xref: /openbsd/gnu/gcc/gcc/rtlanal.c (revision 404b540a)
1 /* Analyze RTL for GNU compiler.
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
4    Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA.  */
22 
23 
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40 
41 /* Forward declarations */
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
48 
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50                                                    rtx, enum machine_mode,
51                                                    unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53                                              enum machine_mode,
54                                              unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56                                                 enum machine_mode,
57                                                 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59                                           enum machine_mode, unsigned int);
60 
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62    -1 if a code has no such operand.  */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
64 
65 /* Bit flags that specify the machine subtype we are compiling for.
66    Bits are tested using macros TARGET_... defined in the tm.h file
67    and set by `-m...' switches.  Must be defined in rtlanal.c.  */
68 
69 int target_flags;
70 
71 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
72    If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
73    SIGN_EXTEND then while narrowing we also have to enforce the
74    representation and sign-extend the value to mode DESTINATION_REP.
75 
76    If the value is already sign-extended to DESTINATION_REP mode we
77    can just switch to DESTINATION mode on it.  For each pair of
78    integral modes SOURCE and DESTINATION, when truncating from SOURCE
79    to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
80    contains the number of high-order bits in SOURCE that have to be
81    copies of the sign-bit so that we can do this mode-switch to
82    DESTINATION.  */
83 
84 static unsigned int
85 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
86 
87 /* Return 1 if the value of X is unstable
88    (would be different at a different point in the program).
89    The frame pointer, arg pointer, etc. are considered stable
90    (within one function) and so is anything marked `unchanging'.  */
91 
92 int
rtx_unstable_p(rtx x)93 rtx_unstable_p (rtx x)
94 {
95   RTX_CODE code = GET_CODE (x);
96   int i;
97   const char *fmt;
98 
99   switch (code)
100     {
101     case MEM:
102       return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
103 
104     case CONST:
105     case CONST_INT:
106     case CONST_DOUBLE:
107     case CONST_VECTOR:
108     case SYMBOL_REF:
109     case LABEL_REF:
110       return 0;
111 
112     case REG:
113       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
114       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
115 	  /* The arg pointer varies if it is not a fixed register.  */
116 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
117 	return 0;
118 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
119       /* ??? When call-clobbered, the value is stable modulo the restore
120 	 that must happen after a call.  This currently screws up local-alloc
121 	 into believing that the restore is not needed.  */
122       if (x == pic_offset_table_rtx)
123 	return 0;
124 #endif
125       return 1;
126 
127     case ASM_OPERANDS:
128       if (MEM_VOLATILE_P (x))
129 	return 1;
130 
131       /* Fall through.  */
132 
133     default:
134       break;
135     }
136 
137   fmt = GET_RTX_FORMAT (code);
138   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
139     if (fmt[i] == 'e')
140       {
141 	if (rtx_unstable_p (XEXP (x, i)))
142 	  return 1;
143       }
144     else if (fmt[i] == 'E')
145       {
146 	int j;
147 	for (j = 0; j < XVECLEN (x, i); j++)
148 	  if (rtx_unstable_p (XVECEXP (x, i, j)))
149 	    return 1;
150       }
151 
152   return 0;
153 }
154 
155 /* Return 1 if X has a value that can vary even between two
156    executions of the program.  0 means X can be compared reliably
157    against certain constants or near-constants.
158    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
159    zero, we are slightly more conservative.
160    The frame pointer and the arg pointer are considered constant.  */
161 
162 int
rtx_varies_p(rtx x,int for_alias)163 rtx_varies_p (rtx x, int for_alias)
164 {
165   RTX_CODE code;
166   int i;
167   const char *fmt;
168 
169   if (!x)
170     return 0;
171 
172   code = GET_CODE (x);
173   switch (code)
174     {
175     case MEM:
176       return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
177 
178     case CONST:
179     case CONST_INT:
180     case CONST_DOUBLE:
181     case CONST_VECTOR:
182     case SYMBOL_REF:
183     case LABEL_REF:
184       return 0;
185 
186     case REG:
187       /* Note that we have to test for the actual rtx used for the frame
188 	 and arg pointers and not just the register number in case we have
189 	 eliminated the frame and/or arg pointer and are using it
190 	 for pseudos.  */
191       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
192 	  /* The arg pointer varies if it is not a fixed register.  */
193 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
194 	return 0;
195       if (x == pic_offset_table_rtx
196 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
197 	  /* ??? When call-clobbered, the value is stable modulo the restore
198 	     that must happen after a call.  This currently screws up
199 	     local-alloc into believing that the restore is not needed, so we
200 	     must return 0 only if we are called from alias analysis.  */
201 	  && for_alias
202 #endif
203 	  )
204 	return 0;
205       return 1;
206 
207     case LO_SUM:
208       /* The operand 0 of a LO_SUM is considered constant
209 	 (in fact it is related specifically to operand 1)
210 	 during alias analysis.  */
211       return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
212 	     || rtx_varies_p (XEXP (x, 1), for_alias);
213 
214     case ASM_OPERANDS:
215       if (MEM_VOLATILE_P (x))
216 	return 1;
217 
218       /* Fall through.  */
219 
220     default:
221       break;
222     }
223 
224   fmt = GET_RTX_FORMAT (code);
225   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
226     if (fmt[i] == 'e')
227       {
228 	if (rtx_varies_p (XEXP (x, i), for_alias))
229 	  return 1;
230       }
231     else if (fmt[i] == 'E')
232       {
233 	int j;
234 	for (j = 0; j < XVECLEN (x, i); j++)
235 	  if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
236 	    return 1;
237       }
238 
239   return 0;
240 }
241 
242 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
243    MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
244    whether nonzero is returned for unaligned memory accesses on strict
245    alignment machines.  */
246 
247 static int
rtx_addr_can_trap_p_1(rtx x,enum machine_mode mode,bool unaligned_mems)248 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
249 {
250   enum rtx_code code = GET_CODE (x);
251 
252   switch (code)
253     {
254     case SYMBOL_REF:
255       return SYMBOL_REF_WEAK (x);
256 
257     case LABEL_REF:
258       return 0;
259 
260     case REG:
261       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
262       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
263 	  || x == stack_pointer_rtx
264 	  /* The arg pointer varies if it is not a fixed register.  */
265 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
266 	return 0;
267       /* All of the virtual frame registers are stack references.  */
268       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
269 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
270 	return 0;
271       return 1;
272 
273     case CONST:
274       return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
275 
276     case PLUS:
277       /* An address is assumed not to trap if:
278 	 - it is an address that can't trap plus a constant integer,
279 	   with the proper remainder modulo the mode size if we are
280 	   considering unaligned memory references.  */
281       if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
282 	  && GET_CODE (XEXP (x, 1)) == CONST_INT)
283 	{
284 	  HOST_WIDE_INT offset;
285 
286 	  if (!STRICT_ALIGNMENT
287 	      || !unaligned_mems
288 	      || GET_MODE_SIZE (mode) == 0)
289 	    return 0;
290 
291 	  offset = INTVAL (XEXP (x, 1));
292 
293 #ifdef SPARC_STACK_BOUNDARY_HACK
294 	  /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
295 	     the real alignment of %sp.  However, when it does this, the
296 	     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
297 	  if (SPARC_STACK_BOUNDARY_HACK
298 	      && (XEXP (x, 0) == stack_pointer_rtx
299 		  || XEXP (x, 0) == hard_frame_pointer_rtx))
300 	    offset -= STACK_POINTER_OFFSET;
301 #endif
302 
303 	  return offset % GET_MODE_SIZE (mode) != 0;
304 	}
305 
306       /* - or it is the pic register plus a constant.  */
307       if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
308 	return 0;
309 
310       return 1;
311 
312     case LO_SUM:
313     case PRE_MODIFY:
314       return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
315 
316     case PRE_DEC:
317     case PRE_INC:
318     case POST_DEC:
319     case POST_INC:
320     case POST_MODIFY:
321       return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
322 
323     default:
324       break;
325     }
326 
327   /* If it isn't one of the case above, it can cause a trap.  */
328   return 1;
329 }
330 
331 /* Return nonzero if the use of X as an address in a MEM can cause a trap.  */
332 
333 int
rtx_addr_can_trap_p(rtx x)334 rtx_addr_can_trap_p (rtx x)
335 {
336   return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
337 }
338 
339 /* Return true if X is an address that is known to not be zero.  */
340 
341 bool
nonzero_address_p(rtx x)342 nonzero_address_p (rtx x)
343 {
344   enum rtx_code code = GET_CODE (x);
345 
346   switch (code)
347     {
348     case SYMBOL_REF:
349       return !SYMBOL_REF_WEAK (x);
350 
351     case LABEL_REF:
352       return true;
353 
354     case REG:
355       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
356       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
357 	  || x == stack_pointer_rtx
358 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
359 	return true;
360       /* All of the virtual frame registers are stack references.  */
361       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
362 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
363 	return true;
364       return false;
365 
366     case CONST:
367       return nonzero_address_p (XEXP (x, 0));
368 
369     case PLUS:
370       if (GET_CODE (XEXP (x, 1)) == CONST_INT)
371         return nonzero_address_p (XEXP (x, 0));
372       /* Handle PIC references.  */
373       else if (XEXP (x, 0) == pic_offset_table_rtx
374 	       && CONSTANT_P (XEXP (x, 1)))
375 	return true;
376       return false;
377 
378     case PRE_MODIFY:
379       /* Similar to the above; allow positive offsets.  Further, since
380 	 auto-inc is only allowed in memories, the register must be a
381 	 pointer.  */
382       if (GET_CODE (XEXP (x, 1)) == CONST_INT
383 	  && INTVAL (XEXP (x, 1)) > 0)
384 	return true;
385       return nonzero_address_p (XEXP (x, 0));
386 
387     case PRE_INC:
388       /* Similarly.  Further, the offset is always positive.  */
389       return true;
390 
391     case PRE_DEC:
392     case POST_DEC:
393     case POST_INC:
394     case POST_MODIFY:
395       return nonzero_address_p (XEXP (x, 0));
396 
397     case LO_SUM:
398       return nonzero_address_p (XEXP (x, 1));
399 
400     default:
401       break;
402     }
403 
404   /* If it isn't one of the case above, might be zero.  */
405   return false;
406 }
407 
408 /* Return 1 if X refers to a memory location whose address
409    cannot be compared reliably with constant addresses,
410    or if X refers to a BLKmode memory object.
411    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
412    zero, we are slightly more conservative.  */
413 
414 int
rtx_addr_varies_p(rtx x,int for_alias)415 rtx_addr_varies_p (rtx x, int for_alias)
416 {
417   enum rtx_code code;
418   int i;
419   const char *fmt;
420 
421   if (x == 0)
422     return 0;
423 
424   code = GET_CODE (x);
425   if (code == MEM)
426     return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
427 
428   fmt = GET_RTX_FORMAT (code);
429   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
430     if (fmt[i] == 'e')
431       {
432 	if (rtx_addr_varies_p (XEXP (x, i), for_alias))
433 	  return 1;
434       }
435     else if (fmt[i] == 'E')
436       {
437 	int j;
438 	for (j = 0; j < XVECLEN (x, i); j++)
439 	  if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
440 	    return 1;
441       }
442   return 0;
443 }
444 
445 /* Return the value of the integer term in X, if one is apparent;
446    otherwise return 0.
447    Only obvious integer terms are detected.
448    This is used in cse.c with the `related_value' field.  */
449 
450 HOST_WIDE_INT
get_integer_term(rtx x)451 get_integer_term (rtx x)
452 {
453   if (GET_CODE (x) == CONST)
454     x = XEXP (x, 0);
455 
456   if (GET_CODE (x) == MINUS
457       && GET_CODE (XEXP (x, 1)) == CONST_INT)
458     return - INTVAL (XEXP (x, 1));
459   if (GET_CODE (x) == PLUS
460       && GET_CODE (XEXP (x, 1)) == CONST_INT)
461     return INTVAL (XEXP (x, 1));
462   return 0;
463 }
464 
465 /* If X is a constant, return the value sans apparent integer term;
466    otherwise return 0.
467    Only obvious integer terms are detected.  */
468 
469 rtx
get_related_value(rtx x)470 get_related_value (rtx x)
471 {
472   if (GET_CODE (x) != CONST)
473     return 0;
474   x = XEXP (x, 0);
475   if (GET_CODE (x) == PLUS
476       && GET_CODE (XEXP (x, 1)) == CONST_INT)
477     return XEXP (x, 0);
478   else if (GET_CODE (x) == MINUS
479 	   && GET_CODE (XEXP (x, 1)) == CONST_INT)
480     return XEXP (x, 0);
481   return 0;
482 }
483 
484 /* Return the number of places FIND appears within X.  If COUNT_DEST is
485    zero, we do not count occurrences inside the destination of a SET.  */
486 
487 int
count_occurrences(rtx x,rtx find,int count_dest)488 count_occurrences (rtx x, rtx find, int count_dest)
489 {
490   int i, j;
491   enum rtx_code code;
492   const char *format_ptr;
493   int count;
494 
495   if (x == find)
496     return 1;
497 
498   code = GET_CODE (x);
499 
500   switch (code)
501     {
502     case REG:
503     case CONST_INT:
504     case CONST_DOUBLE:
505     case CONST_VECTOR:
506     case SYMBOL_REF:
507     case CODE_LABEL:
508     case PC:
509     case CC0:
510       return 0;
511 
512     case MEM:
513       if (MEM_P (find) && rtx_equal_p (x, find))
514 	return 1;
515       break;
516 
517     case SET:
518       if (SET_DEST (x) == find && ! count_dest)
519 	return count_occurrences (SET_SRC (x), find, count_dest);
520       break;
521 
522     default:
523       break;
524     }
525 
526   format_ptr = GET_RTX_FORMAT (code);
527   count = 0;
528 
529   for (i = 0; i < GET_RTX_LENGTH (code); i++)
530     {
531       switch (*format_ptr++)
532 	{
533 	case 'e':
534 	  count += count_occurrences (XEXP (x, i), find, count_dest);
535 	  break;
536 
537 	case 'E':
538 	  for (j = 0; j < XVECLEN (x, i); j++)
539 	    count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
540 	  break;
541 	}
542     }
543   return count;
544 }
545 
546 /* Nonzero if register REG appears somewhere within IN.
