1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/AssemblyAnnotationWriter.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalIFunc.h"
46 #include "llvm/IR/GlobalObject.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/IRPrintingPasses.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSlotTracker.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/TypeFinder.h"
63 #include "llvm/IR/TypedPointerType.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Support/AtomicOrdering.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormattedStream.h"
74 #include "llvm/Support/SaveAndRestore.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <memory>
83 #include <optional>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88
89 using namespace llvm;
90
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97
98 using OrderMap = MapVector<const Value *, unsigned>;
99
100 using UseListOrderMap =
101 DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
102
103 /// Look for a value that might be wrapped as metadata, e.g. a value in a
104 /// metadata operand. Returns the input value as-is if it is not wrapped.
skipMetadataWrapper(const Value * V)105 static const Value *skipMetadataWrapper(const Value *V) {
106 if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
107 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
108 return VAM->getValue();
109 return V;
110 }
111
orderValue(const Value * V,OrderMap & OM)112 static void orderValue(const Value *V, OrderMap &OM) {
113 if (OM.lookup(V))
114 return;
115
116 if (const Constant *C = dyn_cast<Constant>(V))
117 if (C->getNumOperands() && !isa<GlobalValue>(C))
118 for (const Value *Op : C->operands())
119 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
120 orderValue(Op, OM);
121
122 // Note: we cannot cache this lookup above, since inserting into the map
123 // changes the map's size, and thus affects the other IDs.
124 unsigned ID = OM.size() + 1;
125 OM[V] = ID;
126 }
127
orderModule(const Module * M)128 static OrderMap orderModule(const Module *M) {
129 OrderMap OM;
130
131 for (const GlobalVariable &G : M->globals()) {
132 if (G.hasInitializer())
133 if (!isa<GlobalValue>(G.getInitializer()))
134 orderValue(G.getInitializer(), OM);
135 orderValue(&G, OM);
136 }
137 for (const GlobalAlias &A : M->aliases()) {
138 if (!isa<GlobalValue>(A.getAliasee()))
139 orderValue(A.getAliasee(), OM);
140 orderValue(&A, OM);
141 }
142 for (const GlobalIFunc &I : M->ifuncs()) {
143 if (!isa<GlobalValue>(I.getResolver()))
144 orderValue(I.getResolver(), OM);
145 orderValue(&I, OM);
146 }
147 for (const Function &F : *M) {
148 for (const Use &U : F.operands())
149 if (!isa<GlobalValue>(U.get()))
150 orderValue(U.get(), OM);
151
152 orderValue(&F, OM);
153
154 if (F.isDeclaration())
155 continue;
156
157 for (const Argument &A : F.args())
158 orderValue(&A, OM);
159 for (const BasicBlock &BB : F) {
160 orderValue(&BB, OM);
161 for (const Instruction &I : BB) {
162 for (const Value *Op : I.operands()) {
163 Op = skipMetadataWrapper(Op);
164 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
165 isa<InlineAsm>(*Op))
166 orderValue(Op, OM);
167 }
168 orderValue(&I, OM);
169 }
170 }
171 }
172 return OM;
173 }
174
175 static std::vector<unsigned>
predictValueUseListOrder(const Value * V,unsigned ID,const OrderMap & OM)176 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
177 // Predict use-list order for this one.
178 using Entry = std::pair<const Use *, unsigned>;
179 SmallVector<Entry, 64> List;
180 for (const Use &U : V->uses())
181 // Check if this user will be serialized.
182 if (OM.lookup(U.getUser()))
183 List.push_back(std::make_pair(&U, List.size()));
184
185 if (List.size() < 2)
186 // We may have lost some users.
187 return {};
188
189 // When referencing a value before its declaration, a temporary value is
190 // created, which will later be RAUWed with the actual value. This reverses
191 // the use list. This happens for all values apart from basic blocks.
192 bool GetsReversed = !isa<BasicBlock>(V);
193 if (auto *BA = dyn_cast<BlockAddress>(V))
194 ID = OM.lookup(BA->getBasicBlock());
195 llvm::sort(List, [&](const Entry &L, const Entry &R) {
196 const Use *LU = L.first;
197 const Use *RU = R.first;
198 if (LU == RU)
199 return false;
200
201 auto LID = OM.lookup(LU->getUser());
202 auto RID = OM.lookup(RU->getUser());
203
204 // If ID is 4, then expect: 7 6 5 1 2 3.
205 if (LID < RID) {
206 if (GetsReversed)
207 if (RID <= ID)
208 return true;
209 return false;
210 }
211 if (RID < LID) {
212 if (GetsReversed)
213 if (LID <= ID)
214 return false;
215 return true;
216 }
217
218 // LID and RID are equal, so we have different operands of the same user.
219 // Assume operands are added in order for all instructions.
220 if (GetsReversed)
221 if (LID <= ID)
222 return LU->getOperandNo() < RU->getOperandNo();
223 return LU->getOperandNo() > RU->getOperandNo();
224 });
225
226 if (llvm::is_sorted(List, llvm::less_second()))
227 // Order is already correct.
228 return {};
229
230 // Store the shuffle.
231 std::vector<unsigned> Shuffle(List.size());
232 for (size_t I = 0, E = List.size(); I != E; ++I)
233 Shuffle[I] = List[I].second;
234 return Shuffle;
235 }
236
predictUseListOrder(const Module * M)237 static UseListOrderMap predictUseListOrder(const Module *M) {
238 OrderMap OM = orderModule(M);
239 UseListOrderMap ULOM;
240 for (const auto &Pair : OM) {
241 const Value *V = Pair.first;
242 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
243 continue;
244
245 std::vector<unsigned> Shuffle =
246 predictValueUseListOrder(V, Pair.second, OM);
247 if (Shuffle.empty())
248 continue;
249
250 const Function *F = nullptr;
251 if (auto *I = dyn_cast<Instruction>(V))
252 F = I->getFunction();
253 if (auto *A = dyn_cast<Argument>(V))
254 F = A->getParent();
255 if (auto *BB = dyn_cast<BasicBlock>(V))
256 F = BB->getParent();
257 ULOM[F][V] = std::move(Shuffle);
258 }
259 return ULOM;
260 }
261
getModuleFromVal(const Value * V)262 static const Module *getModuleFromVal(const Value *V) {
263 if (const Argument *MA = dyn_cast<Argument>(V))
264 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
265
266 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
267 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
268
269 if (const Instruction *I = dyn_cast<Instruction>(V)) {
270 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
271 return M ? M->getParent() : nullptr;
272 }
273
274 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
275 return GV->getParent();
276
277 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
278 for (const User *U : MAV->users())
279 if (isa<Instruction>(U))
280 if (const Module *M = getModuleFromVal(U))
281 return M;
282 return nullptr;
283 }
284
285 return nullptr;
286 }
287
PrintCallingConv(unsigned cc,raw_ostream & Out)288 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
289 switch (cc) {
290 default: Out << "cc" << cc; break;
291 case CallingConv::Fast: Out << "fastcc"; break;
292 case CallingConv::Cold: Out << "coldcc"; break;
293 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
294 case CallingConv::AnyReg: Out << "anyregcc"; break;
295 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
296 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
297 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
298 case CallingConv::GHC: Out << "ghccc"; break;
299 case CallingConv::Tail: Out << "tailcc"; break;
300 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
301 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
302 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
303 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
304 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
305 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
306 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
307 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
308 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
309 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
310 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
311 case CallingConv::AArch64_SVE_VectorCall:
312 Out << "aarch64_sve_vector_pcs";
313 break;
314 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
315 Out << "aarch64_sme_preservemost_from_x0";
316 break;
317 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
318 Out << "aarch64_sme_preservemost_from_x2";
319 break;
320 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
321 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
322 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
323 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
324 case CallingConv::PTX_Device: Out << "ptx_device"; break;
325 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
326 case CallingConv::Win64: Out << "win64cc"; break;
327 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
328 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
329 case CallingConv::Swift: Out << "swiftcc"; break;
330 case CallingConv::SwiftTail: Out << "swifttailcc"; break;
331 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
332 case CallingConv::HHVM: Out << "hhvmcc"; break;
333 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
334 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
335 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
336 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
337 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
338 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
339 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
340 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
341 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
342 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
343 }
344 }
345
346 enum PrefixType {
347 GlobalPrefix,
348 ComdatPrefix,
349 LabelPrefix,
350 LocalPrefix,
351 NoPrefix
352 };
353
printLLVMNameWithoutPrefix(raw_ostream & OS,StringRef Name)354 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
355 assert(!Name.empty() && "Cannot get empty name!");
356
357 // Scan the name to see if it needs quotes first.
358 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
359 if (!NeedsQuotes) {
360 for (unsigned char C : Name) {
361 // By making this unsigned, the value passed in to isalnum will always be
362 // in the range 0-255. This is important when building with MSVC because
363 // its implementation will assert. This situation can arise when dealing
364 // with UTF-8 multibyte characters.
365 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
366 C != '_') {
367 NeedsQuotes = true;
368 break;
369 }
370 }
371 }
372
373 // If we didn't need any quotes, just write out the name in one blast.
374 if (!NeedsQuotes) {
375 OS << Name;
376 return;
377 }
378
379 // Okay, we need quotes. Output the quotes and escape any scary characters as
380 // needed.
381 OS << '"';
382 printEscapedString(Name, OS);
383 OS << '"';
384 }
385
386 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
387 /// (if the string only contains simple characters) or is surrounded with ""'s
388 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,StringRef Name,PrefixType Prefix)389 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
390 switch (Prefix) {
391 case NoPrefix:
392 break;
393 case GlobalPrefix:
394 OS << '@';
395 break;
396 case ComdatPrefix:
397 OS << '$';
398 break;
399 case LabelPrefix:
400 break;
401 case LocalPrefix:
402 OS << '%';
403 break;
404 }
405 printLLVMNameWithoutPrefix(OS, Name);
406 }
407
408 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
409 /// (if the string only contains simple characters) or is surrounded with ""'s
410 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,const Value * V)411 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
412 PrintLLVMName(OS, V->getName(),
413 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
414 }
415
PrintShuffleMask(raw_ostream & Out,Type * Ty,ArrayRef<int> Mask)416 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
417 Out << ", <";
418 if (isa<ScalableVectorType>(Ty))
419 Out << "vscale x ";
420 Out << Mask.size() << " x i32> ";
421 bool FirstElt = true;
422 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
423 Out << "zeroinitializer";
424 } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
425 Out << "undef";
426 } else {
427 Out << "<";
428 for (int Elt : Mask) {
429 if (FirstElt)
430 FirstElt = false;
431 else
432 Out << ", ";
433 Out << "i32 ";
434 if (Elt == UndefMaskElem)
435 Out << "undef";
436 else
437 Out << Elt;
438 }
439 Out << ">";
440 }
441 }
442
443 namespace {
444
445 class TypePrinting {
446 public:
TypePrinting(const Module * M=nullptr)447 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
448
449 TypePrinting(const TypePrinting &) = delete;
450 TypePrinting &operator=(const TypePrinting &) = delete;
451
452 /// The named types that are used by the current module.
453 TypeFinder &getNamedTypes();
454
455 /// The numbered types, number to type mapping.
456 std::vector<StructType *> &getNumberedTypes();
457
458 bool empty();
459
460 void print(Type *Ty, raw_ostream &OS);
461
462 void printStructBody(StructType *Ty, raw_ostream &OS);
463
464 private:
465 void incorporateTypes();
466
467 /// A module to process lazily when needed. Set to nullptr as soon as used.
468 const Module *DeferredM;
469
470 TypeFinder NamedTypes;
471
472 // The numbered types, along with their value.
473 DenseMap<StructType *, unsigned> Type2Number;
474
475 std::vector<StructType *> NumberedTypes;
476 };
477
478 } // end anonymous namespace
479
getNamedTypes()480 TypeFinder &TypePrinting::getNamedTypes() {
481 incorporateTypes();
482 return NamedTypes;
483 }
484
getNumberedTypes()485 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
486 incorporateTypes();
487
488 // We know all the numbers that each type is used and we know that it is a
489 // dense assignment. Convert the map to an index table, if it's not done
490 // already (judging from the sizes):
491 if (NumberedTypes.size() == Type2Number.size())
492 return NumberedTypes;
493
494 NumberedTypes.resize(Type2Number.size());
495 for (const auto &P : Type2Number) {
496 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
497 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
498 NumberedTypes[P.second] = P.first;
499 }
500 return NumberedTypes;
501 }
502
empty()503 bool TypePrinting::empty() {
504 incorporateTypes();
505 return NamedTypes.empty() && Type2Number.empty();
506 }
507
incorporateTypes()508 void TypePrinting::incorporateTypes() {
509 if (!DeferredM)
510 return;
511
512 NamedTypes.run(*DeferredM, false);
513 DeferredM = nullptr;
514
515 // The list of struct types we got back includes all the struct types, split
516 // the unnamed ones out to a numbering and remove the anonymous structs.
517 unsigned NextNumber = 0;
518
519 std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
520 for (StructType *STy : NamedTypes) {
521 // Ignore anonymous types.
522 if (STy->isLiteral())
523 continue;
524
525 if (STy->getName().empty())
526 Type2Number[STy] = NextNumber++;
527 else
528 *NextToUse++ = STy;
529 }
530
531 NamedTypes.erase(NextToUse, NamedTypes.end());
532 }
533
534 /// Write the specified type to the specified raw_ostream, making use of type
535 /// names or up references to shorten the type name where possible.
print(Type * Ty,raw_ostream & OS)536 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
537 switch (Ty->getTypeID()) {
538 case Type::VoidTyID: OS << "void"; return;
539 case Type::HalfTyID: OS << "half"; return;
540 case Type::BFloatTyID: OS << "bfloat"; return;
541 case Type::FloatTyID: OS << "float"; return;
542 case Type::DoubleTyID: OS << "double"; return;
543 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
544 case Type::FP128TyID: OS << "fp128"; return;
545 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
546 case Type::LabelTyID: OS << "label"; return;
547 case Type::MetadataTyID: OS << "metadata"; return;
548 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
549 case Type::X86_AMXTyID: OS << "x86_amx"; return;
550 case Type::TokenTyID: OS << "token"; return;
551 case Type::IntegerTyID:
552 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
553 return;
554
555 case Type::FunctionTyID: {
556 FunctionType *FTy = cast<FunctionType>(Ty);
557 print(FTy->getReturnType(), OS);
558 OS << " (";
559 ListSeparator LS;
560 for (Type *Ty : FTy->params()) {
561 OS << LS;
562 print(Ty, OS);
563 }
564 if (FTy->isVarArg())
565 OS << LS << "...";
566 OS << ')';
567 return;
568 }
569 case Type::StructTyID: {
570 StructType *STy = cast<StructType>(Ty);
571
572 if (STy->isLiteral())
573 return printStructBody(STy, OS);
574
575 if (!STy->getName().empty())
576 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
577
578 incorporateTypes();
579 const auto I = Type2Number.find(STy);
580 if (I != Type2Number.end())
581 OS << '%' << I->second;
582 else // Not enumerated, print the hex address.
583 OS << "%\"type " << STy << '\"';
584 return;
585 }
586 case Type::PointerTyID: {
587 PointerType *PTy = cast<PointerType>(Ty);
588 if (PTy->isOpaque()) {
589 OS << "ptr";
590 if (unsigned AddressSpace = PTy->getAddressSpace())
591 OS << " addrspace(" << AddressSpace << ')';
592 return;
593 }
594 print(PTy->getNonOpaquePointerElementType(), OS);
595 if (unsigned AddressSpace = PTy->getAddressSpace())
596 OS << " addrspace(" << AddressSpace << ')';
597 OS << '*';
598 return;
599 }
600 case Type::ArrayTyID: {
601 ArrayType *ATy = cast<ArrayType>(Ty);
602 OS << '[' << ATy->getNumElements() << " x ";
603 print(ATy->getElementType(), OS);
604 OS << ']';
605 return;
606 }
607 case Type::FixedVectorTyID:
608 case Type::ScalableVectorTyID: {
609 VectorType *PTy = cast<VectorType>(Ty);
610 ElementCount EC = PTy->getElementCount();
611 OS << "<";
612 if (EC.isScalable())
613 OS << "vscale x ";
614 OS << EC.getKnownMinValue() << " x ";
615 print(PTy->getElementType(), OS);
616 OS << '>';
617 return;
618 }
619 case Type::TypedPointerTyID: {
620 TypedPointerType *TPTy = cast<TypedPointerType>(Ty);
621 OS << "typedptr(" << *TPTy->getElementType() << ", "
622 << TPTy->getAddressSpace() << ")";
623 return;
624 }
625 case Type::TargetExtTyID:
626 TargetExtType *TETy = cast<TargetExtType>(Ty);
627 OS << "target(\"";
628 printEscapedString(Ty->getTargetExtName(), OS);
629 OS << "\"";
630 for (Type *Inner : TETy->type_params())
631 OS << ", " << *Inner;
632 for (unsigned IntParam : TETy->int_params())
633 OS << ", " << IntParam;
634 OS << ")";
635 return;
636 }
637 llvm_unreachable("Invalid TypeID");
638 }
639
printStructBody(StructType * STy,raw_ostream & OS)640 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
641 if (STy->isOpaque()) {
642 OS << "opaque";
643 return;
644 }
645
646 if (STy->isPacked())
647 OS << '<';
648
649 if (STy->getNumElements() == 0) {
650 OS << "{}";
651 } else {
652 OS << "{ ";
653 ListSeparator LS;
654 for (Type *Ty : STy->elements()) {
655 OS << LS;
656 print(Ty, OS);
657 }
658
659 OS << " }";
660 }
661 if (STy->isPacked())
662 OS << '>';
663 }
664
665 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
666
667 namespace llvm {
668
669 //===----------------------------------------------------------------------===//
670 // SlotTracker Class: Enumerate slot numbers for unnamed values
671 //===----------------------------------------------------------------------===//
672 /// This class provides computation of slot numbers for LLVM Assembly writing.
673 ///
674 class SlotTracker : public AbstractSlotTrackerStorage {
675 public:
676 /// ValueMap - A mapping of Values to slot numbers.
677 using ValueMap = DenseMap<const Value *, unsigned>;
678
679 private:
680 /// TheModule - The module for which we are holding slot numbers.
681 const Module* TheModule;
682
683 /// TheFunction - The function for which we are holding slot numbers.
684 const Function* TheFunction = nullptr;
685 bool FunctionProcessed = false;
686 bool ShouldInitializeAllMetadata;
687
688 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
689 ProcessModuleHookFn;
690 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
691 ProcessFunctionHookFn;
692
693 /// The summary index for which we are holding slot numbers.
694 const ModuleSummaryIndex *TheIndex = nullptr;
695
696 /// mMap - The slot map for the module level data.
697 ValueMap mMap;
698 unsigned mNext = 0;
699
700 /// fMap - The slot map for the function level data.
701 ValueMap fMap;
702 unsigned fNext = 0;
703
704 /// mdnMap - Map for MDNodes.
705 DenseMap<const MDNode*, unsigned> mdnMap;
706 unsigned mdnNext = 0;
707
708 /// asMap - The slot map for attribute sets.
709 DenseMap<AttributeSet, unsigned> asMap;
710 unsigned asNext = 0;
711
712 /// ModulePathMap - The slot map for Module paths used in the summary index.
713 StringMap<unsigned> ModulePathMap;
714 unsigned ModulePathNext = 0;
715
716 /// GUIDMap - The slot map for GUIDs used in the summary index.
717 DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
718 unsigned GUIDNext = 0;
719
720 /// TypeIdMap - The slot map for type ids used in the summary index.
721 StringMap<unsigned> TypeIdMap;
722 unsigned TypeIdNext = 0;
723
724 public:
725 /// Construct from a module.
726 ///
727 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
728 /// functions, giving correct numbering for metadata referenced only from
729 /// within a function (even if no functions have been initialized).
730 explicit SlotTracker(const Module *M,
731 bool ShouldInitializeAllMetadata = false);
732
733 /// Construct from a function, starting out in incorp state.
734 ///
735 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
736 /// functions, giving correct numbering for metadata referenced only from
737 /// within a function (even if no functions have been initialized).
738 explicit SlotTracker(const Function *F,
739 bool ShouldInitializeAllMetadata = false);
740
741 /// Construct from a module summary index.
742 explicit SlotTracker(const ModuleSummaryIndex *Index);
743
744 SlotTracker(const SlotTracker &) = delete;
745 SlotTracker &operator=(const SlotTracker &) = delete;
746
747 ~SlotTracker() = default;
748
749 void setProcessHook(
750 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
751 void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
752 const Function *, bool)>);
753
getNextMetadataSlot()754 unsigned getNextMetadataSlot() override { return mdnNext; }
755
756 void createMetadataSlot(const MDNode *N) override;
757
758 /// Return the slot number of the specified value in it's type
759 /// plane. If something is not in the SlotTracker, return -1.
