
The contents of this manual and the associated KD SOAP software are the property of Klarälvdalens Datakon-
sult AB and are copyrighted. KD SOAP is available under two different licenses, depending on the intended
use of this product:

• Commercial users (i.e. people intending to develop a commercial product using KD SOAP) need to order
a commercial license from Klarälvdalens Datakonsult AB.

• KD SOAP is also available for creating non-commercial, open-source software under the GNU General
Public License, version 2 or (at your option) any later version. See LICENSE.GPL for the full licence text.

It is your responsibility to decide which license type is appropriate for your intended use of KD SOAP. Any
reproduction of this manual and the associated KD SOAP software in whole or in part that is not allowed by
the applicable license is strictly prohibited without prior written permission by Klarälvdalens Datakonsult AB.

KD SOAP and the KD SOAP logo are trademarks or registered trademarks of Klarälvdalens Datakonsult AB
in the European Union, the United States, and/or other countries. Other product and company names and logos
may be trademarks or registered trademarks of their respective companies.

Table of Contents
1. Introduction ...

What You Should Know .. 2
The Structure of This Manual ... 2
What's next ... 2

2. KD SOAP 1 API Introduction ...
Overview .. 3

3. Synchronous vs. Asynchronous Calls ..
Synchronous Calls .. 6
Asynchronous Calls .. 6

4. SOAP Headers ...
SOAP Headers per Client Interface .. 8
SOAP Headers for Single Calls ... 8

5. Using WSDL to Generate Client API ..
Introduction .. 10
Using kdwsdl2cpp code generator ... 10
Using the Generated Code ... 11
Using kdwsdl2cpp code generator with QMake 12

A. Q&A section ...

ii

Chapter 1. Introduction
Welcome to the KD SOAP Programmer's Manual. KD SOAP is Klarälvdalens Datakon-
sult AB's web service access package for Qt applications. This manual will get you star-
ted creating your own web service clients. It covers the fundamentals of coding with
KD SOAP and provides plenty of tips for advanced programmers.

• Depending on your version of KD SOAP, you will find a unique INSTALL.txt file
containing instructions on how to install KD SOAP on your platform. Each instruc-
tion set also includes step-by-step description of how to build KD SOAP directly
from the source code.

• KD SOAP also comes with an extensive "API Reference" Manual (generated from
the source code itself). It is available both as a PDF file and as browsable HTML
pages.

The "API Reference" is an excellent resource for topics not covered in the Programmer's
Manual. Both the Programmer's Manual and API Reference are designed to be used in
conjunction with each other. If you have a question not covered in the following
chapters, check the API reference for a solution (or in Appendix A, Q&A section at the
end of this manual).

• What is KD SOAP?

KD SOAP is a tool for creating client applications for web services which export
their service API as SOAP objects. A web service is a program that provides a ma-
chine accessible interface to its functionality via HTTP. One way of handling this
kind of remote method calls is the SOAP standard, which describes method calls,
their parameters and return values as XML documents.

The library provides an abstraction layer for both the actual transport as well as the
construction of data objects and method calls. The latter relieves application de-
velopers from manually writing XML marshalling and demarshalling code, allowing
them to build arbitrary complex data structures using simple C++ classes. The trans-
port abstraction provides both synchronous as well as Qt signal/slot based asyn-
chronous remote method call and response handling.

The kdwsdl2cpp code generator delivered along side the library provides additional
means for increasing developer productivity by generating proxy API for a target
web service based on its formal WSDL service description. Using classes generated
by this approach adds build time type checking and in-process like object behavior,
i.e. using C++ data types as parameters and return values of each of the web ser-
vice's methods.

• What can you use KD SOAP for?

KD SOAP is used by a variety of programs for a variety of different purposes. For

1

example, one application uses KD SOAP to access data from a CRM system such as
SugarCRM or Salesforce. For other examples, visit our web site at ht-
tp://www.kdab.com/kdsoap/

What You Should Know

You should be familiar with writing Qt applications, and have a working knowledge of
C++. When you are in doubt about how a Qt class mentioned in this Programmer's
Manual works, please check the Qt reference documentation or a good book about Qt.
Also to browse KD SOAP API Reference start with the file doc/html/index.html or
http://docs.kdab.com/kdsoap/.

The Structure of This Manual

Where do we start?

This manual begins with an introduction to the KD SOAP 1 API then goes through the
basic steps and methods for the user to create her own SOAP client.

