRegIndicesImpl(a, b); 666 } 667 668 /// Transforms a LaneMask computed for one subregister to the lanemask that 669 /// would have been computed when composing the subsubregisters with IdxA 670 /// first. @sa composeSubRegIndices() composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)671 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, 672 LaneBitmask Mask) const { 673 if (!IdxA) 674 return Mask; 675 return composeSubRegIndexLaneMaskImpl(IdxA, Mask); 676 } 677 678 /// Transform a lanemask given for a virtual register to the corresponding 679 /// lanemask before using subregister with index \p IdxA. 680 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a 681 /// valie lane mask (no invalid bits set) the following holds: 682 /// X0 = composeSubRegIndexLaneMask(Idx, Mask) 683 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0) 684 /// => X1 == Mask reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)685 LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA, 686 LaneBitmask LaneMask) const { 687 if (!IdxA) 688 return LaneMask; 689 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask); 690 } 691 692 /// Debugging helper: dump register in human readable form to dbgs() stream. 693 static void dumpReg(Register Reg, unsigned SubRegIndex = 0, 694 const TargetRegisterInfo *TRI = nullptr); 695 696 /// Return target defined base register class for a physical register. 697 /// This is the register class with the lowest BaseClassOrder containing the 698 /// register. 699 /// Will be nullptr if the register is not in any base register class. getPhysRegBaseClass(MCRegister Reg)700 virtual const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const { 701 return nullptr; 702 } 703 704 protected: 705 /// Overridden by TableGen in targets that have sub-registers. composeSubRegIndicesImpl(unsigned,unsigned)706 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 707 llvm_unreachable("Target has no sub-registers"); 708 } 709 710 /// Overridden by TableGen in targets that have sub-registers. 711 virtual LaneBitmask composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)712 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { 713 llvm_unreachable("Target has no sub-registers"); 714 } 715 reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)716 virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned, 717 LaneBitmask) const { 718 llvm_unreachable("Target has no sub-registers"); 719 } 720 721 /// Return the register cost table index. This implementation is sufficient 722 /// for most architectures and can be overriden by targets in case there are 723 /// multiple cost values associated with each register. getRegisterCostTableIndex(const MachineFunction & MF)724 virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const { 725 return 0; 726 } 727 728 public: 729 /// Find a common super-register class if it exists. 730 /// 731 /// Find a register class, SuperRC and two sub-register indices, PreA and 732 /// PreB, such that: 733 /// 734 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 735 /// 736 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 737 /// 738 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 739 /// 740 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 741 /// requirements, and there is no register class with a smaller spill size 742 /// that satisfies the requirements. 743 /// 744 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 745 /// 746 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 747 /// that case, the returned register class will be a sub-class of the 748 /// corresponding argument register class. 749 /// 750 /// The function returns NULL if no register class can be found. 751 const TargetRegisterClass* 752 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 753 const TargetRegisterClass *RCB, unsigned SubB, 754 unsigned &PreA, unsigned &PreB) const; 755 756 //===--------------------------------------------------------------------===// 757 // Register Class Information 758 // 759 protected: getRegClassInfo(const TargetRegisterClass & RC)760 const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const { 761 return RCInfos[getNumRegClasses() * HwMode + RC.getID()]; 762 } 763 764 public: 765 /// Register class iterators regclass_begin()766 regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_end()767 regclass_iterator regclass_end() const { return RegClassEnd; } regclasses()768 iterator_range<regclass_iterator> regclasses() const { 769 return make_range(regclass_begin(), regclass_end()); 770 } 771 getNumRegClasses()772 unsigned getNumRegClasses() const { 773 return (unsigned)(regclass_end()-regclass_begin()); 774 } 775 776 /// Returns the register class associated with the enumeration value. 777 /// See class MCOperandInfo. getRegClass(unsigned i)778 const TargetRegisterClass *getRegClass(unsigned i) const { 779 assert(i < getNumRegClasses() && "Register Class ID out of range"); 780 return RegClassBegin[i]; 781 } 782 783 /// Returns the name of the register class. getRegClassName(const TargetRegisterClass * Class)784 const char *getRegClassName(const TargetRegisterClass *Class) const { 785 return MCRegisterInfo::getRegClassName(Class->MC); 786 } 787 788 /// Find the largest common subclass of A and B. 789 /// Return NULL if there is no common subclass. 