547    Also works if REG is not a register; in this case it checks
548    for a subexpression of IN that is Lisp "equal" to REG.  */
549 
550 int
reg_mentioned_p(rtx reg,rtx in)551 reg_mentioned_p (rtx reg, rtx in)
552 {
553   const char *fmt;
554   int i;
555   enum rtx_code code;
556 
557   if (in == 0)
558     return 0;
559 
560   if (reg == in)
561     return 1;
562 
563   if (GET_CODE (in) == LABEL_REF)
564     return reg == XEXP (in, 0);
565 
566   code = GET_CODE (in);
567 
568   switch (code)
569     {
570       /* Compare registers by number.  */
571     case REG:
572       return REG_P (reg) && REGNO (in) == REGNO (reg);
573 
574       /* These codes have no constituent expressions
575 	 and are unique.  */
576     case SCRATCH:
577     case CC0:
578     case PC:
579       return 0;
580 
581     case CONST_INT:
582     case CONST_VECTOR:
583     case CONST_DOUBLE:
584       /* These are kept unique for a given value.  */
585       return 0;
586 
587     default:
588       break;
589     }
590 
591   if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
592     return 1;
593 
594   fmt = GET_RTX_FORMAT (code);
595 
596   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597     {
598       if (fmt[i] == 'E')
599 	{
600 	  int j;
601 	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
602 	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
603 	      return 1;
604 	}
605       else if (fmt[i] == 'e'
606 	       && reg_mentioned_p (reg, XEXP (in, i)))
607 	return 1;
608     }
609   return 0;
610 }
611 
612 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
613    no CODE_LABEL insn.  */
614 
615 int
no_labels_between_p(rtx beg,rtx end)616 no_labels_between_p (rtx beg, rtx end)
617 {
618   rtx p;
619   if (beg == end)
620     return 0;
621   for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
622     if (LABEL_P (p))
623       return 0;
624   return 1;
625 }
626 
627 /* Nonzero if register REG is used in an insn between
628    FROM_INSN and TO_INSN (exclusive of those two).  */
629 
630 int
reg_used_between_p(rtx reg,rtx from_insn,rtx to_insn)631 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
632 {
633   rtx insn;
634 
635   if (from_insn == to_insn)
636     return 0;
637 
638   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
639     if (INSN_P (insn)
640 	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
641 	   || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
642       return 1;
643   return 0;
644 }
645 
646 /* Nonzero if the old value of X, a register, is referenced in BODY.  If X
647    is entirely replaced by a new value and the only use is as a SET_DEST,
648    we do not consider it a reference.  */
649 
650 int
reg_referenced_p(rtx x,rtx body)651 reg_referenced_p (rtx x, rtx body)
652 {
653   int i;
654 
655   switch (GET_CODE (body))
656     {
657     case SET:
658       if (reg_overlap_mentioned_p (x, SET_SRC (body)))
659 	return 1;
660 
661       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
662 	 of a REG that occupies all of the REG, the insn references X if
663 	 it is mentioned in the destination.  */
664       if (GET_CODE (SET_DEST (body)) != CC0
665 	  && GET_CODE (SET_DEST (body)) != PC
666 	  && !REG_P (SET_DEST (body))
667 	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
668 		&& REG_P (SUBREG_REG (SET_DEST (body)))
669 		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
670 		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
671 		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
672 			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
673 	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
674 	return 1;
675       return 0;
676 
677     case ASM_OPERANDS:
678       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
679 	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
680 	  return 1;
681       return 0;
682 
683     case CALL:
684     case USE:
685     case IF_THEN_ELSE:
686       return reg_overlap_mentioned_p (x, body);
687 
688     case TRAP_IF:
689       return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
690 
691     case PREFETCH:
692       return reg_overlap_mentioned_p (x, XEXP (body, 0));
693 
694     case UNSPEC:
695     case UNSPEC_VOLATILE:
696       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
697 	if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
698 	  return 1;
699       return 0;
700 
701     case PARALLEL:
702       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
703 	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
704 	  return 1;
705       return 0;
706 
707     case CLOBBER:
708       if (MEM_P (XEXP (body, 0)))
709 	if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
710 	  return 1;
711       return 0;
712 
713     case COND_EXEC:
714       if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
715 	return 1;
716       return reg_referenced_p (x, COND_EXEC_CODE (body));
717 
718     default:
719       return 0;
720     }
721 }
722 
723 /* Nonzero if register REG is set or clobbered in an insn between
724    FROM_INSN and TO_INSN (exclusive of those two).  */
725 
726 int
reg_set_between_p(rtx reg,rtx from_insn,rtx to_insn)727 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
728 {
729   rtx insn;
730 
731   if (from_insn == to_insn)
732     return 0;
733 
734   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
735     if (INSN_P (insn) && reg_set_p (reg, insn))
736       return 1;
737   return 0;
738 }
739 
740 /* Internals of reg_set_between_p.  */
741 int
reg_set_p(rtx reg,rtx insn)742 reg_set_p (rtx reg, rtx insn)
743 {
744   /* We can be passed an insn or part of one.  If we are passed an insn,
745      check if a side-effect of the insn clobbers REG.  */
746   if (INSN_P (insn)
747       && (FIND_REG_INC_NOTE (insn, reg)
748 	  || (CALL_P (insn)
749 	      && ((REG_P (reg)
750 		   && REGNO (reg) < FIRST_PSEUDO_REGISTER
751 		   && TEST_HARD_REG_BIT (regs_invalidated_by_call,
752 					 REGNO (reg)))
753 		  || MEM_P (reg)
754 		  || find_reg_fusage (insn, CLOBBER, reg)))))
755     return 1;
756 
757   return set_of (reg, insn) != NULL_RTX;
758 }
759 
760 /* Similar to reg_set_between_p, but check all registers in X.  Return 0
761    only if none of them are modified between START and END.  Return 1 if
762    X contains a MEM; this routine does usememory aliasing.  */
763 
764 int
modified_between_p(rtx x,rtx start,rtx end)765 modified_between_p (rtx x, rtx start, rtx end)
766 {
767   enum rtx_code code = GET_CODE (x);
768   const char *fmt;
769   int i, j;
770   rtx insn;
771 
772   if (start == end)
773     return 0;
774 
775   switch (code)
776     {
777     case CONST_INT:
778     case CONST_DOUBLE:
779     case CONST_VECTOR:
780     case CONST:
781     case SYMBOL_REF:
782     case LABEL_REF:
783       return 0;
784 
785     case PC:
786     case CC0:
787       return 1;
788 
789     case MEM:
790       if (modified_between_p (XEXP (x, 0), start, end))
791 	return 1;
792       if (MEM_READONLY_P (x))
793 	return 0;
794       for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
795 	if (memory_modified_in_insn_p (x, insn))
796 	  return 1;
797       return 0;
798       break;
799 
800     case REG:
801       return reg_set_between_p (x, start, end);
802 
803     default:
804       break;
805     }
806 
807   fmt = GET_RTX_FORMAT (code);
808   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
809     {
810       if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
811 	return 1;
812 
813       else if (fmt[i] == 'E')
814 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
815 	  if (modified_between_p (XVECEXP (x, i, j), start, end))
816 	    return 1;
817     }
818 
819   return 0;
820 }
821 
822 /* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
823    of them are modified in INSN.  Return 1 if X contains a MEM; this routine
824    does use memory aliasing.  */
825 
826 int
modified_in_p(rtx x,rtx insn)827 modified_in_p (rtx x, rtx insn)
828 {
829   enum rtx_code code = GET_CODE (x);
830   const char *fmt;
831   int i, j;
832 
833   switch (code)
834     {
835     case CONST_INT:
836     case CONST_DOUBLE:
837     case CONST_VECTOR:
838     case CONST:
839     case SYMBOL_REF:
840     case LABEL_REF:
841       return 0;
842 
843     case PC:
844     case CC0:
845       return 1;
846 
847     case MEM:
848       if (modified_in_p (XEXP (x, 0), insn))
849 	return 1;
850       if (MEM_READONLY_P (x))
851 	return 0;
852       if (memory_modified_in_insn_p (x, insn))
853 	return 1;
854       return 0;
855       break;
856 
857     case REG:
858       return reg_set_p (x, insn);
859 
860     default:
861       break;
862     }
863 
864   fmt = GET_RTX_FORMAT (code);
865   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
866     {
867       if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
868 	return 1;
869 
870       else if (fmt[i] == 'E')
871 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
872 	  if (modified_in_p (XVECEXP (x, i, j), insn))
873 	    return 1;
874     }
875 
876   return 0;
877 }
878 
879 /* Helper function for set_of.  */
880 struct set_of_data
881   {
882     rtx found;
883     rtx pat;
884   };
885 
886 static void
set_of_1(rtx x,rtx pat,void * data1)887 set_of_1 (rtx x, rtx pat, void *data1)
888 {
889    struct set_of_data *data = (struct set_of_data *) (data1);
890    if (rtx_equal_p (x, data->pat)
891        || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
892      data->found = pat;
893 }
894 
895 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
896    (either directly or via STRICT_LOW_PART and similar modifiers).  */
897 rtx
set_of(rtx pat,rtx insn)898 set_of (rtx pat, rtx insn)
899 {
900   struct set_of_data data;
901   data.found = NULL_RTX;
902   data.pat = pat;
903   note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
904   return data.found;
905 }
906 
907 /* Given an INSN, return a SET expression if this insn has only a single SET.
908    It may also have CLOBBERs, USEs, or SET whose output
909    will not be used, which we ignore.  */
910 
911 rtx
single_set_2(rtx insn,rtx pat)912 single_set_2 (rtx insn, rtx pat)
913 {
914   rtx set = NULL;
915   int set_verified = 1;
916   int i;
917 
918   if (GET_CODE (pat) == PARALLEL)
919     {
920       for (i = 0; i < XVECLEN (pat, 0); i++)
921 	{
922 	  rtx sub = XVECEXP (pat, 0, i);
923 	  switch (GET_CODE (sub))
924 	    {
925 	    case USE:
926 	    case CLOBBER:
927 	      break;
928 
929 	    case SET:
930 	      /* We can consider insns having multiple sets, where all
931 		 but one are dead as single set insns.  In common case
932 		 only single set is present in the pattern so we want
933 		 to avoid checking for REG_UNUSED notes unless necessary.
934 
935 		 When we reach set first time, we just expect this is
936 		 the single set we are looking for and only when more
937 		 sets are found in the insn, we check them.  */
938 	      if (!set_verified)
939 		{
940 		  if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
941 		      && !side_effects_p (set))
942 		    set = NULL;
943 		  else
944 		    set_verified = 1;
945 		}
946 	      if (!set)
947 		set = sub, set_verified = 0;
948 	      else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
949 		       || side_effects_p (sub))
950 		return NULL_RTX;
951 	      break;
952 
953 	    default:
954 	      return NULL_RTX;
955 	    }
956 	}
957     }
958   return set;
959 }
960 
961 /* Given an INSN, return nonzero if it has more than one SET, else return
962    zero.  */
963 
964 int
multiple_sets(rtx insn)965 multiple_sets (rtx insn)
966 {
967   int found;
968   int i;
969 
970   /* INSN must be an insn.  */
971   if (! INSN_P (insn))
972     return 0;
973 
974   /* Only a PARALLEL can have multiple SETs.  */
975   if (GET_CODE (PATTERN (insn)) == PARALLEL)
976     {
977       for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
978 	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
979 	  {
980 	    /* If we have already found a SET, then return now.  */
981 	    if (found)
982 	      return 1;
983 	    else
984 	      found = 1;
985 	  }
986     }
987 
988   /* Either zero or one SET.  */
989   return 0;
990 }
991 
992 /* Return nonzero if the destination of SET equals the source
993    and there are no side effects.  */
994 
995 int
set_noop_p(rtx set)996 set_noop_p (rtx set)
997 {
998   rtx src = SET_SRC (set);
999   rtx dst = SET_DEST (set);
1000 
1001   if (dst == pc_rtx && src == pc_rtx)
1002     return 1;
1003 
1004   if (MEM_P (dst) && MEM_P (src))
1005     return rtx_equal_p (dst, src) && !side_effects_p (dst);
1006 
1007   if (GET_CODE (dst) == ZERO_EXTRACT)
1008     return rtx_equal_p (XEXP (dst, 0), src)
1009 	   && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1010 	   && !side_effects_p (src);
1011 
1012   if (GET_CODE (dst) == STRICT_LOW_PART)
1013     dst = XEXP (dst, 0);
1014 
1015   if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1016     {
1017       if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1018 	return 0;
1019       src = SUBREG_REG (src);
1020       dst = SUBREG_REG (dst);
1021     }
1022 
1023   return (REG_P (src) && REG_P (dst)
1024 	  && REGNO (src) == REGNO (dst));
1025 }
1026 
1027 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1028    value to itself.  */
1029 
1030 int
noop_move_p(rtx insn)1031 noop_move_p (rtx insn)
1032 {
1033   rtx pat = PATTERN (insn);
1034 
1035   if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1036     return 1;
1037 
1038   /* Insns carrying these notes are useful later on.  */
1039   if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1040     return 0;
1041 
1042   /* For now treat an insn with a REG_RETVAL note as a
1043      a special insn which should not be considered a no-op.  */
1044   if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1045     return 0;
1046 
1047   if (GET_CODE (pat) == SET && set_noop_p (pat))
1048     return 1;
1049 
1050   if (GET_CODE (pat) == PARALLEL)
1051     {
1052       int i;
1053       /* If nothing but SETs of registers to themselves,
1054 	 this insn can also be deleted.  */
1055       for (i = 0; i < XVECLEN (pat, 0); i++)
1056 	{
1057 	  rtx tem = XVECEXP (pat, 0, i);
1058 
1059 	  if (GET_CODE (tem) == USE
1060 	      || GET_CODE (tem) == CLOBBER)
1061 	    continue;
1062 
1063 	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1064 	    return 0;
1065 	}
1066 
1067       return 1;
1068     }
1069   return 0;
1070 }
1071 
1072 
1073 /* Return the last thing that X was assigned from before *PINSN.  If VALID_TO
1074    is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1075    If the object was modified, if we hit a partial assignment to X, or hit a
1076    CODE_LABEL first, return X.  If we found an assignment, update *PINSN to
1077    point to it.  ALLOW_HWREG is set to 1 if hardware registers are allowed to
1078    be the src.  */
1079 
1080 rtx
find_last_value(rtx x,rtx * pinsn,rtx valid_to,int allow_hwreg)1081 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1082 {
1083   rtx p;
1084 
1085   for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1086        p = PREV_INSN (p))
1087     if (INSN_P (p))
1088       {
1089 	rtx set = single_set (p);
1090 	rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1091 
1092 	if (set && rtx_equal_p (x, SET_DEST (set)))
1093 	  {
1094 	    rtx src = SET_SRC (set);
1095 
1096 	    if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1097 	      src = XEXP (note, 0);
1098 
1099 	    if ((valid_to == NULL_RTX
1100 		 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1101 		/* Reject hard registers because we don't usually want
1102 		   to use them; we'd rather use a pseudo.  */
1103 		&& (! (REG_P (src)
1104 		      && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1105 	      {
1106 		*pinsn = p;
1107 		return src;
1108 	      }
1109 	  }
1110 
1111 	/* If set in non-simple way, we don't have a value.  */
1112 	if (reg_set_p (x, p))
1113 	  break;
1114       }
1115 
1116   return x;
1117 }
1118 
1119 /* Return nonzero if register in range [REGNO, ENDREGNO)
1120    appears either explicitly or implicitly in X
1121    other than being stored into.
1122 
1123    References contained within the substructure at LOC do not count.
1124    LOC may be zero, meaning don't ignore anything.  */
1125 
1126 int
refers_to_regno_p(unsigned int regno,unsigned int endregno,rtx x,rtx * loc)1127 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1128 		   rtx *loc)
1129 {
1130   int i;
1131   unsigned int x_regno;
1132   RTX_CODE code;
1133   const char *fmt;
1134 
1135  repeat:
1136   /* The contents of a REG_NONNEG note is always zero, so we must come here
1137      upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
1138   if (x == 0)
1139     return 0;
1140 
1141   code = GET_CODE (x);
1142 
1143   switch (code)
1144     {
1145     case REG:
1146       x_regno = REGNO (x);
1147 
1148       /* If we modifying the stack, frame, or argument pointer, it will
1149 	 clobber a virtual register.  In fact, we could be more precise,
1150 	 but it isn't worth it.  */
1151       if ((x_regno == STACK_POINTER_REGNUM
1152 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1153 	   || x_regno == ARG_POINTER_REGNUM
1154 #endif
1155 	   || x_regno == FRAME_POINTER_REGNUM)
1156 	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1157 	return 1;
1158 
1159       return (endregno > x_regno
1160 	      && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1161 				    ? hard_regno_nregs[x_regno][GET_MODE (x)]
1162 			      : 1));
1163 
1164     case SUBREG:
1165       /* If this is a SUBREG of a hard reg, we can see exactly which
1166 	 registers are being modified.  Otherwise, handle normally.  */
1167       if (REG_P (SUBREG_REG (x))
1168 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1169 	{
1170 	  unsigned int inner_regno = subreg_regno (x);
1171 	  unsigned int inner_endregno
1172 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1173 			     ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1174 
1175 	  return endregno > inner_regno && regno < inner_endregno;
1176 	}
1177       break;
1178 
1179     case CLOBBER:
1180     case SET:
1181       if (&SET_DEST (x) != loc
1182 	  /* Note setting a SUBREG counts as referring to the REG it is in for
1183 	     a pseudo but not for hard registers since we can
1184 	     treat each word individually.  */
1185 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
1186 	       && loc != &SUBREG_REG (SET_DEST (x))
1187 	       && REG_P (SUBREG_REG (SET_DEST (x)))
1188 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1189 	       && refers_to_regno_p (regno, endregno,
1190 				     SUBREG_REG (SET_DEST (x)), loc))
1191 	      || (!REG_P (SET_DEST (x))
1192 		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1193 	return 1;
1194 
1195       if (code == CLOBBER || loc == &SET_SRC (x))
1196 	return 0;
1197       x = SET_SRC (x);
1198       goto repeat;
1199 
1200     default:
1201       break;
1202     }
1203 
1204   /* X does not match, so try its subexpressions.  */
1205 
1206   fmt = GET_RTX_FORMAT (code);
1207   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1208     {
1209       if (fmt[i] == 'e' && loc != &XEXP (x, i))
1210 	{
1211 	  if (i == 0)
1212 	    {
1213 	      x = XEXP (x, 0);
1214 	      goto repeat;
1215 	    }
1216 	  else
1217 	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1218 	      return 1;
1219 	}
1220       else if (fmt[i] == 'E')
1221 	{
1222 	  int j;
1223 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1224 	    if (loc != &XVECEXP (x, i, j)
1225 		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1226 	      return 1;
1227 	}
1228     }
1229   return 0;
1230 }
1231 
1232 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
1233    we check if any register number in X conflicts with the relevant register
1234    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
1235    contains a MEM (we don't bother checking for memory addresses that can't
1236    conflict because we expect this to be a rare case.  */
1237 
1238 int
reg_overlap_mentioned_p(rtx x,rtx in)1239 reg_overlap_mentioned_p (rtx x, rtx in)
1240 {
1241   unsigned int regno, endregno;
1242 
1243   /* If either argument is a constant, then modifying X can not
1244      affect IN.  Here we look at IN, we can profitably combine
1245      CONSTANT_P (x) with the switch statement below.  */
1246   if (CONSTANT_P (in))
1247     return 0;
1248 
1249  recurse:
1250   switch (GET_CODE (x))
1251     {
1252     case STRICT_LOW_PART:
1253     case ZERO_EXTRACT:
1254     case SIGN_EXTRACT:
1255       /* Overly conservative.  */
1256       x = XEXP (x, 0);
1257       goto recurse;
1258 
1259     case SUBREG:
1260       regno = REGNO (SUBREG_REG (x));
1261       if (regno < FIRST_PSEUDO_REGISTER)
1262 	regno = subreg_regno (x);
1263       goto do_reg;
1264 
1265     case REG:
1266       regno = REGNO (x);
1267     do_reg:
1268       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1269 			  ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1270       return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1271 
1272     case MEM:
1273       {
1274 	const char *fmt;
1275 	int i;
1276 
1277 	if (MEM_P (in))
1278 	  return 1;
1279 
1280 	fmt = GET_RTX_FORMAT (GET_CODE (in));
1281 	for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1282 	  if (fmt[i] == 'e')
1283 	    {
1284 	      if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1285 		return 1;
1286 	    }
1287 	  else if (fmt[i] == 'E')
1288 	    {
1289 	      int j;
1290 	      for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1291 		if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1292 		  return 1;
1293 	    }
1294 
1295 	return 0;
1296       }
1297 
1298     case SCRATCH:
1299     case PC:
1300     case CC0:
1301       return reg_mentioned_p (x, in);
1302 
1303     case PARALLEL:
1304       {
1305 	int i;
1306 
1307 	/* If any register in here refers to it we return true.  */
1308 	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1309 	  if (XEXP (XVECEXP (x, 0, i), 0) != 0
1310 	      && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1311 	    return 1;
1312 	return 0;
1313       }
1314 
1315     default:
1316       gcc_assert (CONSTANT_P (x));
1317       return 0;
1318     }
1319 }
1320 
1321 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1322    (X would be the pattern of an insn).
1323    FUN receives two arguments:
1324      the REG, MEM, CC0 or PC being stored in or clobbered,
1325      the SET or CLOBBER rtx that does the store.
1326 
1327   If the item being stored in or clobbered is a SUBREG of a hard register,
1328   the SUBREG will be passed.  */
1329 
1330 void
note_stores(rtx x,void (* fun)(rtx,rtx,void *),void * data)1331 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1332 {
1333   int i;
1334 
1335   if (GET_CODE (x) == COND_EXEC)
1336     x = COND_EXEC_CODE (x);
1337 
1338   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1339     {
1340       rtx dest = SET_DEST (x);
1341 
1342       while ((GET_CODE (dest) == SUBREG
1343 	      && (!REG_P (SUBREG_REG (dest))
1344 		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1345 	     || GET_CODE (dest) == ZERO_EXTRACT
1346 	     || GET_CODE (dest) == STRICT_LOW_PART)
1347 	dest = XEXP (dest, 0);
1348 
1349       /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1350 	 each of whose first operand is a register.  */
1351       if (GET_CODE (dest) == PARALLEL)
1352 	{
1353 	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1354 	    if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1355 	      (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1356 	}
1357       else
1358 	(*fun) (dest, x, data);
1359     }
1360 
1361   else if (GET_CODE (x) == PARALLEL)
1362     for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1363       note_stores (XVECEXP (x, 0, i), fun, data);
1364 }
1365 
1366 /* Like notes_stores, but call FUN for each expression that is being
1367    referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
1368    FUN for each expression, not any interior subexpressions.  FUN receives a
1369    pointer to the expression and the DATA passed to this function.