Each subsequent chapter covers more advanced material like different variations of
asynchronous calls or providing additional data to the transport protocol layer.
Chapter 5, Using WSDL to Generate Client API finally describes a less generic but easi-
er and safer to use approach using generated code.

We provide you with many more example programs than shown in this manual. We re-
commend that you try them out and run them. Have a look at the code and experiment
with the various settings, both by adjusting them via the user interface, and by trying out
your own code modifications.

What's next

In the next chapter we introduce the KD SOAP 1 API.

2

http://www.kdab.com/kdsoap/
http://www.kdab.com/kdsoap/
http://www.kdab.com/kdsoap/

Chapter 2. KD SOAP 1 API Introduction
KD SOAP builds on technologies introduced with Qt 4, most importantly QNetwork-
AccessManager. This ensures that HTTP requests done by KD SOAP will follow the
operating system's proxy settings and be able to correctly process cookies.

Overview

Code Sample

const QString endPoint =
QLatin1String("http://www.27seconds.com/Holidays/US/Dates/USHolidayDates.asmx");

const QString messageNamespace =
QLatin1String("http://www.27seconds.com/Holidays/US/Dates/");

KDSoapClientInterface client(endPoint, messageNamespace);

KDSoapMessage message;
message.addArgument(QLatin1String("year"), 2010);

KDSoapMessage response = client.call(QLatin1String("GetValentinesDay"), message);

The code example shows the three basic steps for calling a web service method.

• Setup of the proxy object used for interfacing with the web service.

• Construction of the method call's parameters.

• Performing the remote call.

The response, i.e. either the call's return value or an error structure, is delivered in the
same abstract form the call parameters where constructed in. Therefore simple use cases
like this sample only require use of two classes: KDSoapClientInterface and
KDSoapMessage

Concepts

For now, to get an overview about the KD SOAP 1 API and its features, you need to un-
derstand the following basic concepts:

• All interactions with web services happens through instances of KDSoapCli-
entInterface. One such instance is needed for each web service an application
wants to interact with, i.e. it is not possible to switch an instance to a different ser-
vice at runtime.

3

KDSoapClientInterface provides functionality to make synchronous and asyn-
chronous method calls. The first can be convenient in non-interactive applications or
when used in threads, the latter is also suitable for use in a GUI application's main
thread.

• Web service method calls require the name of the method and a single parameter ob-
ject of type KDSoapMessage. Optional data such as SOAP request headers, e.g. for
passing a session identifier alongside the request, can be passed with each method
call or set permanently on the client interface instance.

The single parameter object can contain an arbitrary number of named parameter
values, each potentially again being a list. Simple types such as numbers or strings
are representable by a single parameter value; complex types, e.g. a structure with
multiple members, can be represented as a list of said members.

KDSoapMessage message;

// add a simple type argument
message.addArgument(QLatin1String("text"), "some text");

// add a structured type argument
QRect rect(0, 0, 100, 200);
KDSoapValueList rectArgument;
rectArgument.addArgument(QLatin1String("x"), rect.x());
rectArgument.addArgument(QLatin1String("y"), rect.y());
rectArgument.addArgument(QLatin1String("width"), rect.width());
rectArgument.addArgument(QLatin1String("height"), rect.height());

message.addArgument(QLatin1String("rect"), rectArgument);

Note

When manually constructing message call arguments, it is the respons-
ibility of the developer to provide KD SOAP with marshalling hints if
necessary. These hints are either defined as enums of the respective
KD SOAP class or through explicit type specification

• KDSoapClientInterface::SoapVersion

• KDSoapMessage::Use

• KDSoapValue::setType()

• KDSoapValueList::setArrayType()

See Chapter 5, Using WSDL to Generate Client API for an approach
on how to automate that.

• The call result is also of type KDSoapMessage, allowing structured data to be re-
turned, similar to how a C++ method can return a class type.

4

SOAP calls can result in an error being returned rather than a method return value,
e.g. the web service might not be reachable due to network problems, the method
might be unknown to the web service, etc. In such cases the returned KDSoapMes-
sage is marked as a fault message, see KDSoapMessage::isFault().

5

Chapter 3. Synchronous vs. Asynchronous Calls
As shown in codesample, calling a web service method is mapped by KD SOAP to call-
ing a method on a KDSoapClientInterface instance. This kind of abstraction makes
day-to-day work with web services convenient, however, it is important to consider the
involved processing steps when deciding where and how the application makes use of
this simplification layer.

The involved steps in the client to web service direction are:

• Creation of an XML document for describing the method to call and its parameters.

• Sending of the XML document via a network connection using HTTP.