760 int getLocalSlot(const Value *V);
761 int getGlobalSlot(const GlobalValue *V);
762 int getMetadataSlot(const MDNode *N) override;
763 int getAttributeGroupSlot(AttributeSet AS);
764 int getModulePathSlot(StringRef Path);
765 int getGUIDSlot(GlobalValue::GUID GUID);
766 int getTypeIdSlot(StringRef Id);
767
768 /// If you'd like to deal with a function instead of just a module, use
769 /// this method to get its data into the SlotTracker.
incorporateFunction(const Function * F)770 void incorporateFunction(const Function *F) {
771 TheFunction = F;
772 FunctionProcessed = false;
773 }
774
getFunction() const775 const Function *getFunction() const { return TheFunction; }
776
777 /// After calling incorporateFunction, use this method to remove the
778 /// most recently incorporated function from the SlotTracker. This
779 /// will reset the state of the machine back to just the module contents.
780 void purgeFunction();
781
782 /// MDNode map iterators.
783 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
784
mdn_begin()785 mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_end()786 mdn_iterator mdn_end() { return mdnMap.end(); }
mdn_size() const787 unsigned mdn_size() const { return mdnMap.size(); }
mdn_empty() const788 bool mdn_empty() const { return mdnMap.empty(); }
789
790 /// AttributeSet map iterators.
791 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
792
as_begin()793 as_iterator as_begin() { return asMap.begin(); }
as_end()794 as_iterator as_end() { return asMap.end(); }
as_size() const795 unsigned as_size() const { return asMap.size(); }
as_empty() const796 bool as_empty() const { return asMap.empty(); }
797
798 /// GUID map iterators.
799 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
800
801 /// These functions do the actual initialization.
802 inline void initializeIfNeeded();
803 int initializeIndexIfNeeded();
804
805 // Implementation Details
806 private:
807 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
808 void CreateModuleSlot(const GlobalValue *V);
809
810 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
811 void CreateMetadataSlot(const MDNode *N);
812
813 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
814 void CreateFunctionSlot(const Value *V);
815
816 /// Insert the specified AttributeSet into the slot table.
817 void CreateAttributeSetSlot(AttributeSet AS);
818
819 inline void CreateModulePathSlot(StringRef Path);
820 void CreateGUIDSlot(GlobalValue::GUID GUID);
821 void CreateTypeIdSlot(StringRef Id);
822
823 /// Add all of the module level global variables (and their initializers)
824 /// and function declarations, but not the contents of those functions.
825 void processModule();
826 // Returns number of allocated slots
827 int processIndex();
828
829 /// Add all of the functions arguments, basic blocks, and instructions.
830 void processFunction();
831
832 /// Add the metadata directly attached to a GlobalObject.
833 void processGlobalObjectMetadata(const GlobalObject &GO);
834
835 /// Add all of the metadata from a function.
836 void processFunctionMetadata(const Function &F);
837
838 /// Add all of the metadata from an instruction.
839 void processInstructionMetadata(const Instruction &I);
840 };
841
842 } // end namespace llvm
843
ModuleSlotTracker(SlotTracker & Machine,const Module * M,const Function * F)844 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
845 const Function *F)
846 : M(M), F(F), Machine(&Machine) {}
847
ModuleSlotTracker(const Module * M,bool ShouldInitializeAllMetadata)848 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
849 bool ShouldInitializeAllMetadata)
850 : ShouldCreateStorage(M),
851 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
852
853 ModuleSlotTracker::~ModuleSlotTracker() = default;
854
getMachine()855 SlotTracker *ModuleSlotTracker::getMachine() {
856 if (!ShouldCreateStorage)
857 return Machine;
858
859 ShouldCreateStorage = false;
860 MachineStorage =
861 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
862 Machine = MachineStorage.get();
863 if (ProcessModuleHookFn)
864 Machine->setProcessHook(ProcessModuleHookFn);
865 if (ProcessFunctionHookFn)
866 Machine->setProcessHook(ProcessFunctionHookFn);
867 return Machine;
868 }
869
incorporateFunction(const Function & F)870 void ModuleSlotTracker::incorporateFunction(const Function &F) {
871 // Using getMachine() may lazily create the slot tracker.
872 if (!getMachine())
873 return;
874
875 // Nothing to do if this is the right function already.
876 if (this->F == &F)
877 return;
878 if (this->F)
879 Machine->purgeFunction();
880 Machine->incorporateFunction(&F);
881 this->F = &F;
882 }
883
getLocalSlot(const Value * V)884 int ModuleSlotTracker::getLocalSlot(const Value *V) {
885 assert(F && "No function incorporated");
886 return Machine->getLocalSlot(V);
887 }
888
setProcessHook(std::function<void (AbstractSlotTrackerStorage *,const Module *,bool)> Fn)889 void ModuleSlotTracker::setProcessHook(
890 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
891 Fn) {
892 ProcessModuleHookFn = Fn;
893 }
894
setProcessHook(std::function<void (AbstractSlotTrackerStorage *,const Function *,bool)> Fn)895 void ModuleSlotTracker::setProcessHook(
896 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
897 Fn) {
898 ProcessFunctionHookFn = Fn;
899 }
900
createSlotTracker(const Value * V)901 static SlotTracker *createSlotTracker(const Value *V) {
902 if (const Argument *FA = dyn_cast<Argument>(V))
903 return new SlotTracker(FA->getParent());
904
905 if (const Instruction *I = dyn_cast<Instruction>(V))
906 if (I->getParent())
907 return new SlotTracker(I->getParent()->getParent());
908
909 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
910 return new SlotTracker(BB->getParent());
911
912 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
913 return new SlotTracker(GV->getParent());
914
915 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
916 return new SlotTracker(GA->getParent());
917
918 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
919 return new SlotTracker(GIF->getParent());
920
921 if (const Function *Func = dyn_cast<Function>(V))
922 return new SlotTracker(Func);
923
924 return nullptr;
925 }
926
927 #if 0
928 #define ST_DEBUG(X) dbgs() << X
929 #else
930 #define ST_DEBUG(X)
931 #endif
932
933 // Module level constructor. Causes the contents of the Module (sans functions)
934 // to be added to the slot table.
SlotTracker(const Module * M,bool ShouldInitializeAllMetadata)935 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
936 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
937
938 // Function level constructor. Causes the contents of the Module and the one
939 // function provided to be added to the slot table.
SlotTracker(const Function * F,bool ShouldInitializeAllMetadata)940 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
941 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
942 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
943
SlotTracker(const ModuleSummaryIndex * Index)944 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
945 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
946
initializeIfNeeded()947 inline void SlotTracker::initializeIfNeeded() {
948 if (TheModule) {
949 processModule();
950 TheModule = nullptr; ///< Prevent re-processing next time we're called.
951 }
952
953 if (TheFunction && !FunctionProcessed)
954 processFunction();
955 }
956
initializeIndexIfNeeded()957 int SlotTracker::initializeIndexIfNeeded() {
958 if (!TheIndex)
959 return 0;
960 int NumSlots = processIndex();
961 TheIndex = nullptr; ///< Prevent re-processing next time we're called.
962 return NumSlots;
963 }
964
965 // Iterate through all the global variables, functions, and global
966 // variable initializers and create slots for them.
processModule()967 void SlotTracker::processModule() {
968 ST_DEBUG("begin processModule!\n");
969
970 // Add all of the unnamed global variables to the value table.
971 for (const GlobalVariable &Var : TheModule->globals()) {
972 if (!Var.hasName())
973 CreateModuleSlot(&Var);
974 processGlobalObjectMetadata(Var);
975 auto Attrs = Var.getAttributes();
976 if (Attrs.hasAttributes())
977 CreateAttributeSetSlot(Attrs);
978 }
979
980 for (const GlobalAlias &A : TheModule->aliases()) {
981 if (!A.hasName())
982 CreateModuleSlot(&A);
983 }
984
985 for (const GlobalIFunc &I : TheModule->ifuncs()) {
986 if (!I.hasName())
987 CreateModuleSlot(&I);
988 }
989
990 // Add metadata used by named metadata.
991 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
992 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
993 CreateMetadataSlot(NMD.getOperand(i));
994 }
995
996 for (const Function &F : *TheModule) {
997 if (!F.hasName())
998 // Add all the unnamed functions to the table.
999 CreateModuleSlot(&F);
1000
1001 if (ShouldInitializeAllMetadata)
1002 processFunctionMetadata(F);
1003
1004 // Add all the function attributes to the table.
1005 // FIXME: Add attributes of other objects?
1006 AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1007 if (FnAttrs.hasAttributes())
1008 CreateAttributeSetSlot(FnAttrs);
1009 }
1010
1011 if (ProcessModuleHookFn)
1012 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1013
1014 ST_DEBUG("end processModule!\n");
1015 }
1016
1017 // Process the arguments, basic blocks, and instructions of a function.
processFunction()1018 void SlotTracker::processFunction() {
1019 ST_DEBUG("begin processFunction!\n");
1020 fNext = 0;
1021
1022 // Process function metadata if it wasn't hit at the module-level.
1023 if (!ShouldInitializeAllMetadata)
1024 processFunctionMetadata(*TheFunction);
1025
1026 // Add all the function arguments with no names.
1027 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1028 AE = TheFunction->arg_end(); AI != AE; ++AI)
1029 if (!AI->hasName())
1030 CreateFunctionSlot(&*AI);
1031
1032 ST_DEBUG("Inserting Instructions:\n");
1033
1034 // Add all of the basic blocks and instructions with no names.
1035 for (auto &BB : *TheFunction) {
1036 if (!BB.hasName())
1037 CreateFunctionSlot(&BB);
1038
1039 for (auto &I : BB) {
1040 if (!I.getType()->isVoidTy() && !I.hasName())
1041 CreateFunctionSlot(&I);
1042
1043 // We allow direct calls to any llvm.foo function here, because the
1044 // target may not be linked into the optimizer.
1045 if (const auto *Call = dyn_cast<CallBase>(&I)) {
1046 // Add all the call attributes to the table.
1047 AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1048 if (Attrs.hasAttributes())
1049 CreateAttributeSetSlot(Attrs);
1050 }
1051 }
1052 }
1053
1054 if (ProcessFunctionHookFn)
1055 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1056
1057 FunctionProcessed = true;
1058
1059 ST_DEBUG("end processFunction!\n");
1060 }
1061
1062 // Iterate through all the GUID in the index and create slots for them.
processIndex()1063 int SlotTracker::processIndex() {
1064 ST_DEBUG("begin processIndex!\n");
1065 assert(TheIndex);
1066
1067 // The first block of slots are just the module ids, which start at 0 and are
1068 // assigned consecutively. Since the StringMap iteration order isn't
1069 // guaranteed, use a std::map to order by module ID before assigning slots.
1070 std::map<uint64_t, StringRef> ModuleIdToPathMap;
1071 for (auto &[ModPath, ModId] : TheIndex->modulePaths())
1072 ModuleIdToPathMap[ModId.first] = ModPath;
1073 for (auto &ModPair : ModuleIdToPathMap)
1074 CreateModulePathSlot(ModPair.second);
1075
1076 // Start numbering the GUIDs after the module ids.
1077 GUIDNext = ModulePathNext;
1078
1079 for (auto &GlobalList : *TheIndex)
1080 CreateGUIDSlot(GlobalList.first);
1081
1082 for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1083 CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1084
1085 // Start numbering the TypeIds after the GUIDs.
1086 TypeIdNext = GUIDNext;
1087 for (const auto &TID : TheIndex->typeIds())
1088 CreateTypeIdSlot(TID.second.first);
1089
1090 ST_DEBUG("end processIndex!\n");
1091 return TypeIdNext;
1092 }
1093
processGlobalObjectMetadata(const GlobalObject & GO)1094 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1095 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1096 GO.getAllMetadata(MDs);
1097 for (auto &MD : MDs)
1098 CreateMetadataSlot(MD.second);
1099 }
1100
processFunctionMetadata(const Function & F)1101 void SlotTracker::processFunctionMetadata(const Function &F) {
1102 processGlobalObjectMetadata(F);
1103 for (auto &BB : F) {
1104 for (auto &I : BB)
1105 processInstructionMetadata(I);
1106 }
1107 }
1108
processInstructionMetadata(const Instruction & I)1109 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1110 // Process metadata used directly by intrinsics.
1111 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1112 if (Function *F = CI->getCalledFunction())
1113 if (F->isIntrinsic())
1114 for (auto &Op : I.operands())
1115 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1116 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1117 CreateMetadataSlot(N);
1118
1119 // Process metadata attached to this instruction.
1120 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1121 I.getAllMetadata(MDs);
1122 for (auto &MD : MDs)
1123 CreateMetadataSlot(MD.second);
1124 }
1125
1126 /// Clean up after incorporating a function. This is the only way to get out of
1127 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1128 /// incorporation state is indicated by TheFunction != 0.
purgeFunction()1129 void SlotTracker::purgeFunction() {
1130 ST_DEBUG("begin purgeFunction!\n");
1131 fMap.clear(); // Simply discard the function level map
1132 TheFunction = nullptr;
1133 FunctionProcessed = false;
1134 ST_DEBUG("end purgeFunction!\n");
1135 }
1136
1137 /// getGlobalSlot - Get the slot number of a global value.
getGlobalSlot(const GlobalValue * V)1138 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1139 // Check for uninitialized state and do lazy initialization.
1140 initializeIfNeeded();
1141
1142 // Find the value in the module map
1143 ValueMap::iterator MI = mMap.find(V);
1144 return MI == mMap.end() ? -1 : (int)MI->second;
1145 }
1146
setProcessHook(std::function<void (AbstractSlotTrackerStorage *,const Module *,bool)> Fn)1147 void SlotTracker::setProcessHook(
1148 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1149 Fn) {
1150 ProcessModuleHookFn = Fn;
1151 }
1152
setProcessHook(std::function<void (AbstractSlotTrackerStorage *,const Function *,bool)> Fn)1153 void SlotTracker::setProcessHook(
1154 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1155 Fn) {
1156 ProcessFunctionHookFn = Fn;
1157 }
1158
1159 /// getMetadataSlot - Get the slot number of a MDNode.
createMetadataSlot(const MDNode * N)1160 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1161
1162 /// getMetadataSlot - Get the slot number of a MDNode.
getMetadataSlot(const MDNode * N)1163 int SlotTracker::getMetadataSlot(const MDNode *N) {
1164 // Check for uninitialized state and do lazy initialization.
1165 initializeIfNeeded();
1166
1167 // Find the MDNode in the module map
1168 mdn_iterator MI = mdnMap.find(N);
1169 return MI == mdnMap.end() ? -1 : (int)MI->second;
1170 }
1171
1172 /// getLocalSlot - Get the slot number for a value that is local to a function.
getLocalSlot(const Value * V)1173 int SlotTracker::getLocalSlot(const Value *V) {
1174 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1175
1176 // Check for uninitialized state and do lazy initialization.
1177 initializeIfNeeded();
1178
1179 ValueMap::iterator FI = fMap.find(V);
1180 return FI == fMap.end() ? -1 : (int)FI->second;
1181 }
1182
getAttributeGroupSlot(AttributeSet AS)1183 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1184 // Check for uninitialized state and do lazy initialization.
1185 initializeIfNeeded();
1186
1187 // Find the AttributeSet in the module map.
1188 as_iterator AI = asMap.find(AS);
1189 return AI == asMap.end() ? -1 : (int)AI->second;
1190 }
1191
getModulePathSlot(StringRef Path)1192 int SlotTracker::getModulePathSlot(StringRef Path) {
1193 // Check for uninitialized state and do lazy initialization.
1194 initializeIndexIfNeeded();
1195
1196 // Find the Module path in the map
1197 auto I = ModulePathMap.find(Path);
1198 return I == ModulePathMap.end() ? -1 : (int)I->second;
1199 }
1200
getGUIDSlot(GlobalValue::GUID GUID)1201 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1202 // Check for uninitialized state and do lazy initialization.
1203 initializeIndexIfNeeded();
1204
1205 // Find the GUID in the map
1206 guid_iterator I = GUIDMap.find(GUID);
1207 return I == GUIDMap.end() ? -1 : (int)I->second;
1208 }
1209
getTypeIdSlot(StringRef Id)1210 int SlotTracker::getTypeIdSlot(StringRef Id) {
1211 // Check for uninitialized state and do lazy initialization.
1212 initializeIndexIfNeeded();
1213
1214 // Find the TypeId string in the map
1215 auto I = TypeIdMap.find(Id);
1216 return I == TypeIdMap.end() ? -1 : (int)I->second;
1217 }
1218
1219 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
CreateModuleSlot(const GlobalValue * V)1220 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1221 assert(V && "Can't insert a null Value into SlotTracker!");
1222 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1223 assert(!V->hasName() && "Doesn't need a slot!");
1224
1225 unsigned DestSlot = mNext++;
1226 mMap[V] = DestSlot;
1227
1228 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1229 DestSlot << " [");
1230 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1231 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1232 (isa<Function>(V) ? 'F' :
1233 (isa<GlobalAlias>(V) ? 'A' :
1234 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1235 }
1236
1237 /// CreateSlot - Create a new slot for the specified value if it has no name.
CreateFunctionSlot(const Value * V)1238 void SlotTracker::CreateFunctionSlot(const Value *V) {
1239 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1240
1241 unsigned DestSlot = fNext++;
1242 fMap[V] = DestSlot;
1243
1244 // G = Global, F = Function, o = other
1245 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1246 DestSlot << " [o]\n");
1247 }
1248
1249 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
CreateMetadataSlot(const MDNode * N)1250 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1251 assert(N && "Can't insert a null Value into SlotTracker!");
1252
1253 // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1254 // everywhere.
1255 if (isa<DIExpression>(N) || isa<DIArgList>(N))
1256 return;
1257
1258 unsigned DestSlot = mdnNext;
1259 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1260 return;
1261 ++mdnNext;
1262
1263 // Recursively add any MDNodes referenced by operands.
1264 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1265 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1266 CreateMetadataSlot(Op);
1267 }
1268
CreateAttributeSetSlot(AttributeSet AS)1269 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1270 assert(AS.hasAttributes() && "Doesn't need a slot!");
1271
1272 as_iterator I = asMap.find(AS);
1273 if (I != asMap.end())
1274 return;
1275
1276 unsigned DestSlot = asNext++;
1277 asMap[AS] = DestSlot;
1278 }
1279
1280 /// Create a new slot for the specified Module
CreateModulePathSlot(StringRef Path)1281 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1282 ModulePathMap[Path] = ModulePathNext++;
1283 }
1284
1285 /// Create a new slot for the specified GUID
CreateGUIDSlot(GlobalValue::GUID GUID)1286 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1287 GUIDMap[GUID] = GUIDNext++;
1288 }
1289
1290 /// Create a new slot for the specified Id
CreateTypeIdSlot(StringRef Id)1291 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1292 TypeIdMap[Id] = TypeIdNext++;
1293 }
1294
1295 namespace {
1296 /// Common instances used by most of the printer functions.
1297 struct AsmWriterContext {
1298 TypePrinting *TypePrinter = nullptr;
1299 SlotTracker *Machine = nullptr;
1300 const Module *Context = nullptr;
1301
AsmWriterContext__anon40529ce50511::AsmWriterContext1302 AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1303 : TypePrinter(TP), Machine(ST), Context(M) {}
1304
getEmpty__anon40529ce50511::AsmWriterContext1305 static AsmWriterContext &getEmpty() {
1306 static AsmWriterContext EmptyCtx(nullptr, nullptr);
1307 return EmptyCtx;
1308 }
1309
1310 /// A callback that will be triggered when the underlying printer
1311 /// prints a Metadata as operand.
onWriteMetadataAsOperand__anon40529ce50511::AsmWriterContext1312 virtual void onWriteMetadataAsOperand(const Metadata *) {}
1313
1314 virtual ~AsmWriterContext() = default;
1315 };
1316 } // end anonymous namespace
1317
1318 //===----------------------------------------------------------------------===//
1319 // AsmWriter Implementation
1320 //===----------------------------------------------------------------------===//
1321
1322 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1323 AsmWriterContext &WriterCtx);
1324
1325 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1326 AsmWriterContext &WriterCtx,
1327 bool FromValue = false);
1328
WriteOptimizationInfo(raw_ostream & Out,const User * U)1329 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1330 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1331 Out << FPO->getFastMathFlags();
1332
1333 if (const OverflowingBinaryOperator *OBO =
1334 dyn_cast<OverflowingBinaryOperator>(U)) {
1335 if (OBO->hasNoUnsignedWrap())
1336 Out << " nuw";
1337 if (OBO->hasNoSignedWrap())
1338 Out << " nsw";
1339 } else if (const PossiblyExactOperator *Div =
1340 dyn_cast<PossiblyExactOperator>(U)) {
1341 if (Div->isExact())
1342 Out << " exact";
1343 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1344 if (GEP->isInBounds())
1345 Out << " inbounds";
1346 }
1347 }
1348
WriteConstantInternal(raw_ostream & Out,const Constant * CV,AsmWriterContext & WriterCtx)1349 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1350 AsmWriterContext &WriterCtx) {
1351 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1352 if (CI->getType()->isIntegerTy(1)) {
1353 Out << (CI->getZExtValue() ? "true" : "false");
1354 return;
1355 }
1356 Out << CI->getValue();
1357 return;
1358 }
1359
1360 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1361 const APFloat &APF = CFP->getValueAPF();
1362 if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1363 &APF.getSemantics() == &APFloat::IEEEdouble()) {
1364 // We would like to output the FP constant value in exponential notation,
1365 // but we cannot do this if doing so will lose precision. Check here to
1366 // make sure that we only output it in exponential format if we can parse
1367 // the value back and get the same value.