1370 
1371    Note that this is not quite the same test as that done in reg_referenced_p
1372    since that considers something as being referenced if it is being
1373    partially set, while we do not.  */
1374 
1375 void
note_uses(rtx * pbody,void (* fun)(rtx *,void *),void * data)1376 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1377 {
1378   rtx body = *pbody;
1379   int i;
1380 
1381   switch (GET_CODE (body))
1382     {
1383     case COND_EXEC:
1384       (*fun) (&COND_EXEC_TEST (body), data);
1385       note_uses (&COND_EXEC_CODE (body), fun, data);
1386       return;
1387 
1388     case PARALLEL:
1389       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1390 	note_uses (&XVECEXP (body, 0, i), fun, data);
1391       return;
1392 
1393     case USE:
1394       (*fun) (&XEXP (body, 0), data);
1395       return;
1396 
1397     case ASM_OPERANDS:
1398       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1399 	(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1400       return;
1401 
1402     case TRAP_IF:
1403       (*fun) (&TRAP_CONDITION (body), data);
1404       return;
1405 
1406     case PREFETCH:
1407       (*fun) (&XEXP (body, 0), data);
1408       return;
1409 
1410     case UNSPEC:
1411     case UNSPEC_VOLATILE:
1412       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1413 	(*fun) (&XVECEXP (body, 0, i), data);
1414       return;
1415 
1416     case CLOBBER:
1417       if (MEM_P (XEXP (body, 0)))
1418 	(*fun) (&XEXP (XEXP (body, 0), 0), data);
1419       return;
1420 
1421     case SET:
1422       {
1423 	rtx dest = SET_DEST (body);
1424 
1425 	/* For sets we replace everything in source plus registers in memory
1426 	   expression in store and operands of a ZERO_EXTRACT.  */
1427 	(*fun) (&SET_SRC (body), data);
1428 
1429 	if (GET_CODE (dest) == ZERO_EXTRACT)
1430 	  {
1431 	    (*fun) (&XEXP (dest, 1), data);
1432 	    (*fun) (&XEXP (dest, 2), data);
1433 	  }
1434 
1435 	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1436 	  dest = XEXP (dest, 0);
1437 
1438 	if (MEM_P (dest))
1439 	  (*fun) (&XEXP (dest, 0), data);
1440       }
1441       return;
1442 
1443     default:
1444       /* All the other possibilities never store.  */
1445       (*fun) (pbody, data);
1446       return;
1447     }
1448 }
1449 
1450 /* Return nonzero if X's old contents don't survive after INSN.
1451    This will be true if X is (cc0) or if X is a register and
1452    X dies in INSN or because INSN entirely sets X.
1453 
1454    "Entirely set" means set directly and not through a SUBREG, or
1455    ZERO_EXTRACT, so no trace of the old contents remains.
1456    Likewise, REG_INC does not count.
1457 
1458    REG may be a hard or pseudo reg.  Renumbering is not taken into account,
1459    but for this use that makes no difference, since regs don't overlap
1460    during their lifetimes.  Therefore, this function may be used
1461    at any time after deaths have been computed (in flow.c).
1462 
1463    If REG is a hard reg that occupies multiple machine registers, this
1464    function will only return 1 if each of those registers will be replaced
1465    by INSN.  */
1466 
1467 int
dead_or_set_p(rtx insn,rtx x)1468 dead_or_set_p (rtx insn, rtx x)
1469 {
1470   unsigned int regno, last_regno;
1471   unsigned int i;
1472 
1473   /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
1474   if (GET_CODE (x) == CC0)
1475     return 1;
1476 
1477   gcc_assert (REG_P (x));
1478 
1479   regno = REGNO (x);
1480   last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1481 		: regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1482 
1483   for (i = regno; i <= last_regno; i++)
1484     if (! dead_or_set_regno_p (insn, i))
1485       return 0;
1486 
1487   return 1;
1488 }
1489 
1490 /* Return TRUE iff DEST is a register or subreg of a register and
1491    doesn't change the number of words of the inner register, and any
1492    part of the register is TEST_REGNO.  */
1493 
1494 static bool
covers_regno_no_parallel_p(rtx dest,unsigned int test_regno)1495 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1496 {
1497   unsigned int regno, endregno;
1498 
1499   if (GET_CODE (dest) == SUBREG
1500       && (((GET_MODE_SIZE (GET_MODE (dest))
1501 	    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1502 	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1503 	       + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1504     dest = SUBREG_REG (dest);
1505 
1506   if (!REG_P (dest))
1507     return false;
1508 
1509   regno = REGNO (dest);
1510   endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1511 	      : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1512   return (test_regno >= regno && test_regno < endregno);
1513 }
1514 
1515 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1516    any member matches the covers_regno_no_parallel_p criteria.  */
1517 
1518 static bool
covers_regno_p(rtx dest,unsigned int test_regno)1519 covers_regno_p (rtx dest, unsigned int test_regno)
1520 {
1521   if (GET_CODE (dest) == PARALLEL)
1522     {
1523       /* Some targets place small structures in registers for return
1524 	 values of functions, and those registers are wrapped in
1525 	 PARALLELs that we may see as the destination of a SET.  */
1526       int i;
1527 
1528       for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1529 	{
1530 	  rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1531 	  if (inner != NULL_RTX
1532 	      && covers_regno_no_parallel_p (inner, test_regno))
1533 	    return true;
1534 	}
1535 
1536       return false;
1537     }
1538   else
1539     return covers_regno_no_parallel_p (dest, test_regno);
1540 }
1541 
1542 /* Utility function for dead_or_set_p to check an individual register.  Also
1543    called from flow.c.  */
1544 
1545 int
dead_or_set_regno_p(rtx insn,unsigned int test_regno)1546 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1547 {
1548   rtx pattern;
1549 
1550   /* See if there is a death note for something that includes TEST_REGNO.  */
1551   if (find_regno_note (insn, REG_DEAD, test_regno))
1552     return 1;
1553 
1554   if (CALL_P (insn)
1555       && find_regno_fusage (insn, CLOBBER, test_regno))
1556     return 1;
1557 
1558   pattern = PATTERN (insn);
1559 
1560   if (GET_CODE (pattern) == COND_EXEC)
1561     pattern = COND_EXEC_CODE (pattern);
1562 
1563   if (GET_CODE (pattern) == SET)
1564     return covers_regno_p (SET_DEST (pattern), test_regno);
1565   else if (GET_CODE (pattern) == PARALLEL)
1566     {
1567       int i;
1568 
1569       for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1570 	{
1571 	  rtx body = XVECEXP (pattern, 0, i);
1572 
1573 	  if (GET_CODE (body) == COND_EXEC)
1574 	    body = COND_EXEC_CODE (body);
1575 
1576 	  if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1577 	      && covers_regno_p (SET_DEST (body), test_regno))
1578 	    return 1;
1579 	}
1580     }
1581 
1582   return 0;
1583 }
1584 
1585 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1586    If DATUM is nonzero, look for one whose datum is DATUM.  */
1587 
1588 rtx
find_reg_note(rtx insn,enum reg_note kind,rtx datum)1589 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1590 {
1591   rtx link;
1592 
1593   gcc_assert (insn);
1594 
1595   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1596   if (! INSN_P (insn))
1597     return 0;
1598   if (datum == 0)
1599     {
1600       for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1601 	if (REG_NOTE_KIND (link) == kind)
1602 	  return link;
1603       return 0;
1604     }
1605 
1606   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1607     if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1608       return link;
1609   return 0;
1610 }
1611 
1612 /* Return the reg-note of kind KIND in insn INSN which applies to register
1613    number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
1614    the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1615    it might be the case that the note overlaps REGNO.  */
1616 
1617 rtx
find_regno_note(rtx insn,enum reg_note kind,unsigned int regno)1618 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1619 {
1620   rtx link;
1621 
1622   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1623   if (! INSN_P (insn))
1624     return 0;
1625 
1626   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1627     if (REG_NOTE_KIND (link) == kind
1628 	/* Verify that it is a register, so that scratch and MEM won't cause a
1629 	   problem here.  */
1630 	&& REG_P (XEXP (link, 0))
1631 	&& REGNO (XEXP (link, 0)) <= regno
1632 	&& ((REGNO (XEXP (link, 0))
1633 	     + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1634 		: hard_regno_nregs[REGNO (XEXP (link, 0))]
1635 				  [GET_MODE (XEXP (link, 0))]))
1636 	    > regno))
1637       return link;
1638   return 0;
1639 }
1640 
1641 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1642    has such a note.  */
1643 
1644 rtx
find_reg_equal_equiv_note(rtx insn)1645 find_reg_equal_equiv_note (rtx insn)
1646 {
1647   rtx link;
1648 
1649   if (!INSN_P (insn))
1650     return 0;
1651   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1652     if (REG_NOTE_KIND (link) == REG_EQUAL
1653 	|| REG_NOTE_KIND (link) == REG_EQUIV)
1654       {
1655 	if (single_set (insn) == 0)
1656 	  return 0;
1657 	return link;
1658       }
1659   return NULL;
1660 }
1661 
1662 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1663    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1664 
1665 int
find_reg_fusage(rtx insn,enum rtx_code code,rtx datum)1666 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1667 {
1668   /* If it's not a CALL_INSN, it can't possibly have a
1669      CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
1670   if (!CALL_P (insn))
1671     return 0;
1672 
1673   gcc_assert (datum);
1674 
1675   if (!REG_P (datum))
1676     {
1677       rtx link;
1678 
1679       for (link = CALL_INSN_FUNCTION_USAGE (insn);
1680 	   link;
1681 	   link = XEXP (link, 1))
1682 	if (GET_CODE (XEXP (link, 0)) == code
1683 	    && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1684 	  return 1;
1685     }
1686   else
1687     {
1688       unsigned int regno = REGNO (datum);
1689 
1690       /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1691 	 to pseudo registers, so don't bother checking.  */
1692 
1693       if (regno < FIRST_PSEUDO_REGISTER)
1694 	{
1695 	  unsigned int end_regno
1696 	    = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1697 	  unsigned int i;
1698 
1699 	  for (i = regno; i < end_regno; i++)
1700 	    if (find_regno_fusage (insn, code, i))
1701 	      return 1;
1702 	}
1703     }
1704 
1705   return 0;
1706 }
1707 
1708 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1709    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1710 
1711 int
find_regno_fusage(rtx insn,enum rtx_code code,unsigned int regno)1712 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1713 {
1714   rtx link;
1715 
1716   /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1717      to pseudo registers, so don't bother checking.  */
1718 
1719   if (regno >= FIRST_PSEUDO_REGISTER
1720       || !CALL_P (insn) )
1721     return 0;
1722 
1723   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1724     {
1725       unsigned int regnote;
1726       rtx op, reg;
1727 
1728       if (GET_CODE (op = XEXP (link, 0)) == code
1729 	  && REG_P (reg = XEXP (op, 0))
1730 	  && (regnote = REGNO (reg)) <= regno
1731 	  && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1732 	return 1;
1733     }
1734 
1735   return 0;
1736 }
1737 
1738 /* Return true if INSN is a call to a pure function.  */
1739 
1740 int
pure_call_p(rtx insn)1741 pure_call_p (rtx insn)
1742 {
1743   rtx link;
1744 
1745   if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1746     return 0;
1747 
1748   /* Look for the note that differentiates const and pure functions.  */
1749   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1750     {
1751       rtx u, m;
1752 
1753       if (GET_CODE (u = XEXP (link, 0)) == USE
1754 	  && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1755 	  && GET_CODE (XEXP (m, 0)) == SCRATCH)
1756 	return 1;
1757     }
1758 
1759   return 0;
1760 }
1761 
1762 /* Remove register note NOTE from the REG_NOTES of INSN.  */
1763 
1764 void
remove_note(rtx insn,rtx note)1765 remove_note (rtx insn, rtx note)
1766 {
1767   rtx link;
1768 
1769   if (note == NULL_RTX)
1770     return;
1771 
1772   if (REG_NOTES (insn) == note)
1773     {
1774       REG_NOTES (insn) = XEXP (note, 1);
1775       return;
1776     }
1777 
1778   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1779     if (XEXP (link, 1) == note)
1780       {
1781 	XEXP (link, 1) = XEXP (note, 1);
1782 	return;
1783       }
1784 
1785   gcc_unreachable ();
1786 }
1787 
1788 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1789    return 1 if it is found.  A simple equality test is used to determine if
1790    NODE matches.  */
1791 
1792 int
in_expr_list_p(rtx listp,rtx node)1793 in_expr_list_p (rtx listp, rtx node)
1794 {
1795   rtx x;
1796 
1797   for (x = listp; x; x = XEXP (x, 1))
1798     if (node == XEXP (x, 0))
1799       return 1;
1800 
1801   return 0;
1802 }
1803 
1804 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1805    remove that entry from the list if it is found.
1806 
1807    A simple equality test is used to determine if NODE matches.  */
1808 
1809 void
remove_node_from_expr_list(rtx node,rtx * listp)1810 remove_node_from_expr_list (rtx node, rtx *listp)
1811 {
1812   rtx temp = *listp;
1813   rtx prev = NULL_RTX;
1814 
1815   while (temp)
1816     {
1817       if (node == XEXP (temp, 0))
1818 	{
1819 	  /* Splice the node out of the list.  */
1820 	  if (prev)
1821 	    XEXP (prev, 1) = XEXP (temp, 1);
1822 	  else
1823 	    *listp = XEXP (temp, 1);
1824 
1825 	  return;
1826 	}
1827 
1828       prev = temp;
1829       temp = XEXP (temp, 1);
1830     }
1831 }
1832 
1833 /* Nonzero if X contains any volatile instructions.  These are instructions
1834    which may cause unpredictable machine state instructions, and thus no
1835    instructions should be moved or combined across them.  This includes
1836    only volatile asms and UNSPEC_VOLATILE instructions.  */
1837 
1838 int
volatile_insn_p(rtx x)1839 volatile_insn_p (rtx x)
1840 {
1841   RTX_CODE code;
1842 
1843   code = GET_CODE (x);
1844   switch (code)
1845     {
1846     case LABEL_REF:
1847     case SYMBOL_REF:
1848     case CONST_INT:
1849     case CONST:
1850     case CONST_DOUBLE:
1851     case CONST_VECTOR:
1852     case CC0:
1853     case PC:
1854     case REG:
1855     case SCRATCH:
1856     case CLOBBER:
1857     case ADDR_VEC:
1858     case ADDR_DIFF_VEC:
1859     case CALL:
1860     case MEM:
1861       return 0;
1862 
1863     case UNSPEC_VOLATILE:
1864  /* case TRAP_IF: This isn't clear yet.  */
1865       return 1;
1866 
1867     case ASM_INPUT:
1868     case ASM_OPERANDS:
1869       if (MEM_VOLATILE_P (x))
1870 	return 1;
1871 
1872     default:
1873       break;
1874     }
1875 
1876   /* Recursively scan the operands of this expression.  */
1877 
1878   {
1879     const char *fmt = GET_RTX_FORMAT (code);
1880     int i;
1881 
1882     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1883       {
1884 	if (fmt[i] == 'e')
1885 	  {
1886 	    if (volatile_insn_p (XEXP (x, i)))
1887 	      return 1;
1888 	  }
1889 	else if (fmt[i] == 'E')
1890 	  {
1891 	    int j;
1892 	    for (j = 0; j < XVECLEN (x, i); j++)
1893 	      if (volatile_insn_p (XVECEXP (x, i, j)))
1894 		return 1;
1895 	  }
1896       }
1897   }
1898   return 0;
1899 }
1900 
1901 /* Nonzero if X contains any volatile memory references
1902    UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */
1903 
1904 int
volatile_refs_p(rtx x)1905 volatile_refs_p (rtx x)
1906 {
1907   RTX_CODE code;
1908 
1909   code = GET_CODE (x);
1910   switch (code)
1911     {
1912     case LABEL_REF:
1913     case SYMBOL_REF:
1914     case CONST_INT:
1915     case CONST:
1916     case CONST_DOUBLE:
1917     case CONST_VECTOR:
1918     case CC0:
1919     case PC:
1920     case REG:
1921     case SCRATCH:
1922     case CLOBBER:
1923     case ADDR_VEC:
1924     case ADDR_DIFF_VEC:
1925       return 0;
1926 
1927     case UNSPEC_VOLATILE:
1928       return 1;
1929 
1930     case MEM:
1931     case ASM_INPUT:
1932     case ASM_OPERANDS:
1933       if (MEM_VOLATILE_P (x))
1934 	return 1;
1935 
1936     default:
1937       break;
1938     }
1939 
1940   /* Recursively scan the operands of this expression.  */
1941 
1942   {
1943     const char *fmt = GET_RTX_FORMAT (code);
1944     int i;
1945 
1946     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1947       {
1948 	if (fmt[i] == 'e')
1949 	  {
1950 	    if (volatile_refs_p (XEXP (x, i)))
1951 	      return 1;
1952 	  }
1953 	else if (fmt[i] == 'E')
1954 	  {
1955 	    int j;
1956 	    for (j = 0; j < XVECLEN (x, i); j++)
1957 	      if (volatile_refs_p (XVECEXP (x, i, j)))
1958 		return 1;
1959 	  }
1960       }
1961   }
1962   return 0;
1963 }
1964 
1965 /* Similar to above, except that it also rejects register pre- and post-
1966    incrementing.  */
1967 
1968 int
side_effects_p(rtx x)1969 side_effects_p (rtx x)
1970 {
1971   RTX_CODE code;
1972 
1973   code = GET_CODE (x);
1974   switch (code)
1975     {
1976     case LABEL_REF:
1977     case SYMBOL_REF:
1978     case CONST_INT:
1979     case CONST:
1980     case CONST_DOUBLE:
1981     case CONST_VECTOR:
1982     case CC0:
1983     case PC:
1984     case REG:
1985     case SCRATCH:
1986     case ADDR_VEC:
1987     case ADDR_DIFF_VEC:
1988       return 0;
1989 
1990     case CLOBBER:
1991       /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
1992 	 when some combination can't be done.  If we see one, don't think
1993 	 that we can simplify the expression.  */
1994       return (GET_MODE (x) != VOIDmode);
1995 
1996     case PRE_INC:
1997     case PRE_DEC:
1998     case POST_INC:
1999     case POST_DEC:
2000     case PRE_MODIFY:
2001     case POST_MODIFY:
2002     case CALL:
2003     case UNSPEC_VOLATILE:
2004  /* case TRAP_IF: This isn't clear yet.  */
2005       return 1;
2006 
2007     case MEM:
2008     case ASM_INPUT:
2009     case ASM_OPERANDS:
2010       if (MEM_VOLATILE_P (x))
2011 	return 1;
2012 
2013     default:
2014       break;
2015     }
2016 
2017   /* Recursively scan the operands of this expression.  */
2018 
2019   {
2020     const char *fmt = GET_RTX_FORMAT (code);
2021     int i;
2022 
2023     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2024       {
2025 	if (fmt[i] == 'e')
2026 	  {
2027 	    if (side_effects_p (XEXP (x, i)))
2028 	      return 1;
2029 	  }
2030 	else if (fmt[i] == 'E')
2031 	  {
2032 	    int j;
2033 	    for (j = 0; j < XVECLEN (x, i); j++)
2034 	      if (side_effects_p (XVECEXP (x, i, j)))
2035 		return 1;
2036 	  }
2037       }
2038   }
2039   return 0;
2040 }
2041 
2042 enum may_trap_p_flags
2043 {
2044   MTP_UNALIGNED_MEMS = 1,
2045   MTP_AFTER_MOVE = 2
2046 };
2047 /* Return nonzero if evaluating rtx X might cause a trap.