• Processing of the XML document on the web service's host.

The same applies for the reverse direction with the only difference being the semantics
of the document content (method return value or error instead of method call).

While the first and last step require some time for XML processing they are, depending
on complexity of the involved parameter or return value data types, negligible compared
to the middle one, due to it being subject to network latency and bandwidth limitations
which in turn are often unpredictable.

Synchronous Calls

Calls performed by invoking the KDSoapClientInterface's call() method are syn-
chronous calls. Synchronous means that the calling thread will not return from the meth-
od before it has completed the full roundtrip processing. Due to its similarity with an in-
process method call it is the easier to deploy variant supported by KD SOAP. However,
it should only be used when its blocking nature is of little concern, e.g. in a worker
thread or in a non-interactive application like a command line tool.

Asynchronous Calls

Calls performed by invoking the KDSoapClientInterface::asyncCall() method
are asynchronous calls. Asynchronous means that the calling thread will only process
step one (XML generation) and create an HTTP transfer request. It will neither wait for
the transfer's execution nor any response, but instead will return an instance of KDSoap-
PendingCall. This object then serves as a handle to determine at any later point
whether the whole processing chain has been completed and what the resulting return
value is.

Performing the call from codesample in an asynchronous way:

6

...
// mPendingCall is a member variable so it lives beyond
// the scope of the method creating it and so is mClient
mPendingCall = mClient->asyncCall(QLatin1String("GetValentinesDay"), message);

...

if (mPendingCall.isFinished()) {
KDSoapMessage response = mPendingCall.returnMessage();

}

Of course, checking for completion at some arbitrary time might not very be useful, in-
stead the application will most likely want to be notified about the call's completion.
This is supported by KDSoapPendingCallWatcher.

...

KDSoapPendingCall pendingCall =
mClient->asyncCall(QLatin1String("GetValentinesDay"), message);

// create a watcher object that will signal the call's completion
KDSoapPendingCallWatcher* watcher =
new KDSoapPendingCallWatcher(pendingCall, this);

connect(watcher, SIGNAL(finished(KDSoapPendingCallWatcher*)),
this, SLOT(pendingCallFinished(KDSoapPendingCallWatcher*)));

...

void MyClass::pendingCallFinished(KDSoapPendingCallWatcher* pendingCall)
{
KDSoapMessage response = pendingCall->returnMessage();

}

Both variants support having more than one call pending, i.e. calling another web ser-
vice method while a previous call is still being processed. However, there might be re-
strictions on the web service's side, e.g. not allowing more than one call per client at any
given time to limit resource usage. In general it is also undetermined whether the results
arrive in the same or a different order than the one the requests were sent in. A safer
solution for multiple concurrent calls is to use multiple instances of KDSoapClientInter-
face, which results in multiple independent connections to the web service.

Sometimes it might not be necessary at all to know whether a call succeeded or what its
result was. In such cases use KDSoapClientInterface::callNoReply() instead.

7

Chapter 4. SOAP Headers
SOAP specifies a mechanism to transmit data along side the actual SOAP document, so
called SOAP headers. The term headers indicates that these values will be part of the
HTTP headers section which makes them accessible for components involved in the
transfer which do understand HTTP but might not have SOAP capabilities, e.g. the web
server or a load balancer in front of it.

KD SOAP supports headers on a per method call basis as well as keeping them as local
state across calls.

SOAP Headers per Client Interface

One of the most common use case for SOAP headers is providing session information
for the recipient of the SOAP transmission. This is mainly necessary because HTTP is a
stateless interfacing scheme, where each call arrives through a new network connection.
In order to associate such independent connections to the same client, the first connec-
tion establishes some sort of session tracking, usually in the form of a session identifier
string. This identifier then has to be provided with each call.

While a header containing such an identifier could be provided at each method call, it
will usually be more convenient to let KD SOAP take care of that by setting the header
as a kind of local state on the KDSoapClientInterface instance:

KDSoapMessage message;
message.addArgument(QLatin1String("user"), userName);
message.addArgument(QLatin1String("password"), password);

KDSoapMessage response = client.call(QLatin1String("Login"), message);
const QString sessionId = response.arguments()[0].value().toString();

KDSoapMessage header;
header.addArgument(QLatin1String("SessionId"), sessionId);

client.setHeader(QLatin1String("SessionHeader"), header);

...

response = client.call(QLatin1String("GetUserDetails"), KDSoapMessage());

The example above assumes a fictitious web service which requires a login call to estab-
lish a user's authentification and then requires the returned session token to be used for
any subsequent call. Setting the identifier as a header allows KD SOAP to take care of
sending it alongside any call invoked through the same KDSoapClientInterface in-
stance.