1368 //
1369 bool ignored;
1370 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1371 bool isInf = APF.isInfinity();
1372 bool isNaN = APF.isNaN();
1373 if (!isInf && !isNaN) {
1374 double Val = APF.convertToDouble();
1375 SmallString<128> StrVal;
1376 APF.toString(StrVal, 6, 0, false);
1377 // Check to make sure that the stringized number is not some string like
1378 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1379 // that the string matches the "[-+]?[0-9]" regex.
1380 //
1381 assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1382 isDigit(StrVal[1]))) &&
1383 "[-+]?[0-9] regex does not match!");
1384 // Reparse stringized version!
1385 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1386 Out << StrVal;
1387 return;
1388 }
1389 }
1390 // Otherwise we could not reparse it to exactly the same value, so we must
1391 // output the string in hexadecimal format! Note that loading and storing
1392 // floating point types changes the bits of NaNs on some hosts, notably
1393 // x86, so we must not use these types.
1394 static_assert(sizeof(double) == sizeof(uint64_t),
1395 "assuming that double is 64 bits!");
1396 APFloat apf = APF;
1397 // Floats are represented in ASCII IR as double, convert.
1398 // FIXME: We should allow 32-bit hex float and remove this.
1399 if (!isDouble) {
1400 // A signaling NaN is quieted on conversion, so we need to recreate the
1401 // expected value after convert (quiet bit of the payload is clear).
1402 bool IsSNAN = apf.isSignaling();
1403 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1404 &ignored);
1405 if (IsSNAN) {
1406 APInt Payload = apf.bitcastToAPInt();
1407 apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1408 &Payload);
1409 }
1410 }
1411 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1412 return;
1413 }
1414
1415 // Either half, bfloat or some form of long double.
1416 // These appear as a magic letter identifying the type, then a
1417 // fixed number of hex digits.
1418 Out << "0x";
1419 APInt API = APF.bitcastToAPInt();
1420 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1421 Out << 'K';
1422 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1423 /*Upper=*/true);
1424 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1425 /*Upper=*/true);
1426 return;
1427 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1428 Out << 'L';
1429 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1430 /*Upper=*/true);
1431 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1432 /*Upper=*/true);
1433 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1434 Out << 'M';
1435 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1436 /*Upper=*/true);
1437 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1438 /*Upper=*/true);
1439 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1440 Out << 'H';
1441 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1442 /*Upper=*/true);
1443 } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1444 Out << 'R';
1445 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1446 /*Upper=*/true);
1447 } else
1448 llvm_unreachable("Unsupported floating point type");
1449 return;
1450 }
1451
1452 if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) {
1453 Out << "zeroinitializer";
1454 return;
1455 }
1456
1457 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1458 Out << "blockaddress(";
1459 WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1460 Out << ", ";
1461 WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1462 Out << ")";
1463 return;
1464 }
1465
1466 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1467 Out << "dso_local_equivalent ";
1468 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1469 return;
1470 }
1471
1472 if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1473 Out << "no_cfi ";
1474 WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1475 return;
1476 }
1477
1478 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1479 Type *ETy = CA->getType()->getElementType();
1480 Out << '[';
1481 WriterCtx.TypePrinter->print(ETy, Out);
1482 Out << ' ';
1483 WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1484 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1485 Out << ", ";
1486 WriterCtx.TypePrinter->print(ETy, Out);
1487 Out << ' ';
1488 WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1489 }
1490 Out << ']';
1491 return;
1492 }
1493
1494 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1495 // As a special case, print the array as a string if it is an array of
1496 // i8 with ConstantInt values.
1497 if (CA->isString()) {
1498 Out << "c\"";
1499 printEscapedString(CA->getAsString(), Out);
1500 Out << '"';
1501 return;
1502 }
1503
1504 Type *ETy = CA->getType()->getElementType();
1505 Out << '[';
1506 WriterCtx.TypePrinter->print(ETy, Out);
1507 Out << ' ';
1508 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1509 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1510 Out << ", ";
1511 WriterCtx.TypePrinter->print(ETy, Out);
1512 Out << ' ';
1513 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1514 }
1515 Out << ']';
1516 return;
1517 }
1518
1519 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1520 if (CS->getType()->isPacked())
1521 Out << '<';
1522 Out << '{';
1523 unsigned N = CS->getNumOperands();
1524 if (N) {
1525 Out << ' ';
1526 WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1527 Out << ' ';
1528
1529 WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1530
1531 for (unsigned i = 1; i < N; i++) {
1532 Out << ", ";
1533 WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1534 Out << ' ';
1535
1536 WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1537 }
1538 Out << ' ';
1539 }
1540
1541 Out << '}';
1542 if (CS->getType()->isPacked())
1543 Out << '>';
1544 return;
1545 }
1546
1547 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1548 auto *CVVTy = cast<FixedVectorType>(CV->getType());
1549 Type *ETy = CVVTy->getElementType();
1550 Out << '<';
1551 WriterCtx.TypePrinter->print(ETy, Out);
1552 Out << ' ';
1553 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1554 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1555 Out << ", ";
1556 WriterCtx.TypePrinter->print(ETy, Out);
1557 Out << ' ';
1558 WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1559 }
1560 Out << '>';
1561 return;
1562 }
1563
1564 if (isa<ConstantPointerNull>(CV)) {
1565 Out << "null";
1566 return;
1567 }
1568
1569 if (isa<ConstantTokenNone>(CV)) {
1570 Out << "none";
1571 return;
1572 }
1573
1574 if (isa<PoisonValue>(CV)) {
1575 Out << "poison";
1576 return;
1577 }
1578
1579 if (isa<UndefValue>(CV)) {
1580 Out << "undef";
1581 return;
1582 }
1583
1584 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1585 Out << CE->getOpcodeName();
1586 WriteOptimizationInfo(Out, CE);
1587 if (CE->isCompare())
1588 Out << ' ' << CmpInst::getPredicateName(
1589 static_cast<CmpInst::Predicate>(CE->getPredicate()));
1590 Out << " (";
1591
1592 std::optional<unsigned> InRangeOp;
1593 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1594 WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1595 Out << ", ";
1596 InRangeOp = GEP->getInRangeIndex();
1597 if (InRangeOp)
1598 ++*InRangeOp;
1599 }
1600
1601 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1602 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1603 Out << "inrange ";
1604 WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1605 Out << ' ';
1606 WriteAsOperandInternal(Out, *OI, WriterCtx);
1607 if (OI+1 != CE->op_end())
1608 Out << ", ";
1609 }
1610
1611 if (CE->isCast()) {
1612 Out << " to ";
1613 WriterCtx.TypePrinter->print(CE->getType(), Out);
1614 }
1615
1616 if (CE->getOpcode() == Instruction::ShuffleVector)
1617 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1618
1619 Out << ')';
1620 return;
1621 }
1622
1623 Out << "<placeholder or erroneous Constant>";
1624 }
1625
writeMDTuple(raw_ostream & Out,const MDTuple * Node,AsmWriterContext & WriterCtx)1626 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1627 AsmWriterContext &WriterCtx) {
1628 Out << "!{";
1629 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1630 const Metadata *MD = Node->getOperand(mi);
1631 if (!MD)
1632 Out << "null";
1633 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1634 Value *V = MDV->getValue();
1635 WriterCtx.TypePrinter->print(V->getType(), Out);
1636 Out << ' ';
1637 WriteAsOperandInternal(Out, V, WriterCtx);
1638 } else {
1639 WriteAsOperandInternal(Out, MD, WriterCtx);
1640 WriterCtx.onWriteMetadataAsOperand(MD);
1641 }
1642 if (mi + 1 != me)
1643 Out << ", ";
1644 }
1645
1646 Out << "}";
1647 }
1648
1649 namespace {
1650
1651 struct FieldSeparator {
1652 bool Skip = true;
1653 const char *Sep;
1654
FieldSeparator__anon40529ce50611::FieldSeparator1655 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1656 };
1657
operator <<(raw_ostream & OS,FieldSeparator & FS)1658 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1659 if (FS.Skip) {
1660 FS.Skip = false;
1661 return OS;
1662 }
1663 return OS << FS.Sep;
1664 }
1665
1666 struct MDFieldPrinter {
1667 raw_ostream &Out;
1668 FieldSeparator FS;
1669 AsmWriterContext &WriterCtx;
1670
MDFieldPrinter__anon40529ce50611::MDFieldPrinter1671 explicit MDFieldPrinter(raw_ostream &Out)
1672 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
MDFieldPrinter__anon40529ce50611::MDFieldPrinter1673 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1674 : Out(Out), WriterCtx(Ctx) {}
1675
1676 void printTag(const DINode *N);
1677 void printMacinfoType(const DIMacroNode *N);
1678 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1679 void printString(StringRef Name, StringRef Value,
1680 bool ShouldSkipEmpty = true);
1681 void printMetadata(StringRef Name, const Metadata *MD,
1682 bool ShouldSkipNull = true);
1683 template <class IntTy>
1684 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1685 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1686 bool ShouldSkipZero);
1687 void printBool(StringRef Name, bool Value,
1688 std::optional<bool> Default = std::nullopt);
1689 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1690 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1691 template <class IntTy, class Stringifier>
1692 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1693 bool ShouldSkipZero = true);
1694 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1695 void printNameTableKind(StringRef Name,
1696 DICompileUnit::DebugNameTableKind NTK);
1697 };
1698
1699 } // end anonymous namespace
1700
printTag(const DINode * N)1701 void MDFieldPrinter::printTag(const DINode *N) {
1702 Out << FS << "tag: ";
1703 auto Tag = dwarf::TagString(N->getTag());
1704 if (!Tag.empty())
1705 Out << Tag;
1706 else
1707 Out << N->getTag();
1708 }
1709
printMacinfoType(const DIMacroNode * N)1710 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1711 Out << FS << "type: ";
1712 auto Type = dwarf::MacinfoString(N->getMacinfoType());
1713 if (!Type.empty())
1714 Out << Type;
1715 else
1716 Out << N->getMacinfoType();
1717 }
1718
printChecksum(const DIFile::ChecksumInfo<StringRef> & Checksum)1719 void MDFieldPrinter::printChecksum(
1720 const DIFile::ChecksumInfo<StringRef> &Checksum) {
1721 Out << FS << "checksumkind: " << Checksum.getKindAsString();
1722 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1723 }
1724
printString(StringRef Name,StringRef Value,bool ShouldSkipEmpty)1725 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1726 bool ShouldSkipEmpty) {
1727 if (ShouldSkipEmpty && Value.empty())
1728 return;
1729
1730 Out << FS << Name << ": \"";
1731 printEscapedString(Value, Out);
1732 Out << "\"";
1733 }
1734
writeMetadataAsOperand(raw_ostream & Out,const Metadata * MD,AsmWriterContext & WriterCtx)1735 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1736 AsmWriterContext &WriterCtx) {
1737 if (!MD) {
1738 Out << "null";
1739 return;
1740 }
1741 WriteAsOperandInternal(Out, MD, WriterCtx);
1742 WriterCtx.onWriteMetadataAsOperand(MD);
1743 }
1744
printMetadata(StringRef Name,const Metadata * MD,bool ShouldSkipNull)1745 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1746 bool ShouldSkipNull) {
1747 if (ShouldSkipNull && !MD)
1748 return;
1749
1750 Out << FS << Name << ": ";
1751 writeMetadataAsOperand(Out, MD, WriterCtx);
1752 }
1753
1754 template <class IntTy>
printInt(StringRef Name,IntTy Int,bool ShouldSkipZero)1755 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1756 if (ShouldSkipZero && !Int)
1757 return;
1758
1759 Out << FS << Name << ": " << Int;
1760 }
1761
printAPInt(StringRef Name,const APInt & Int,bool IsUnsigned,bool ShouldSkipZero)1762 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1763 bool IsUnsigned, bool ShouldSkipZero) {
1764 if (ShouldSkipZero && Int.isZero())
1765 return;
1766
1767 Out << FS << Name << ": ";
1768 Int.print(Out, !IsUnsigned);
1769 }
1770
printBool(StringRef Name,bool Value,std::optional<bool> Default)1771 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1772 std::optional<bool> Default) {
1773 if (Default && Value == *Default)
1774 return;
1775 Out << FS << Name << ": " << (Value ? "true" : "false");
1776 }
1777
printDIFlags(StringRef Name,DINode::DIFlags Flags)1778 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1779 if (!Flags)
1780 return;
1781
1782 Out << FS << Name << ": ";
1783
1784 SmallVector<DINode::DIFlags, 8> SplitFlags;
1785 auto Extra = DINode::splitFlags(Flags, SplitFlags);
1786
1787 FieldSeparator FlagsFS(" | ");
1788 for (auto F : SplitFlags) {
1789 auto StringF = DINode::getFlagString(F);
1790 assert(!StringF.empty() && "Expected valid flag");
1791 Out << FlagsFS << StringF;
1792 }
1793 if (Extra || SplitFlags.empty())
1794 Out << FlagsFS << Extra;
1795 }
1796
printDISPFlags(StringRef Name,DISubprogram::DISPFlags Flags)1797 void MDFieldPrinter::printDISPFlags(StringRef Name,
1798 DISubprogram::DISPFlags Flags) {
1799 // Always print this field, because no flags in the IR at all will be
1800 // interpreted as old-style isDefinition: true.
1801 Out << FS << Name << ": ";
1802
1803 if (!Flags) {
1804 Out << 0;
1805 return;
1806 }
1807
1808 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1809 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1810
1811 FieldSeparator FlagsFS(" | ");
1812 for (auto F : SplitFlags) {
1813 auto StringF = DISubprogram::getFlagString(F);
1814 assert(!StringF.empty() && "Expected valid flag");
1815 Out << FlagsFS << StringF;
1816 }
1817 if (Extra || SplitFlags.empty())
1818 Out << FlagsFS << Extra;
1819 }
1820
printEmissionKind(StringRef Name,DICompileUnit::DebugEmissionKind EK)1821 void MDFieldPrinter::printEmissionKind(StringRef Name,
1822 DICompileUnit::DebugEmissionKind EK) {
1823 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1824 }
1825
printNameTableKind(StringRef Name,DICompileUnit::DebugNameTableKind NTK)1826 void MDFieldPrinter::printNameTableKind(StringRef Name,
1827 DICompileUnit::DebugNameTableKind NTK) {
1828 if (NTK == DICompileUnit::DebugNameTableKind::Default)
1829 return;
1830 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1831 }
1832
1833 template <class IntTy, class Stringifier>
printDwarfEnum(StringRef Name,IntTy Value,Stringifier toString,bool ShouldSkipZero)1834 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1835 Stringifier toString, bool ShouldSkipZero) {
1836 if (!Value)
1837 return;
1838
1839 Out << FS << Name << ": ";
1840 auto S = toString(Value);
1841 if (!S.empty())
1842 Out << S;
1843 else
1844 Out << Value;
1845 }
1846
writeGenericDINode(raw_ostream & Out,const GenericDINode * N,AsmWriterContext & WriterCtx)1847 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1848 AsmWriterContext &WriterCtx) {
1849 Out << "!GenericDINode(";
1850 MDFieldPrinter Printer(Out, WriterCtx);
1851 Printer.printTag(N);
1852 Printer.printString("header", N->getHeader());
1853 if (N->getNumDwarfOperands()) {
1854 Out << Printer.FS << "operands: {";
1855 FieldSeparator IFS;
1856 for (auto &I : N->dwarf_operands()) {
1857 Out << IFS;
1858 writeMetadataAsOperand(Out, I, WriterCtx);
1859 }
1860 Out << "}";
1861 }
1862 Out << ")";
1863 }
1864
writeDILocation(raw_ostream & Out,const DILocation * DL,AsmWriterContext & WriterCtx)1865 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1866 AsmWriterContext &WriterCtx) {
1867 Out << "!DILocation(";
1868 MDFieldPrinter Printer(Out, WriterCtx);
1869 // Always output the line, since 0 is a relevant and important value for it.
1870 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1871 Printer.printInt("column", DL->getColumn());
1872 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1873 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1874 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1875 /* Default */ false);
1876 Out << ")";
1877 }
1878
writeDIAssignID(raw_ostream & Out,const DIAssignID * DL,AsmWriterContext & WriterCtx)1879 static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL,
1880 AsmWriterContext &WriterCtx) {
1881 Out << "!DIAssignID()";
1882 MDFieldPrinter Printer(Out, WriterCtx);
1883 }
1884
writeDISubrange(raw_ostream & Out,const DISubrange * N,AsmWriterContext & WriterCtx)1885 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1886 AsmWriterContext &WriterCtx) {
1887 Out << "!DISubrange(";
1888 MDFieldPrinter Printer(Out, WriterCtx);
1889
1890 auto *Count = N->getRawCountNode();
1891 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1892 auto *CV = cast<ConstantInt>(CE->getValue());
1893 Printer.printInt("count", CV->getSExtValue(),
1894 /* ShouldSkipZero */ false);
1895 } else
1896 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1897
1898 // A lowerBound of constant 0 should not be skipped, since it is different
1899 // from an unspecified lower bound (= nullptr).