790 const TargetRegisterClass * 791 getCommonSubClass(const TargetRegisterClass *A, 792 const TargetRegisterClass *B) const; 793 794 /// Returns a TargetRegisterClass used for pointer values. 795 /// If a target supports multiple different pointer register classes, 796 /// kind specifies which one is indicated. 797 virtual const TargetRegisterClass * 798 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 799 llvm_unreachable("Target didn't implement getPointerRegClass!"); 800 } 801 802 /// Returns a legal register class to copy a register in the specified class 803 /// to or from. If it is possible to copy the register directly without using 804 /// a cross register class copy, return the specified RC. Returns NULL if it 805 /// is not possible to copy between two registers of the specified class. 806 virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass * RC)807 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 808 return RC; 809 } 810 811 /// Returns the largest super class of RC that is legal to use in the current 812 /// sub-target and has the same spill size. 813 /// The returned register class can be used to create virtual registers which 814 /// means that all its registers can be copied and spilled. 815 virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)816 getLargestLegalSuperClass(const TargetRegisterClass *RC, 817 const MachineFunction &) const { 818 /// The default implementation is very conservative and doesn't allow the 819 /// register allocator to inflate register classes. 820 return RC; 821 } 822 823 /// Return the register pressure "high water mark" for the specific register 824 /// class. The scheduler is in high register pressure mode (for the specific 825 /// register class) if it goes over the limit. 826 /// 827 /// Note: this is the old register pressure model that relies on a manually 828 /// specified representative register class per value type. getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)829 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 830 MachineFunction &MF) const { 831 return 0; 832 } 833 834 /// Return a heuristic for the machine scheduler to compare the profitability 835 /// of increasing one register pressure set versus another. The scheduler 836 /// will prefer increasing the register pressure of the set which returns 837 /// the largest value for this function. getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)838 virtual unsigned getRegPressureSetScore(const MachineFunction &MF, 839 unsigned PSetID) const { 840 return PSetID; 841 } 842 843 /// Get the weight in units of pressure for this register class. 844 virtual const RegClassWeight &getRegClassWeight( 845 const TargetRegisterClass *RC) const = 0; 846 847 /// Returns size in bits of a phys/virtual/generic register. 848 unsigned getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const; 849 850 /// Get the weight in units of pressure for this register unit. 851 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 852 853 /// Get the number of dimensions of register pressure. 854 virtual unsigned getNumRegPressureSets() const = 0; 855 856 /// Get the name of this register unit pressure set. 857 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 858 859 /// Get the register unit pressure limit for this dimension. 860 /// This limit must be adjusted dynamically for reserved registers. 861 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, 862 unsigned Idx) const = 0; 863 864 /// Get the dimensions of register pressure impacted by this register class. 865 /// Returns a -1 terminated array of pressure set IDs. 866 virtual const int *getRegClassPressureSets( 867 const TargetRegisterClass *RC) const = 0; 868 869 /// Get the dimensions of register pressure impacted by this register unit. 870 /// Returns a -1 terminated array of pressure set IDs. 871 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 872 873 /// Get a list of 'hint' registers that the register allocator should try 874 /// first when allocating a physical register for the virtual register 875 /// VirtReg. These registers are effectively moved to the front of the 876 /// allocation order. If true is returned, regalloc will try to only use 877 /// hints to the greatest extent possible even if it means spilling. 878 /// 879 /// The Order argument is the allocation order for VirtReg's register class 880 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 881 /// come from Order, and they must not be reserved. 882 /// 883 /// The default implementation of this function will only add target 884 /// independent register allocation hints. Targets that override this 885 /// function should typically call this default implementation as well and 886 /// expect to see generic copy hints added. 887 virtual bool 888 getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order, 889 SmallVectorImpl<MCPhysReg> &Hints, 890 const MachineFunction &MF, 891 const VirtRegMap *VRM = nullptr, 892 const LiveRegMatrix *Matrix = nullptr) const; 893 894 /// A callback to allow target a chance to update register allocation hints 895 /// when a register is "changed" (e.g. coalesced) to another register. 