Please note that the actual name of the header argument, in the case of this example
"SessionId", is part of the web service's interface description, while the name passed
to KDSoapClientInterface::setHeader() is purely used for identifying the head-
er between KD SOAP and the application and can thus be chosen by the user herself.

8

SOAP Headers for Single Calls

Sometimes it might not be possible to use a header across calls, e.g. the value of the
header changing with each call or be specific to the method being called. In cases like
this it is necessary to provide the headers when invoking the KDSoapClientInter-
face::call() (or one of its asynchronous variants):

KDSoapMessage header;
header.addArgument(QLatin1String("SessionId"), sessionId);

KDSoapHeaders headers;
headers << header;

response = client.call(QLatin1String("GetUserDetails"),
KDSoapMessage(), QString(), headers);

SOAP Action

As already hinted in the example above, there is another per-call parameter: SOAP Ac-
tions. It is a mandatory SOAP header but allowed to be empty. Its purpose as suggested
by the SOAP specification is to express the intent of the call. In most cases this can be
left empty and let KD SOAP generate a valid value based on the method name.

As an example of where it is necessary to actually set this, see Google's search API:

KDSoapMessage message;

...

const soapAction = QLatin1String("urn:GoogleSearchAction");
KDSoapMessage response =
client.call(QLatin1String("doGoogleSearch"), message, soapAction);

9

Chapter 5. Using WSDL to Generate Client API

Introduction

Most SOAP based web services are formally described in an XML based markup lan-
guage called web service description language (WSDL). Such WSDL documents de-
scribe web service methods, their parameters and return values, as well as possible er-
rors in a formalized way that makes them viable as input for code generation tools.

Compared to the generic approach described in the earlier chapters of this manual, using
a generated client API introduces several additional advantages:

• Named methods: instead of referring to web service methods by names as string
parameters to a generic call() method, a client interface generated from a WSDL
document will have C++ methods for each of the web service's methods.

• Type specific classes: instead of building a single message object containing the
method's parameters as lists of named values, methods of a generated client interface
take C++ types for each of their parameters. If such a parameter is a type described
in the WSDL document, a matching class with suitably named methods and again
specific types will have been generated as well.

• Build time checks: as a result of neither methods nor parameter or return types being
generic anymore, typos in method or parameter names, missing parameters and
some forms of invalid parameter contents can now be caught by the C++ compiler
instead of resulting in a SOAP error at runtime during method invocation.

KD SOAP has full support for this powerful approach through its kdwsdl2cpp code gen-
erator code generation tool. The following sections document how to use it and the cli-
ent API it generates.

Using kdwsdl2cpp code generator

Before using kdwsdl2cpp code generator it is necessary to obtain the WSDL document
describing the target web service and have it available as a local file. It usually available
as a download on a web site associated with the web service or similar online distribu-
tion methods.

Code generation using kdwsdl2cpp code generator requires two steps: one to generate
the header file and one to generate the source file. For example, when processing the
holidays.wsdl file (which can be found in examples/holidays_wsdl) the follow-
ing two commands need to be executed:

kdwsdl2cpp -o wsdl_holidays.h holidays.wsdl

10

This creates a header file wsdl_holidays.h (choice of file name is up to the user),
which will then contain the declarations of all data classes described in th WSDL file as
well as the class representing the web service's interface.

kdwsdl2cpp -o wsdl_holidays.cpp -impl wsdl_holidays.h holi-
days.wsdl

This creates a source file wsdl_holidays.cpp (choice of file name is again up to the
user) using the header file wsdl_holidays.h as the include for class declarations.

Using the Generated Code

The generated code for the example call used through out this manual looks like this:

class USHolidayDates : public QObject
{

Q_OBJECT

public:
USHolidayDates(QObject* parent = 0);
~USHolidayDates();

TNS__GetValentinesDayResponse
getValentinesDay(const TNS__GetValentinesDay& parameters);

void asyncGetValentinesDay(const TNS__GetValentinesDay& parameters);

void getValentinesDayDone(const TNS__GetValentinesDayResponse& parameters);

void getValentinesDayError(const KDSoapMessage& fault);
};

This is an excerpt of the generated web service interface class. It is a subclass of QOb-
ject so it can make use of signals for delivering asynchronous results. Both synchron-
ous as well as asynchronous calls take an instance of the generate class
TNS__GetValentinesDay as their only parameter. The synchronous variant returns an
instance of class TNS__GetValentinesDayResponse once it has completed the call,
while the asynchronous asyncGetValentinesDay() returns without value. Its results
are delivered through one of the two signals: getValentinesDayDone() which car-
ries an instance of the same response class returned by the synchronous get-
ValentinesDay(), or getValentinesDayError() which carries a fault message
(see Section , “Concepts”).

class TNS__GetValentinesDay
{
public:

void setYear(int year);
int year() const;

};

This is an excerpt of the generated request parameter class, using the native integer type
for the year parameter.