1900 auto *LBound = N->getRawLowerBound();
1901 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1902 auto *LV = cast<ConstantInt>(LE->getValue());
1903 Printer.printInt("lowerBound", LV->getSExtValue(),
1904 /* ShouldSkipZero */ false);
1905 } else
1906 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1907
1908 auto *UBound = N->getRawUpperBound();
1909 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1910 auto *UV = cast<ConstantInt>(UE->getValue());
1911 Printer.printInt("upperBound", UV->getSExtValue(),
1912 /* ShouldSkipZero */ false);
1913 } else
1914 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1915
1916 auto *Stride = N->getRawStride();
1917 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1918 auto *SV = cast<ConstantInt>(SE->getValue());
1919 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1920 } else
1921 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1922
1923 Out << ")";
1924 }
1925
writeDIGenericSubrange(raw_ostream & Out,const DIGenericSubrange * N,AsmWriterContext & WriterCtx)1926 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1927 AsmWriterContext &WriterCtx) {
1928 Out << "!DIGenericSubrange(";
1929 MDFieldPrinter Printer(Out, WriterCtx);
1930
1931 auto IsConstant = [&](Metadata *Bound) -> bool {
1932 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1933 return BE->isConstant() &&
1934 DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1935 *BE->isConstant();
1936 }
1937 return false;
1938 };
1939
1940 auto GetConstant = [&](Metadata *Bound) -> int64_t {
1941 assert(IsConstant(Bound) && "Expected constant");
1942 auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1943 return static_cast<int64_t>(BE->getElement(1));
1944 };
1945
1946 auto *Count = N->getRawCountNode();
1947 if (IsConstant(Count))
1948 Printer.printInt("count", GetConstant(Count),
1949 /* ShouldSkipZero */ false);
1950 else
1951 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1952
1953 auto *LBound = N->getRawLowerBound();
1954 if (IsConstant(LBound))
1955 Printer.printInt("lowerBound", GetConstant(LBound),
1956 /* ShouldSkipZero */ false);
1957 else
1958 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1959
1960 auto *UBound = N->getRawUpperBound();
1961 if (IsConstant(UBound))
1962 Printer.printInt("upperBound", GetConstant(UBound),
1963 /* ShouldSkipZero */ false);
1964 else
1965 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1966
1967 auto *Stride = N->getRawStride();
1968 if (IsConstant(Stride))
1969 Printer.printInt("stride", GetConstant(Stride),
1970 /* ShouldSkipZero */ false);
1971 else
1972 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1973
1974 Out << ")";
1975 }
1976
writeDIEnumerator(raw_ostream & Out,const DIEnumerator * N,AsmWriterContext &)1977 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1978 AsmWriterContext &) {
1979 Out << "!DIEnumerator(";
1980 MDFieldPrinter Printer(Out);
1981 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1982 Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1983 /*ShouldSkipZero=*/false);
1984 if (N->isUnsigned())
1985 Printer.printBool("isUnsigned", true);
1986 Out << ")";
1987 }
1988
writeDIBasicType(raw_ostream & Out,const DIBasicType * N,AsmWriterContext &)1989 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1990 AsmWriterContext &) {
1991 Out << "!DIBasicType(";
1992 MDFieldPrinter Printer(Out);
1993 if (N->getTag() != dwarf::DW_TAG_base_type)
1994 Printer.printTag(N);
1995 Printer.printString("name", N->getName());
1996 Printer.printInt("size", N->getSizeInBits());
1997 Printer.printInt("align", N->getAlignInBits());
1998 Printer.printDwarfEnum("encoding", N->getEncoding(),
1999 dwarf::AttributeEncodingString);
2000 Printer.printDIFlags("flags", N->getFlags());
2001 Out << ")";
2002 }
2003
writeDIStringType(raw_ostream & Out,const DIStringType * N,AsmWriterContext & WriterCtx)2004 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2005 AsmWriterContext &WriterCtx) {
2006 Out << "!DIStringType(";
2007 MDFieldPrinter Printer(Out, WriterCtx);
2008 if (N->getTag() != dwarf::DW_TAG_string_type)
2009 Printer.printTag(N);
2010 Printer.printString("name", N->getName());
2011 Printer.printMetadata("stringLength", N->getRawStringLength());
2012 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2013 Printer.printMetadata("stringLocationExpression",
2014 N->getRawStringLocationExp());
2015 Printer.printInt("size", N->getSizeInBits());
2016 Printer.printInt("align", N->getAlignInBits());
2017 Printer.printDwarfEnum("encoding", N->getEncoding(),
2018 dwarf::AttributeEncodingString);
2019 Out << ")";
2020 }
2021
writeDIDerivedType(raw_ostream & Out,const DIDerivedType * N,AsmWriterContext & WriterCtx)2022 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2023 AsmWriterContext &WriterCtx) {
2024 Out << "!DIDerivedType(";
2025 MDFieldPrinter Printer(Out, WriterCtx);
2026 Printer.printTag(N);
2027 Printer.printString("name", N->getName());
2028 Printer.printMetadata("scope", N->getRawScope());
2029 Printer.printMetadata("file", N->getRawFile());
2030 Printer.printInt("line", N->getLine());
2031 Printer.printMetadata("baseType", N->getRawBaseType(),
2032 /* ShouldSkipNull */ false);
2033 Printer.printInt("size", N->getSizeInBits());
2034 Printer.printInt("align", N->getAlignInBits());
2035 Printer.printInt("offset", N->getOffsetInBits());
2036 Printer.printDIFlags("flags", N->getFlags());
2037 Printer.printMetadata("extraData", N->getRawExtraData());
2038 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2039 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2040 /* ShouldSkipZero */ false);
2041 Printer.printMetadata("annotations", N->getRawAnnotations());
2042 Out << ")";
2043 }
2044
writeDICompositeType(raw_ostream & Out,const DICompositeType * N,AsmWriterContext & WriterCtx)2045 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2046 AsmWriterContext &WriterCtx) {
2047 Out << "!DICompositeType(";
2048 MDFieldPrinter Printer(Out, WriterCtx);
2049 Printer.printTag(N);
2050 Printer.printString("name", N->getName());
2051 Printer.printMetadata("scope", N->getRawScope());
2052 Printer.printMetadata("file", N->getRawFile());
2053 Printer.printInt("line", N->getLine());
2054 Printer.printMetadata("baseType", N->getRawBaseType());
2055 Printer.printInt("size", N->getSizeInBits());
2056 Printer.printInt("align", N->getAlignInBits());
2057 Printer.printInt("offset", N->getOffsetInBits());
2058 Printer.printDIFlags("flags", N->getFlags());
2059 Printer.printMetadata("elements", N->getRawElements());
2060 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2061 dwarf::LanguageString);
2062 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2063 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2064 Printer.printString("identifier", N->getIdentifier());
2065 Printer.printMetadata("discriminator", N->getRawDiscriminator());
2066 Printer.printMetadata("dataLocation", N->getRawDataLocation());
2067 Printer.printMetadata("associated", N->getRawAssociated());
2068 Printer.printMetadata("allocated", N->getRawAllocated());
2069 if (auto *RankConst = N->getRankConst())
2070 Printer.printInt("rank", RankConst->getSExtValue(),
2071 /* ShouldSkipZero */ false);
2072 else
2073 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2074 Printer.printMetadata("annotations", N->getRawAnnotations());
2075 Out << ")";
2076 }
2077
writeDISubroutineType(raw_ostream & Out,const DISubroutineType * N,AsmWriterContext & WriterCtx)2078 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2079 AsmWriterContext &WriterCtx) {
2080 Out << "!DISubroutineType(";
2081 MDFieldPrinter Printer(Out, WriterCtx);
2082 Printer.printDIFlags("flags", N->getFlags());
2083 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2084 Printer.printMetadata("types", N->getRawTypeArray(),
2085 /* ShouldSkipNull */ false);
2086 Out << ")";
2087 }
2088
writeDIFile(raw_ostream & Out,const DIFile * N,AsmWriterContext &)2089 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2090 Out << "!DIFile(";
2091 MDFieldPrinter Printer(Out);
2092 Printer.printString("filename", N->getFilename(),
2093 /* ShouldSkipEmpty */ false);
2094 Printer.printString("directory", N->getDirectory(),
2095 /* ShouldSkipEmpty */ false);
2096 // Print all values for checksum together, or not at all.
2097 if (N->getChecksum())
2098 Printer.printChecksum(*N->getChecksum());
2099 Printer.printString("source", N->getSource().value_or(StringRef()),
2100 /* ShouldSkipEmpty */ true);
2101 Out << ")";
2102 }
2103
writeDICompileUnit(raw_ostream & Out,const DICompileUnit * N,AsmWriterContext & WriterCtx)2104 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2105 AsmWriterContext &WriterCtx) {
2106 Out << "!DICompileUnit(";
2107 MDFieldPrinter Printer(Out, WriterCtx);
2108 Printer.printDwarfEnum("language", N->getSourceLanguage(),
2109 dwarf::LanguageString, /* ShouldSkipZero */ false);
2110 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2111 Printer.printString("producer", N->getProducer());
2112 Printer.printBool("isOptimized", N->isOptimized());
2113 Printer.printString("flags", N->getFlags());
2114 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2115 /* ShouldSkipZero */ false);
2116 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2117 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2118 Printer.printMetadata("enums", N->getRawEnumTypes());
2119 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2120 Printer.printMetadata("globals", N->getRawGlobalVariables());
2121 Printer.printMetadata("imports", N->getRawImportedEntities());
2122 Printer.printMetadata("macros", N->getRawMacros());
2123 Printer.printInt("dwoId", N->getDWOId());
2124 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2125 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2126 false);
2127 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2128 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2129 Printer.printString("sysroot", N->getSysRoot());
2130 Printer.printString("sdk", N->getSDK());
2131 Out << ")";
2132 }
2133
writeDISubprogram(raw_ostream & Out,const DISubprogram * N,AsmWriterContext & WriterCtx)2134 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2135 AsmWriterContext &WriterCtx) {
2136 Out << "!DISubprogram(";
2137 MDFieldPrinter Printer(Out, WriterCtx);
2138 Printer.printString("name", N->getName());
2139 Printer.printString("linkageName", N->getLinkageName());
2140 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2141 Printer.printMetadata("file", N->getRawFile());
2142 Printer.printInt("line", N->getLine());
2143 Printer.printMetadata("type", N->getRawType());
2144 Printer.printInt("scopeLine", N->getScopeLine());
2145 Printer.printMetadata("containingType", N->getRawContainingType());
2146 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2147 N->getVirtualIndex() != 0)
2148 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2149 Printer.printInt("thisAdjustment", N->getThisAdjustment());
2150 Printer.printDIFlags("flags", N->getFlags());
2151 Printer.printDISPFlags("spFlags", N->getSPFlags());
2152 Printer.printMetadata("unit", N->getRawUnit());
2153 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2154 Printer.printMetadata("declaration", N->getRawDeclaration());
2155 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2156 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2157 Printer.printMetadata("annotations", N->getRawAnnotations());
2158 Printer.printString("targetFuncName", N->getTargetFuncName());
2159 Out << ")";
2160 }
2161
writeDILexicalBlock(raw_ostream & Out,const DILexicalBlock * N,AsmWriterContext & WriterCtx)2162 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2163 AsmWriterContext &WriterCtx) {
2164 Out << "!DILexicalBlock(";
2165 MDFieldPrinter Printer(Out, WriterCtx);
2166 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2167 Printer.printMetadata("file", N->getRawFile());
2168 Printer.printInt("line", N->getLine());
2169 Printer.printInt("column", N->getColumn());
2170 Out << ")";
2171 }
2172
writeDILexicalBlockFile(raw_ostream & Out,const DILexicalBlockFile * N,AsmWriterContext & WriterCtx)2173 static void writeDILexicalBlockFile(raw_ostream &Out,
2174 const DILexicalBlockFile *N,
2175 AsmWriterContext &WriterCtx) {
2176 Out << "!DILexicalBlockFile(";
2177 MDFieldPrinter Printer(Out, WriterCtx);
2178 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2179 Printer.printMetadata("file", N->getRawFile());
2180 Printer.printInt("discriminator", N->getDiscriminator(),
2181 /* ShouldSkipZero */ false);
2182 Out << ")";
2183 }
2184
writeDINamespace(raw_ostream & Out,const DINamespace * N,AsmWriterContext & WriterCtx)2185 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2186 AsmWriterContext &WriterCtx) {
2187 Out << "!DINamespace(";
2188 MDFieldPrinter Printer(Out, WriterCtx);
2189 Printer.printString("name", N->getName());
2190 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2191 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2192 Out << ")";
2193 }
2194
writeDICommonBlock(raw_ostream & Out,const DICommonBlock * N,AsmWriterContext & WriterCtx)2195 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2196 AsmWriterContext &WriterCtx) {
2197 Out << "!DICommonBlock(";
2198 MDFieldPrinter Printer(Out, WriterCtx);
2199 Printer.printMetadata("scope", N->getRawScope(), false);
2200 Printer.printMetadata("declaration", N->getRawDecl(), false);
2201 Printer.printString("name", N->getName());
2202 Printer.printMetadata("file", N->getRawFile());
2203 Printer.printInt("line", N->getLineNo());
2204 Out << ")";
2205 }
2206
writeDIMacro(raw_ostream & Out,const DIMacro * N,AsmWriterContext & WriterCtx)2207 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2208 AsmWriterContext &WriterCtx) {
2209 Out << "!DIMacro(";
2210 MDFieldPrinter Printer(Out, WriterCtx);
2211 Printer.printMacinfoType(N);
2212 Printer.printInt("line", N->getLine());
2213 Printer.printString("name", N->getName());
2214 Printer.printString("value", N->getValue());
2215 Out << ")";
2216 }
2217
writeDIMacroFile(raw_ostream & Out,const DIMacroFile * N,AsmWriterContext & WriterCtx)2218 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2219 AsmWriterContext &WriterCtx) {
2220 Out << "!DIMacroFile(";
2221 MDFieldPrinter Printer(Out, WriterCtx);
2222 Printer.printInt("line", N->getLine());
2223 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2224 Printer.printMetadata("nodes", N->getRawElements());
2225 Out << ")";
2226 }
2227
writeDIModule(raw_ostream & Out,const DIModule * N,AsmWriterContext & WriterCtx)2228 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2229 AsmWriterContext &WriterCtx) {
2230 Out << "!DIModule(";
2231 MDFieldPrinter Printer(Out, WriterCtx);
2232 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2233 Printer.printString("name", N->getName());
2234 Printer.printString("configMacros", N->getConfigurationMacros());
2235 Printer.printString("includePath", N->getIncludePath());
2236 Printer.printString("apinotes", N->getAPINotesFile());
2237 Printer.printMetadata("file", N->getRawFile());
2238 Printer.printInt("line", N->getLineNo());
2239 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2240 Out << ")";
2241 }
2242
writeDITemplateTypeParameter(raw_ostream & Out,const DITemplateTypeParameter * N,AsmWriterContext & WriterCtx)2243 static void writeDITemplateTypeParameter(raw_ostream &Out,
2244 const DITemplateTypeParameter *N,
2245 AsmWriterContext &WriterCtx) {
2246 Out << "!DITemplateTypeParameter(";
2247 MDFieldPrinter Printer(Out, WriterCtx);
2248 Printer.printString("name", N->getName());
2249 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2250 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2251 Out << ")";
2252 }
2253
writeDITemplateValueParameter(raw_ostream & Out,const DITemplateValueParameter * N,AsmWriterContext & WriterCtx)2254 static void writeDITemplateValueParameter(raw_ostream &Out,
2255 const DITemplateValueParameter *N,
2256 AsmWriterContext &WriterCtx) {
2257 Out << "!DITemplateValueParameter(";
2258 MDFieldPrinter Printer(Out, WriterCtx);
2259 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2260 Printer.printTag(N);
2261 Printer.printString("name", N->getName());
2262 Printer.printMetadata("type", N->getRawType());
2263 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2264 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2265 Out << ")";
2266 }
2267
writeDIGlobalVariable(raw_ostream & Out,const DIGlobalVariable * N,AsmWriterContext & WriterCtx)2268 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2269 AsmWriterContext &WriterCtx) {
2270 Out << "!DIGlobalVariable(";
2271 MDFieldPrinter Printer(Out, WriterCtx);
2272 Printer.printString("name", N->getName());
2273 Printer.printString("linkageName", N->getLinkageName());
2274 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2275 Printer.printMetadata("file", N->getRawFile());
2276 Printer.printInt("line", N->getLine());
2277 Printer.printMetadata("type", N->getRawType());
2278 Printer.printBool("isLocal", N->isLocalToUnit());
2279 Printer.printBool("isDefinition", N->isDefinition());
2280 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2281 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2282 Printer.printInt("align", N->getAlignInBits());
2283 Printer.printMetadata("annotations", N->getRawAnnotations());
2284 Out << ")";
2285 }
2286
writeDILocalVariable(raw_ostream & Out,const DILocalVariable * N,AsmWriterContext & WriterCtx)2287 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2288 AsmWriterContext &WriterCtx) {
2289 Out << "!DILocalVariable(";
2290 MDFieldPrinter Printer(Out, WriterCtx);
2291 Printer.printString("name", N->getName());
2292 Printer.printInt("arg", N->getArg());
2293 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2294 Printer.printMetadata("file", N->getRawFile());
2295 Printer.printInt("line", N->getLine());
2296 Printer.printMetadata("type", N->getRawType());
2297 Printer.printDIFlags("flags", N->getFlags());
2298 Printer.printInt("align", N->getAlignInBits());
2299 Printer.printMetadata("annotations", N->getRawAnnotations());
2300 Out << ")";
2301 }
2302
writeDILabel(raw_ostream & Out,const DILabel * N,AsmWriterContext & WriterCtx)2303 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2304 AsmWriterContext &WriterCtx) {
2305 Out << "!DILabel(";
2306 MDFieldPrinter Printer(Out, WriterCtx);
2307 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2308 Printer.printString("name", N->getName());
2309 Printer.printMetadata("file", N->getRawFile());
2310 Printer.printInt("line", N->getLine());
2311 Out << ")";
2312 }
2313
writeDIExpression(raw_ostream & Out,const DIExpression * N,AsmWriterContext & WriterCtx)2314 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2315 AsmWriterContext &WriterCtx) {
2316 Out << "!DIExpression(";
2317 FieldSeparator FS;
2318 if (N->isValid()) {
2319 for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2320 auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2321 assert(!OpStr.empty() && "Expected valid opcode");
2322
2323 Out << FS << OpStr;
2324 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2325 Out << FS << Op.getArg(0);
2326 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2327 } else {
2328 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2329 Out << FS << Op.getArg(A);
2330 }
2331 }
2332 } else {
2333 for (const auto &I : N->getElements())
2334 Out << FS << I;
2335 }
2336 Out << ")";
2337 }
2338
writeDIArgList(raw_ostream & Out,const DIArgList * N,AsmWriterContext & WriterCtx,bool FromValue=false)2339 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2340 AsmWriterContext &WriterCtx,
2341 bool FromValue = false) {
2342 assert(FromValue &&
2343 "Unexpected DIArgList metadata outside of value argument");
2344 Out << "!DIArgList(";
2345 FieldSeparator FS;
2346 MDFieldPrinter Printer(Out, WriterCtx);
2347 for (Metadata *Arg : N->getArgs()) {
2348 Out << FS;
2349 WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2350 }
2351 Out << ")";
2352 }
2353
writeDIGlobalVariableExpression(raw_ostream & Out,const DIGlobalVariableExpression * N,AsmWriterContext & WriterCtx)2354 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2355 const DIGlobalVariableExpression *N,
2356 AsmWriterContext &WriterCtx) {
2357 Out << "!DIGlobalVariableExpression(";
2358 MDFieldPrinter Printer(Out, WriterCtx);
2359 Printer.printMetadata("var", N->getVariable());
2360 Printer.printMetadata("expr", N->getExpression());
2361 Out << ")";
2362 }
2363
writeDIObjCProperty(raw_ostream & Out,const DIObjCProperty * N,AsmWriterContext & WriterCtx)2364 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2365 AsmWriterContext &WriterCtx) {
2366 Out << "!DIObjCProperty(";
2367 MDFieldPrinter Printer(Out, WriterCtx);
2368 Printer.printString("name", N->getName());
2369 Printer.printMetadata("file", N->getRawFile());
2370 Printer.printInt("line", N->getLine());
2371 Printer.printString("setter", N->getSetterName());
2372 Printer.printString("getter", N->getGetterName());
2373 Printer.printInt("attributes", N->getAttributes());
2374 Printer.printMetadata("type", N->getRawType());
2375 Out << ")";
2376 }
2377
writeDIImportedEntity(raw_ostream & Out,const DIImportedEntity * N,AsmWriterContext & WriterCtx)2378 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2379 AsmWriterContext &WriterCtx) {
2380 Out << "!DIImportedEntity(";
2381 MDFieldPrinter Printer(Out, WriterCtx);
2382 Printer.printTag(N);
2383 Printer.printString("name", N->getName());
2384 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2385 Printer.printMetadata("entity", N->getRawEntity());
2386 Printer.printMetadata("file", N->getRawFile());
2387 Printer.printInt("line", N->getLine());
2388 Printer.printMetadata("elements", N->getRawElements());
2389 Out << ")";
2390 }
2391
WriteMDNodeBodyInternal(raw_ostream & Out,const MDNode * Node,AsmWriterContext & Ctx)2392 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2393 AsmWriterContext &Ctx) {
2394 if (Node->isDistinct())
2395 Out << "distinct ";
2396 else if (Node->isTemporary())
2397 Out << "<temporary!> "; // Handle broken code.
2398
2399 switch (Node->getMetadataID()) {
2400 default:
2401 llvm_unreachable("Expected uniquable MDNode");
2402 #define HANDLE_MDNODE_LEAF(CLASS) \
2403 case Metadata::CLASS##Kind: \
2404 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2405 break;
2406 #include "llvm/IR/Metadata.def"
2407 }
2408 }
2409
2410 // Full implementation of printing a Value as an operand with support for
2411 // TypePrinting, etc.
WriteAsOperandInternal(raw_ostream & Out,const Value * V,AsmWriterContext & WriterCtx)2412 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2413 AsmWriterContext &WriterCtx) {
2414 if (V->hasName()) {
2415 PrintLLVMName(Out, V);
2416 return;
2417 }
2418
2419 const Constant *CV = dyn_cast<Constant>(V);
2420 if (CV && !isa<GlobalValue>(CV)) {
2421 assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2422 WriteConstantInternal(Out, CV, WriterCtx);
2423 return;
2424 }
2425
2426 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2427 Out << "asm ";
2428 if (IA->hasSideEffects())
2429 Out << "sideeffect ";
2430 if (IA->isAlignStack())
2431 Out << "alignstack ";
2432 // We don't emit the AD_ATT dialect as it's the assumed default.