896 /// e.g. On ARM, some virtual registers should target register pairs, 897 /// if one of pair is coalesced to another register, the allocation hint of 898 /// the other half of the pair should be changed to point to the new register. updateRegAllocHint(Register Reg,Register NewReg,MachineFunction & MF)899 virtual void updateRegAllocHint(Register Reg, Register NewReg, 900 MachineFunction &MF) const { 901 // Do nothing. 902 } 903 904 /// Allow the target to reverse allocation order of local live ranges. This 905 /// will generally allocate shorter local live ranges first. For targets with 906 /// many registers, this could reduce regalloc compile time by a large 907 /// factor. It is disabled by default for three reasons: 908 /// (1) Top-down allocation is simpler and easier to debug for targets that 909 /// don't benefit from reversing the order. 910 /// (2) Bottom-up allocation could result in poor evicition decisions on some 911 /// targets affecting the performance of compiled code. 912 /// (3) Bottom-up allocation is no longer guaranteed to optimally color. reverseLocalAssignment()913 virtual bool reverseLocalAssignment() const { return false; } 914 915 /// Allow the target to override the cost of using a callee-saved register for 916 /// the first time. Default value of 0 means we will use a callee-saved 917 /// register if it is available. getCSRFirstUseCost()918 virtual unsigned getCSRFirstUseCost() const { return 0; } 919 920 /// Returns true if the target requires (and can make use of) the register 921 /// scavenger. requiresRegisterScavenging(const MachineFunction & MF)922 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 923 return false; 924 } 925 926 /// Returns true if the target wants to use frame pointer based accesses to 927 /// spill to the scavenger emergency spill slot. useFPForScavengingIndex(const MachineFunction & MF)928 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 929 return true; 930 } 931 932 /// Returns true if the target requires post PEI scavenging of registers for 933 /// materializing frame index constants. requiresFrameIndexScavenging(const MachineFunction & MF)934 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 935 return false; 936 } 937 938 /// Returns true if the target requires using the RegScavenger directly for 939 /// frame elimination despite using requiresFrameIndexScavenging. requiresFrameIndexReplacementScavenging(const MachineFunction & MF)940 virtual bool requiresFrameIndexReplacementScavenging( 941 const MachineFunction &MF) const { 942 return false; 943 } 944 945 /// Returns true if the target wants the LocalStackAllocation pass to be run 946 /// and virtual base registers used for more efficient stack access. requiresVirtualBaseRegisters(const MachineFunction & MF)947 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 948 return false; 949 } 950 951 /// Return true if target has reserved a spill slot in the stack frame of 952 /// the given function for the specified register. e.g. On x86, if the frame 953 /// register is required, the first fixed stack object is reserved as its 954 /// spill slot. This tells PEI not to create a new stack frame 955 /// object for the given register. It should be called only after 956 /// determineCalleeSaves(). hasReservedSpillSlot(const MachineFunction & MF,Register Reg,int & FrameIdx)957 virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg, 958 int &FrameIdx) const { 959 return false; 960 } 961 962 /// Returns true if the live-ins should be tracked after register allocation. trackLivenessAfterRegAlloc(const MachineFunction & MF)963 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 964 return true; 965 } 966 967 /// True if the stack can be realigned for the target. 968 virtual bool canRealignStack(const MachineFunction &MF) const; 969 970 /// True if storage within the function requires the stack pointer to be 971 /// aligned more than the normal calling convention calls for. 972 virtual bool shouldRealignStack(const MachineFunction &MF) const; 973 974 /// True if stack realignment is required and still possible. hasStackRealignment(const MachineFunction & MF)975 bool hasStackRealignment(const MachineFunction &MF) const { 976 return shouldRealignStack(MF) && canRealignStack(MF); 977 } 978 979 /// Get the offset from the referenced frame index in the instruction, 980 /// if there is one. getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)981 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 982 int Idx) const { 983 return 0; 984 } 985 986 /// Returns true if the instruction's frame index reference would be better 987 /// served by a base register other than FP or SP. 988 /// Used by LocalStackFrameAllocation to determine which frame index 989 /// references it should create new base registers for. needsFrameBaseReg(MachineInstr * MI,int64_t Offset)990 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 991 return false; 992 } 993 994 /// Insert defining instruction(s) for