2048    (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2049    unaligned memory accesses on strict alignment machines.  If
2050    (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2051    cannot trap at its current location, but it might become trapping if moved
2052    elsewhere.  */
2053 
2054 static int
may_trap_p_1(rtx x,unsigned flags)2055 may_trap_p_1 (rtx x, unsigned flags)
2056 {
2057   int i;
2058   enum rtx_code code;
2059   const char *fmt;
2060   bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2061 
2062   if (x == 0)
2063     return 0;
2064   code = GET_CODE (x);
2065   switch (code)
2066     {
2067       /* Handle these cases quickly.  */
2068     case CONST_INT:
2069     case CONST_DOUBLE:
2070     case CONST_VECTOR:
2071     case SYMBOL_REF:
2072     case LABEL_REF:
2073     case CONST:
2074     case PC:
2075     case CC0:
2076     case REG:
2077     case SCRATCH:
2078       return 0;
2079 
2080     case ASM_INPUT:
2081     case UNSPEC_VOLATILE:
2082     case TRAP_IF:
2083       return 1;
2084 
2085     case ASM_OPERANDS:
2086       return MEM_VOLATILE_P (x);
2087 
2088       /* Memory ref can trap unless it's a static var or a stack slot.  */
2089     case MEM:
2090       if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2091 	     reference; moving it out of condition might cause its address
2092 	     become invalid.  */
2093 	  !(flags & MTP_AFTER_MOVE)
2094 	  && MEM_NOTRAP_P (x)
2095 	  && (!STRICT_ALIGNMENT || !unaligned_mems))
2096 	return 0;
2097       return
2098 	rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2099 
2100       /* Division by a non-constant might trap.  */
2101     case DIV:
2102     case MOD:
2103     case UDIV:
2104     case UMOD:
2105       if (HONOR_SNANS (GET_MODE (x)))
2106 	return 1;
2107       if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2108 	return flag_trapping_math;
2109       if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2110 	return 1;
2111       break;
2112 
2113     case EXPR_LIST:
2114       /* An EXPR_LIST is used to represent a function call.  This
2115 	 certainly may trap.  */
2116       return 1;
2117 
2118     case GE:
2119     case GT:
2120     case LE:
2121     case LT:
2122     case LTGT:
2123     case COMPARE:
2124       /* Some floating point comparisons may trap.  */
2125       if (!flag_trapping_math)
2126 	break;
2127       /* ??? There is no machine independent way to check for tests that trap
2128 	 when COMPARE is used, though many targets do make this distinction.
2129 	 For instance, sparc uses CCFPE for compares which generate exceptions
2130 	 and CCFP for compares which do not generate exceptions.  */
2131       if (HONOR_NANS (GET_MODE (x)))
2132 	return 1;
2133       /* But often the compare has some CC mode, so check operand
2134 	 modes as well.  */
2135       if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2136 	  || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2137 	return 1;
2138       break;
2139 
2140     case EQ:
2141     case NE:
2142       if (HONOR_SNANS (GET_MODE (x)))
2143 	return 1;
2144       /* Often comparison is CC mode, so check operand modes.  */
2145       if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2146 	  || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2147 	return 1;
2148       break;
2149 
2150     case FIX:
2151       /* Conversion of floating point might trap.  */
2152       if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2153 	return 1;
2154       break;
2155 
2156     case NEG:
2157     case ABS:
2158     case SUBREG:
2159       /* These operations don't trap even with floating point.  */
2160       break;
2161 
2162     default:
2163       /* Any floating arithmetic may trap.  */
2164       if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2165 	  && flag_trapping_math)
2166 	return 1;
2167     }
2168 
2169   fmt = GET_RTX_FORMAT (code);
2170   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2171     {
2172       if (fmt[i] == 'e')
2173 	{
2174 	  if (may_trap_p_1 (XEXP (x, i), flags))
2175 	    return 1;
2176 	}
2177       else if (fmt[i] == 'E')
2178 	{
2179 	  int j;
2180 	  for (j = 0; j < XVECLEN (x, i); j++)
2181 	    if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2182 	      return 1;
2183 	}
2184     }
2185   return 0;
2186 }
2187 
2188 /* Return nonzero if evaluating rtx X might cause a trap.  */
2189 
2190 int
may_trap_p(rtx x)2191 may_trap_p (rtx x)
2192 {
2193   return may_trap_p_1 (x, 0);
2194 }
2195 
2196 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2197    is moved from its current location by some optimization.  */
2198 
2199 int
may_trap_after_code_motion_p(rtx x)2200 may_trap_after_code_motion_p (rtx x)
2201 {
2202   return may_trap_p_1 (x, MTP_AFTER_MOVE);
2203 }
2204 
2205 /* Same as above, but additionally return nonzero if evaluating rtx X might
2206    cause a fault.  We define a fault for the purpose of this function as a
2207    erroneous execution condition that cannot be encountered during the normal
2208    execution of a valid program; the typical example is an unaligned memory
2209    access on a strict alignment machine.  The compiler guarantees that it
2210    doesn't generate code that will fault from a valid program, but this
2211    guarantee doesn't mean anything for individual instructions.  Consider
2212    the following example:
2213 
2214       struct S { int d; union { char *cp; int *ip; }; };
2215 
2216       int foo(struct S *s)
2217       {
2218 	if (s->d == 1)
2219 	  return *s->ip;
2220 	else
2221 	  return *s->cp;
2222       }
2223 
2224    on a strict alignment machine.  In a valid program, foo will never be
2225    invoked on a structure for which d is equal to 1 and the underlying
2226    unique field of the union not aligned on a 4-byte boundary, but the
2227    expression *s->ip might cause a fault if considered individually.
2228 
2229    At the RTL level, potentially problematic expressions will almost always
2230    verify may_trap_p; for example, the above dereference can be emitted as
2231    (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2232    However, suppose that foo is inlined in a caller that causes s->cp to
2233    point to a local character variable and guarantees that s->d is not set
2234    to 1; foo may have been effectively translated into pseudo-RTL as:
2235 
2236       if ((reg:SI) == 1)
2237 	(set (reg:SI) (mem:SI (%fp - 7)))
2238       else
2239 	(set (reg:QI) (mem:QI (%fp - 7)))
2240 
2241    Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2242    memory reference to a stack slot, but it will certainly cause a fault
2243    on a strict alignment machine.  */
2244 
2245 int
may_trap_or_fault_p(rtx x)2246 may_trap_or_fault_p (rtx x)
2247 {
2248   return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2249 }
2250 
2251 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2252    i.e., an inequality.  */
2253 
2254 int
inequality_comparisons_p(rtx x)2255 inequality_comparisons_p (rtx x)
2256 {
2257   const char *fmt;
2258   int len, i;
2259   enum rtx_code code = GET_CODE (x);
2260 
2261   switch (code)
2262     {
2263     case REG:
2264     case SCRATCH:
2265     case PC:
2266     case CC0:
2267     case CONST_INT:
2268     case CONST_DOUBLE:
2269     case CONST_VECTOR:
2270     case CONST:
2271     case LABEL_REF:
2272     case SYMBOL_REF:
2273       return 0;
2274 
2275     case LT:
2276     case LTU:
2277     case GT:
2278     case GTU:
2279     case LE:
2280     case LEU:
2281     case GE:
2282     case GEU:
2283       return 1;
2284 
2285     default:
2286       break;
2287     }
2288 
2289   len = GET_RTX_LENGTH (code);
2290   fmt = GET_RTX_FORMAT (code);
2291 
2292   for (i = 0; i < len; i++)
2293     {
2294       if (fmt[i] == 'e')
2295 	{
2296 	  if (inequality_comparisons_p (XEXP (x, i)))
2297 	    return 1;
2298 	}
2299       else if (fmt[i] == 'E')
2300 	{
2301 	  int j;
2302 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2303 	    if (inequality_comparisons_p (XVECEXP (x, i, j)))
2304 	      return 1;
2305 	}
2306     }
2307 
2308   return 0;
2309 }
2310 
2311 /* Replace any occurrence of FROM in X with TO.  The function does
2312    not enter into CONST_DOUBLE for the replace.
2313 
2314    Note that copying is not done so X must not be shared unless all copies
2315    are to be modified.  */
2316 
2317 rtx
replace_rtx(rtx x,rtx from,rtx to)2318 replace_rtx (rtx x, rtx from, rtx to)
2319 {
2320   int i, j;
2321   const char *fmt;
2322 
2323   /* The following prevents loops occurrence when we change MEM in
2324      CONST_DOUBLE onto the same CONST_DOUBLE.  */
2325   if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2326     return x;
2327 
2328   if (x == from)
2329     return to;
2330 
2331   /* Allow this function to make replacements in EXPR_LISTs.  */
2332   if (x == 0)
2333     return 0;
2334 
2335   if (GET_CODE (x) == SUBREG)
2336     {
2337       rtx new = replace_rtx (SUBREG_REG (x), from, to);
2338 
2339       if (GET_CODE (new) == CONST_INT)
2340 	{
2341 	  x = simplify_subreg (GET_MODE (x), new,
2342 			       GET_MODE (SUBREG_REG (x)),
2343 			       SUBREG_BYTE (x));
2344 	  gcc_assert (x);
2345 	}
2346       else
2347 	SUBREG_REG (x) = new;
2348 
2349       return x;
2350     }
2351   else if (GET_CODE (x) == ZERO_EXTEND)
2352     {
2353       rtx new = replace_rtx (XEXP (x, 0), from, to);
2354 
2355       if (GET_CODE (new) == CONST_INT)
2356 	{
2357 	  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2358 					new, GET_MODE (XEXP (x, 0)));
2359 	  gcc_assert (x);
2360 	}
2361       else
2362 	XEXP (x, 0) = new;
2363 
2364       return x;
2365     }
2366 
2367   fmt = GET_RTX_FORMAT (GET_CODE (x));
2368   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2369     {
2370       if (fmt[i] == 'e')
2371 	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2372       else if (fmt[i] == 'E')
2373 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2374 	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2375     }
2376 
2377   return x;
2378 }
2379 
2380 /* Replace occurrences of the old label in *X with the new one.
2381    DATA is a REPLACE_LABEL_DATA containing the old and new labels.  */
2382 
2383 int
replace_label(rtx * x,void * data)2384 replace_label (rtx *x, void *data)
2385 {
2386   rtx l = *x;
2387   rtx old_label = ((replace_label_data *) data)->r1;
2388   rtx new_label = ((replace_label_data *) data)->r2;
2389   bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2390 
2391   if (l == NULL_RTX)
2392     return 0;
2393 
2394   if (GET_CODE (l) == SYMBOL_REF
2395       && CONSTANT_POOL_ADDRESS_P (l))
2396     {
2397       rtx c = get_pool_constant (l);
2398       if (rtx_referenced_p (old_label, c))
2399 	{
2400 	  rtx new_c, new_l;
2401 	  replace_label_data *d = (replace_label_data *) data;
2402 
2403 	  /* Create a copy of constant C; replace the label inside
2404 	     but do not update LABEL_NUSES because uses in constant pool
2405 	     are not counted.  */
2406 	  new_c = copy_rtx (c);
2407 	  d->update_label_nuses = false;
2408 	  for_each_rtx (&new_c, replace_label, data);
2409 	  d->update_label_nuses = update_label_nuses;
2410 
2411 	  /* Add the new constant NEW_C to constant pool and replace
2412 	     the old reference to constant by new reference.  */
2413 	  new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2414 	  *x = replace_rtx (l, l, new_l);
2415 	}
2416       return 0;
2417     }
2418 
2419   /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2420      field.  This is not handled by for_each_rtx because it doesn't
2421      handle unprinted ('0') fields.  */
2422   if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2423     JUMP_LABEL (l) = new_label;
2424 
2425   if ((GET_CODE (l) == LABEL_REF
2426        || GET_CODE (l) == INSN_LIST)
2427       && XEXP (l, 0) == old_label)
2428     {
2429       XEXP (l, 0) = new_label;
2430       if (update_label_nuses)
2431 	{
2432 	  ++LABEL_NUSES (new_label);
2433 	  --LABEL_NUSES (old_label);
2434 	}
2435       return 0;
2436     }
2437 
2438   return 0;
2439 }
2440 
2441 /* When *BODY is equal to X or X is directly referenced by *BODY
2442    return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2443    too, otherwise FOR_EACH_RTX continues traversing *BODY.  */
2444 
2445 static int
rtx_referenced_p_1(rtx * body,void * x)2446 rtx_referenced_p_1 (rtx *body, void *x)
2447 {
2448   rtx y = (rtx) x;
2449 
2450   if (*body == NULL_RTX)
2451     return y == NULL_RTX;
2452 
2453   /* Return true if a label_ref *BODY refers to label Y.  */
2454   if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2455     return XEXP (*body, 0) == y;
2456 
2457   /* If *BODY is a reference to pool constant traverse the constant.  */
2458   if (GET_CODE (*body) == SYMBOL_REF
2459       && CONSTANT_POOL_ADDRESS_P (*body))
2460     return rtx_referenced_p (y, get_pool_constant (*body));
2461 
2462   /* By default, compare the RTL expressions.  */
2463   return rtx_equal_p (*body, y);
2464 }
2465 
2466 /* Return true if X is referenced in BODY.  */
2467 
2468 int
rtx_referenced_p(rtx x,rtx body)2469 rtx_referenced_p (rtx x, rtx body)
2470 {
2471   return for_each_rtx (&body, rtx_referenced_p_1, x);
2472 }
2473 
2474 /* If INSN is a tablejump return true and store the label (before jump table) to
2475    *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */
2476 
2477 bool
tablejump_p(rtx insn,rtx * labelp,rtx * tablep)2478 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2479 {
2480   rtx label, table;
2481 
2482   if (JUMP_P (insn)
2483       && (label = JUMP_LABEL (insn)) != NULL_RTX
2484       && (table = next_active_insn (label)) != NULL_RTX
2485       && JUMP_P (table)
2486       && (GET_CODE (PATTERN (table)) == ADDR_VEC
2487 	  || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2488     {
2489       if (labelp)
2490 	*labelp = label;
2491       if (tablep)
2492 	*tablep = table;
2493       return true;
2494     }
2495   return false;
2496 }
2497 
2498 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2499    constant that is not in the constant pool and not in the condition
2500    of an IF_THEN_ELSE.  */
2501 
2502 static int
computed_jump_p_1(rtx x)2503 computed_jump_p_1 (rtx x)
2504 {
2505   enum rtx_code code = GET_CODE (x);
2506   int i, j;
2507   const char *fmt;
2508 
2509   switch (code)
2510     {
2511     case LABEL_REF:
2512     case PC:
2513       return 0;
2514 
2515     case CONST:
2516     case CONST_INT:
2517     case CONST_DOUBLE:
2518     case CONST_VECTOR:
2519     case SYMBOL_REF:
2520     case REG:
2521       return 1;
2522 
2523     case MEM:
2524       return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2525 		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2526 
2527     case IF_THEN_ELSE:
2528       return (computed_jump_p_1 (XEXP (x, 1))
2529 	      || computed_jump_p_1 (XEXP (x, 2)));
2530 
2531     default:
2532       break;
2533     }
2534 
2535   fmt = GET_RTX_FORMAT (code);
2536   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2537     {
2538       if (fmt[i] == 'e'
2539 	  && computed_jump_p_1 (XEXP (x, i)))
2540 	return 1;
2541 
2542       else if (fmt[i] == 'E')
2543 	for (j = 0; j < XVECLEN (x, i); j++)
2544 	  if (computed_jump_p_1 (XVECEXP (x, i, j)))
2545 	    return 1;
2546     }
2547 
2548   return 0;
2549 }
2550 
2551 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2552 
2553    Tablejumps and casesi insns are not considered indirect jumps;
2554    we can recognize them by a (use (label_ref)).  */
2555 
2556 int
computed_jump_p(rtx insn)2557 computed_jump_p (rtx insn)
2558 {
2559   int i;
2560   if (JUMP_P (insn))
2561     {
2562       rtx pat = PATTERN (insn);
2563 
2564       if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2565 	return 0;
2566       else if (GET_CODE (pat) == PARALLEL)
2567 	{
2568 	  int len = XVECLEN (pat, 0);
2569 	  int has_use_labelref = 0;
2570 
2571 	  for (i = len - 1; i >= 0; i--)
2572 	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2573 		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2574 		    == LABEL_REF))
2575 	      has_use_labelref = 1;
2576 
2577 	  if (! has_use_labelref)
2578 	    for (i = len - 1; i >= 0; i--)
2579 	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2580 		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2581 		  && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2582 		return 1;
2583 	}
2584       else if (GET_CODE (pat) == SET
2585 	       && SET_DEST (pat) == pc_rtx
2586 	       && computed_jump_p_1 (SET_SRC (pat)))
2587 	return 1;
2588     }
2589   return 0;
2590 }
2591 
2592 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2593    calls.  Processes the subexpressions of EXP and passes them to F.  */
2594 static int
for_each_rtx_1(rtx exp,int n,rtx_function f,void * data)2595 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2596 {
2597   int result, i, j;
2598   const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2599   rtx *x;
2600 
2601   for (; format[n] != '\0'; n++)
2602     {
2603       switch (format[n])
2604 	{
2605 	case 'e':
2606 	  /* Call F on X.  */
2607 	  x = &XEXP (exp, n);
2608 	  result = (*f) (x, data);
2609 	  if (result == -1)
2610 	    /* Do not traverse sub-expressions.  */
2611 	    continue;
2612 	  else if (result != 0)
2613 	    /* Stop the traversal.  */
2614 	    return result;
2615 
2616 	  if (*x == NULL_RTX)
2617 	    /* There are no sub-expressions.  */
2618 	    continue;
2619 
2620 	  i = non_rtx_starting_operands[GET_CODE (*x)];
2621 	  if (i >= 0)
2622 	    {
2623 	      result = for_each_rtx_1 (*x, i, f, data);
2624 	      if (result != 0)
2625 		return result;
2626 	    }
2627 	  break;
2628 
2629 	case 'V':
2630 	case 'E':
2631 	  if (XVEC (exp, n) == 0)
2632 	    continue;
2633 	  for (j = 0; j < XVECLEN (exp, n); ++j)
2634 	    {
2635 	      /* Call F on X.  */
2636 	      x = &XVECEXP (exp, n, j);
2637 	      result = (*f) (x, data);
2638 	      if (result == -1)
2639 		/* Do not traverse sub-expressions.  */
2640 		continue;
2641 	      else if (result != 0)
2642 		/* Stop the traversal.  */
2643 		return result;
2644 
2645 	      if (*x == NULL_RTX)
2646 		/* There are no sub-expressions.  */
2647 		continue;
2648 
2649 	      i = non_rtx_starting_operands[GET_CODE (*x)];
2650 	      if (i >= 0)
2651 		{
2652 		  result = for_each_rtx_1 (*x, i, f, data);
2653 		  if (result != 0)
2654 		    return result;
2655 	        }
2656 	    }
2657 	  break;
2658 
2659 	default:
2660 	  /* Nothing to do.  */
2661 	  break;
2662 	}
2663     }
2664 
2665   return 0;
2666 }
2667 
2668 /* Traverse X via depth-first search, calling F for each
2669    sub-expression (including X itself).  F is also passed the DATA.