2433 if (IA->getDialect() == InlineAsm::AD_Intel)
2434 Out << "inteldialect ";
2435 if (IA->canThrow())
2436 Out << "unwind ";
2437 Out << '"';
2438 printEscapedString(IA->getAsmString(), Out);
2439 Out << "\", \"";
2440 printEscapedString(IA->getConstraintString(), Out);
2441 Out << '"';
2442 return;
2443 }
2444
2445 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2446 WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2447 /* FromValue */ true);
2448 return;
2449 }
2450
2451 char Prefix = '%';
2452 int Slot;
2453 auto *Machine = WriterCtx.Machine;
2454 // If we have a SlotTracker, use it.
2455 if (Machine) {
2456 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2457 Slot = Machine->getGlobalSlot(GV);
2458 Prefix = '@';
2459 } else {
2460 Slot = Machine->getLocalSlot(V);
2461
2462 // If the local value didn't succeed, then we may be referring to a value
2463 // from a different function. Translate it, as this can happen when using
2464 // address of blocks.
2465 if (Slot == -1)
2466 if ((Machine = createSlotTracker(V))) {
2467 Slot = Machine->getLocalSlot(V);
2468 delete Machine;
2469 }
2470 }
2471 } else if ((Machine = createSlotTracker(V))) {
2472 // Otherwise, create one to get the # and then destroy it.
2473 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2474 Slot = Machine->getGlobalSlot(GV);
2475 Prefix = '@';
2476 } else {
2477 Slot = Machine->getLocalSlot(V);
2478 }
2479 delete Machine;
2480 Machine = nullptr;
2481 } else {
2482 Slot = -1;
2483 }
2484
2485 if (Slot != -1)
2486 Out << Prefix << Slot;
2487 else
2488 Out << "<badref>";
2489 }
2490
WriteAsOperandInternal(raw_ostream & Out,const Metadata * MD,AsmWriterContext & WriterCtx,bool FromValue)2491 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2492 AsmWriterContext &WriterCtx,
2493 bool FromValue) {
2494 // Write DIExpressions and DIArgLists inline when used as a value. Improves
2495 // readability of debug info intrinsics.
2496 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2497 writeDIExpression(Out, Expr, WriterCtx);
2498 return;
2499 }
2500 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2501 writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2502 return;
2503 }
2504
2505 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2506 std::unique_ptr<SlotTracker> MachineStorage;
2507 SaveAndRestore SARMachine(WriterCtx.Machine);
2508 if (!WriterCtx.Machine) {
2509 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2510 WriterCtx.Machine = MachineStorage.get();
2511 }
2512 int Slot = WriterCtx.Machine->getMetadataSlot(N);
2513 if (Slot == -1) {
2514 if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2515 writeDILocation(Out, Loc, WriterCtx);
2516 return;
2517 }
2518 // Give the pointer value instead of "badref", since this comes up all
2519 // the time when debugging.
2520 Out << "<" << N << ">";
2521 } else
2522 Out << '!' << Slot;
2523 return;
2524 }
2525
2526 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2527 Out << "!\"";
2528 printEscapedString(MDS->getString(), Out);
2529 Out << '"';
2530 return;
2531 }
2532
2533 auto *V = cast<ValueAsMetadata>(MD);
2534 assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2535 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2536 "Unexpected function-local metadata outside of value argument");
2537
2538 WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2539 Out << ' ';
2540 WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2541 }
2542
2543 namespace {
2544
2545 class AssemblyWriter {
2546 formatted_raw_ostream &Out;
2547 const Module *TheModule = nullptr;
2548 const ModuleSummaryIndex *TheIndex = nullptr;
2549 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2550 SlotTracker &Machine;
2551 TypePrinting TypePrinter;
2552 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2553 SetVector<const Comdat *> Comdats;
2554 bool IsForDebug;
2555 bool ShouldPreserveUseListOrder;
2556 UseListOrderMap UseListOrders;
2557 SmallVector<StringRef, 8> MDNames;
2558 /// Synchronization scope names registered with LLVMContext.
2559 SmallVector<StringRef, 8> SSNs;
2560 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2561
2562 public:
2563 /// Construct an AssemblyWriter with an external SlotTracker
2564 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2565 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2566 bool ShouldPreserveUseListOrder = false);
2567
2568 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2569 const ModuleSummaryIndex *Index, bool IsForDebug);
2570
getContext()2571 AsmWriterContext getContext() {
2572 return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2573 }
2574
2575 void printMDNodeBody(const MDNode *MD);
2576 void printNamedMDNode(const NamedMDNode *NMD);
2577
2578 void printModule(const Module *M);
2579
2580 void writeOperand(const Value *Op, bool PrintType);
2581 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2582 void writeOperandBundles(const CallBase *Call);
2583 void writeSyncScope(const LLVMContext &Context,
2584 SyncScope::ID SSID);
2585 void writeAtomic(const LLVMContext &Context,
2586 AtomicOrdering Ordering,
2587 SyncScope::ID SSID);
2588 void writeAtomicCmpXchg(const LLVMContext &Context,
2589 AtomicOrdering SuccessOrdering,
2590 AtomicOrdering FailureOrdering,
2591 SyncScope::ID SSID);
2592
2593 void writeAllMDNodes();
2594 void writeMDNode(unsigned Slot, const MDNode *Node);
2595 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2596 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2597 void writeAllAttributeGroups();
2598
2599 void printTypeIdentities();
2600 void printGlobal(const GlobalVariable *GV);
2601 void printAlias(const GlobalAlias *GA);
2602 void printIFunc(const GlobalIFunc *GI);
2603 void printComdat(const Comdat *C);
2604 void printFunction(const Function *F);
2605 void printArgument(const Argument *FA, AttributeSet Attrs);
2606 void printBasicBlock(const BasicBlock *BB);
2607 void printInstructionLine(const Instruction &I);
2608 void printInstruction(const Instruction &I);
2609
2610 void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2611 void printUseLists(const Function *F);
2612
2613 void printModuleSummaryIndex();
2614 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2615 void printSummary(const GlobalValueSummary &Summary);
2616 void printAliasSummary(const AliasSummary *AS);
2617 void printGlobalVarSummary(const GlobalVarSummary *GS);
2618 void printFunctionSummary(const FunctionSummary *FS);
2619 void printTypeIdSummary(const TypeIdSummary &TIS);
2620 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2621 void printTypeTestResolution(const TypeTestResolution &TTRes);
2622 void printArgs(const std::vector<uint64_t> &Args);
2623 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2624 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2625 void printVFuncId(const FunctionSummary::VFuncId VFId);
2626 void
2627 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2628 const char *Tag);
2629 void
2630 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2631 const char *Tag);
2632
2633 private:
2634 /// Print out metadata attachments.
2635 void printMetadataAttachments(
2636 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2637 StringRef Separator);
2638
2639 // printInfoComment - Print a little comment after the instruction indicating
2640 // which slot it occupies.
2641 void printInfoComment(const Value &V);
2642
2643 // printGCRelocateComment - print comment after call to the gc.relocate
2644 // intrinsic indicating base and derived pointer names.
2645 void printGCRelocateComment(const GCRelocateInst &Relocate);
2646 };
2647
2648 } // end anonymous namespace
2649
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const Module * M,AssemblyAnnotationWriter * AAW,bool IsForDebug,bool ShouldPreserveUseListOrder)2650 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2651 const Module *M, AssemblyAnnotationWriter *AAW,
2652 bool IsForDebug, bool ShouldPreserveUseListOrder)
2653 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2654 IsForDebug(IsForDebug),
2655 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2656 if (!TheModule)
2657 return;
2658 for (const GlobalObject &GO : TheModule->global_objects())
2659 if (const Comdat *C = GO.getComdat())
2660 Comdats.insert(C);
2661 }
2662
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const ModuleSummaryIndex * Index,bool IsForDebug)2663 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2664 const ModuleSummaryIndex *Index, bool IsForDebug)
2665 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2666 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2667
writeOperand(const Value * Operand,bool PrintType)2668 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2669 if (!Operand) {
2670 Out << "<null operand!>";
2671 return;
2672 }
2673 if (PrintType) {
2674 TypePrinter.print(Operand->getType(), Out);
2675 Out << ' ';
2676 }
2677 auto WriterCtx = getContext();
2678 WriteAsOperandInternal(Out, Operand, WriterCtx);
2679 }
2680
writeSyncScope(const LLVMContext & Context,SyncScope::ID SSID)2681 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2682 SyncScope::ID SSID) {
2683 switch (SSID) {
2684 case SyncScope::System: {
2685 break;
2686 }
2687 default: {
2688 if (SSNs.empty())
2689 Context.getSyncScopeNames(SSNs);
2690
2691 Out << " syncscope(\"";
2692 printEscapedString(SSNs[SSID], Out);
2693 Out << "\")";
2694 break;
2695 }
2696 }
2697 }
2698
writeAtomic(const LLVMContext & Context,AtomicOrdering Ordering,SyncScope::ID SSID)2699 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2700 AtomicOrdering Ordering,
2701 SyncScope::ID SSID) {
2702 if (Ordering == AtomicOrdering::NotAtomic)
2703 return;
2704
2705 writeSyncScope(Context, SSID);
2706 Out << " " << toIRString(Ordering);
2707 }
2708
writeAtomicCmpXchg(const LLVMContext & Context,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SyncScope::ID SSID)2709 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2710 AtomicOrdering SuccessOrdering,
2711 AtomicOrdering FailureOrdering,
2712 SyncScope::ID SSID) {
2713 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2714 FailureOrdering != AtomicOrdering::NotAtomic);
2715
2716 writeSyncScope(Context, SSID);
2717 Out << " " << toIRString(SuccessOrdering);
2718 Out << " " << toIRString(FailureOrdering);
2719 }
2720
writeParamOperand(const Value * Operand,AttributeSet Attrs)2721 void AssemblyWriter::writeParamOperand(const Value *Operand,
2722 AttributeSet Attrs) {
2723 if (!Operand) {
2724 Out << "<null operand!>";
2725 return;
2726 }
2727
2728 // Print the type
2729 TypePrinter.print(Operand->getType(), Out);
2730 // Print parameter attributes list
2731 if (Attrs.hasAttributes()) {
2732 Out << ' ';
2733 writeAttributeSet(Attrs);
2734 }
2735 Out << ' ';
2736 // Print the operand
2737 auto WriterCtx = getContext();
2738 WriteAsOperandInternal(Out, Operand, WriterCtx);
2739 }
2740
writeOperandBundles(const CallBase * Call)2741 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2742 if (!Call->hasOperandBundles())
2743 return;
2744
2745 Out << " [ ";
2746
2747 bool FirstBundle = true;
2748 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2749 OperandBundleUse BU = Call->getOperandBundleAt(i);
2750
2751 if (!FirstBundle)
2752 Out << ", ";
2753 FirstBundle = false;
2754
2755 Out << '"';
2756 printEscapedString(BU.getTagName(), Out);
2757 Out << '"';
2758
2759 Out << '(';
2760
2761 bool FirstInput = true;
2762 auto WriterCtx = getContext();
2763 for (const auto &Input : BU.Inputs) {
2764 if (!FirstInput)
2765 Out << ", ";
2766 FirstInput = false;
2767
2768 if (Input == nullptr)
2769 Out << "<null operand bundle!>";
2770 else {
2771 TypePrinter.print(Input->getType(), Out);
2772 Out << " ";
2773 WriteAsOperandInternal(Out, Input, WriterCtx);
2774 }
2775 }
2776
2777 Out << ')';
2778 }
2779
2780 Out << " ]";
2781 }
2782
printModule(const Module * M)2783 void AssemblyWriter::printModule(const Module *M) {
2784 Machine.initializeIfNeeded();
2785
2786 if (ShouldPreserveUseListOrder)
2787 UseListOrders = predictUseListOrder(M);
2788
2789 if (!M->getModuleIdentifier().empty() &&
2790 // Don't print the ID if it will start a new line (which would
2791 // require a comment char before it).
2792 M->getModuleIdentifier().find('\n') == std::string::npos)
2793 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2794
2795 if (!M->getSourceFileName().empty()) {
2796 Out << "source_filename = \"";
2797 printEscapedString(M->getSourceFileName(), Out);
2798 Out << "\"\n";
2799 }
2800
2801 const std::string &DL = M->getDataLayoutStr();
2802 if (!DL.empty())
2803 Out << "target datalayout = \"" << DL << "\"\n";
2804 if (!M->getTargetTriple().empty())
2805 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2806
2807 if (!M->getModuleInlineAsm().empty()) {
2808 Out << '\n';
2809
2810 // Split the string into lines, to make it easier to read the .ll file.
2811 StringRef Asm = M->getModuleInlineAsm();
2812 do {
2813 StringRef Front;
2814 std::tie(Front, Asm) = Asm.split('\n');
2815
2816 // We found a newline, print the portion of the asm string from the
2817 // last newline up to this newline.
2818 Out << "module asm \"";
2819 printEscapedString(Front, Out);
2820 Out << "\"\n";
2821 } while (!Asm.empty());
2822 }
2823
2824 printTypeIdentities();
2825
2826 // Output all comdats.
2827 if (!Comdats.empty())
2828 Out << '\n';
2829 for (const Comdat *C : Comdats) {
2830 printComdat(C);
2831 if (C != Comdats.back())
2832 Out << '\n';
2833 }
2834
2835 // Output all globals.
2836 if (!M->global_empty()) Out << '\n';
2837 for (const GlobalVariable &GV : M->globals()) {
2838 printGlobal(&GV); Out << '\n';
2839 }
2840
2841 // Output all aliases.
2842 if (!M->alias_empty()) Out << "\n";
2843 for (const GlobalAlias &GA : M->aliases())
2844 printAlias(&GA);
2845
2846 // Output all ifuncs.
2847 if (!M->ifunc_empty()) Out << "\n";
2848 for (const GlobalIFunc &GI : M->ifuncs())
2849 printIFunc(&GI);
2850
2851 // Output all of the functions.
2852 for (const Function &F : *M) {
2853 Out << '\n';
2854 printFunction(&F);
2855 }
2856
2857 // Output global use-lists.
2858 printUseLists(nullptr);
2859
2860 // Output all attribute groups.
2861 if (!Machine.as_empty()) {
2862 Out << '\n';
2863 writeAllAttributeGroups();
2864 }
2865
2866 // Output named metadata.
2867 if (!M->named_metadata_empty()) Out << '\n';
2868
2869 for (const NamedMDNode &Node : M->named_metadata())
2870 printNamedMDNode(&Node);
2871
2872 // Output metadata.
2873 if (!Machine.mdn_empty()) {
2874 Out << '\n';
2875 writeAllMDNodes();
2876 }
2877 }
2878
printModuleSummaryIndex()2879 void AssemblyWriter::printModuleSummaryIndex() {
2880 assert(TheIndex);
2881 int NumSlots = Machine.initializeIndexIfNeeded();
2882
2883 Out << "\n";
2884
2885 // Print module path entries. To print in order, add paths to a vector
2886 // indexed by module slot.
2887 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2888 std::string RegularLTOModuleName =
2889 ModuleSummaryIndex::getRegularLTOModuleName();
2890 moduleVec.resize(TheIndex->modulePaths().size());
2891 for (auto &[ModPath, ModId] : TheIndex->modulePaths())
2892 moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
2893 // A module id of -1 is a special entry for a regular LTO module created
2894 // during the thin link.
2895 ModId.first == -1u ? RegularLTOModuleName : std::string(ModPath),
2896 ModId.second);
2897
2898 unsigned i = 0;
2899 for (auto &ModPair : moduleVec) {
2900 Out << "^" << i++ << " = module: (";
2901 Out << "path: \"";
2902 printEscapedString(ModPair.first, Out);
2903 Out << "\", hash: (";
2904 FieldSeparator FS;
2905 for (auto Hash : ModPair.second)
2906 Out << FS << Hash;
2907 Out << "))\n";
2908 }
2909
2910 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2911 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2912 for (auto &GlobalList : *TheIndex) {
2913 auto GUID = GlobalList.first;
2914 for (auto &Summary : GlobalList.second.SummaryList)
2915 SummaryToGUIDMap[Summary.get()] = GUID;
2916 }
2917
2918 // Print the global value summary entries.
2919 for (auto &GlobalList : *TheIndex) {
2920 auto GUID = GlobalList.first;
2921 auto VI = TheIndex->getValueInfo(GlobalList);
2922 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2923 }
2924
2925 // Print the TypeIdMap entries.
2926 for (const auto &TID : TheIndex->typeIds()) {
2927 Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2928 << " = typeid: (name: \"" << TID.second.first << "\"";
2929 printTypeIdSummary(TID.second.second);
2930 Out << ") ; guid = " << TID.first << "\n";
2931 }
2932
2933 // Print the TypeIdCompatibleVtableMap entries.
2934 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2935 auto GUID = GlobalValue::getGUID(TId.first);
2936 Out << "^" << Machine.getGUIDSlot(GUID)
2937 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2938 printTypeIdCompatibleVtableSummary(TId.second);
2939 Out << ") ; guid = " << GUID << "\n";
2940 }
2941
2942 // Don't emit flags when it's not really needed (value is zero by default).
2943 if (TheIndex->getFlags()) {
2944 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2945 ++NumSlots;
2946 }
2947
2948 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2949 << "\n";
2950 }
2951
2952 static const char *
getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)2953 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2954 switch (K) {
2955 case WholeProgramDevirtResolution::Indir:
2956 return "indir";
2957 case WholeProgramDevirtResolution::SingleImpl:
2958 return "singleImpl";
2959 case WholeProgramDevirtResolution::BranchFunnel:
2960 return "branchFunnel";
2961 }
2962 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2963 }
2964
getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)2965 static const char *getWholeProgDevirtResByArgKindName(
2966 WholeProgramDevirtResolution::ByArg::Kind K) {
2967 switch (K) {
2968 case WholeProgramDevirtResolution::ByArg::Indir:
2969 return "indir";
2970 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2971 return "uniformRetVal";
2972 case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2973 return "uniqueRetVal";
2974 case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2975 return "virtualConstProp";
2976 }
2977 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2978 }
2979
getTTResKindName(TypeTestResolution::Kind K)2980 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2981 switch (K) {
2982 case TypeTestResolution::Unknown:
2983 return "unknown";
2984 case TypeTestResolution::Unsat:
2985 return "unsat";
2986 case TypeTestResolution::ByteArray:
2987 return "byteArray";
2988 case TypeTestResolution::Inline:
2989 return "inline";
2990 case TypeTestResolution::Single:
2991 return "single";
2992 case TypeTestResolution::AllOnes:
2993 return "allOnes";
2994 }
2995 llvm_unreachable("invalid TypeTestResolution kind");
2996 }
2997
printTypeTestResolution(const TypeTestResolution & TTRes)2998 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2999 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3000 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3001
3002 // The following fields are only used if the target does not support the use
3003 // of absolute symbols to store constants. Print only if non-zero.
3004 if (TTRes.AlignLog2)
3005 Out << ", alignLog2: " << TTRes.AlignLog2;
3006 if (TTRes.SizeM1)
3007 Out << ", sizeM1: " << TTRes.SizeM1;
3008 if (TTRes.BitMask)
3009 // BitMask is uint8_t which causes it to print the corresponding char.
3010 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3011 if (TTRes.InlineBits)
3012 Out << ", inlineBits: " << TTRes.InlineBits;
3013
3014 Out << ")";
3015 }
3016
printTypeIdSummary(const TypeIdSummary & TIS)3017 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3018 Out << ", summary: (";
3019 printTypeTestResolution(TIS.TTRes);
3020 if (!TIS.WPDRes.empty()) {
3021 Out << ", wpdResolutions: (";
3022 FieldSeparator FS;
3023 for (auto &WPDRes : TIS.WPDRes) {
3024 Out << FS;
3025 Out << "(offset: " << WPDRes.first << ", ";
3026 printWPDRes(WPDRes.second);
3027 Out << ")";
3028 }
3029 Out << ")";
3030 }
3031 Out << ")";
3032 }
3033
printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo & TI)3034 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3035 const TypeIdCompatibleVtableInfo &TI) {
3036 Out << ", summary: (";
3037 FieldSeparator FS;
3038 for (auto &P : TI) {
3039 Out << FS;
3040 Out << "(offset: " << P.AddressPointOffset << ", ";
3041 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3042 Out << ")";
3043 }
3044 Out << ")";
3045 }
3046
printArgs(const std::vector<uint64_t> & Args)3047 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3048 Out << "args: (";
3049 FieldSeparator FS;
3050 for (auto arg : Args) {
3051 Out << FS;
3052 Out << arg;
3053 }
3054 Out << ")";
3055 }
3056
printWPDRes(const WholeProgramDevirtResolution & WPDRes)3057 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3058 Out << "wpdRes: (kind: ";
3059 Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3060
3061 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3062 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3063
3064 if (!WPDRes.ResByArg.empty()) {
3065 Out << ", resByArg: (";
3066 FieldSeparator FS;
3067 for (auto &ResByArg : WPDRes.ResByArg) {
3068 Out << FS;
3069 printArgs(ResByArg.first);
3070 Out << ", byArg: (kind: ";
3071 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3072 if (ResByArg.second.TheKind ==
3073 WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3074 ResByArg.second.TheKind ==
3075 WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3076 Out << ", info: " << ResByArg.second.Info;
3077
3078 // The following fields are only used if the target does not support the
3079 // use of absolute symbols to store constants. Print only if non-zero.
