%feature("docstring") OT::CauchyModel "Cauchy spectral model. Refer to :ref:`parametric_spectral_model`. Available constructors: CauchyModel(*theta, sigma*) Parameters ---------- theta : sequence of float Scale coefficients :math:`\theta` of the spectral density function. Vector of size n sigma : sequence of float Amplitude coefficients :math:`\sigma` of the spectral density function. Vector of size p Notes ----- The spectral density function of input dimension **n** and output dimension **p** writes: .. math:: \forall (i,j) \in [0,p-1]^2, S(f)_{i,j} = \Sigma_{i,j} \prod_{k=1}^{n} \frac{\theta_k}{1 + (2\pi \theta_k f)^2} Examples -------- >>> import openturns as ot >>> spectralModel = ot.CauchyModel([3.0, 2.0], [2.0]) >>> f = 0.3 >>> print(spectralModel(f)) [[ (0.191364,0) ]] >>> f = 10 >>> print(spectralModel(f)) [[ (1.71084e-07,0) ]]" // --------------------------------------------------------------------- %define OT_CauchyModel_computeStandardRepresentative_doc "Compute the standard representant of the spectral density function. Parameters ---------- tau : float Frequency value. Returns ------- rho : Complex Standard representant factor of the spectral density function. Notes ----- Using definitions in :class:`~openturns.SpectralModel`: the standard representative function writes: .. math:: \forall \vect{f} \in \Rset^n, \rho(\vect{f} \odot \vect{\theta}) = \prod_{k=1}^{n} \frac{1}{1 + (2\pi \theta_k f)^2} where :math:`(\vect{f} \odot \vect{\theta})_k = \vect{f}_k \vect{\theta}_k`" %enddef %feature("docstring") OT::CauchyModel::computeStandardRepresentative OT_CauchyModel_computeStandardRepresentative_doc // ---------------------------------------------------------------------