History log of /xv6-public/spinlock.c (Results 26 – 50 of 60)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
# c8919e65 27-Sep-2007 rsc <rsc>

kernel SMP interruptibility fixes.

Last year, right before I sent xv6 to the printer, I changed the
SETGATE calls so that interrupts would be disabled on entry to
interrupt handlers, and I added the

kernel SMP interruptibility fixes.

Last year, right before I sent xv6 to the printer, I changed the
SETGATE calls so that interrupts would be disabled on entry to
interrupt handlers, and I added the nlock++ / nlock-- in trap()
so that interrupts would stay disabled while the hw handlers
(but not the syscall handler) did their work. I did this because
the kernel was otherwise causing Bochs to triple-fault in SMP
mode, and time was short.

Robert observed yesterday that something was keeping the SMP
preemption user test from working. It turned out that when I
simplified the lapic code I swapped the order of two register
writes that I didn't realize were order dependent. I fixed that
and then since I had everything paged in kept going and tried
to figure out why you can't leave interrupts on during interrupt
handlers. There are a few issues.

First, there must be some way to keep interrupts from "stacking
up" and overflowing the stack. Keeping interrupts off the whole
time solves this problem -- even if the clock tick handler runs
long enough that the next clock tick is waiting when it finishes,
keeping interrupts off means that the handler runs all the way
through the "iret" before the next handler begins. This is not
really a problem unless you are putting too many prints in trap
-- if the OS is doing its job right, the handlers should run
quickly and not stack up.

Second, if xv6 had page faults, then it would be important to
keep interrupts disabled between the start of the interrupt and
the time that cr2 was read, to avoid a scenario like:

p1 page faults [cr2 set to faulting address]
p1 starts executing trapasm.S
clock interrupt, p1 preempted, p2 starts executing
p2 page faults [cr2 set to another faulting address]
p2 starts, finishes fault handler
p1 rescheduled, reads cr2, sees wrong fault address

Alternately p1 could be rescheduled on the other cpu, in which
case it would still see the wrong cr2. That said, I think cr2
is the only interrupt state that isn't pushed onto the interrupt
stack atomically at fault time, and xv6 doesn't care. (This isn't
entirely hypothetical -- I debugged this problem on Plan 9.)

Third, and this is the big one, it is not safe to call cpu()
unless interrupts are disabled. If interrupts are enabled then
there is no guarantee that, between the time cpu() looks up the
cpu id and the time that it the result gets used, the process
has not been rescheduled to the other cpu. For example, the
very commonly-used expression curproc[cpu()] (aka the macro cp)
can end up referring to the wrong proc: the code stores the
result of cpu() in %eax, gets rescheduled to the other cpu at
just the wrong instant, and then reads curproc[%eax].

We use curproc[cpu()] to get the current process a LOT. In that
particular case, if we arranged for the current curproc entry
to be addressed by %fs:0 and just use a different %fs on each
CPU, then we could safely get at curproc even with interrupts
disabled, since the read of %fs would be atomic with the read
of %fs:0. Alternately, we could have a curproc() function that
disables interrupts while computing curproc[cpu()]. I've done
that last one.

Even in the current kernel, with interrupts off on entry to trap,
interrupts are enabled inside release if there are no locks held.
Also, the scheduler's idle loop must be interruptible at times
so that the clock and disk interrupts (which might make processes
runnable) can be handled.

In addition to the rampant use of curproc[cpu()], this little
snippet from acquire is wrong on smp:

if(cpus[cpu()].nlock == 0)
cli();
cpus[cpu()].nlock++;

because if interrupts are off then we might call cpu(), get
rescheduled to a different cpu, look at cpus[oldcpu].nlock, and
wrongly decide not to disable interrupts on the new cpu. The
fix is to always call cli(). But this is wrong too:

if(holding(lock))
panic("acquire");
cli();
cpus[cpu()].nlock++;

because holding looks at cpu(). The fix is:

cli();
if(holding(lock))
panic("acquire");
cpus[cpu()].nlock++;

I've done that, and I changed cpu() to complain the first time
it gets called with interrupts disabled. (It gets called too
much to complain every time.)

I added new functions splhi and spllo that are like acquire and
release but without the locking:

void
splhi(void)
{
cli();
cpus[cpu()].nsplhi++;
}

void
spllo(void)
{
if(--cpus[cpu()].nsplhi == 0)
sti();
}

and I've used those to protect other sections of code that refer
to cpu() when interrupts would otherwise be disabled (basically
just curproc and setupsegs). I also use them in acquire/release
and got rid of nlock.

I'm not thrilled with the names, but I think the concept -- a
counted cli/sti -- is sound. Having them also replaces the
nlock++/nlock-- in trap.c and main.c, which is nice.