2670    If F returns -1, do not traverse sub-expressions, but continue
2671    traversing the rest of the tree.  If F ever returns any other
2672    nonzero value, stop the traversal, and return the value returned
2673    by F.  Otherwise, return 0.  This function does not traverse inside
2674    tree structure that contains RTX_EXPRs, or into sub-expressions
2675    whose format code is `0' since it is not known whether or not those
2676    codes are actually RTL.
2677 
2678    This routine is very general, and could (should?) be used to
2679    implement many of the other routines in this file.  */
2680 
2681 int
for_each_rtx(rtx * x,rtx_function f,void * data)2682 for_each_rtx (rtx *x, rtx_function f, void *data)
2683 {
2684   int result;
2685   int i;
2686 
2687   /* Call F on X.  */
2688   result = (*f) (x, data);
2689   if (result == -1)
2690     /* Do not traverse sub-expressions.  */
2691     return 0;
2692   else if (result != 0)
2693     /* Stop the traversal.  */
2694     return result;
2695 
2696   if (*x == NULL_RTX)
2697     /* There are no sub-expressions.  */
2698     return 0;
2699 
2700   i = non_rtx_starting_operands[GET_CODE (*x)];
2701   if (i < 0)
2702     return 0;
2703 
2704   return for_each_rtx_1 (*x, i, f, data);
2705 }
2706 
2707 
2708 /* Searches X for any reference to REGNO, returning the rtx of the
2709    reference found if any.  Otherwise, returns NULL_RTX.  */
2710 
2711 rtx
regno_use_in(unsigned int regno,rtx x)2712 regno_use_in (unsigned int regno, rtx x)
2713 {
2714   const char *fmt;
2715   int i, j;
2716   rtx tem;
2717 
2718   if (REG_P (x) && REGNO (x) == regno)
2719     return x;
2720 
2721   fmt = GET_RTX_FORMAT (GET_CODE (x));
2722   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2723     {
2724       if (fmt[i] == 'e')
2725 	{
2726 	  if ((tem = regno_use_in (regno, XEXP (x, i))))
2727 	    return tem;
2728 	}
2729       else if (fmt[i] == 'E')
2730 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2731 	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2732 	    return tem;
2733     }
2734 
2735   return NULL_RTX;
2736 }
2737 
2738 /* Return a value indicating whether OP, an operand of a commutative
2739    operation, is preferred as the first or second operand.  The higher
2740    the value, the stronger the preference for being the first operand.
2741    We use negative values to indicate a preference for the first operand
2742    and positive values for the second operand.  */
2743 
2744 int
commutative_operand_precedence(rtx op)2745 commutative_operand_precedence (rtx op)
2746 {
2747   enum rtx_code code = GET_CODE (op);
2748 
2749   /* Constants always come the second operand.  Prefer "nice" constants.  */
2750   if (code == CONST_INT)
2751     return -7;
2752   if (code == CONST_DOUBLE)
2753     return -6;
2754   op = avoid_constant_pool_reference (op);
2755   code = GET_CODE (op);
2756 
2757   switch (GET_RTX_CLASS (code))
2758     {
2759     case RTX_CONST_OBJ:
2760       if (code == CONST_INT)
2761         return -5;
2762       if (code == CONST_DOUBLE)
2763         return -4;
2764       return -3;
2765 
2766     case RTX_EXTRA:
2767       /* SUBREGs of objects should come second.  */
2768       if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2769         return -2;
2770 
2771       if (!CONSTANT_P (op))
2772         return 0;
2773       else
2774 	/* As for RTX_CONST_OBJ.  */
2775 	return -3;
2776 
2777     case RTX_OBJ:
2778       /* Complex expressions should be the first, so decrease priority
2779          of objects.  */
2780       return -1;
2781 
2782     case RTX_COMM_ARITH:
2783       /* Prefer operands that are themselves commutative to be first.
2784          This helps to make things linear.  In particular,
2785          (and (and (reg) (reg)) (not (reg))) is canonical.  */
2786       return 4;
2787 
2788     case RTX_BIN_ARITH:
2789       /* If only one operand is a binary expression, it will be the first
2790          operand.  In particular,  (plus (minus (reg) (reg)) (neg (reg)))
2791          is canonical, although it will usually be further simplified.  */
2792       return 2;
2793 
2794     case RTX_UNARY:
2795       /* Then prefer NEG and NOT.  */
2796       if (code == NEG || code == NOT)
2797         return 1;
2798 
2799     default:
2800       return 0;
2801     }
2802 }
2803 
2804 /* Return 1 iff it is necessary to swap operands of commutative operation
2805    in order to canonicalize expression.  */
2806 
2807 int
swap_commutative_operands_p(rtx x,rtx y)2808 swap_commutative_operands_p (rtx x, rtx y)
2809 {
2810   return (commutative_operand_precedence (x)
2811 	  < commutative_operand_precedence (y));
2812 }
2813 
2814 /* Return 1 if X is an autoincrement side effect and the register is
2815    not the stack pointer.  */
2816 int
auto_inc_p(rtx x)2817 auto_inc_p (rtx x)
2818 {
2819   switch (GET_CODE (x))
2820     {
2821     case PRE_INC:
2822     case POST_INC:
2823     case PRE_DEC:
2824     case POST_DEC:
2825     case PRE_MODIFY:
2826     case POST_MODIFY:
2827       /* There are no REG_INC notes for SP.  */
2828       if (XEXP (x, 0) != stack_pointer_rtx)
2829 	return 1;
2830     default:
2831       break;
2832     }
2833   return 0;
2834 }
2835 
2836 /* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
2837 int
loc_mentioned_in_p(rtx * loc,rtx in)2838 loc_mentioned_in_p (rtx *loc, rtx in)
2839 {
2840   enum rtx_code code = GET_CODE (in);
2841   const char *fmt = GET_RTX_FORMAT (code);
2842   int i, j;
2843 
2844   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2845     {
2846       if (loc == &in->u.fld[i].rt_rtx)
2847 	return 1;
2848       if (fmt[i] == 'e')
2849 	{
2850 	  if (loc_mentioned_in_p (loc, XEXP (in, i)))
2851 	    return 1;
2852 	}
2853       else if (fmt[i] == 'E')
2854 	for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2855 	  if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2856 	    return 1;
2857     }
2858   return 0;
2859 }
2860 
2861 /* Helper function for subreg_lsb.  Given a subreg's OUTER_MODE, INNER_MODE,
2862    and SUBREG_BYTE, return the bit offset where the subreg begins
2863    (counting from the least significant bit of the operand).  */
2864 
2865 unsigned int
subreg_lsb_1(enum machine_mode outer_mode,enum machine_mode inner_mode,unsigned int subreg_byte)2866 subreg_lsb_1 (enum machine_mode outer_mode,
2867 	      enum machine_mode inner_mode,
2868 	      unsigned int subreg_byte)
2869 {
2870   unsigned int bitpos;
2871   unsigned int byte;
2872   unsigned int word;
2873 
2874   /* A paradoxical subreg begins at bit position 0.  */
2875   if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2876     return 0;
2877 
2878   if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2879     /* If the subreg crosses a word boundary ensure that
2880        it also begins and ends on a word boundary.  */
2881     gcc_assert (!((subreg_byte % UNITS_PER_WORD
2882 		  + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2883 		  && (subreg_byte % UNITS_PER_WORD
2884 		      || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2885 
2886   if (WORDS_BIG_ENDIAN)
2887     word = (GET_MODE_SIZE (inner_mode)
2888 	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
2889   else
2890     word = subreg_byte / UNITS_PER_WORD;
2891   bitpos = word * BITS_PER_WORD;
2892 
2893   if (BYTES_BIG_ENDIAN)
2894     byte = (GET_MODE_SIZE (inner_mode)
2895 	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
2896   else
2897     byte = subreg_byte % UNITS_PER_WORD;
2898   bitpos += byte * BITS_PER_UNIT;
2899 
2900   return bitpos;
2901 }
2902 
2903 /* Given a subreg X, return the bit offset where the subreg begins
2904    (counting from the least significant bit of the reg).  */
2905 
2906 unsigned int
subreg_lsb(rtx x)2907 subreg_lsb (rtx x)
2908 {
2909   return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
2910 		       SUBREG_BYTE (x));
2911 }
2912 
2913 /* This function returns the regno offset of a subreg expression.
2914    xregno - A regno of an inner hard subreg_reg (or what will become one).
2915    xmode  - The mode of xregno.
2916    offset - The byte offset.
2917    ymode  - The mode of a top level SUBREG (or what may become one).
2918    RETURN - The regno offset which would be used.  */
2919 unsigned int
subreg_regno_offset(unsigned int xregno,enum machine_mode xmode,unsigned int offset,enum machine_mode ymode)2920 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
2921 		     unsigned int offset, enum machine_mode ymode)
2922 {
2923   int nregs_xmode, nregs_ymode;
2924   int mode_multiple, nregs_multiple;
2925   int y_offset;
2926 
2927   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
2928 
2929   /* Adjust nregs_xmode to allow for 'holes'.  */
2930   if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
2931     nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
2932   else
2933     nregs_xmode = hard_regno_nregs[xregno][xmode];
2934 
2935   nregs_ymode = hard_regno_nregs[xregno][ymode];
2936 
2937   /* If this is a big endian paradoxical subreg, which uses more actual
2938      hard registers than the original register, we must return a negative
2939      offset so that we find the proper highpart of the register.  */
2940   if (offset == 0
2941       && nregs_ymode > nregs_xmode
2942       && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
2943 	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
2944     return nregs_xmode - nregs_ymode;
2945 
2946   if (offset == 0 || nregs_xmode == nregs_ymode)
2947     return 0;
2948 
2949   /* Size of ymode must not be greater than the size of xmode.  */
2950   mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
2951   gcc_assert (mode_multiple != 0);
2952 
2953   y_offset = offset / GET_MODE_SIZE (ymode);
2954   nregs_multiple =  nregs_xmode / nregs_ymode;
2955   return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
2956 }
2957 
2958 /* This function returns true when the offset is representable via
2959    subreg_offset in the given regno.
2960    xregno - A regno of an inner hard subreg_reg (or what will become one).
2961    xmode  - The mode of xregno.
2962    offset - The byte offset.
2963    ymode  - The mode of a top level SUBREG (or what may become one).
2964    RETURN - Whether the offset is representable.  */
2965 bool
subreg_offset_representable_p(unsigned int xregno,enum machine_mode xmode,unsigned int offset,enum machine_mode ymode)2966 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
2967 			       unsigned int offset, enum machine_mode ymode)
2968 {
2969   int nregs_xmode, nregs_ymode;
2970   int mode_multiple, nregs_multiple;
2971   int y_offset;
2972   int regsize_xmode, regsize_ymode;
2973 
2974   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
2975 
2976   /* If there are holes in a non-scalar mode in registers, we expect
2977      that it is made up of its units concatenated together.  */
2978   if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
2979     {
2980       enum machine_mode xmode_unit;
2981 
2982       nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
2983       if (GET_MODE_INNER (xmode) == VOIDmode)
2984 	xmode_unit = xmode;
2985       else
2986 	xmode_unit = GET_MODE_INNER (xmode);
2987       gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
2988       gcc_assert (nregs_xmode
2989 		  == (GET_MODE_NUNITS (xmode)
2990 		      * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
2991       gcc_assert (hard_regno_nregs[xregno][xmode]
2992 		  == (hard_regno_nregs[xregno][xmode_unit]
2993 		      * GET_MODE_NUNITS (xmode)));
2994 
2995       /* You can only ask for a SUBREG of a value with holes in the middle
2996 	 if you don't cross the holes.  (Such a SUBREG should be done by
2997 	 picking a different register class, or doing it in memory if
2998 	 necessary.)  An example of a value with holes is XCmode on 32-bit
2999 	 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3000 	 3 for each part, but in memory it's two 128-bit parts.
3001 	 Padding is assumed to be at the end (not necessarily the 'high part')
3002 	 of each unit.  */
3003       if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3004 	   < GET_MODE_NUNITS (xmode))
3005 	  && (offset / GET_MODE_SIZE (xmode_unit)
3006 	      != ((offset + GET_MODE_SIZE (ymode) - 1)
3007 		  / GET_MODE_SIZE (xmode_unit))))
3008 	return false;
3009     }
3010   else
3011     nregs_xmode = hard_regno_nregs[xregno][xmode];
3012 
3013   nregs_ymode = hard_regno_nregs[xregno][ymode];
3014 
3015   /* Paradoxical subregs are otherwise valid.  */
3016   if (offset == 0
3017       && nregs_ymode > nregs_xmode
3018       && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3019 	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3020     return true;
3021 
3022   /* If registers store different numbers of bits in the different
3023      modes, we cannot generally form this subreg.  */
3024   regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3025   regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3026   if (regsize_xmode > regsize_ymode && nregs_ymode > 1)
3027     return false;
3028   if (regsize_ymode > regsize_xmode && nregs_xmode > 1)
3029     return false;
3030 
3031   /* Lowpart subregs are otherwise valid.  */
3032   if (offset == subreg_lowpart_offset (ymode, xmode))
3033     return true;
3034 
3035   /* This should always pass, otherwise we don't know how to verify
3036      the constraint.  These conditions may be relaxed but
3037      subreg_regno_offset would need to be redesigned.  */
3038   gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3039   gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3040 
3041   /* The XMODE value can be seen as a vector of NREGS_XMODE
3042      values.  The subreg must represent a lowpart of given field.
3043      Compute what field it is.  */
3044   offset -= subreg_lowpart_offset (ymode,
3045 				   mode_for_size (GET_MODE_BITSIZE (xmode)
3046 						  / nregs_xmode,
3047 						  MODE_INT, 0));
3048 
3049   /* Size of ymode must not be greater than the size of xmode.  */
3050   mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3051   gcc_assert (mode_multiple != 0);
3052 
3053   y_offset = offset / GET_MODE_SIZE (ymode);
3054   nregs_multiple =  nregs_xmode / nregs_ymode;
3055 
3056   gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3057   gcc_assert ((mode_multiple % nregs_multiple) == 0);
3058 
3059   return (!(y_offset % (mode_multiple / nregs_multiple)));
3060 }
3061 
3062 /* Return the final regno that a subreg expression refers to.  */
3063 unsigned int
subreg_regno(rtx x)3064 subreg_regno (rtx x)
3065 {
3066   unsigned int ret;
3067   rtx subreg = SUBREG_REG (x);
3068   int regno = REGNO (subreg);
3069 
3070   ret = regno + subreg_regno_offset (regno,
3071 				     GET_MODE (subreg),
3072 				     SUBREG_BYTE (x),
3073 				     GET_MODE (x));
3074   return ret;
3075 
3076 }
3077 struct parms_set_data
3078 {
3079   int nregs;
3080   HARD_REG_SET regs;
3081 };
3082 
3083 /* Helper function for noticing stores to parameter registers.  */
3084 static void
parms_set(rtx x,rtx pat ATTRIBUTE_UNUSED,void * data)3085 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3086 {
3087   struct parms_set_data *d = data;
3088   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3089       && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3090     {
3091       CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3092       d->nregs--;
3093     }
3094 }
3095 
3096 /* Look backward for first parameter to be loaded.
3097    Note that loads of all parameters will not necessarily be
3098    found if CSE has eliminated some of them (e.g., an argument
3099    to the outer function is passed down as a parameter).