11

class TNS__GetValentinesDayResponse
{
public:

void setGetValentinesDayResult(const QDateTime& getValentinesDayResult);
QDateTime getValentinesDayResult() const;

};

This is an excerpt of the generated return value class, using Qt's QDateTime to repres-
ent the resulting date.

Deploying these classes to perform the example call:

USHolidayDates client;

TNS__GetValentinesDay request;
resquest.setYear(2010);

TNS__GetValentinesDayResponse response = client.getValentinesDay(request);
const QDateTime valentinesDay = response.getValentinesDayResult();

Using kdwsdl2cpp code generator with QMake

While running kdwsdl2cpp code generator manually and adding the resulting source and
header file to a project's QMake .pro file works as expected, having QMake take care
of the code generation makes it easier to adopt changes in the WSDL file.

KD SOAP supports this by making WSDL file processing similar to how QMake treats
Qt Designer's .ui files. The necessary steps are:

• Include the kdsoap.pri QMake include file in the project's .pro file. It is part of
the KD SOAP package and should be copied to the user's project directory.

• Add the WSDL files to the KDWSDL variable. For the example above it would look
like this:

KDWSDL = holidays.wsdl

Generated files will be prefixed with wsdl_ and have the proper extension depend-
ing on file type. I.e. the above line will result in wsdl_holidays.h and
wsdl_holidays.cpp.

• Set the environment variable KDSOAPDIR to the base path of your KD SOAP build
or install directory or provide it as a value to the qmake run.

12

Appendix A. Q&A section

Building and installing KD SOAP

Q:.
How can I build and install KD SOAP from source?

A:.
Procedure to follow for building and installing KD SOAP is described in file In-
stall.src, please refer to that file for details.

Contacting KD SOAP Support

Q:.
How can I get help (or report issues, resp.) on KD SOAP?

A:.
To report issues/problems, or ask for help on KD SOAP please send your mail
with a description of your problem/question/wishes to the support address
kdsoap-support@kdab.com. Please include a description of your setup: CPU type,
operating system with release number, compiler (version) used, any changes you
made on libraries that are linked to ... Just include every detail that might help us
set up a comparable test environment in our labs.

In most cases it will make sense to include a small sample program showing the
problem you are describing. We will then reproduce the issue on our machines
and either fix your sample code or adjust our own code (in case your reported is-
sue might turn out to result from sub-optimal implementation in KD SOAP).

Note

Providing us with a compilable sample program file will help us find
a good solution for the problem reported, as we will be using the
same code that you have been trying to use yourself.

Often the easiest way to create such a sample program could be to look at one of
our example programs, e.g. examples/holidays_wsdl/holidays.cpp and
do something similar just with your WSDL file.

If the webservice is not available to us, e.g. is software not available as at least a
trial version and you (or your customer) not allowed to create a test account for us
on your installation, we'll probably require logs of the SOAP communication as
well.

13

mailto:kdsoap-support@kdab.com

KD SOAP has built-in functionality to print the SOAP communication to the ap-
plication's standard output. To enables this either set the environment variable
KDSOAP_DEBUG to 1 or put the following code into the test application:

qputenv("KDSOAP_DEBUG", "1");

14

	KD SOAP Programmer's Manual
	Table of Contents
	Chapter 1. Introduction
	What You Should Know
	The Structure of This Manual
	What's next

	Chapter 2. KD SOAP 1 API Introduction
	Overview
	Code Sample
	Concepts

	Chapter 3. Synchronous vs. Asynchronous Calls
	Synchronous Calls
	Asynchronous Calls

	Chapter 4. SOAP Headers
	SOAP Headers per Client Interface
	SOAP Headers for Single Calls
	SOAP Action

	Chapter 5. Using WSDL to Generate Client API
	Introduction
	Using kdwsdl2cpp code generator
	Using the Generated Code
	Using kdwsdl2cpp code generator with QMake

	Appendix A. Q&A section