a pointer to FrameIdx before 995 /// insertion point I. Return materialized frame pointer. materializeFrameBaseRegister(MachineBasicBlock * MBB,int FrameIdx,int64_t Offset)996 virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB, 997 int FrameIdx, 998 int64_t Offset) const { 999 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 1000 "target"); 1001 } 1002 1003 /// Resolve a frame index operand of an instruction 1004 /// to reference the indicated base register plus offset instead. resolveFrameIndex(MachineInstr & MI,Register BaseReg,int64_t Offset)1005 virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1006 int64_t Offset) const { 1007 llvm_unreachable("resolveFrameIndex does not exist on this target"); 1008 } 1009 1010 /// Determine whether a given base register plus offset immediate is 1011 /// encodable to resolve a frame index. isFrameOffsetLegal(const MachineInstr * MI,Register BaseReg,int64_t Offset)1012 virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, 1013 int64_t Offset) const { 1014 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 1015 } 1016 1017 /// Gets the DWARF expression opcodes for \p Offset. 1018 virtual void getOffsetOpcodes(const StackOffset &Offset, 1019 SmallVectorImpl<uint64_t> &Ops) const; 1020 1021 /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr. 1022 DIExpression * 1023 prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags, 1024 const StackOffset &Offset) const; 1025 1026 /// Spill the register so it can be used by the register scavenger. 1027 /// Return true if the register was spilled, false otherwise. 1028 /// If this function does not spill the register, the scavenger 1029 /// will instead spill it to the emergency spill slot. saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,Register Reg)1030 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 1031 MachineBasicBlock::iterator I, 1032 MachineBasicBlock::iterator &UseMI, 1033 const TargetRegisterClass *RC, 1034 Register Reg) const { 1035 return false; 1036 } 1037 1038 /// Process frame indices in reverse block order. This changes the behavior of 1039 /// the RegScavenger passed to eliminateFrameIndex. If this is true targets 1040 /// should scavengeRegisterBackwards in eliminateFrameIndex. New targets 1041 /// should prefer reverse scavenging behavior. supportsBackwardScavenger()1042 virtual bool supportsBackwardScavenger() const { return false; } 1043 1044 /// This method must be overriden to eliminate abstract frame indices from 1045 /// instructions which may use them. The instruction referenced by the 1046 /// iterator contains an MO_FrameIndex operand which must be eliminated by 1047 /// this method. This method may modify or replace the specified instruction, 1048 /// as long as it keeps the iterator pointing at the finished product. 1049 /// SPAdj is the SP adjustment due to call frame setup instruction. 1050 /// FIOperandNum is the FI operand number. 1051 /// Returns true if the current instruction was removed and the iterator 1052 /// is not longer valid 1053 virtual bool eliminateFrameIndex(MachineBasicBlock::iterator MI, 1054 int SPAdj, unsigned FIOperandNum, 1055 RegScavenger *RS = nullptr) const = 0; 1056 1057 /// Return the assembly name for \p Reg. getRegAsmName(MCRegister Reg)1058 virtual StringRef getRegAsmName(MCRegister Reg) const { 1059 // FIXME: We are assuming that the assembly name is equal to the TableGen 1060 // name converted to lower case 1061 // 1062 // The TableGen name is the name of the definition for this register in the 1063 // target's tablegen files. For example, the TableGen name of 1064 // def EAX : Register <...>; is "EAX" 1065 return StringRef(getName(Reg)); 1066 } 1067 1068 //===--------------------------------------------------------------------===// 1069 /// Subtarget Hooks 1070 1071 /// SrcRC and DstRC will be morphed into NewRC if this returns true. shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)1072 virtual bool shouldCoalesce(MachineInstr *MI, 1073 const TargetRegisterClass *SrcRC, 1074 unsigned SubReg, 1075 const TargetRegisterClass *DstRC, 1076 unsigned DstSubReg, 1077 const TargetRegisterClass *NewRC, 1078 LiveIntervals &LIS) const 1079 { return true; } 1080 1081 /// Region split has a high compile time cost especially for large live range. 1082 /// This method is used to decide whether or not \p VirtReg should 1083 /// go through this expensive splitting heuristic. 1084 virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF, 1085 const LiveInterval &VirtReg) const; 1086 1087 /// Last chance recoloring has a high compile time cost especially for 1088 /// targets with a lot of registers. 1089 /// This method is used to decide whether or not \p VirtReg should 1090 /// go through this expensive heuristic. 1091 /// When this target hook is hit, by returning false, there is a high 1092 /// chance that the register allocation will fail altogether (usually with 1093 /// "ran out of registers"). 1094 /// That said, this error usually points to another problem in the 1095 /// optimization pipeline. 