3100    Do not skip BOUNDARY.  */
3101 rtx
find_first_parameter_load(rtx call_insn,rtx boundary)3102 find_first_parameter_load (rtx call_insn, rtx boundary)
3103 {
3104   struct parms_set_data parm;
3105   rtx p, before, first_set;
3106 
3107   /* Since different machines initialize their parameter registers
3108      in different orders, assume nothing.  Collect the set of all
3109      parameter registers.  */
3110   CLEAR_HARD_REG_SET (parm.regs);
3111   parm.nregs = 0;
3112   for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3113     if (GET_CODE (XEXP (p, 0)) == USE
3114 	&& REG_P (XEXP (XEXP (p, 0), 0)))
3115       {
3116 	gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3117 
3118 	/* We only care about registers which can hold function
3119 	   arguments.  */
3120 	if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3121 	  continue;
3122 
3123 	SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3124 	parm.nregs++;
3125       }
3126   before = call_insn;
3127   first_set = call_insn;
3128 
3129   /* Search backward for the first set of a register in this set.  */
3130   while (parm.nregs && before != boundary)
3131     {
3132       before = PREV_INSN (before);
3133 
3134       /* It is possible that some loads got CSEed from one call to
3135          another.  Stop in that case.  */
3136       if (CALL_P (before))
3137 	break;
3138 
3139       /* Our caller needs either ensure that we will find all sets
3140          (in case code has not been optimized yet), or take care
3141          for possible labels in a way by setting boundary to preceding
3142          CODE_LABEL.  */
3143       if (LABEL_P (before))
3144 	{
3145 	  gcc_assert (before == boundary);
3146 	  break;
3147 	}
3148 
3149       if (INSN_P (before))
3150 	{
3151 	  int nregs_old = parm.nregs;
3152 	  note_stores (PATTERN (before), parms_set, &parm);
3153 	  /* If we found something that did not set a parameter reg,
3154 	     we're done.  Do not keep going, as that might result
3155 	     in hoisting an insn before the setting of a pseudo
3156 	     that is used by the hoisted insn. */
3157 	  if (nregs_old != parm.nregs)
3158 	    first_set = before;
3159 	  else
3160 	    break;
3161 	}
3162     }
3163   return first_set;
3164 }
3165 
3166 /* Return true if we should avoid inserting code between INSN and preceding
3167    call instruction.  */
3168 
3169 bool
keep_with_call_p(rtx insn)3170 keep_with_call_p (rtx insn)
3171 {
3172   rtx set;
3173 
3174   if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3175     {
3176       if (REG_P (SET_DEST (set))
3177 	  && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3178 	  && fixed_regs[REGNO (SET_DEST (set))]
3179 	  && general_operand (SET_SRC (set), VOIDmode))
3180 	return true;
3181       if (REG_P (SET_SRC (set))
3182 	  && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3183 	  && REG_P (SET_DEST (set))
3184 	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3185 	return true;
3186       /* There may be a stack pop just after the call and before the store
3187 	 of the return register.  Search for the actual store when deciding
3188 	 if we can break or not.  */
3189       if (SET_DEST (set) == stack_pointer_rtx)
3190 	{
3191 	  rtx i2 = next_nonnote_insn (insn);
3192 	  if (i2 && keep_with_call_p (i2))
3193 	    return true;
3194 	}
3195     }
3196   return false;
3197 }
3198 
3199 /* Return true if LABEL is a target of JUMP_INSN.  This applies only
3200    to non-complex jumps.  That is, direct unconditional, conditional,
3201    and tablejumps, but not computed jumps or returns.  It also does
3202    not apply to the fallthru case of a conditional jump.  */
3203 
3204 bool
label_is_jump_target_p(rtx label,rtx jump_insn)3205 label_is_jump_target_p (rtx label, rtx jump_insn)
3206 {
3207   rtx tmp = JUMP_LABEL (jump_insn);
3208 
3209   if (label == tmp)
3210     return true;
3211 
3212   if (tablejump_p (jump_insn, NULL, &tmp))
3213     {
3214       rtvec vec = XVEC (PATTERN (tmp),
3215 			GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3216       int i, veclen = GET_NUM_ELEM (vec);
3217 
3218       for (i = 0; i < veclen; ++i)
3219 	if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3220 	  return true;
3221     }
3222 
3223   return false;
3224 }
3225 
3226 
3227 /* Return an estimate of the cost of computing rtx X.
3228    One use is in cse, to decide which expression to keep in the hash table.
3229    Another is in rtl generation, to pick the cheapest way to multiply.
3230    Other uses like the latter are expected in the future.  */
3231 
3232 int
rtx_cost(rtx x,enum rtx_code outer_code ATTRIBUTE_UNUSED)3233 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3234 {
3235   int i, j;
3236   enum rtx_code code;
3237   const char *fmt;
3238   int total;
3239 
3240   if (x == 0)
3241     return 0;
3242 
3243   /* Compute the default costs of certain things.
3244      Note that targetm.rtx_costs can override the defaults.  */
3245 
3246   code = GET_CODE (x);
3247   switch (code)
3248     {
3249     case MULT:
3250       total = COSTS_N_INSNS (5);
3251       break;
3252     case DIV:
3253     case UDIV:
3254     case MOD:
3255     case UMOD:
3256       total = COSTS_N_INSNS (7);
3257       break;
3258     case USE:
3259       /* Used in combine.c as a marker.  */
3260       total = 0;
3261       break;
3262     default:
3263       total = COSTS_N_INSNS (1);
3264     }
3265 
3266   switch (code)
3267     {
3268     case REG:
3269       return 0;
3270 
3271     case SUBREG:
3272       total = 0;
3273       /* If we can't tie these modes, make this expensive.  The larger
3274 	 the mode, the more expensive it is.  */
3275       if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3276 	return COSTS_N_INSNS (2
3277 			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3278       break;
3279 
3280     default:
3281       if (targetm.rtx_costs (x, code, outer_code, &total))
3282 	return total;
3283       break;
3284     }
3285 
3286   /* Sum the costs of the sub-rtx's, plus cost of this operation,
3287      which is already in total.  */
3288 
3289   fmt = GET_RTX_FORMAT (code);
3290   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3291     if (fmt[i] == 'e')
3292       total += rtx_cost (XEXP (x, i), code);
3293     else if (fmt[i] == 'E')
3294       for (j = 0; j < XVECLEN (x, i); j++)
3295 	total += rtx_cost (XVECEXP (x, i, j), code);
3296 
3297   return total;
3298 }
3299 
3300 /* Return cost of address expression X.
3301    Expect that X is properly formed address reference.  */
3302 
3303 int
address_cost(rtx x,enum machine_mode mode)3304 address_cost (rtx x, enum machine_mode mode)
3305 {
3306   /* We may be asked for cost of various unusual addresses, such as operands
3307      of push instruction.  It is not worthwhile to complicate writing
3308      of the target hook by such cases.  */
3309 
3310   if (!memory_address_p (mode, x))
3311     return 1000;
3312 
3313   return targetm.address_cost (x);
3314 }
3315 
3316 /* If the target doesn't override, compute the cost as with arithmetic.  */
3317 
3318 int
default_address_cost(rtx x)3319 default_address_cost (rtx x)
3320 {
3321   return rtx_cost (x, MEM);
3322 }
3323 
3324 
3325 unsigned HOST_WIDE_INT
nonzero_bits(rtx x,enum machine_mode mode)3326 nonzero_bits (rtx x, enum machine_mode mode)
3327 {
3328   return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3329 }
3330 
3331 unsigned int
num_sign_bit_copies(rtx x,enum machine_mode mode)3332 num_sign_bit_copies (rtx x, enum machine_mode mode)
3333 {
3334   return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3335 }
3336 
3337 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3338    It avoids exponential behavior in nonzero_bits1 when X has
3339    identical subexpressions on the first or the second level.  */
3340 
3341 static unsigned HOST_WIDE_INT
cached_nonzero_bits(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)3342 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3343 		     enum machine_mode known_mode,
3344 		     unsigned HOST_WIDE_INT known_ret)
3345 {
3346   if (x == known_x && mode == known_mode)
3347     return known_ret;
3348 
3349   /* Try to find identical subexpressions.  If found call
3350      nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3351      precomputed value for the subexpression as KNOWN_RET.  */
3352 
3353   if (ARITHMETIC_P (x))
3354     {
3355       rtx x0 = XEXP (x, 0);
3356       rtx x1 = XEXP (x, 1);
3357 
3358       /* Check the first level.  */
3359       if (x0 == x1)
3360 	return nonzero_bits1 (x, mode, x0, mode,
3361 			      cached_nonzero_bits (x0, mode, known_x,
3362 						   known_mode, known_ret));
3363 
3364       /* Check the second level.  */
3365       if (ARITHMETIC_P (x0)
3366 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3367 	return nonzero_bits1 (x, mode, x1, mode,
3368 			      cached_nonzero_bits (x1, mode, known_x,
3369 						   known_mode, known_ret));
3370 
3371       if (ARITHMETIC_P (x1)
3372 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3373 	return nonzero_bits1 (x, mode, x0, mode,
3374 			      cached_nonzero_bits (x0, mode, known_x,
3375 						   known_mode, known_ret));
3376     }
3377 
3378   return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3379 }
3380 
3381 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3382    We don't let nonzero_bits recur into num_sign_bit_copies, because that
3383    is less useful.  We can't allow both, because that results in exponential
3384    run time recursion.  There is a nullstone testcase that triggered
3385    this.  This macro avoids accidental uses of num_sign_bit_copies.  */
3386 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3387 
3388 /* Given an expression, X, compute which bits in X can be nonzero.
3389    We don't care about bits outside of those defined in MODE.
3390 
3391    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3392    an arithmetic operation, we can do better.  */
3393 
3394 static unsigned HOST_WIDE_INT
nonzero_bits1(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)3395 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3396 	       enum machine_mode known_mode,
3397 	       unsigned HOST_WIDE_INT known_ret)
3398 {
3399   unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3400   unsigned HOST_WIDE_INT inner_nz;
3401   enum rtx_code code;
3402   unsigned int mode_width = GET_MODE_BITSIZE (mode);
3403 
3404   /* For floating-point values, assume all bits are needed.  */
3405   if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3406     return nonzero;
3407 
3408   /* If X is wider than MODE, use its mode instead.  */
3409   if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3410     {
3411       mode = GET_MODE (x);
3412       nonzero = GET_MODE_MASK (mode);
3413       mode_width = GET_MODE_BITSIZE (mode);
3414     }
3415 
3416   if (mode_width > HOST_BITS_PER_WIDE_INT)
3417     /* Our only callers in this case look for single bit values.  So
3418        just return the mode mask.  Those tests will then be false.  */
3419     return nonzero;
3420 
3421 #ifndef WORD_REGISTER_OPERATIONS
3422   /* If MODE is wider than X, but both are a single word for both the host
3423      and target machines, we can compute this from which bits of the
3424      object might be nonzero in its own mode, taking into account the fact
3425      that on many CISC machines, accessing an object in a wider mode
3426      causes the high-order bits to become undefined.  So they are
3427      not known to be zero.  */
3428 
3429   if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3430       && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3431       && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3432       && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3433     {
3434       nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3435 				      known_x, known_mode, known_ret);
3436       nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3437       return nonzero;
3438     }
3439 #endif
3440 
3441   code = GET_CODE (x);
3442   switch (code)
3443     {
3444     case REG:
3445 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3446       /* If pointers extend unsigned and this is a pointer in Pmode, say that
3447 	 all the bits above ptr_mode are known to be zero.  */
3448       if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3449 	  && REG_POINTER (x))
3450 	nonzero &= GET_MODE_MASK (ptr_mode);
3451 #endif
3452 
3453       /* Include declared information about alignment of pointers.  */
3454       /* ??? We don't properly preserve REG_POINTER changes across
3455 	 pointer-to-integer casts, so we can't trust it except for
3456 	 things that we know must be pointers.  See execute/960116-1.c.  */
3457       if ((x == stack_pointer_rtx
3458 	   || x == frame_pointer_rtx
3459 	   || x == arg_pointer_rtx)
3460 	  && REGNO_POINTER_ALIGN (REGNO (x)))
3461 	{
3462 	  unsigned HOST_WIDE_INT alignment
3463 	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3464 
3465 #ifdef PUSH_ROUNDING
3466 	  /* If PUSH_ROUNDING is defined, it is possible for the
3467 	     stack to be momentarily aligned only to that amount,
3468 	     so we pick the least alignment.  */
3469 	  if (x == stack_pointer_rtx && PUSH_ARGS)
3470 	    alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3471 			     alignment);
3472 #endif
3473 
3474 	  nonzero &= ~(alignment - 1);
3475 	}
3476 
3477       {
3478 	unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3479 	rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3480 					      known_mode, known_ret,
3481 					      &nonzero_for_hook);
3482 
3483 	if (new)
3484 	  nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3485 						   known_mode, known_ret);
3486 
3487 	return nonzero_for_hook;
3488       }
3489 
3490     case CONST_INT:
3491 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3492       /* If X is negative in MODE, sign-extend the value.  */
3493       if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3494 	  && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3495 	return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3496 #endif
3497 
3498       return INTVAL (x);
3499 
3500     case MEM:
3501 #ifdef LOAD_EXTEND_OP
3502       /* In many, if not most, RISC machines, reading a byte from memory
3503 	 zeros the rest of the register.  Noticing that fact saves a lot
3504 	 of extra zero-extends.  */
3505       if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3506 	nonzero &= GET_MODE_MASK (GET_MODE (x));
3507 #endif
3508       break;
3509 
3510     case EQ:  case NE:
3511     case UNEQ:  case LTGT:
3512     case GT:  case GTU:  case UNGT:
3513     case LT:  case LTU:  case UNLT:
3514     case GE:  case GEU:  case UNGE:
3515     case LE:  case LEU:  case UNLE:
3516     case UNORDERED: case ORDERED:
3517       /* If this produces an integer result, we know which bits are set.