3080 if (ResByArg.second.Byte || ResByArg.second.Bit)
3081 Out << ", byte: " << ResByArg.second.Byte
3082 << ", bit: " << ResByArg.second.Bit;
3083
3084 Out << ")";
3085 }
3086 Out << ")";
3087 }
3088 Out << ")";
3089 }
3090
getSummaryKindName(GlobalValueSummary::SummaryKind SK)3091 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3092 switch (SK) {
3093 case GlobalValueSummary::AliasKind:
3094 return "alias";
3095 case GlobalValueSummary::FunctionKind:
3096 return "function";
3097 case GlobalValueSummary::GlobalVarKind:
3098 return "variable";
3099 }
3100 llvm_unreachable("invalid summary kind");
3101 }
3102
printAliasSummary(const AliasSummary * AS)3103 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3104 Out << ", aliasee: ";
3105 // The indexes emitted for distributed backends may not include the
3106 // aliasee summary (only if it is being imported directly). Handle
3107 // that case by just emitting "null" as the aliasee.
3108 if (AS->hasAliasee())
3109 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3110 else
3111 Out << "null";
3112 }
3113
printGlobalVarSummary(const GlobalVarSummary * GS)3114 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3115 auto VTableFuncs = GS->vTableFuncs();
3116 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3117 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3118 << "constant: " << GS->VarFlags.Constant;
3119 if (!VTableFuncs.empty())
3120 Out << ", "
3121 << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3122 Out << ")";
3123
3124 if (!VTableFuncs.empty()) {
3125 Out << ", vTableFuncs: (";
3126 FieldSeparator FS;
3127 for (auto &P : VTableFuncs) {
3128 Out << FS;
3129 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3130 << ", offset: " << P.VTableOffset;
3131 Out << ")";
3132 }
3133 Out << ")";
3134 }
3135 }
3136
getLinkageName(GlobalValue::LinkageTypes LT)3137 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3138 switch (LT) {
3139 case GlobalValue::ExternalLinkage:
3140 return "external";
3141 case GlobalValue::PrivateLinkage:
3142 return "private";
3143 case GlobalValue::InternalLinkage:
3144 return "internal";
3145 case GlobalValue::LinkOnceAnyLinkage:
3146 return "linkonce";
3147 case GlobalValue::LinkOnceODRLinkage:
3148 return "linkonce_odr";
3149 case GlobalValue::WeakAnyLinkage:
3150 return "weak";
3151 case GlobalValue::WeakODRLinkage:
3152 return "weak_odr";
3153 case GlobalValue::CommonLinkage:
3154 return "common";
3155 case GlobalValue::AppendingLinkage:
3156 return "appending";
3157 case GlobalValue::ExternalWeakLinkage:
3158 return "extern_weak";
3159 case GlobalValue::AvailableExternallyLinkage:
3160 return "available_externally";
3161 }
3162 llvm_unreachable("invalid linkage");
3163 }
3164
3165 // When printing the linkage types in IR where the ExternalLinkage is
3166 // not printed, and other linkage types are expected to be printed with
3167 // a space after the name.
getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)3168 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3169 if (LT == GlobalValue::ExternalLinkage)
3170 return "";
3171 return getLinkageName(LT) + " ";
3172 }
3173
getVisibilityName(GlobalValue::VisibilityTypes Vis)3174 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3175 switch (Vis) {
3176 case GlobalValue::DefaultVisibility:
3177 return "default";
3178 case GlobalValue::HiddenVisibility:
3179 return "hidden";
3180 case GlobalValue::ProtectedVisibility:
3181 return "protected";
3182 }
3183 llvm_unreachable("invalid visibility");
3184 }
3185
printFunctionSummary(const FunctionSummary * FS)3186 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3187 Out << ", insts: " << FS->instCount();
3188 if (FS->fflags().anyFlagSet())
3189 Out << ", " << FS->fflags();
3190
3191 if (!FS->calls().empty()) {
3192 Out << ", calls: (";
3193 FieldSeparator IFS;
3194 for (auto &Call : FS->calls()) {
3195 Out << IFS;
3196 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3197 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3198 Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3199 else if (Call.second.RelBlockFreq)
3200 Out << ", relbf: " << Call.second.RelBlockFreq;
3201 Out << ")";
3202 }
3203 Out << ")";
3204 }
3205
3206 if (const auto *TIdInfo = FS->getTypeIdInfo())
3207 printTypeIdInfo(*TIdInfo);
3208
3209 // The AllocationType identifiers capture the profiled context behavior
3210 // reaching a specific static allocation site (possibly cloned). Thus
3211 // "notcoldandcold" implies there are multiple contexts which reach this site,
3212 // some of which are cold and some of which are not, and that need to
3213 // disambiguate via cloning or other context identification.
3214 auto AllocTypeName = [](uint8_t Type) -> const char * {
3215 switch (Type) {
3216 case (uint8_t)AllocationType::None:
3217 return "none";
3218 case (uint8_t)AllocationType::NotCold:
3219 return "notcold";
3220 case (uint8_t)AllocationType::Cold:
3221 return "cold";
3222 case (uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold:
3223 return "notcoldandcold";
3224 }
3225 llvm_unreachable("Unexpected alloc type");
3226 };
3227
3228 if (!FS->allocs().empty()) {
3229 Out << ", allocs: (";
3230 FieldSeparator AFS;
3231 for (auto &AI : FS->allocs()) {
3232 Out << AFS;
3233 Out << "(versions: (";
3234 FieldSeparator VFS;
3235 for (auto V : AI.Versions) {
3236 Out << VFS;
3237 Out << AllocTypeName(V);
3238 }
3239 Out << "), memProf: (";
3240 FieldSeparator MIBFS;
3241 for (auto &MIB : AI.MIBs) {
3242 Out << MIBFS;
3243 Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3244 Out << ", stackIds: (";
3245 FieldSeparator SIDFS;
3246 for (auto Id : MIB.StackIdIndices) {
3247 Out << SIDFS;
3248 Out << TheIndex->getStackIdAtIndex(Id);
3249 }
3250 Out << "))";
3251 }
3252 Out << "))";
3253 }
3254 Out << ")";
3255 }
3256
3257 if (!FS->callsites().empty()) {
3258 Out << ", callsites: (";
3259 FieldSeparator SNFS;
3260 for (auto &CI : FS->callsites()) {
3261 Out << SNFS;
3262 if (CI.Callee)
3263 Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3264 else
3265 Out << "(callee: null";
3266 Out << ", clones: (";
3267 FieldSeparator VFS;
3268 for (auto V : CI.Clones) {
3269 Out << VFS;
3270 Out << V;
3271 }
3272 Out << "), stackIds: (";
3273 FieldSeparator SIDFS;
3274 for (auto Id : CI.StackIdIndices) {
3275 Out << SIDFS;
3276 Out << TheIndex->getStackIdAtIndex(Id);
3277 }
3278 Out << "))";
3279 }
3280 Out << ")";
3281 }
3282
3283 auto PrintRange = [&](const ConstantRange &Range) {
3284 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3285 };
3286
3287 if (!FS->paramAccesses().empty()) {
3288 Out << ", params: (";
3289 FieldSeparator IFS;
3290 for (auto &PS : FS->paramAccesses()) {
3291 Out << IFS;
3292 Out << "(param: " << PS.ParamNo;
3293 Out << ", offset: ";
3294 PrintRange(PS.Use);
3295 if (!PS.Calls.empty()) {
3296 Out << ", calls: (";
3297 FieldSeparator IFS;
3298 for (auto &Call : PS.Calls) {
3299 Out << IFS;
3300 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3301 Out << ", param: " << Call.ParamNo;
3302 Out << ", offset: ";
3303 PrintRange(Call.Offsets);
3304 Out << ")";
3305 }
3306 Out << ")";
3307 }
3308 Out << ")";
3309 }
3310 Out << ")";
3311 }
3312 }
3313
printTypeIdInfo(const FunctionSummary::TypeIdInfo & TIDInfo)3314 void AssemblyWriter::printTypeIdInfo(
3315 const FunctionSummary::TypeIdInfo &TIDInfo) {
3316 Out << ", typeIdInfo: (";
3317 FieldSeparator TIDFS;
3318 if (!TIDInfo.TypeTests.empty()) {
3319 Out << TIDFS;
3320 Out << "typeTests: (";
3321 FieldSeparator FS;
3322 for (auto &GUID : TIDInfo.TypeTests) {
3323 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3324 if (TidIter.first == TidIter.second) {
3325 Out << FS;
3326 Out << GUID;
3327 continue;
3328 }
3329 // Print all type id that correspond to this GUID.
3330 for (auto It = TidIter.first; It != TidIter.second; ++It) {
3331 Out << FS;
3332 auto Slot = Machine.getTypeIdSlot(It->second.first);
3333 assert(Slot != -1);
3334 Out << "^" << Slot;
3335 }
3336 }
3337 Out << ")";
3338 }
3339 if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3340 Out << TIDFS;
3341 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3342 }
3343 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3344 Out << TIDFS;
3345 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3346 }
3347 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3348 Out << TIDFS;
3349 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3350 "typeTestAssumeConstVCalls");
3351 }
3352 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3353 Out << TIDFS;
3354 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3355 "typeCheckedLoadConstVCalls");
3356 }
3357 Out << ")";
3358 }
3359
printVFuncId(const FunctionSummary::VFuncId VFId)3360 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3361 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3362 if (TidIter.first == TidIter.second) {
3363 Out << "vFuncId: (";
3364 Out << "guid: " << VFId.GUID;
3365 Out << ", offset: " << VFId.Offset;
3366 Out << ")";
3367 return;
3368 }
3369 // Print all type id that correspond to this GUID.
3370 FieldSeparator FS;
3371 for (auto It = TidIter.first; It != TidIter.second; ++It) {
3372 Out << FS;
3373 Out << "vFuncId: (";
3374 auto Slot = Machine.getTypeIdSlot(It->second.first);
3375 assert(Slot != -1);
3376 Out << "^" << Slot;
3377 Out << ", offset: " << VFId.Offset;
3378 Out << ")";
3379 }
3380 }
3381
printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> & VCallList,const char * Tag)3382 void AssemblyWriter::printNonConstVCalls(
3383 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3384 Out << Tag << ": (";
3385 FieldSeparator FS;
3386 for (auto &VFuncId : VCallList) {
3387 Out << FS;
3388 printVFuncId(VFuncId);
3389 }
3390 Out << ")";
3391 }
3392
printConstVCalls(const std::vector<FunctionSummary::ConstVCall> & VCallList,const char * Tag)3393 void AssemblyWriter::printConstVCalls(
3394 const std::vector<FunctionSummary::ConstVCall> &VCallList,
3395 const char *Tag) {
3396 Out << Tag << ": (";
3397 FieldSeparator FS;
3398 for (auto &ConstVCall : VCallList) {
3399 Out << FS;
3400 Out << "(";
3401 printVFuncId(ConstVCall.VFunc);
3402 if (!ConstVCall.Args.empty()) {
3403 Out << ", ";
3404 printArgs(ConstVCall.Args);
3405 }
3406 Out << ")";
3407 }
3408 Out << ")";
3409 }
3410
printSummary(const GlobalValueSummary & Summary)3411 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3412 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3413 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3414 Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3415 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3416 << ", flags: (";
3417 Out << "linkage: " << getLinkageName(LT);
3418 Out << ", visibility: "
3419 << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3420 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3421 Out << ", live: " << GVFlags.Live;
3422 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3423 Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3424 Out << ")";
3425
3426 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3427 printAliasSummary(cast<AliasSummary>(&Summary));
3428 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3429 printFunctionSummary(cast<FunctionSummary>(&Summary));
3430 else
3431 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3432
3433 auto RefList = Summary.refs();
3434 if (!RefList.empty()) {
3435 Out << ", refs: (";
3436 FieldSeparator FS;
3437 for (auto &Ref : RefList) {
3438 Out << FS;
3439 if (Ref.isReadOnly())
3440 Out << "readonly ";
3441 else if (Ref.isWriteOnly())
3442 Out << "writeonly ";
3443 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3444 }
3445 Out << ")";
3446 }
3447
3448 Out << ")";
3449 }
3450
printSummaryInfo(unsigned Slot,const ValueInfo & VI)3451 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3452 Out << "^" << Slot << " = gv: (";
3453 if (!VI.name().empty())
3454 Out << "name: \"" << VI.name() << "\"";
3455 else
3456 Out << "guid: " << VI.getGUID();
3457 if (!VI.getSummaryList().empty()) {
3458 Out << ", summaries: (";
3459 FieldSeparator FS;
3460 for (auto &Summary : VI.getSummaryList()) {
3461 Out << FS;
3462 printSummary(*Summary);
3463 }
3464 Out << ")";
3465 }
3466 Out << ")";
3467 if (!VI.name().empty())
3468 Out << " ; guid = " << VI.getGUID();
3469 Out << "\n";
3470 }
3471
printMetadataIdentifier(StringRef Name,formatted_raw_ostream & Out)3472 static void printMetadataIdentifier(StringRef Name,
3473 formatted_raw_ostream &Out) {
3474 if (Name.empty()) {
3475 Out << "<empty name> ";
3476 } else {
3477 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3478 Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3479 Out << Name[0];
3480 else
3481 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3482 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3483 unsigned char C = Name[i];
3484 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3485 C == '.' || C == '_')
3486 Out << C;
3487 else
3488 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3489 }
3490 }
3491 }
3492
printNamedMDNode(const NamedMDNode * NMD)3493 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3494 Out << '!';
3495 printMetadataIdentifier(NMD->getName(), Out);
3496 Out << " = !{";
3497 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3498 if (i)
3499 Out << ", ";
3500
3501 // Write DIExpressions inline.
3502 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3503 MDNode *Op = NMD->getOperand(i);
3504 assert(!isa<DIArgList>(Op) &&
3505 "DIArgLists should not appear in NamedMDNodes");
3506 if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3507 writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3508 continue;
3509 }
3510
3511 int Slot = Machine.getMetadataSlot(Op);
3512 if (Slot == -1)
3513 Out << "<badref>";
3514 else
3515 Out << '!' << Slot;
3516 }
3517 Out << "}\n";
3518 }
3519
PrintVisibility(GlobalValue::VisibilityTypes Vis,formatted_raw_ostream & Out)3520 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3521 formatted_raw_ostream &Out) {
3522 switch (Vis) {
3523 case GlobalValue::DefaultVisibility: break;
3524 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3525 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3526 }
3527 }
3528
PrintDSOLocation(const GlobalValue & GV,formatted_raw_ostream & Out)3529 static void PrintDSOLocation(const GlobalValue &GV,
3530 formatted_raw_ostream &Out) {
3531 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3532 Out << "dso_local ";
3533 }
3534
PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,formatted_raw_ostream & Out)3535 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3536 formatted_raw_ostream &Out) {
3537 switch (SCT) {
3538 case GlobalValue::DefaultStorageClass: break;
3539 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3540 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3541 }
3542 }
3543
PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,formatted_raw_ostream & Out)3544 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3545 formatted_raw_ostream &Out) {
3546 switch (TLM) {
3547 case GlobalVariable::NotThreadLocal:
3548 break;
3549 case GlobalVariable::GeneralDynamicTLSModel:
3550 Out << "thread_local ";
3551 break;
3552 case GlobalVariable::LocalDynamicTLSModel:
3553 Out << "thread_local(localdynamic) ";
3554 break;
3555 case GlobalVariable::InitialExecTLSModel:
3556 Out << "thread_local(initialexec) ";
3557 break;
3558 case GlobalVariable::LocalExecTLSModel:
3559 Out << "thread_local(localexec) ";
3560 break;
3561 }
3562 }
3563
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)3564 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3565 switch (UA) {
3566 case GlobalVariable::UnnamedAddr::None:
3567 return "";
3568 case GlobalVariable::UnnamedAddr::Local:
3569 return "local_unnamed_addr";
3570 case GlobalVariable::UnnamedAddr::Global:
3571 return "unnamed_addr";
3572 }
3573 llvm_unreachable("Unknown UnnamedAddr");
3574 }
3575
maybePrintComdat(formatted_raw_ostream & Out,const GlobalObject & GO)3576 static void maybePrintComdat(formatted_raw_ostream &Out,
3577 const GlobalObject &GO) {
3578 const Comdat *C = GO.getComdat();
3579 if (!C)
3580 return;
3581
3582 if (isa<GlobalVariable>(GO))
3583 Out << ',';
3584 Out << " comdat";
3585
3586 if (GO.getName() == C->getName())
3587 return;
3588
3589 Out << '(';
3590 PrintLLVMName(Out, C->getName(), ComdatPrefix);
3591 Out << ')';
3592 }
3593
printGlobal(const GlobalVariable * GV)3594 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3595 if (GV->isMaterializable())
3596 Out << "; Materializable\n";
3597
3598 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3599 WriteAsOperandInternal(Out, GV, WriterCtx);
3600 Out << " = ";
3601
3602 if (!GV->hasInitializer() && GV->hasExternalLinkage())
3603 Out << "external ";
3604
3605 Out << getLinkageNameWithSpace(GV->getLinkage());
3606 PrintDSOLocation(*GV, Out);
3607 PrintVisibility(GV->getVisibility(), Out);
3608 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3609 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3610 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3611 if (!UA.empty())
3612 Out << UA << ' ';
3613
3614 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3615 Out << "addrspace(" << AddressSpace << ") ";
3616 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3617 Out << (GV->isConstant() ? "constant " : "global ");
3618 TypePrinter.print(GV->getValueType(), Out);
3619
3620 if (GV->hasInitializer()) {
3621 Out << ' ';
3622 writeOperand(GV->getInitializer(), false);
3623 }
3624
3625 if (GV->hasSection()) {
3626 Out << ", section \"";
3627 printEscapedString(GV->getSection(), Out);
3628 Out << '"';
3629 }
3630 if (GV->hasPartition()) {
3631 Out << ", partition \"";
3632 printEscapedString(GV->getPartition(), Out);
3633 Out << '"';
3634 }
3635
3636 using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
3637 if (GV->hasSanitizerMetadata()) {
3638 SanitizerMetadata MD = GV->getSanitizerMetadata();
3639 if (MD.NoAddress)
3640 Out << ", no_sanitize_address";
3641 if (MD.NoHWAddress)
3642 Out << ", no_sanitize_hwaddress";
3643 if (MD.Memtag)
3644 Out << ", sanitize_memtag";
3645 if (MD.IsDynInit)
3646 Out << ", sanitize_address_dyninit";
3647 }
3648
3649 maybePrintComdat(Out, *GV);
3650 if (MaybeAlign A = GV->getAlign())
3651 Out << ", align " << A->value();
3652
3653 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3654 GV->getAllMetadata(MDs);
3655 printMetadataAttachments(MDs, ", ");
3656
3657 auto Attrs = GV->getAttributes();
3658 if (Attrs.hasAttributes())
3659 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3660
3661 printInfoComment(*GV);
3662 }
3663
printAlias(const GlobalAlias * GA)3664 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3665 if (GA->isMaterializable())
3666 Out << "; Materializable\n";
3667
3668 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3669 WriteAsOperandInternal(Out, GA, WriterCtx);
3670 Out << " = ";
3671
3672 Out << getLinkageNameWithSpace(GA->getLinkage());
3673 PrintDSOLocation(*GA, Out);
3674 PrintVisibility(GA->getVisibility(), Out);
3675 PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3676 PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3677 StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3678 if (!UA.empty())
3679 Out << UA << ' ';
3680
3681 Out << "alias ";
3682
3683 TypePrinter.print(GA->getValueType(), Out);
3684 Out << ", ";
3685
3686 if (const Constant *Aliasee = GA->getAliasee()) {
3687 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3688 } else {
3689 TypePrinter.print(GA->getType(), Out);
3690 Out << " <<NULL ALIASEE>>";
3691 }
3692
3693 if (GA->hasPartition()) {
3694 Out << ", partition \"";
3695 printEscapedString(GA->getPartition(), Out);
3696 Out << '"';
3697 }
3698
3699 printInfoComment(*GA);
3700 Out << '\n';
3701 }
3702
printIFunc(const GlobalIFunc * GI)3703 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3704 if (GI->isMaterializable())
3705 Out << "; Materializable\n";
3706
3707 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3708 WriteAsOperandInternal(Out, GI, WriterCtx);
3709 Out << " = ";
3710
3711 Out << getLinkageNameWithSpace(GI->getLinkage());
3712 PrintDSOLocation(*GI, Out);
3713 PrintVisibility(GI->getVisibility(), Out);
3714
3715 Out << "ifunc ";
3716
3717 TypePrinter.print(GI->getValueType(), Out);
3718 Out << ", ";
3719
3720 if (const Constant *Resolver = GI->getResolver()) {
3721 writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3722 } else {
3723 TypePrinter.print(GI->getType(), Out);
3724 Out << " <<NULL RESOLVER>>";
3725 }
3726
3727 if (GI->hasPartition()) {
3728 Out << ", partition \"";
3729 printEscapedString(GI->getPartition(), Out);
3730 Out << '"';
3731 }
3732
3733 printInfoComment(*GI);
3734 Out << '\n';
3735 }
3736
printComdat(const Comdat * C)3737 void AssemblyWriter::printComdat(const Comdat *C) {
3738 C->print(Out);
3739 }
3740
printTypeIdentities()3741 void AssemblyWriter::printTypeIdentities() {
3742 if (TypePrinter.empty())
3743 return;
3744
3745 Out << '\n';
3746
3747 // Emit all numbered types.