1096 virtual bool shouldUseLastChanceRecoloringForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1097 shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF, 1098 const LiveInterval &VirtReg) const { 1099 return true; 1100 } 1101 1102 /// Deferred spilling delays the spill insertion of a virtual register 1103 /// after every other allocation. By deferring the spilling, it is 1104 /// sometimes possible to eliminate that spilling altogether because 1105 /// something else could have been eliminated, thus leaving some space 1106 /// for the virtual register. 1107 /// However, this comes with a compile time impact because it adds one 1108 /// more stage to the greedy register allocator. 1109 /// This method is used to decide whether \p VirtReg should use the deferred 1110 /// spilling stage instead of being spilled right away. 1111 virtual bool shouldUseDeferredSpillingForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1112 shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF, 1113 const LiveInterval &VirtReg) const { 1114 return false; 1115 } 1116 1117 /// When prioritizing live ranges in register allocation, if this hook returns 1118 /// true then the AllocationPriority of the register class will be treated as 1119 /// more important than whether the range is local to a basic block or global. 1120 virtual bool regClassPriorityTrumpsGlobalness(const MachineFunction & MF)1121 regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const { 1122 return false; 1123 } 1124 1125 //===--------------------------------------------------------------------===// 1126 /// Debug information queries. 1127 1128 /// getFrameRegister - This method should return the register used as a base 1129 /// for values allocated in the current stack frame. 1130 virtual Register getFrameRegister(const MachineFunction &MF) const = 0; 1131 1132 /// Mark a register and all its aliases as reserved in the given set. 1133 void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const; 1134 1135 /// Returns true if for every register in the set all super registers are part 1136 /// of the set as well. 1137 bool checkAllSuperRegsMarked(const BitVector &RegisterSet, 1138 ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const; 1139 1140 virtual const TargetRegisterClass * getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)1141 getConstrainedRegClassForOperand(const MachineOperand &MO, 1142 const MachineRegisterInfo &MRI) const { 1143 return nullptr; 1144 } 1145 1146 /// Returns the physical register number of sub-register "Index" 1147 /// for physical register RegNo. Return zero if the sub-register does not 1148 /// exist. getSubReg(MCRegister Reg,unsigned Idx)1149 inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const { 1150 return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx); 1151 } 1152 1153 /// Some targets have non-allocatable registers that aren't technically part 1154 /// of the explicit callee saved register list, but should be handled as such 1155 /// in certain cases. isNonallocatableRegisterCalleeSave(MCRegister Reg)1156 virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const { 1157 return false; 1158 } 1159 }; 1160 1161 //===----------------------------------------------------------------------===// 1162 // SuperRegClassIterator 1163 //===----------------------------------------------------------------------===// 1164 // 1165 // Iterate over the possible super-registers for a given register class. The 1166 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 1167 // possible classes of super-registers. 1168 // 1169 // Each bit mask will have at least one set bit, and each set bit in Mask 1170 // corresponds to a SuperRC such that: 1171 // 1172 // For all Reg in SuperRC: Reg:Idx is in RC. 1173 // 1174 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 1175 // also satisfies the above requirement, assuming Reg:0 == Reg. 1176 // 1177 class SuperRegClassIterator { 1178 const unsigned RCMaskWords; 1179 unsigned SubReg = 0; 1180 const uint16_t *Idx; 1181 const uint32_t *Mask; 1182 1183 public: 1184 /// Create a SuperRegClassIterator that visits all the super-register classes 1185 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 1186 SuperRegClassIterator(const TargetRegisterClass *RC, 1187 const TargetRegisterInfo *TRI, 1188 bool IncludeSelf = false) 1189 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 1190 Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) { 1191 if (!IncludeSelf) 1192 ++*this; 1193 } 1194 1195 /// Returns true if this iterator is still pointing at a valid entry. isValid()1196 bool isValid() const { return Idx; } 1197 1198 /// Returns the current sub-register index. getSubReg()1199 unsigned getSubReg() const { return SubReg; } 1200 1201 /// Returns the bit mask of register classes that getSubReg() projects into 1202 /// RC. 1203 /// See TargetRegisterClass::getSubClassMask() for how to use it. getMask()1204 const uint32_t *getMask() const { return Mask; } 1205 1206 /// Advance iterator to the next entry. 