3518 	 Code here used to clear bits outside the mode of X, but that is
3519 	 now done above.  */
3520       /* Mind that MODE is the mode the caller wants to look at this
3521 	 operation in, and not the actual operation mode.  We can wind
3522 	 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3523 	 that describes the results of a vector compare.  */
3524       if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3525 	  && mode_width <= HOST_BITS_PER_WIDE_INT)
3526 	nonzero = STORE_FLAG_VALUE;
3527       break;
3528 
3529     case NEG:
3530 #if 0
3531       /* Disabled to avoid exponential mutual recursion between nonzero_bits
3532 	 and num_sign_bit_copies.  */
3533       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3534 	  == GET_MODE_BITSIZE (GET_MODE (x)))
3535 	nonzero = 1;
3536 #endif
3537 
3538       if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3539 	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3540       break;
3541 
3542     case ABS:
3543 #if 0
3544       /* Disabled to avoid exponential mutual recursion between nonzero_bits
3545 	 and num_sign_bit_copies.  */
3546       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3547 	  == GET_MODE_BITSIZE (GET_MODE (x)))
3548 	nonzero = 1;
3549 #endif
3550       break;
3551 
3552     case TRUNCATE:
3553       nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3554 				       known_x, known_mode, known_ret)
3555 		  & GET_MODE_MASK (mode));
3556       break;
3557 
3558     case ZERO_EXTEND:
3559       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3560 				      known_x, known_mode, known_ret);
3561       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3562 	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3563       break;
3564 
3565     case SIGN_EXTEND:
3566       /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3567 	 Otherwise, show all the bits in the outer mode but not the inner
3568 	 may be nonzero.  */
3569       inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3570 				      known_x, known_mode, known_ret);
3571       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3572 	{
3573 	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3574 	  if (inner_nz
3575 	      & (((HOST_WIDE_INT) 1
3576 		  << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3577 	    inner_nz |= (GET_MODE_MASK (mode)
3578 			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3579 	}
3580 
3581       nonzero &= inner_nz;
3582       break;
3583 
3584     case AND:
3585       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3586 				       known_x, known_mode, known_ret)
3587       		 & cached_nonzero_bits (XEXP (x, 1), mode,
3588 					known_x, known_mode, known_ret);
3589       break;
3590 
3591     case XOR:   case IOR:
3592     case UMIN:  case UMAX:  case SMIN:  case SMAX:
3593       {
3594 	unsigned HOST_WIDE_INT nonzero0 =
3595 	  cached_nonzero_bits (XEXP (x, 0), mode,
3596 			       known_x, known_mode, known_ret);
3597 
3598 	/* Don't call nonzero_bits for the second time if it cannot change
3599 	   anything.  */
3600 	if ((nonzero & nonzero0) != nonzero)
3601 	  nonzero &= nonzero0
3602       		     | cached_nonzero_bits (XEXP (x, 1), mode,
3603 					    known_x, known_mode, known_ret);
3604       }
3605       break;
3606 
3607     case PLUS:  case MINUS:
3608     case MULT:
3609     case DIV:   case UDIV:
3610     case MOD:   case UMOD:
3611       /* We can apply the rules of arithmetic to compute the number of
3612 	 high- and low-order zero bits of these operations.  We start by
3613 	 computing the width (position of the highest-order nonzero bit)
3614 	 and the number of low-order zero bits for each value.  */
3615       {
3616 	unsigned HOST_WIDE_INT nz0 =
3617 	  cached_nonzero_bits (XEXP (x, 0), mode,
3618 			       known_x, known_mode, known_ret);
3619 	unsigned HOST_WIDE_INT nz1 =
3620 	  cached_nonzero_bits (XEXP (x, 1), mode,
3621 			       known_x, known_mode, known_ret);
3622 	int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3623 	int width0 = floor_log2 (nz0) + 1;
3624 	int width1 = floor_log2 (nz1) + 1;
3625 	int low0 = floor_log2 (nz0 & -nz0);
3626 	int low1 = floor_log2 (nz1 & -nz1);
3627 	HOST_WIDE_INT op0_maybe_minusp
3628 	  = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3629 	HOST_WIDE_INT op1_maybe_minusp
3630 	  = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3631 	unsigned int result_width = mode_width;
3632 	int result_low = 0;
3633 
3634 	switch (code)
3635 	  {
3636 	  case PLUS:
3637 	    result_width = MAX (width0, width1) + 1;
3638 	    result_low = MIN (low0, low1);
3639 	    break;
3640 	  case MINUS:
3641 	    result_low = MIN (low0, low1);
3642 	    break;
3643 	  case MULT:
3644 	    result_width = width0 + width1;
3645 	    result_low = low0 + low1;
3646 	    break;
3647 	  case DIV:
3648 	    if (width1 == 0)
3649 	      break;
3650 	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
3651 	      result_width = width0;
3652 	    break;
3653 	  case UDIV:
3654 	    if (width1 == 0)
3655 	      break;
3656 	    result_width = width0;
3657 	    break;
3658 	  case MOD:
3659 	    if (width1 == 0)
3660 	      break;
3661 	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
3662 	      result_width = MIN (width0, width1);
3663 	    result_low = MIN (low0, low1);
3664 	    break;
3665 	  case UMOD:
3666 	    if (width1 == 0)
3667 	      break;
3668 	    result_width = MIN (width0, width1);
3669 	    result_low = MIN (low0, low1);
3670 	    break;
3671 	  default:
3672 	    gcc_unreachable ();
3673 	  }
3674 
3675 	if (result_width < mode_width)
3676 	  nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3677 
3678 	if (result_low > 0)
3679 	  nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3680 
3681 #ifdef POINTERS_EXTEND_UNSIGNED
3682 	/* If pointers extend unsigned and this is an addition or subtraction
3683 	   to a pointer in Pmode, all the bits above ptr_mode are known to be
3684 	   zero.  */
3685 	if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3686 	    && (code == PLUS || code == MINUS)
3687 	    && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3688 	  nonzero &= GET_MODE_MASK (ptr_mode);
3689 #endif
3690       }
3691       break;
3692 
3693     case ZERO_EXTRACT:
3694       if (GET_CODE (XEXP (x, 1)) == CONST_INT
3695 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3696 	nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3697       break;
3698 
3699     case SUBREG:
3700       /* If this is a SUBREG formed for a promoted variable that has
3701 	 been zero-extended, we know that at least the high-order bits
3702 	 are zero, though others might be too.  */
3703 
3704       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3705 	nonzero = GET_MODE_MASK (GET_MODE (x))
3706 		  & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3707 					 known_x, known_mode, known_ret);
3708 
3709       /* If the inner mode is a single word for both the host and target
3710 	 machines, we can compute this from which bits of the inner
3711 	 object might be nonzero.  */
3712       if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3713 	  && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3714 	      <= HOST_BITS_PER_WIDE_INT))
3715 	{
3716 	  nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3717 					  known_x, known_mode, known_ret);
3718 
3719 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3720 	  /* If this is a typical RISC machine, we only have to worry
3721 	     about the way loads are extended.  */
3722 	  if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3723 	       ? (((nonzero
3724 		    & (((unsigned HOST_WIDE_INT) 1
3725 			<< (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3726 		   != 0))
3727 	       : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3728 	      || !MEM_P (SUBREG_REG (x)))
3729 #endif
3730 	    {
3731 	      /* On many CISC machines, accessing an object in a wider mode
3732 		 causes the high-order bits to become undefined.  So they are
3733 		 not known to be zero.  */
3734 	      if (GET_MODE_SIZE (GET_MODE (x))
3735 		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3736 		nonzero |= (GET_MODE_MASK (GET_MODE (x))
3737 			    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3738 	    }
3739 	}
3740       break;
3741 
3742     case ASHIFTRT:
3743     case LSHIFTRT:
3744     case ASHIFT:
3745     case ROTATE:
3746       /* The nonzero bits are in two classes: any bits within MODE
3747 	 that aren't in GET_MODE (x) are always significant.  The rest of the
3748 	 nonzero bits are those that are significant in the operand of
3749 	 the shift when shifted the appropriate number of bits.  This
3750 	 shows that high-order bits are cleared by the right shift and
3751 	 low-order bits by left shifts.  */
3752       if (GET_CODE (XEXP (x, 1)) == CONST_INT
3753 	  && INTVAL (XEXP (x, 1)) >= 0
3754 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3755 	{
3756 	  enum machine_mode inner_mode = GET_MODE (x);
3757 	  unsigned int width = GET_MODE_BITSIZE (inner_mode);
3758 	  int count = INTVAL (XEXP (x, 1));
3759 	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3760 	  unsigned HOST_WIDE_INT op_nonzero =
3761 	    cached_nonzero_bits (XEXP (x, 0), mode,
3762 				 known_x, known_mode, known_ret);
3763 	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3764 	  unsigned HOST_WIDE_INT outer = 0;
3765 
3766 	  if (mode_width > width)
3767 	    outer = (op_nonzero & nonzero & ~mode_mask);
3768 
3769 	  if (code == LSHIFTRT)
3770 	    inner >>= count;
3771 	  else if (code == ASHIFTRT)
3772 	    {
3773 	      inner >>= count;
3774 
3775 	      /* If the sign bit may have been nonzero before the shift, we
3776 		 need to mark all the places it could have been copied to
3777 		 by the shift as possibly nonzero.  */
3778 	      if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3779 		inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3780 	    }
3781 	  else if (code == ASHIFT)
3782 	    inner <<= count;
3783 	  else
3784 	    inner = ((inner << (count % width)
3785 		      | (inner >> (width - (count % width)))) & mode_mask);
3786 
3787 	  nonzero &= (outer | inner);
3788 	}
3789       break;
3790 
3791     case FFS:
3792     case POPCOUNT:
3793       /* This is at most the number of bits in the mode.  */
3794       nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3795       break;
3796 
3797     case CLZ:
3798       /* If CLZ has a known value at zero, then the nonzero bits are
3799 	 that value, plus the number of bits in the mode minus one.  */
3800       if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3801 	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3802       else
3803 	nonzero = -1;
3804       break;
3805 
3806     case CTZ:
3807       /* If CTZ has a known value at zero, then the nonzero bits are
3808 	 that value, plus the number of bits in the mode minus one.  */
3809       if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3810 	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3811       else
3812 	nonzero = -1;
3813       break;
3814 
3815     case PARITY:
3816       nonzero = 1;
3817       break;
3818 
3819     case IF_THEN_ELSE:
3820       {
3821 	unsigned HOST_WIDE_INT nonzero_true =
3822 	  cached_nonzero_bits (XEXP (x, 1), mode,
3823 			       known_x, known_mode, known_ret);
3824 
3825 	/* Don't call nonzero_bits for the second time if it cannot change
3826 	   anything.  */
3827 	if ((nonzero & nonzero_true) != nonzero)
3828 	  nonzero &= nonzero_true
3829       		     | cached_nonzero_bits (XEXP (x, 2), mode,
3830 					    known_x, known_mode, known_ret);
3831       }
3832       break;
3833 
3834     default:
3835       break;
3836     }
3837 
3838   return nonzero;
3839 }
3840 
3841 /* See the macro definition above.  */
3842 #undef cached_num_sign_bit_copies
3843 
3844 
3845 /* The function cached_num_sign_bit_copies is a wrapper around
3846    num_sign_bit_copies1.  It avoids exponential behavior in
3847    num_sign_bit_copies1 when X has identical subexpressions on the
3848    first or the second level.  */
3849 
3850 static unsigned int
cached_num_sign_bit_copies(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned int known_ret)3851 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3852 			    enum machine_mode known_mode,
3853 			    unsigned int known_ret)
3854 {
3855   if (x == known_x && mode == known_mode)
3856     return known_ret;
3857 
3858   /* Try to find identical subexpressions.  If found call
3859      num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3860      the precomputed value for the subexpression as KNOWN_RET.  */
3861 
3862   if (ARITHMETIC_P (x))
3863     {
3864       rtx x0 = XEXP (x, 0);
3865       rtx x1 = XEXP (x, 1);
3866 
3867       /* Check the first level.  */
3868       if (x0 == x1)
3869 	return
3870 	  num_sign_bit_copies1 (x, mode, x0, mode,
3871 				cached_num_sign_bit_copies (x0, mode, known_x,
3872 							    known_mode,
3873 							    known_ret));
3874 
3875       /* Check the second level.  */
3876       if (ARITHMETIC_P (x0)
3877 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3878 	return
3879 	  num_sign_bit_copies1 (x, mode, x1, mode,
3880 				cached_num_sign_bit_copies (x1, mode, known_x,
3881 							    known_mode,
3882 							    known_ret));
3883 
3884       if (ARITHMETIC_P (x1)
3885 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3886 	return
3887 	  num_sign_bit_copies1 (x, mode, x0, mode,
3888 				cached_num_sign_bit_copies (x0, mode, known_x,
3889 							    known_mode,
3890 							    known_ret));
3891     }
3892 
3893   return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
3894 }
3895 
3896 /* Return the number of bits at the high-order end of X that are known to
3897    be equal to the sign bit.  X will be used in mode MODE; if MODE is
3898    VOIDmode, X will be used in its own mode.  The returned value  will always
3899    be between 1 and the number of bits in MODE.  */
3900 
3901 static unsigned int
num_sign_bit_copies1(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned int known_ret)3902 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
3903 		      enum machine_mode known_mode,
3904 		      unsigned int known_ret)
3905 {
3906   enum rtx_code code = GET_CODE (x);
3907   unsigned int bitwidth = GET_MODE_BITSIZE (mode);
3908   int num0, num1, result;
3909   unsigned HOST_WIDE_INT nonzero;
3910 
3911   /* If we weren't given a mode, use the mode of X.  If the mode is still
3912      VOIDmode, we don't know anything.  Likewise if one of the modes is
3913      floating-point.  */
3914 
3915   if (mode == VOIDmode)
3916     mode = GET_MODE (x);
3917 
3918   if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
3919     return 1;
3920 
3921   /* For a smaller object, just ignore the high bits.  */
3922   if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
3923     {
3924       num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
3925 					 known_x, known_mode, known_ret);
3926       return MAX (1,
3927 		  num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
3928     }
3929 
3930   if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
3931     {
3932 #ifndef WORD_REGISTER_OPERATIONS
3933   /* If this machine does not do all register operations on the entire
3934      register and MODE is wider than the mode of X, we can say nothing
3935      at all about the high-order bits.  */
3936       return 1;
3937 #else
3938       /* Likewise on machines that do, if the mode of the object is smaller
3939 	 than a word and loads of that size don't sign extend, we can say
3940 	 nothing about the high order bits.  */
3941       if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
3942 #ifdef LOAD_EXTEND_OP
3943 	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
3944 #endif
3945 	  )
3946 	return 1;
3947 #endif
3948     }
3949 
3950   switch (code)
3951     {
3952     case REG:
3953 
3954 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3955       /* If pointers extend signed and this is a pointer in Pmode, say that
3956 	 all the bits above ptr_mode are known to be sign bit copies.  */
3957       if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
3958 	  && REG_POINTER (x))
3959 	return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
3960 #endif
3961 
3962       {
3963 	unsigned int copies_for_hook = 1, copies = 1;
3964 	rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
3965 						     known_mode, known_ret,
3966 						     &copies_for_hook);
3967 
3968 	if (new)
3969 	  copies = cached_num_sign_bit_copies (new, mode, known_x,
3970 					       known_mode, known_ret);
3971 
3972 	if (copies > 1 || copies_for_hook > 1)
3973 	  return MAX (copies, copies_for_hook);
3974 
3975 	/* Else, use nonzero_bits to guess num_sign_bit_copies (see below).  */
3976       }
3977       break;
3978 
3979     case MEM:
3980 #ifdef LOAD_EXTEND_OP
3981       /* Some RISC machines sign-extend all loads of smaller than a word.  */
3982       if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
3983 	return MAX (1, ((int) bitwidth
3984 			- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
3985 #endif
3986       break;
3987 
3988     case CONST_INT:
3989       /* If the constant is negative, take its 1's complement and remask.
3990 	 Then see how many zero bits we have.  */
3991       nonzero = INTVAL (x) & GET_MODE_MASK (mode);
3992       if (bitwidth <= HOST_BITS_PER_WIDE_INT
3993 	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
3994 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
3995 
3996       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
3997 
3998     case SUBREG:
3999       /* If this is a SUBREG for a promoted object that is sign-extended
4000 	 and we are looking at it in a wider mode, we know that at least the
4001 	 high-order bits are known to be sign bit copies.  */
4002 
4003       if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4004 	{
4005 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4006 					     known_x, known_mode, known_ret);
4007 	  return MAX ((int) bitwidth
4008 		      - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4009 		      num0);
4010 	}
4011 
4012       /* For a smaller object, just ignore the high bits.  */
4013       if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4014 	{
4015 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4016 					     known_x, known_mode, known_ret);
4017 	  return MAX (1, (num0
4018 			  - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4019 				   - bitwidth)));
4020 	}
4021 
4022 #ifdef WORD_REGISTER_OPERATIONS
4023 #ifdef LOAD_EXTEND_OP
4024       /* For paradoxical SUBREGs on machines where all register operations
4025 	 affect the entire register, just look inside.  Note that we are
4026 	 passing MODE to the recursive call, so the number of sign bit copies
4027 	 will remain relative to that mode, not the inner mode.  */
4028 
4029       /* This works only if loads sign extend.  Otherwise, if we get a
4030 	 reload for the inner part, it may be loaded from the stack, and
4031 	 then we lose all sign bit copies that existed before the store
4032 	 to the stack.  */
4033 
4034       if ((GET_MODE_SIZE (GET_MODE (x))
4035 	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4036 	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4037 	  && MEM_P (SUBREG_REG (x)))
4038 	return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4039 					   known_x, known_mode, known_ret);
4040 #endif
4041 #endif
4042       break;
4043 
4044     case SIGN_EXTRACT:
4045       if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4046 	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4047       break;
4048 
4049     case SIGN_EXTEND:
4050       return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4051 	      + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4052 					    known_x, known_mode, known_ret));
4053 
4054     case TRUNCATE:
4055       /* For a smaller object, just ignore the high bits.  */
4056       num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4057 					 known_x, known_mode, known_ret);
4058       return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4059 				    - bitwidth)));
4060 
4061     case NOT:
4062       return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4063 					 known_x, known_mode, known_ret);
4064 
4065     case ROTATE:       case ROTATERT:
4066       /* If we are rotating left by a number of bits less than the number
4067 	 of sign bit copies, we can just subtract that amount from the
4068 	 number.  */
4069       if (GET_CODE (XEXP (x, 1)) == CONST_INT
4070 	  && INTVAL (XEXP (x, 1)) >= 0
4071 	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4072 	{
4073 	  num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4074 					     known_x, known_mode, known_ret);
4075 	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4076 				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4077 	}
4078       break;
4079 
4080     case NEG:
4081       /* In general, this subtracts one sign bit copy.  But if the value
4082 	 is known to be positive, the number of sign bit copies is the
4083 	 same as that of the input.  Finally, if the input has just one bit
4084 	 that might be nonzero, all the bits are copies of the sign bit.  */
4085       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4086 					 known_x, known_mode, known_ret);
4087       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4088 	return num0 > 1 ? num0 - 1 : 1;
4089 
4090       nonzero = nonzero_bits (XEXP (x, 0), mode);
4091       if (nonzero == 1)
4092 	return bitwidth;
4093 
4094       if (num0 > 1
4095 	  && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4096 	num0--;
4097 
4098       return num0;
4099 
4100     case IOR:   case AND:   case XOR:
4101     case SMIN:  case SMAX:  case UMIN:  case UMAX:
4102       /* Logical operations will preserve the number of sign-bit copies.
4103 	 MIN and MAX operations always return one of the operands.  */
4104       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4105 					 known_x, known_mode, known_ret);
4106       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4107 					 known_x, known_mode, known_ret);
4108       return MIN (num0, num1);
4109 
4110     case PLUS:  case MINUS:
4111       /* For addition and subtraction, we can have a 1-bit carry.  However,
4112 	 if we are subtracting 1 from a positive number, there will not
4113 	 be such a carry.  Furthermore, if the positive number is known to
4114 	 be 0 or 1, we know the result is either -1 or 0.  */
4115 
4116       if (code == PLUS && XEXP (x, 1) == constm1_rtx
4117 	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
4118 	{
4119 	  nonzero = nonzero_bits (XEXP (x, 0), mode);
4120 	  if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4121 	    return (nonzero == 1 || nonzero == 0 ? bitwidth
4122 		    : bitwidth - floor_log2 (nonzero) - 1);
4123 	}
4124 
4125       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4126 					 known_x, known_mode, known_ret);
4127       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4128 					 known_x, known_mode, known_ret);
4129       result = MAX (1, MIN (num0, num1) - 1);
4130 
4131 #ifdef POINTERS_EXTEND_UNSIGNED
4132       /* If pointers extend signed and this is an addition or subtraction
4133 	 to a pointer in Pmode, all the bits above ptr_mode are known to be
4134 	 sign bit copies.  */
4135       if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4136 	  && (code == PLUS || code == MINUS)
4137 	  && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4138 	result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4139 			     - GET_MODE_BITSIZE (ptr_mode) + 1),
4140 		      result);
4141 #endif
4142       return result;
4143 
4144     case MULT:
4145       /* The number of bits of the product is the sum of the number of
4146 	 bits of both terms.  However, unless one of the terms if known
4147 	 to be positive, we must allow for an additional bit since negating
4148 	 a negative number can remove one sign bit copy.  */
4149 
4150       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4151 					 known_x, known_mode, known_ret);
4152       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4153 					 known_x, known_mode, known_ret);
4154 
4155       result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4156       if (result > 0
4157 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4158 	      || (((nonzero_bits (XEXP (x, 0), mode)
4159 		    & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4160 		  && ((nonzero_bits (XEXP (x, 1), mode)
4161 		       & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4162 	result--;
4163 
4164       return MAX (1, result);
4165 
4166     case UDIV:
4167       /* The result must be <= the first operand.  If the first operand
4168 	 has the high bit set, we know nothing about the number of sign
4169 	 bit copies.  */
4170       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4171 	return 1;
4172       else if ((nonzero_bits (XEXP (x, 0), mode)
4173 		& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4174 	return 1;
4175       else
4176 	return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4177 					   known_x, known_mode, known_ret);
4178 
4179     case UMOD:
4180       /* The result must be <= the second operand.  */
4181       return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4182 					   known_x, known_mode, known_ret);
4183 
4184     case DIV:
4185       /* Similar to unsigned division, except that we have to worry about
4186 	 the case where the divisor is negative, in which case we have
4187 	 to add 1.  */
4188       result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4189 					   known_x, known_mode, known_ret);
4190       if (result > 1
4191 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4192 	      || (nonzero_bits (XEXP (x, 1), mode)
4193 		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4194 	result--;
4195 
4196       return result;
4197 
4198     case MOD:
4199       result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4200 					   known_x, known_mode, known_ret);
4201       if (result > 1
4202 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4203 	      || (nonzero_bits (XEXP (x, 1), mode)
4204 		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4205 	result--;
4206 
4207       return result;
4208 
4209     case ASHIFTRT:
4210       /* Shifts by a constant add to the number of bits equal to the
4211 	 sign bit.  */
4212       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4213 					 known_x, known_mode, known_ret);
4214       if (GET_CODE (XEXP (x, 1)) == CONST_INT
4215 	  && INTVAL (XEXP (x, 1)) > 0)
4216 	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4217 
4218       return num0;
4219 
4220     case ASHIFT:
4221       /* Left shifts destroy copies.  */
4222       if (GET_CODE (XEXP (x, 1)) != CONST_INT
4223 	  || INTVAL (XEXP (x, 1)) < 0
4224 	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4225 	return 1;
4226 
4227       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4228 					 known_x, known_mode, known_ret);
4229       return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4230 
4231     case IF_THEN_ELSE:
4232       num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4233 					 known_x, known_mode, known_ret);
4234       num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4235 					 known_x, known_mode, known_ret);
4236       return MIN (num0, num1);
4237 
4238     case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
4239     case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
4240     case GEU: case GTU: case LEU: case LTU:
4241     case UNORDERED: case ORDERED:
4242       /* If the constant is negative, take its 1's complement and remask.