3748 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3749 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3750 Out << '%' << I << " = type ";
3751
3752 // Make sure we print out at least one level of the type structure, so
3753 // that we do not get %2 = type %2
3754 TypePrinter.printStructBody(NumberedTypes[I], Out);
3755 Out << '\n';
3756 }
3757
3758 auto &NamedTypes = TypePrinter.getNamedTypes();
3759 for (StructType *NamedType : NamedTypes) {
3760 PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3761 Out << " = type ";
3762
3763 // Make sure we print out at least one level of the type structure, so
3764 // that we do not get %FILE = type %FILE
3765 TypePrinter.printStructBody(NamedType, Out);
3766 Out << '\n';
3767 }
3768 }
3769
3770 /// printFunction - Print all aspects of a function.
printFunction(const Function * F)3771 void AssemblyWriter::printFunction(const Function *F) {
3772 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3773
3774 if (F->isMaterializable())
3775 Out << "; Materializable\n";
3776
3777 const AttributeList &Attrs = F->getAttributes();
3778 if (Attrs.hasFnAttrs()) {
3779 AttributeSet AS = Attrs.getFnAttrs();
3780 std::string AttrStr;
3781
3782 for (const Attribute &Attr : AS) {
3783 if (!Attr.isStringAttribute()) {
3784 if (!AttrStr.empty()) AttrStr += ' ';
3785 AttrStr += Attr.getAsString();
3786 }
3787 }
3788
3789 if (!AttrStr.empty())
3790 Out << "; Function Attrs: " << AttrStr << '\n';
3791 }
3792
3793 Machine.incorporateFunction(F);
3794
3795 if (F->isDeclaration()) {
3796 Out << "declare";
3797 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3798 F->getAllMetadata(MDs);
3799 printMetadataAttachments(MDs, " ");
3800 Out << ' ';
3801 } else
3802 Out << "define ";
3803
3804 Out << getLinkageNameWithSpace(F->getLinkage());
3805 PrintDSOLocation(*F, Out);
3806 PrintVisibility(F->getVisibility(), Out);
3807 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3808
3809 // Print the calling convention.
3810 if (F->getCallingConv() != CallingConv::C) {
3811 PrintCallingConv(F->getCallingConv(), Out);
3812 Out << " ";
3813 }
3814
3815 FunctionType *FT = F->getFunctionType();
3816 if (Attrs.hasRetAttrs())
3817 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3818 TypePrinter.print(F->getReturnType(), Out);
3819 AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
3820 Out << ' ';
3821 WriteAsOperandInternal(Out, F, WriterCtx);
3822 Out << '(';
3823
3824 // Loop over the arguments, printing them...
3825 if (F->isDeclaration() && !IsForDebug) {
3826 // We're only interested in the type here - don't print argument names.
3827 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3828 // Insert commas as we go... the first arg doesn't get a comma
3829 if (I)
3830 Out << ", ";
3831 // Output type...
3832 TypePrinter.print(FT->getParamType(I), Out);
3833
3834 AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3835 if (ArgAttrs.hasAttributes()) {
3836 Out << ' ';
3837 writeAttributeSet(ArgAttrs);
3838 }
3839 }
3840 } else {
3841 // The arguments are meaningful here, print them in detail.
3842 for (const Argument &Arg : F->args()) {
3843 // Insert commas as we go... the first arg doesn't get a comma
3844 if (Arg.getArgNo() != 0)
3845 Out << ", ";
3846 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3847 }
3848 }
3849
3850 // Finish printing arguments...
3851 if (FT->isVarArg()) {
3852 if (FT->getNumParams()) Out << ", ";
3853 Out << "..."; // Output varargs portion of signature!
3854 }
3855 Out << ')';
3856 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3857 if (!UA.empty())
3858 Out << ' ' << UA;
3859 // We print the function address space if it is non-zero or if we are writing
3860 // a module with a non-zero program address space or if there is no valid
3861 // Module* so that the file can be parsed without the datalayout string.
3862 const Module *Mod = F->getParent();
3863 if (F->getAddressSpace() != 0 || !Mod ||
3864 Mod->getDataLayout().getProgramAddressSpace() != 0)
3865 Out << " addrspace(" << F->getAddressSpace() << ")";
3866 if (Attrs.hasFnAttrs())
3867 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3868 if (F->hasSection()) {
3869 Out << " section \"";
3870 printEscapedString(F->getSection(), Out);
3871 Out << '"';
3872 }
3873 if (F->hasPartition()) {
3874 Out << " partition \"";
3875 printEscapedString(F->getPartition(), Out);
3876 Out << '"';
3877 }
3878 maybePrintComdat(Out, *F);
3879 if (MaybeAlign A = F->getAlign())
3880 Out << " align " << A->value();
3881 if (F->hasGC())
3882 Out << " gc \"" << F->getGC() << '"';
3883 if (F->hasPrefixData()) {
3884 Out << " prefix ";
3885 writeOperand(F->getPrefixData(), true);
3886 }
3887 if (F->hasPrologueData()) {
3888 Out << " prologue ";
3889 writeOperand(F->getPrologueData(), true);
3890 }
3891 if (F->hasPersonalityFn()) {
3892 Out << " personality ";
3893 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3894 }
3895
3896 if (F->isDeclaration()) {
3897 Out << '\n';
3898 } else {
3899 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3900 F->getAllMetadata(MDs);
3901 printMetadataAttachments(MDs, " ");
3902
3903 Out << " {";
3904 // Output all of the function's basic blocks.
3905 for (const BasicBlock &BB : *F)
3906 printBasicBlock(&BB);
3907
3908 // Output the function's use-lists.
3909 printUseLists(F);
3910
3911 Out << "}\n";
3912 }
3913
3914 Machine.purgeFunction();
3915 }
3916
3917 /// printArgument - This member is called for every argument that is passed into
3918 /// the function. Simply print it out
printArgument(const Argument * Arg,AttributeSet Attrs)3919 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3920 // Output type...
3921 TypePrinter.print(Arg->getType(), Out);
3922
3923 // Output parameter attributes list
3924 if (Attrs.hasAttributes()) {
3925 Out << ' ';
3926 writeAttributeSet(Attrs);
3927 }
3928
3929 // Output name, if available...
3930 if (Arg->hasName()) {
3931 Out << ' ';
3932 PrintLLVMName(Out, Arg);
3933 } else {
3934 int Slot = Machine.getLocalSlot(Arg);
3935 assert(Slot != -1 && "expect argument in function here");
3936 Out << " %" << Slot;
3937 }
3938 }
3939
3940 /// printBasicBlock - This member is called for each basic block in a method.
printBasicBlock(const BasicBlock * BB)3941 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3942 bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3943 if (BB->hasName()) { // Print out the label if it exists...
3944 Out << "\n";
3945 PrintLLVMName(Out, BB->getName(), LabelPrefix);
3946 Out << ':';
3947 } else if (!IsEntryBlock) {
3948 Out << "\n";
3949 int Slot = Machine.getLocalSlot(BB);
3950 if (Slot != -1)
3951 Out << Slot << ":";
3952 else
3953 Out << "<badref>:";
3954 }
3955
3956 if (!IsEntryBlock) {
3957 // Output predecessors for the block.
3958 Out.PadToColumn(50);
3959 Out << ";";
3960 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3961
3962 if (PI == PE) {
3963 Out << " No predecessors!";
3964 } else {
3965 Out << " preds = ";
3966 writeOperand(*PI, false);
3967 for (++PI; PI != PE; ++PI) {
3968 Out << ", ";
3969 writeOperand(*PI, false);
3970 }
3971 }
3972 }
3973
3974 Out << "\n";
3975
3976 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3977
3978 // Output all of the instructions in the basic block...
3979 for (const Instruction &I : *BB) {
3980 printInstructionLine(I);
3981 }
3982
3983 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3984 }
3985
3986 /// printInstructionLine - Print an instruction and a newline character.
printInstructionLine(const Instruction & I)3987 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3988 printInstruction(I);
3989 Out << '\n';
3990 }
3991
3992 /// printGCRelocateComment - print comment after call to the gc.relocate
3993 /// intrinsic indicating base and derived pointer names.
printGCRelocateComment(const GCRelocateInst & Relocate)3994 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3995 Out << " ; (";
3996 writeOperand(Relocate.getBasePtr(), false);
3997 Out << ", ";
3998 writeOperand(Relocate.getDerivedPtr(), false);
3999 Out << ")";
4000 }
4001
4002 /// printInfoComment - Print a little comment after the instruction indicating
4003 /// which slot it occupies.
printInfoComment(const Value & V)4004 void AssemblyWriter::printInfoComment(const Value &V) {
4005 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
4006 printGCRelocateComment(*Relocate);
4007
4008 if (AnnotationWriter)
4009 AnnotationWriter->printInfoComment(V, Out);
4010 }
4011
maybePrintCallAddrSpace(const Value * Operand,const Instruction * I,raw_ostream & Out)4012 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
4013 raw_ostream &Out) {
4014 // We print the address space of the call if it is non-zero.
4015 if (Operand == nullptr) {
4016 Out << " <cannot get addrspace!>";
4017 return;
4018 }
4019 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
4020 bool PrintAddrSpace = CallAddrSpace != 0;
4021 if (!PrintAddrSpace) {
4022 const Module *Mod = getModuleFromVal(I);
4023 // We also print it if it is zero but not equal to the program address space
4024 // or if we can't find a valid Module* to make it possible to parse
4025 // the resulting file even without a datalayout string.
4026 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
4027 PrintAddrSpace = true;
4028 }
4029 if (PrintAddrSpace)
4030 Out << " addrspace(" << CallAddrSpace << ")";
4031 }
4032
4033 // This member is called for each Instruction in a function..
printInstruction(const Instruction & I)4034 void AssemblyWriter::printInstruction(const Instruction &I) {
4035 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
4036
4037 // Print out indentation for an instruction.
4038 Out << " ";
4039
4040 // Print out name if it exists...
4041 if (I.hasName()) {
4042 PrintLLVMName(Out, &I);
4043 Out << " = ";
4044 } else if (!I.getType()->isVoidTy()) {
4045 // Print out the def slot taken.
4046 int SlotNum = Machine.getLocalSlot(&I);
4047 if (SlotNum == -1)
4048 Out << "<badref> = ";
4049 else
4050 Out << '%' << SlotNum << " = ";
4051 }
4052
4053 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4054 if (CI->isMustTailCall())
4055 Out << "musttail ";
4056 else if (CI->isTailCall())
4057 Out << "tail ";
4058 else if (CI->isNoTailCall())
4059 Out << "notail ";
4060 }
4061
4062 // Print out the opcode...
4063 Out << I.getOpcodeName();
4064
4065 // If this is an atomic load or store, print out the atomic marker.
4066 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
4067 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
4068 Out << " atomic";
4069
4070 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
4071 Out << " weak";
4072
4073 // If this is a volatile operation, print out the volatile marker.
4074 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
4075 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
4076 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
4077 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
4078 Out << " volatile";
4079
4080 // Print out optimization information.
4081 WriteOptimizationInfo(Out, &I);
4082
4083 // Print out the compare instruction predicates
4084 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
4085 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
4086
4087 // Print out the atomicrmw operation
4088 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
4089 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
4090
4091 // Print out the type of the operands...
4092 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4093
4094 // Special case conditional branches to swizzle the condition out to the front
4095 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4096 const BranchInst &BI(cast<BranchInst>(I));
4097 Out << ' ';
4098 writeOperand(BI.getCondition(), true);
4099 Out << ", ";
4100 writeOperand(BI.getSuccessor(0), true);
4101 Out << ", ";
4102 writeOperand(BI.getSuccessor(1), true);
4103
4104 } else if (isa<SwitchInst>(I)) {
4105 const SwitchInst& SI(cast<SwitchInst>(I));
4106 // Special case switch instruction to get formatting nice and correct.
4107 Out << ' ';
4108 writeOperand(SI.getCondition(), true);
4109 Out << ", ";
4110 writeOperand(SI.getDefaultDest(), true);
4111 Out << " [";
4112 for (auto Case : SI.cases()) {
4113 Out << "\n ";
4114 writeOperand(Case.getCaseValue(), true);
4115 Out << ", ";
4116 writeOperand(Case.getCaseSuccessor(), true);
4117 }
4118 Out << "\n ]";
4119 } else if (isa<IndirectBrInst>(I)) {
4120 // Special case indirectbr instruction to get formatting nice and correct.
4121 Out << ' ';
4122 writeOperand(Operand, true);
4123 Out << ", [";
4124
4125 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4126 if (i != 1)
4127 Out << ", ";
4128 writeOperand(I.getOperand(i), true);
4129 }
4130 Out << ']';
4131 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4132 Out << ' ';
4133 TypePrinter.print(I.getType(), Out);
4134 Out << ' ';
4135
4136 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4137 if (op) Out << ", ";
4138 Out << "[ ";
4139 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4140 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4141 }
4142 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4143 Out << ' ';
4144 writeOperand(I.getOperand(0), true);
4145 for (unsigned i : EVI->indices())
4146 Out << ", " << i;
4147 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4148 Out << ' ';
4149 writeOperand(I.getOperand(0), true); Out << ", ";
4150 writeOperand(I.getOperand(1), true);
4151 for (unsigned i : IVI->indices())
4152 Out << ", " << i;
4153 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4154 Out << ' ';
4155 TypePrinter.print(I.getType(), Out);
4156 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4157 Out << '\n';
4158
4159 if (LPI->isCleanup())
4160 Out << " cleanup";
4161
4162 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4163 if (i != 0 || LPI->isCleanup()) Out << "\n";
4164 if (LPI->isCatch(i))
4165 Out << " catch ";
4166 else
4167 Out << " filter ";
4168
4169 writeOperand(LPI->getClause(i), true);
4170 }
4171 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4172 Out << " within ";
4173 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4174 Out << " [";
4175 unsigned Op = 0;
4176 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4177 if (Op > 0)
4178 Out << ", ";
4179 writeOperand(PadBB, /*PrintType=*/true);
4180 ++Op;
4181 }
4182 Out << "] unwind ";
4183 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4184 writeOperand(UnwindDest, /*PrintType=*/true);
4185 else
4186 Out << "to caller";
4187 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4188 Out << " within ";
4189 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4190 Out << " [";
4191 for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) {
4192 if (Op > 0)
4193 Out << ", ";
4194 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4195 }
4196 Out << ']';
4197 } else if (isa<ReturnInst>(I) && !Operand) {
4198 Out << " void";
4199 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4200 Out << " from ";
4201 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4202
4203 Out << " to ";
4204 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4205 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4206 Out << " from ";
4207 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4208
4209 Out << " unwind ";
4210 if (CRI->hasUnwindDest())
4211 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4212 else
4213 Out << "to caller";
4214 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4215 // Print the calling convention being used.
4216 if (CI->getCallingConv() != CallingConv::C) {
4217 Out << " ";
4218 PrintCallingConv(CI->getCallingConv(), Out);
4219 }
4220
4221 Operand = CI->getCalledOperand();
4222 FunctionType *FTy = CI->getFunctionType();
4223 Type *RetTy = FTy->getReturnType();
4224 const AttributeList &PAL = CI->getAttributes();
4225
4226 if (PAL.hasRetAttrs())
4227 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4228
4229 // Only print addrspace(N) if necessary:
4230 maybePrintCallAddrSpace(Operand, &I, Out);
4231
4232 // If possible, print out the short form of the call instruction. We can
4233 // only do this if the first argument is a pointer to a nonvararg function,
4234 // and if the return type is not a pointer to a function.
4235 Out << ' ';
4236 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4237 Out << ' ';
4238 writeOperand(Operand, false);
4239 Out << '(';
4240 for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4241 if (op > 0)
4242 Out << ", ";
4243 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4244 }
4245
4246 // Emit an ellipsis if this is a musttail call in a vararg function. This
4247 // is only to aid readability, musttail calls forward varargs by default.
4248 if (CI->isMustTailCall() && CI->getParent() &&
4249 CI->getParent()->getParent() &&
4250 CI->getParent()->getParent()->isVarArg()) {
4251 if (CI->arg_size() > 0)
4252 Out << ", ";
4253 Out << "...";
4254 }
4255
4256 Out << ')';
4257 if (PAL.hasFnAttrs())
4258 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4259
4260 writeOperandBundles(CI);
4261 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4262 Operand = II->getCalledOperand();
4263 FunctionType *FTy = II->getFunctionType();
4264 Type *RetTy = FTy->getReturnType();
4265 const AttributeList &PAL = II->getAttributes();
4266
4267 // Print the calling convention being used.
4268 if (II->getCallingConv() != CallingConv::C) {
4269 Out << " ";
4270 PrintCallingConv(II->getCallingConv(), Out);
4271 }
4272
4273 if (PAL.hasRetAttrs())
4274 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4275
4276 // Only print addrspace(N) if necessary:
4277 maybePrintCallAddrSpace(Operand, &I, Out);
4278
4279 // If possible, print out the short form of the invoke instruction. We can
4280 // only do this if the first argument is a pointer to a nonvararg function,
4281 // and if the return type is not a pointer to a function.
4282 //
4283 Out << ' ';
4284 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4285 Out << ' ';
4286 writeOperand(Operand, false);
4287 Out << '(';
4288 for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4289 if (op)
4290 Out << ", ";
4291 writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4292 }
4293
4294 Out << ')';
4295 if (PAL.hasFnAttrs())
4296 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4297
4298 writeOperandBundles(II);
4299
4300 Out << "\n to ";
4301 writeOperand(II->getNormalDest(), true);
4302 Out << " unwind ";
4303 writeOperand(II->getUnwindDest(), true);
4304 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4305 Operand = CBI->getCalledOperand();
4306 FunctionType *FTy = CBI->getFunctionType();
4307 Type *RetTy = FTy->getReturnType();
4308 const AttributeList &PAL = CBI->getAttributes();
4309
4310 // Print the calling convention being used.
4311 if (CBI->getCallingConv() != CallingConv::C) {
4312 Out << " ";
4313 PrintCallingConv(CBI->getCallingConv(), Out);
4314 }
4315
4316 if (PAL.hasRetAttrs())
4317 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4318
4319 // If possible, print out the short form of the callbr instruction. We can
4320 // only do this if the first argument is a pointer to a nonvararg function,
4321 // and if the return type is not a pointer to a function.
4322 //
4323 Out << ' ';
4324 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4325 Out << ' ';
4326 writeOperand(Operand, false);
4327 Out << '(';
4328 for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4329 if (op)
4330 Out << ", ";
4331 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4332 }
4333
4334 Out << ')';
4335 if (PAL.hasFnAttrs())
4336 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4337
4338 writeOperandBundles(CBI);
4339
4340 Out << "\n to ";
4341 writeOperand(CBI->getDefaultDest(), true);
4342 Out << " [";
4343 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4344 if (i != 0)
4345 Out << ", ";
4346 writeOperand(CBI->getIndirectDest(i), true);
4347 }
4348 Out << ']';
4349 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4350 Out << ' ';
4351 if (AI->isUsedWithInAlloca())
4352 Out << "inalloca ";
4353 if (AI->isSwiftError())
4354 Out << "swifterror ";
4355 TypePrinter.print(AI->getAllocatedType(), Out);
4356
4357 // Explicitly write the array size if the code is broken, if it's an array
4358 // allocation, or if the type is not canonical for scalar allocations. The
4359 // latter case prevents the type from mutating when round-tripping through
4360 // assembly.