1207 void operator++() { 1208 assert(isValid() && "Cannot move iterator past end."); 1209 Mask += RCMaskWords; 1210 SubReg = *Idx++; 1211 if (!SubReg) 1212 Idx = nullptr; 1213 } 1214 }; 1215 1216 //===----------------------------------------------------------------------===// 1217 // BitMaskClassIterator 1218 //===----------------------------------------------------------------------===// 1219 /// This class encapuslates the logic to iterate over bitmask returned by 1220 /// the various RegClass related APIs. 1221 /// E.g., this class can be used to iterate over the subclasses provided by 1222 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask. 1223 class BitMaskClassIterator { 1224 /// Total number of register classes. 1225 const unsigned NumRegClasses; 1226 /// Base index of CurrentChunk. 1227 /// In other words, the number of bit we read to get at the 1228 /// beginning of that chunck. 1229 unsigned Base = 0; 1230 /// Adjust base index of CurrentChunk. 1231 /// Base index + how many bit we read within CurrentChunk. 1232 unsigned Idx = 0; 1233 /// Current register class ID. 1234 unsigned ID = 0; 1235 /// Mask we are iterating over. 1236 const uint32_t *Mask; 1237 /// Current chunk of the Mask we are traversing. 1238 uint32_t CurrentChunk; 1239 1240 /// Move ID to the next set bit. moveToNextID()1241 void moveToNextID() { 1242 // If the current chunk of memory is empty, move to the next one, 1243 // while making sure we do not go pass the number of register 1244 // classes. 1245 while (!CurrentChunk) { 1246 // Move to the next chunk. 1247 Base += 32; 1248 if (Base >= NumRegClasses) { 1249 ID = NumRegClasses; 1250 return; 1251 } 1252 CurrentChunk = *++Mask; 1253 Idx = Base; 1254 } 1255 // Otherwise look for the first bit set from the right 1256 // (representation of the class ID is big endian). 1257 // See getSubClassMask for more details on the representation. 1258 unsigned Offset = countTrailingZeros(CurrentChunk); 1259 // Add the Offset to the adjusted base number of this chunk: Idx. 1260 // This is the ID of the register class. 1261 ID = Idx + Offset; 1262 1263 // Consume the zeros, if any, and the bit we just read 1264 // so that we are at the right spot for the next call. 1265 // Do not do Offset + 1 because Offset may be 31 and 32 1266 // will be UB for the shift, though in that case we could 1267 // have make the chunk being equal to 0, but that would 1268 // have introduced a if statement. 1269 moveNBits(Offset); 1270 moveNBits(1); 1271 } 1272 1273 /// Move \p NumBits Bits forward in CurrentChunk. moveNBits(unsigned NumBits)1274 void moveNBits(unsigned NumBits) { 1275 assert(NumBits < 32 && "Undefined behavior spotted!"); 1276 // Consume the bit we read for the next call. 1277 CurrentChunk >>= NumBits; 1278 // Adjust the base for the chunk. 1279 Idx += NumBits; 1280 } 1281 1282 public: 1283 /// Create a BitMaskClassIterator that visits all the register classes 1284 /// represented by \p Mask. 1285 /// 1286 /// \pre \p Mask != nullptr BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1287 BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI) 1288 : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) { 1289 // Move to the first ID. 1290 moveToNextID(); 1291 } 1292 1293 /// Returns true if this iterator is still pointing at a valid entry. isValid()1294 bool isValid() const { return getID() != NumRegClasses; } 1295 1296 /// Returns the current register class ID. getID()1297 unsigned getID() const { return ID; } 1298 1299 /// Advance iterator to the next entry. 1300 void operator++() { 1301 assert(isValid() && "Cannot move iterator past end."); 1302 moveToNextID(); 1303 } 1304 }; 1305 1306 // This is useful when building IndexedMaps keyed on virtual registers 1307 struct VirtReg2IndexFunctor { 1308 using argument_type = Register; operatorVirtReg2IndexFunctor1309 unsigned operator()(Register Reg) const { 1310 return Register::virtReg2Index(Reg); 1311 } 1312 }; 1313 1314 /// Prints virtual and physical registers with or without a TRI instance. 1315 /// 1316 /// The format is: 1317 /// %noreg - NoRegister 1318 /// %5 - a virtual register. 1319 /// %5:sub_8bit - a virtual register with sub-register index (with TRI). 1320 /// %eax - a physical register 1321 /// %physreg17 - a physical register when no TRI instance given. 1322 /// 1323 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n'; 1324 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr, 1325 unsigned SubIdx = 0, 1326 const MachineRegisterInfo *MRI = nullptr); 1327 1328 /// Create Printable object to print register units on a \ref raw_ostream. 1329 /// 1330 /// Register units are named after their root registers: 1331 /// 1332 /// al - Single root. 1333 /// fp0~st7 - Dual roots. 1334 /// 1335 /// Usage: OS << printRegUnit(Unit, TRI) << '\n'; 1336 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI); 1337 1338 /// Create Printable object to print virtual registers and physical 1339 /// registers on a \ref raw_ostream. 1340 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI); 1341 1342 /// Create Printable object to print register classes or register banks 1343 /// on a \ref raw_ostream. 1344 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo, 1345 const TargetRegisterInfo *TRI); 1346 1347 } // end namespace llvm 1348 1349 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H 1350