4243 	 Then see how many zero bits we have.  */
4244       nonzero = STORE_FLAG_VALUE;
4245       if (bitwidth <= HOST_BITS_PER_WIDE_INT
4246 	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4247 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4248 
4249       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4250 
4251     default:
4252       break;
4253     }
4254 
4255   /* If we haven't been able to figure it out by one of the above rules,
4256      see if some of the high-order bits are known to be zero.  If so,
4257      count those bits and return one less than that amount.  If we can't
4258      safely compute the mask for this mode, always return BITWIDTH.  */
4259 
4260   bitwidth = GET_MODE_BITSIZE (mode);
4261   if (bitwidth > HOST_BITS_PER_WIDE_INT)
4262     return 1;
4263 
4264   nonzero = nonzero_bits (x, mode);
4265   return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4266 	 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4267 }
4268 
4269 /* Calculate the rtx_cost of a single instruction.  A return value of
4270    zero indicates an instruction pattern without a known cost.  */
4271 
4272 int
insn_rtx_cost(rtx pat)4273 insn_rtx_cost (rtx pat)
4274 {
4275   int i, cost;
4276   rtx set;
4277 
4278   /* Extract the single set rtx from the instruction pattern.
4279      We can't use single_set since we only have the pattern.  */
4280   if (GET_CODE (pat) == SET)
4281     set = pat;
4282   else if (GET_CODE (pat) == PARALLEL)
4283     {
4284       set = NULL_RTX;
4285       for (i = 0; i < XVECLEN (pat, 0); i++)
4286 	{
4287 	  rtx x = XVECEXP (pat, 0, i);
4288 	  if (GET_CODE (x) == SET)
4289 	    {
4290 	      if (set)
4291 		return 0;
4292 	      set = x;
4293 	    }
4294 	}
4295       if (!set)
4296 	return 0;
4297     }
4298   else
4299     return 0;
4300 
4301   cost = rtx_cost (SET_SRC (set), SET);
4302   return cost > 0 ? cost : COSTS_N_INSNS (1);
4303 }
4304 
4305 /* Given an insn INSN and condition COND, return the condition in a
4306    canonical form to simplify testing by callers.  Specifically:
4307 
4308    (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4309    (2) Both operands will be machine operands; (cc0) will have been replaced.
4310    (3) If an operand is a constant, it will be the second operand.
4311    (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4312        for GE, GEU, and LEU.
4313 
4314    If the condition cannot be understood, or is an inequality floating-point
4315    comparison which needs to be reversed, 0 will be returned.
4316 
4317    If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4318 
4319    If EARLIEST is nonzero, it is a pointer to a place where the earliest
4320    insn used in locating the condition was found.  If a replacement test
4321    of the condition is desired, it should be placed in front of that
4322    insn and we will be sure that the inputs are still valid.
4323 
4324    If WANT_REG is nonzero, we wish the condition to be relative to that
4325    register, if possible.  Therefore, do not canonicalize the condition
4326    further.  If ALLOW_CC_MODE is nonzero, allow the condition returned
4327    to be a compare to a CC mode register.
4328 
4329    If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4330    and at INSN.  */
4331 
4332 rtx
canonicalize_condition(rtx insn,rtx cond,int reverse,rtx * earliest,rtx want_reg,int allow_cc_mode,int valid_at_insn_p)4333 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4334 			rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4335 {
4336   enum rtx_code code;
4337   rtx prev = insn;
4338   rtx set;
4339   rtx tem;
4340   rtx op0, op1;
4341   int reverse_code = 0;
4342   enum machine_mode mode;
4343   basic_block bb = BLOCK_FOR_INSN (insn);
4344 
4345   code = GET_CODE (cond);
4346   mode = GET_MODE (cond);
4347   op0 = XEXP (cond, 0);
4348   op1 = XEXP (cond, 1);
4349 
4350   if (reverse)
4351     code = reversed_comparison_code (cond, insn);
4352   if (code == UNKNOWN)
4353     return 0;
4354 
4355   if (earliest)
4356     *earliest = insn;
4357 
4358   /* If we are comparing a register with zero, see if the register is set
4359      in the previous insn to a COMPARE or a comparison operation.  Perform
4360      the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4361      in cse.c  */
4362 
4363   while ((GET_RTX_CLASS (code) == RTX_COMPARE
4364 	  || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4365 	 && op1 == CONST0_RTX (GET_MODE (op0))
4366 	 && op0 != want_reg)
4367     {
4368       /* Set nonzero when we find something of interest.  */
4369       rtx x = 0;
4370 
4371 #ifdef HAVE_cc0
4372       /* If comparison with cc0, import actual comparison from compare
4373 	 insn.  */
4374       if (op0 == cc0_rtx)
4375 	{
4376 	  if ((prev = prev_nonnote_insn (prev)) == 0
4377 	      || !NONJUMP_INSN_P (prev)
4378 	      || (set = single_set (prev)) == 0
4379 	      || SET_DEST (set) != cc0_rtx)
4380 	    return 0;
4381 
4382 	  op0 = SET_SRC (set);
4383 	  op1 = CONST0_RTX (GET_MODE (op0));
4384 	  if (earliest)
4385 	    *earliest = prev;
4386 	}
4387 #endif
4388 
4389       /* If this is a COMPARE, pick up the two things being compared.  */
4390       if (GET_CODE (op0) == COMPARE)
4391 	{
4392 	  op1 = XEXP (op0, 1);
4393 	  op0 = XEXP (op0, 0);
4394 	  continue;
4395 	}
4396       else if (!REG_P (op0))
4397 	break;
4398 
4399       /* Go back to the previous insn.  Stop if it is not an INSN.  We also
4400 	 stop if it isn't a single set or if it has a REG_INC note because
4401 	 we don't want to bother dealing with it.  */
4402 
4403       if ((prev = prev_nonnote_insn (prev)) == 0
4404 	  || !NONJUMP_INSN_P (prev)
4405 	  || FIND_REG_INC_NOTE (prev, NULL_RTX)
4406 	  /* In cfglayout mode, there do not have to be labels at the
4407 	     beginning of a block, or jumps at the end, so the previous
4408 	     conditions would not stop us when we reach bb boundary.  */
4409 	  || BLOCK_FOR_INSN (prev) != bb)
4410 	break;
4411 
4412       set = set_of (op0, prev);
4413 
4414       if (set
4415 	  && (GET_CODE (set) != SET
4416 	      || !rtx_equal_p (SET_DEST (set), op0)))
4417 	break;
4418 
4419       /* If this is setting OP0, get what it sets it to if it looks
4420 	 relevant.  */
4421       if (set)
4422 	{
4423 	  enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4424 #ifdef FLOAT_STORE_FLAG_VALUE
4425 	  REAL_VALUE_TYPE fsfv;
4426 #endif
4427 
4428 	  /* ??? We may not combine comparisons done in a CCmode with
4429 	     comparisons not done in a CCmode.  This is to aid targets
4430 	     like Alpha that have an IEEE compliant EQ instruction, and
4431 	     a non-IEEE compliant BEQ instruction.  The use of CCmode is
4432 	     actually artificial, simply to prevent the combination, but
4433 	     should not affect other platforms.
4434 
4435 	     However, we must allow VOIDmode comparisons to match either
4436 	     CCmode or non-CCmode comparison, because some ports have
4437 	     modeless comparisons inside branch patterns.
4438 
4439 	     ??? This mode check should perhaps look more like the mode check
4440 	     in simplify_comparison in combine.  */
4441 
4442 	  if ((GET_CODE (SET_SRC (set)) == COMPARE
4443 	       || (((code == NE
4444 		     || (code == LT
4445 			 && GET_MODE_CLASS (inner_mode) == MODE_INT
4446 			 && (GET_MODE_BITSIZE (inner_mode)
4447 			     <= HOST_BITS_PER_WIDE_INT)
4448 			 && (STORE_FLAG_VALUE
4449 			     & ((HOST_WIDE_INT) 1
4450 				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
4451 #ifdef FLOAT_STORE_FLAG_VALUE
4452 		     || (code == LT
4453 			 && SCALAR_FLOAT_MODE_P (inner_mode)
4454 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4455 			     REAL_VALUE_NEGATIVE (fsfv)))
4456 #endif
4457 		     ))
4458 		   && COMPARISON_P (SET_SRC (set))))
4459 	      && (((GET_MODE_CLASS (mode) == MODE_CC)
4460 		   == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4461 		  || mode == VOIDmode || inner_mode == VOIDmode))
4462 	    x = SET_SRC (set);
4463 	  else if (((code == EQ
4464 		     || (code == GE
4465 			 && (GET_MODE_BITSIZE (inner_mode)
4466 			     <= HOST_BITS_PER_WIDE_INT)
4467 			 && GET_MODE_CLASS (inner_mode) == MODE_INT
4468 			 && (STORE_FLAG_VALUE
4469 			     & ((HOST_WIDE_INT) 1
4470 				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
4471 #ifdef FLOAT_STORE_FLAG_VALUE
4472 		     || (code == GE
4473 			 && SCALAR_FLOAT_MODE_P (inner_mode)
4474 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4475 			     REAL_VALUE_NEGATIVE (fsfv)))
4476 #endif
4477 		     ))
4478 		   && COMPARISON_P (SET_SRC (set))
4479 		   && (((GET_MODE_CLASS (mode) == MODE_CC)
4480 			== (GET_MODE_CLASS (inner_mode) == MODE_CC))
4481 		       || mode == VOIDmode || inner_mode == VOIDmode))
4482 
4483 	    {
4484 	      reverse_code = 1;
4485 	      x = SET_SRC (set);
4486 	    }
4487 	  else
4488 	    break;
4489 	}
4490 
4491       else if (reg_set_p (op0, prev))
4492 	/* If this sets OP0, but not directly, we have to give up.  */
4493 	break;
4494 
4495       if (x)
4496 	{
4497 	  /* If the caller is expecting the condition to be valid at INSN,
4498 	     make sure X doesn't change before INSN.  */
4499 	  if (valid_at_insn_p)
4500 	    if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4501 	      break;
4502 	  if (COMPARISON_P (x))
4503 	    code = GET_CODE (x);
4504 	  if (reverse_code)
4505 	    {
4506 	      code = reversed_comparison_code (x, prev);
4507 	      if (code == UNKNOWN)
4508 		return 0;
4509 	      reverse_code = 0;
4510 	    }
4511 
4512 	  op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4513 	  if (earliest)
4514 	    *earliest = prev;
4515 	}
4516     }
4517 
4518   /* If constant is first, put it last.  */
4519   if (CONSTANT_P (op0))
4520     code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4521 
4522   /* If OP0 is the result of a comparison, we weren't able to find what
4523      was really being compared, so fail.  */
4524   if (!allow_cc_mode
4525       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4526     return 0;
4527 
4528   /* Canonicalize any ordered comparison with integers involving equality
4529      if we can do computations in the relevant mode and we do not
4530      overflow.  */
4531 
4532   if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4533       && GET_CODE (op1) == CONST_INT
4534       && GET_MODE (op0) != VOIDmode
4535       && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4536     {
4537       HOST_WIDE_INT const_val = INTVAL (op1);
4538       unsigned HOST_WIDE_INT uconst_val = const_val;
4539       unsigned HOST_WIDE_INT max_val
4540 	= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4541 
4542       switch (code)
4543 	{
4544 	case LE:
4545 	  if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4546 	    code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4547 	  break;
4548 
4549 	/* When cross-compiling, const_val might be sign-extended from
4550 	   BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4551 	case GE:
4552 	  if ((HOST_WIDE_INT) (const_val & max_val)
4553 	      != (((HOST_WIDE_INT) 1
4554 		   << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4555 	    code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4556 	  break;
4557 
4558 	case LEU:
4559 	  if (uconst_val < max_val)
4560 	    code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4561 	  break;
4562 
4563 	case GEU:
4564 	  if (uconst_val != 0)
4565 	    code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4566 	  break;
4567 
4568 	default:
4569 	  break;
4570 	}
4571     }
4572 
4573   /* Never return CC0; return zero instead.  */
4574   if (CC0_P (op0))
4575     return 0;
4576 
4577   return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4578 }
4579 
4580 /* Given a jump insn JUMP, return the condition that will cause it to branch
4581    to its JUMP_LABEL.  If the condition cannot be understood, or is an
4582    inequality floating-point comparison which needs to be reversed, 0 will
4583    be returned.
4584 
4585    If EARLIEST is nonzero, it is a pointer to a place where the earliest
4586    insn used in locating the condition was found.  If a replacement test
4587    of the condition is desired, it should be placed in front of that
4588    insn and we will be sure that the inputs are still valid.  If EARLIEST
4589    is null, the returned condition will be valid at INSN.
4590 
4591    If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4592    compare CC mode register.
4593 
4594    VALID_AT_INSN_P is the same as for canonicalize_condition.  */
4595 
4596 rtx
get_condition(rtx jump,rtx * earliest,int allow_cc_mode,int valid_at_insn_p)4597 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4598 {
4599   rtx cond;
4600   int reverse;
4601   rtx set;
4602 
4603   /* If this is not a standard conditional jump, we can't parse it.  */
4604   if (!JUMP_P (jump)
4605       || ! any_condjump_p (jump))
4606     return 0;
4607   set = pc_set (jump);
4608 
4609   cond = XEXP (SET_SRC (set), 0);
4610 
4611   /* If this branches to JUMP_LABEL when the condition is false, reverse
4612      the condition.  */
4613   reverse
4614     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4615       && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4616 
4617   return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4618 				 allow_cc_mode, valid_at_insn_p);
4619 }
4620 
4621 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4622    TARGET_MODE_REP_EXTENDED.
4623 
4624    Note that we assume that the property of
4625    TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4626    narrower than mode B.  I.e., if A is a mode narrower than B then in
4627    order to be able to operate on it in mode B, mode A needs to
4628    satisfy the requirements set by the representation of mode B.  */
4629 
4630 static void
init_num_sign_bit_copies_in_rep(void)4631 init_num_sign_bit_copies_in_rep (void)
4632 {
4633   enum machine_mode mode, in_mode;
4634 
4635   for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4636        in_mode = GET_MODE_WIDER_MODE (mode))
4637     for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4638 	 mode = GET_MODE_WIDER_MODE (mode))
4639       {
4640 	enum machine_mode i;
4641 
4642 	/* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4643 	   extends to the next widest mode.  */
4644 	gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4645 		    || GET_MODE_WIDER_MODE (mode) == in_mode);
4646 
4647 	/* We are in in_mode.  Count how many bits outside of mode
4648 	   have to be copies of the sign-bit.  */
4649 	for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4650 	  {
4651 	    enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4652 
4653 	    if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4654 		/* We can only check sign-bit copies starting from the
4655 		   top-bit.  In order to be able to check the bits we
4656 		   have already seen we pretend that subsequent bits
4657 		   have to be sign-bit copies too.  */
4658 		|| num_sign_bit_copies_in_rep [in_mode][mode])
4659 	      num_sign_bit_copies_in_rep [in_mode][mode]
4660 		+= GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4661 	  }
4662       }
4663 }
4664 
4665 /* Suppose that truncation from the machine mode of X to MODE is not a
4666    no-op.  See if there is anything special about X so that we can
4667    assume it already contains a truncated value of MODE.  */
4668 
4669 bool
truncated_to_mode(enum machine_mode mode,rtx x)4670 truncated_to_mode (enum machine_mode mode, rtx x)
4671 {
4672   /* This register has already been used in MODE without explicit
4673      truncation.  */
4674   if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4675     return true;
4676 
4677   /* See if we already satisfy the requirements of MODE.  If yes we
4678      can just switch to MODE.  */
4679   if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4680       && (num_sign_bit_copies (x, GET_MODE (x))
4681 	  >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4682     return true;
4683 
4684   return false;
4685 }
4686 
4687 /* Initialize non_rtx_starting_operands, which is used to speed up
4688    for_each_rtx.  */
4689 void
init_rtlanal(void)4690 init_rtlanal (void)
4691 {
4692   int i;
4693   for (i = 0; i < NUM_RTX_CODE; i++)
4694     {
4695       const char *format = GET_RTX_FORMAT (i);
4696       const char *first = strpbrk (format, "eEV");
4697       non_rtx_starting_operands[i] = first ? first - format : -1;
4698     }
4699 
4700   init_num_sign_bit_copies_in_rep ();
4701 }
4702 
4703 /* Check whether this is a constant pool constant.  */
4704 bool
constant_pool_constant_p(rtx x)4705 constant_pool_constant_p (rtx x)
4706 {
4707   x = avoid_constant_pool_reference (x);
4708   return GET_CODE (x) == CONST_DOUBLE;
4709 }
4710 
4711