4361 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4362 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4363 Out << ", ";
4364 writeOperand(AI->getArraySize(), true);
4365 }
4366 if (MaybeAlign A = AI->getAlign()) {
4367 Out << ", align " << A->value();
4368 }
4369
4370 unsigned AddrSpace = AI->getAddressSpace();
4371 if (AddrSpace != 0) {
4372 Out << ", addrspace(" << AddrSpace << ')';
4373 }
4374 } else if (isa<CastInst>(I)) {
4375 if (Operand) {
4376 Out << ' ';
4377 writeOperand(Operand, true); // Work with broken code
4378 }
4379 Out << " to ";
4380 TypePrinter.print(I.getType(), Out);
4381 } else if (isa<VAArgInst>(I)) {
4382 if (Operand) {
4383 Out << ' ';
4384 writeOperand(Operand, true); // Work with broken code
4385 }
4386 Out << ", ";
4387 TypePrinter.print(I.getType(), Out);
4388 } else if (Operand) { // Print the normal way.
4389 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4390 Out << ' ';
4391 TypePrinter.print(GEP->getSourceElementType(), Out);
4392 Out << ',';
4393 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4394 Out << ' ';
4395 TypePrinter.print(LI->getType(), Out);
4396 Out << ',';
4397 }
4398
4399 // PrintAllTypes - Instructions who have operands of all the same type
4400 // omit the type from all but the first operand. If the instruction has
4401 // different type operands (for example br), then they are all printed.
4402 bool PrintAllTypes = false;
4403 Type *TheType = Operand->getType();
4404
4405 // Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all
4406 // types.
4407 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
4408 isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I) ||
4409 isa<AtomicRMWInst>(I)) {
4410 PrintAllTypes = true;
4411 } else {
4412 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4413 Operand = I.getOperand(i);
4414 // note that Operand shouldn't be null, but the test helps make dump()
4415 // more tolerant of malformed IR
4416 if (Operand && Operand->getType() != TheType) {
4417 PrintAllTypes = true; // We have differing types! Print them all!
4418 break;
4419 }
4420 }
4421 }
4422
4423 if (!PrintAllTypes) {
4424 Out << ' ';
4425 TypePrinter.print(TheType, Out);
4426 }
4427
4428 Out << ' ';
4429 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4430 if (i) Out << ", ";
4431 writeOperand(I.getOperand(i), PrintAllTypes);
4432 }
4433 }
4434
4435 // Print atomic ordering/alignment for memory operations
4436 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4437 if (LI->isAtomic())
4438 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4439 if (MaybeAlign A = LI->getAlign())
4440 Out << ", align " << A->value();
4441 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4442 if (SI->isAtomic())
4443 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4444 if (MaybeAlign A = SI->getAlign())
4445 Out << ", align " << A->value();
4446 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4447 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4448 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4449 Out << ", align " << CXI->getAlign().value();
4450 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4451 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4452 RMWI->getSyncScopeID());
4453 Out << ", align " << RMWI->getAlign().value();
4454 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4455 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4456 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4457 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4458 }
4459
4460 // Print Metadata info.
4461 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4462 I.getAllMetadata(InstMD);
4463 printMetadataAttachments(InstMD, ", ");
4464
4465 // Print a nice comment.
4466 printInfoComment(I);
4467 }
4468
printMetadataAttachments(const SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs,StringRef Separator)4469 void AssemblyWriter::printMetadataAttachments(
4470 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4471 StringRef Separator) {
4472 if (MDs.empty())
4473 return;
4474
4475 if (MDNames.empty())
4476 MDs[0].second->getContext().getMDKindNames(MDNames);
4477
4478 auto WriterCtx = getContext();
4479 for (const auto &I : MDs) {
4480 unsigned Kind = I.first;
4481 Out << Separator;
4482 if (Kind < MDNames.size()) {
4483 Out << "!";
4484 printMetadataIdentifier(MDNames[Kind], Out);
4485 } else
4486 Out << "!<unknown kind #" << Kind << ">";
4487 Out << ' ';
4488 WriteAsOperandInternal(Out, I.second, WriterCtx);
4489 }
4490 }
4491
writeMDNode(unsigned Slot,const MDNode * Node)4492 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4493 Out << '!' << Slot << " = ";
4494 printMDNodeBody(Node);
4495 Out << "\n";
4496 }
4497
writeAllMDNodes()4498 void AssemblyWriter::writeAllMDNodes() {
4499 SmallVector<const MDNode *, 16> Nodes;
4500 Nodes.resize(Machine.mdn_size());
4501 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4502 Nodes[I.second] = cast<MDNode>(I.first);
4503
4504 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4505 writeMDNode(i, Nodes[i]);
4506 }
4507 }
4508
printMDNodeBody(const MDNode * Node)4509 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4510 auto WriterCtx = getContext();
4511 WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4512 }
4513
writeAttribute(const Attribute & Attr,bool InAttrGroup)4514 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4515 if (!Attr.isTypeAttribute()) {
4516 Out << Attr.getAsString(InAttrGroup);
4517 return;
4518 }
4519
4520 Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4521 if (Type *Ty = Attr.getValueAsType()) {
4522 Out << '(';
4523 TypePrinter.print(Ty, Out);
4524 Out << ')';
4525 }
4526 }
4527
writeAttributeSet(const AttributeSet & AttrSet,bool InAttrGroup)4528 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4529 bool InAttrGroup) {
4530 bool FirstAttr = true;
4531 for (const auto &Attr : AttrSet) {
4532 if (!FirstAttr)
4533 Out << ' ';
4534 writeAttribute(Attr, InAttrGroup);
4535 FirstAttr = false;
4536 }
4537 }
4538
writeAllAttributeGroups()4539 void AssemblyWriter::writeAllAttributeGroups() {
4540 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4541 asVec.resize(Machine.as_size());
4542
4543 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4544 asVec[I.second] = I;
4545
4546 for (const auto &I : asVec)
4547 Out << "attributes #" << I.second << " = { "
4548 << I.first.getAsString(true) << " }\n";
4549 }
4550
printUseListOrder(const Value * V,const std::vector<unsigned> & Shuffle)4551 void AssemblyWriter::printUseListOrder(const Value *V,
4552 const std::vector<unsigned> &Shuffle) {
4553 bool IsInFunction = Machine.getFunction();
4554 if (IsInFunction)
4555 Out << " ";
4556
4557 Out << "uselistorder";
4558 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4559 Out << "_bb ";
4560 writeOperand(BB->getParent(), false);
4561 Out << ", ";
4562 writeOperand(BB, false);
4563 } else {
4564 Out << " ";
4565 writeOperand(V, true);
4566 }
4567 Out << ", { ";
4568
4569 assert(Shuffle.size() >= 2 && "Shuffle too small");
4570 Out << Shuffle[0];
4571 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4572 Out << ", " << Shuffle[I];
4573 Out << " }\n";
4574 }
4575
printUseLists(const Function * F)4576 void AssemblyWriter::printUseLists(const Function *F) {
4577 auto It = UseListOrders.find(F);
4578 if (It == UseListOrders.end())
4579 return;
4580
4581 Out << "\n; uselistorder directives\n";
4582 for (const auto &Pair : It->second)
4583 printUseListOrder(Pair.first, Pair.second);
4584 }
4585
4586 //===----------------------------------------------------------------------===//
4587 // External Interface declarations
4588 //===----------------------------------------------------------------------===//
4589
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4590 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4591 bool ShouldPreserveUseListOrder,
4592 bool IsForDebug) const {
4593 SlotTracker SlotTable(this->getParent());
4594 formatted_raw_ostream OS(ROS);
4595 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4596 IsForDebug,
4597 ShouldPreserveUseListOrder);
4598 W.printFunction(this);
4599 }
4600
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4601 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4602 bool ShouldPreserveUseListOrder,
4603 bool IsForDebug) const {
4604 SlotTracker SlotTable(this->getParent());
4605 formatted_raw_ostream OS(ROS);
4606 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4607 IsForDebug,
4608 ShouldPreserveUseListOrder);
4609 W.printBasicBlock(this);
4610 }
4611
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4612 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4613 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4614 SlotTracker SlotTable(this);
4615 formatted_raw_ostream OS(ROS);
4616 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4617 ShouldPreserveUseListOrder);
4618 W.printModule(this);
4619 }
4620
print(raw_ostream & ROS,bool IsForDebug) const4621 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4622 SlotTracker SlotTable(getParent());
4623 formatted_raw_ostream OS(ROS);
4624 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4625 W.printNamedMDNode(this);
4626 }
4627
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const4628 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4629 bool IsForDebug) const {
4630 std::optional<SlotTracker> LocalST;
4631 SlotTracker *SlotTable;
4632 if (auto *ST = MST.getMachine())
4633 SlotTable = ST;
4634 else {
4635 LocalST.emplace(getParent());
4636 SlotTable = &*LocalST;
4637 }
4638
4639 formatted_raw_ostream OS(ROS);
4640 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4641 W.printNamedMDNode(this);
4642 }
4643
print(raw_ostream & ROS,bool) const4644 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4645 PrintLLVMName(ROS, getName(), ComdatPrefix);
4646 ROS << " = comdat ";
4647
4648 switch (getSelectionKind()) {
4649 case Comdat::Any:
4650 ROS << "any";
4651 break;
4652 case Comdat::ExactMatch:
4653 ROS << "exactmatch";
4654 break;
4655 case Comdat::Largest:
4656 ROS << "largest";
4657 break;
4658 case Comdat::NoDeduplicate:
4659 ROS << "nodeduplicate";
4660 break;
4661 case Comdat::SameSize:
4662 ROS << "samesize";
4663 break;
4664 }
4665
4666 ROS << '\n';
4667 }
4668
print(raw_ostream & OS,bool,bool NoDetails) const4669 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4670 TypePrinting TP;
4671 TP.print(const_cast<Type*>(this), OS);
4672
4673 if (NoDetails)
4674 return;
4675
4676 // If the type is a named struct type, print the body as well.
4677 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4678 if (!STy->isLiteral()) {
4679 OS << " = type ";
4680 TP.printStructBody(STy, OS);
4681 }
4682 }
4683
isReferencingMDNode(const Instruction & I)4684 static bool isReferencingMDNode(const Instruction &I) {
4685 if (const auto *CI = dyn_cast<CallInst>(&I))
4686 if (Function *F = CI->getCalledFunction())
4687 if (F->isIntrinsic())
4688 for (auto &Op : I.operands())
4689 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4690 if (isa<MDNode>(V->getMetadata()))
4691 return true;
4692 return false;
4693 }
4694
print(raw_ostream & ROS,bool IsForDebug) const4695 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4696 bool ShouldInitializeAllMetadata = false;
4697 if (auto *I = dyn_cast<Instruction>(this))
4698 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4699 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4700 ShouldInitializeAllMetadata = true;
4701
4702 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4703 print(ROS, MST, IsForDebug);
4704 }
4705
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const4706 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4707 bool IsForDebug) const {
4708 formatted_raw_ostream OS(ROS);
4709 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4710 SlotTracker &SlotTable =
4711 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4712 auto incorporateFunction = [&](const Function *F) {
4713 if (F)
4714 MST.incorporateFunction(*F);
4715 };
4716
4717 if (const Instruction *I = dyn_cast<Instruction>(this)) {
4718 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4719 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4720 W.printInstruction(*I);
4721 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4722 incorporateFunction(BB->getParent());
4723 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4724 W.printBasicBlock(BB);
4725 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4726 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4727 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4728 W.printGlobal(V);
4729 else if (const Function *F = dyn_cast<Function>(GV))
4730 W.printFunction(F);
4731 else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
4732 W.printAlias(A);
4733 else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
4734 W.printIFunc(I);
4735 else
4736 llvm_unreachable("Unknown GlobalValue to print out!");
4737 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4738 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4739 } else if (const Constant *C = dyn_cast<Constant>(this)) {
4740 TypePrinting TypePrinter;
4741 TypePrinter.print(C->getType(), OS);
4742 OS << ' ';
4743 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
4744 WriteConstantInternal(OS, C, WriterCtx);
4745 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4746 this->printAsOperand(OS, /* PrintType */ true, MST);
4747 } else {
4748 llvm_unreachable("Unknown value to print out!");
4749 }
4750 }
4751
4752 /// Print without a type, skipping the TypePrinting object.
4753 ///
4754 /// \return \c true iff printing was successful.
printWithoutType(const Value & V,raw_ostream & O,SlotTracker * Machine,const Module * M)4755 static bool printWithoutType(const Value &V, raw_ostream &O,
4756 SlotTracker *Machine, const Module *M) {
4757 if (V.hasName() || isa<GlobalValue>(V) ||
4758 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4759 AsmWriterContext WriterCtx(nullptr, Machine, M);
4760 WriteAsOperandInternal(O, &V, WriterCtx);
4761 return true;
4762 }
4763 return false;
4764 }
4765
printAsOperandImpl(const Value & V,raw_ostream & O,bool PrintType,ModuleSlotTracker & MST)4766 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4767 ModuleSlotTracker &MST) {
4768 TypePrinting TypePrinter(MST.getModule());
4769 if (PrintType) {
4770 TypePrinter.print(V.getType(), O);
4771 O << ' ';
4772 }
4773
4774 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
4775 WriteAsOperandInternal(O, &V, WriterCtx);
4776 }
4777
printAsOperand(raw_ostream & O,bool PrintType,const Module * M) const4778 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4779 const Module *M) const {
4780 if (!M)
4781 M = getModuleFromVal(this);
4782
4783 if (!PrintType)
4784 if (printWithoutType(*this, O, nullptr, M))
4785 return;
4786
4787 SlotTracker Machine(
4788 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4789 ModuleSlotTracker MST(Machine, M);
4790 printAsOperandImpl(*this, O, PrintType, MST);
4791 }
4792
printAsOperand(raw_ostream & O,bool PrintType,ModuleSlotTracker & MST) const4793 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4794 ModuleSlotTracker &MST) const {
4795 if (!PrintType)
4796 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4797 return;
4798
4799 printAsOperandImpl(*this, O, PrintType, MST);
4800 }
4801
4802 /// Recursive version of printMetadataImpl.
printMetadataImplRec(raw_ostream & ROS,const Metadata & MD,AsmWriterContext & WriterCtx)4803 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
4804 AsmWriterContext &WriterCtx) {
4805 formatted_raw_ostream OS(ROS);
4806 WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
4807
4808 auto *N = dyn_cast<MDNode>(&MD);
4809 if (!N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4810 return;
4811
4812 OS << " = ";
4813 WriteMDNodeBodyInternal(OS, N, WriterCtx);
4814 }
4815
4816 namespace {
4817 struct MDTreeAsmWriterContext : public AsmWriterContext {
4818 unsigned Level;
4819 // {Level, Printed string}
4820 using EntryTy = std::pair<unsigned, std::string>;
4821 SmallVector<EntryTy, 4> Buffer;
4822
4823 // Used to break the cycle in case there is any.
4824 SmallPtrSet<const Metadata *, 4> Visited;
4825
4826 raw_ostream &MainOS;
4827
MDTreeAsmWriterContext__anon40529ce50d11::MDTreeAsmWriterContext4828 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
4829 raw_ostream &OS, const Metadata *InitMD)
4830 : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
4831
onWriteMetadataAsOperand__anon40529ce50d11::MDTreeAsmWriterContext4832 void onWriteMetadataAsOperand(const Metadata *MD) override {
4833 if (!Visited.insert(MD).second)
4834 return;
4835
4836 std::string Str;
4837 raw_string_ostream SS(Str);
4838 ++Level;
4839 // A placeholder entry to memorize the correct
4840 // position in buffer.
4841 Buffer.emplace_back(std::make_pair(Level, ""));
4842 unsigned InsertIdx = Buffer.size() - 1;
4843
4844 printMetadataImplRec(SS, *MD, *this);
4845 Buffer[InsertIdx].second = std::move(SS.str());
4846 --Level;
4847 }
4848
~MDTreeAsmWriterContext__anon40529ce50d11::MDTreeAsmWriterContext4849 ~MDTreeAsmWriterContext() {
4850 for (const auto &Entry : Buffer) {
4851 MainOS << "\n";
4852 unsigned NumIndent = Entry.first * 2U;
4853 MainOS.indent(NumIndent) << Entry.second;
4854 }
4855 }
4856 };
4857 } // end anonymous namespace
4858
printMetadataImpl(raw_ostream & ROS,const Metadata & MD,ModuleSlotTracker & MST,const Module * M,bool OnlyAsOperand,bool PrintAsTree=false)4859 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4860 ModuleSlotTracker &MST, const Module *M,
4861 bool OnlyAsOperand, bool PrintAsTree = false) {
4862 formatted_raw_ostream OS(ROS);
4863
4864 TypePrinting TypePrinter(M);
4865
4866 std::unique_ptr<AsmWriterContext> WriterCtx;
4867 if (PrintAsTree && !OnlyAsOperand)
4868 WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
4869 &TypePrinter, MST.getMachine(), M, OS, &MD);
4870 else
4871 WriterCtx =
4872 std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
4873
4874 WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
4875
4876 auto *N = dyn_cast<MDNode>(&MD);
4877 if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4878 return;
4879
4880 OS << " = ";
4881 WriteMDNodeBodyInternal(OS, N, *WriterCtx);
4882 }
4883
printAsOperand(raw_ostream & OS,const Module * M) const4884 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4885 ModuleSlotTracker MST(M, isa<MDNode>(this));
4886 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4887 }
4888
printAsOperand(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const4889 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4890 const Module *M) const {
4891 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4892 }
4893
print(raw_ostream & OS,const Module * M,bool) const4894 void Metadata::print(raw_ostream &OS, const Module *M,
4895 bool /*IsForDebug*/) const {
4896 ModuleSlotTracker MST(M, isa<MDNode>(this));
4897 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4898 }
4899
print(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M,bool) const4900 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4901 const Module *M, bool /*IsForDebug*/) const {
4902 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4903 }
4904
printTree(raw_ostream & OS,const Module * M) const4905 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
4906 ModuleSlotTracker MST(M, true);
4907 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4908 /*PrintAsTree=*/true);
4909 }
4910
printTree(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const4911 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
4912 const Module *M) const {
4913 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4914 /*PrintAsTree=*/true);
4915 }
4916
print(raw_ostream & ROS,bool IsForDebug) const4917 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4918 SlotTracker SlotTable(this);
4919 formatted_raw_ostream OS(ROS);
4920 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4921 W.printModuleSummaryIndex();
4922 }
4923
collectMDNodes(MachineMDNodeListType & L,unsigned LB,unsigned UB) const4924 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4925 unsigned UB) const {
4926 SlotTracker *ST = MachineStorage.get();
4927 if (!ST)
4928 return;
4929
4930 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4931 if (I.second >= LB && I.second < UB)
4932 L.push_back(std::make_pair(I.second, I.first));
4933 }
4934
4935 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4936 // Value::dump - allow easy printing of Values from the debugger.
4937 LLVM_DUMP_METHOD
dump() const4938 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4939
4940 // Type::dump - allow easy printing of Types from the debugger.
4941 LLVM_DUMP_METHOD
dump() const4942 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4943
4944 // Module::dump() - Allow printing of Modules from the debugger.
4945 LLVM_DUMP_METHOD
dump() const4946 void Module::dump() const {
4947 print(dbgs(), nullptr,
4948 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4949 }
4950
4951 // Allow printing of Comdats from the debugger.
4952 LLVM_DUMP_METHOD
dump() const4953 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4954
4955 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4956 LLVM_DUMP_METHOD
dump() const4957 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4958
4959 LLVM_DUMP_METHOD
dump() const4960 void Metadata::dump() const { dump(nullptr); }
4961
4962 LLVM_DUMP_METHOD
dump(const Module * M) const4963 void Metadata::dump(const Module *M) const {
4964 print(dbgs(), M, /*IsForDebug=*/true);
4965 dbgs() << '\n';
4966 }
4967
4968 LLVM_DUMP_METHOD
dumpTree() const4969 void MDNode::dumpTree() const { dumpTree(nullptr); }
4970
4971 LLVM_DUMP_METHOD
dumpTree(const Module * M) const4972 void MDNode::dumpTree(const Module *M) const {
4973 printTree(dbgs(), M);
4974 dbgs() << '\n';
4975 }
4976
4977 // Allow printing of ModuleSummaryIndex from the debugger.
4978 LLVM_DUMP_METHOD
dump() const4979 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4980 #endif
4981