Final note: it's still not safe to enable interrupts in
the middle of trap() between lapic_eoi and returning
to user space. I don't understand why, but we get a
fault on pop %es because 0x10 is a bad segment
descriptor (!) and then the fault faults trying to go into
a new interrupt because 0x8 is a bad segment descriptor too!
Triple fault. I haven't debugged this yet.

show more ...


# ab4cedb5 31-Aug-2007 rtm <rtm>

continuous quality management


Revision tags: xv6-2007, xv6-rev1
# 558ab49f 27-Aug-2007 rsc <rsc>

delete unnecessary #include lines


# 5af5f6aa 24-Aug-2007 rsc <rsc>

Reorder spinlock.c: acquire and release first


# eaea18cb 22-Aug-2007 rsc <rsc>

PDF at http://am.lcs.mit.edu/~rsc/xv6.pdf

Various changes made while offline.

+ bwrite sector argument is redundant; use b->sector.
+ reformatting of files for nicer PDF page breaks
+ distinguis

PDF at http://am.lcs.mit.edu/~rsc/xv6.pdf

Various changes made while offline.

+ bwrite sector argument is redundant; use b->sector.
+ reformatting of files for nicer PDF page breaks
+ distinguish between locked, unlocked inodes in type signatures
+ change FD_FILE to FD_INODE
+ move userinit (nee proc0init) to proc.c
+ move ROOTDEV to param.h
+ always parenthesize sizeof argument

show more ...


# 15b326b6 10-Aug-2007 rsc <rsc>

nit


# 2715cd35 10-Aug-2007 rsc <rsc>

and spinlock


Revision tags: symlinks, xv6-2006, xv6-rev0
# ba969aa6 08-Sep-2006 rsc <rsc>

make lines shorter


# 8e1d1ec9 08-Sep-2006 kaashoek <kaashoek>

some comment changes


# e7a5b3c5 07-Sep-2006 rsc <rsc>

comment memory barriers


# 31085bb4 07-Sep-2006 rsc <rsc>

more comments


# 0cfc7290 06-Sep-2006 rsc <rsc>

wrap long lines


# 9e9bcaf1 06-Sep-2006 rsc <rsc>

standardize various * conventions


# a650c606 06-Sep-2006 rsc <rsc>

spacing fixes: no tabs, 2-space indents (for rtm)


# dfcc5b99 29-Aug-2006 rtm <rtm>

prune unneeded panics and debug output


# 2b19190c 29-Aug-2006 rtm <rtm>

clean up stale error checks and panics
delete unused functions
a few comments


# 5be0039c 10-Aug-2006 rtm <rtm>

interrupts could be recursive since lapic_eoi() called before rti
so fast interrupts overflow the kernel stack
fix: cli() before lapic_eoi()


# 8a8be1b8 10-Aug-2006 rtm <rtm>

low-level keyboard input (not hooked up to /dev yet)
fix acquire() to cli() *before* incrementing nlock
make T_SYSCALL a trap gate, not an interrupt gate
sadly, various crashes if you hold down a key

low-level keyboard input (not hooked up to /dev yet)
fix acquire() to cli() *before* incrementing nlock
make T_SYSCALL a trap gate, not an interrupt gate
sadly, various crashes if you hold down a keyboard key...

show more ...


# 0e84a0ec 08-Aug-2006 rtm <rtm>

fix race in holding() check in acquire()
give cpu1 a TSS and gdt for when it enters scheduler()
and a pseudo proc[] entry for each cpu
cpu0 waits for each other cpu to start up
read() for files


# 32630628 29-Jul-2006 rtm <rtm>

open()


# 0dd42537 17-Jul-2006 rsc <rsc>

add ide_lock for sleep


# b74f4b57 16-Jul-2006 rsc <rsc>

Keep interrupts disabled during startup.


# 679a977c 16-Jul-2006 rsc <rsc>

remove acquire1 and release1


# 65bd8e13 16-Jul-2006 rsc <rsc>

New scheduler.

Removed cli and sti stack in favor of tracking
number of locks held on each CPU and explicit
conditionals in spinlock.c.


# 46bbd72f 15-Jul-2006 rtm <rtm>

no more recursive locks
wakeup1() assumes you hold proc_table_lock
sleep(chan, lock) provides atomic sleep-and-release to wait for condition
ugly code in swtch/scheduler to implement new sleep
fix lo

no more recursive locks
wakeup1() assumes you hold proc_table_lock
sleep(chan, lock) provides atomic sleep-and-release to wait for condition
ugly code in swtch/scheduler to implement new sleep
fix lots of bugs in pipes, wait, and exit
fix bugs if timer interrupt goes off in schedule()
console locks per line, not per byte

show more ...


123