% tnewamp1.m % % Copyright David Rowe 2017 % This program is distributed under the terms of the GNU General Public License % Version 2 #{ Octave script to compare Octave and C versions of newamp1 processing, in order to test C port. c2sim -> dump files -> $ ../build_linux/unittest/tnewamp1 -> octave:1> tnewamp1 Usage: 1/ build codec2 with -DDUMP - see codec2-dev/README 2/ Generate dump files using c2sim (just need to do this once) $ cd codec2-dev/build_linux/src $ ./c2sim ../../raw/hts1a.raw --phase0 --postfilter --dump hts1a --lpc 10 --dump_pitch_e hts1a_pitche.txt 3/ Run C version which generates a file of Octave test vectors as output: $ cd codec2-dev/build_linux/unittest $ ./tnewamp1 ../../raw/hts1a.raw 4/ Run Octave script to generate Octave test vectors and compare with C. octave:1> tnewamp1("../build_linux/src/hts1a") 5/ Optionally listen to output ~/codec2-dev/build_linux/src$ ./c2sim ../../raw/hts1a.raw --phase0 --postfilter \ --amread hts1a_am.out --hmread hts1a_hm.out \ --Woread hts1a_Wo.out --hand_voicing hts1a_v.txt -o - \ | play -q -t raw -r 8000 -s -2 - #} function tnewamp1(input_prefix, path_to_unittest="../build_linux/unittest/") printf("starting tnewamp1.c input_prefix: %s\n", input_prefix); visible_flag = 'off'; newamp_700c; autotest; more off; max_amp = 80; postfilter = 0; % optional postfiler that runs on Am, not used atm synth_phase = 1; if nargin == 1 output_prefix = input_prefix; end model_name = strcat(input_prefix,"_model.txt"); model = load(model_name); [frames nc] = size(model); voicing_name = strcat(input_prefix,"_pitche.txt"); voicing = zeros(1,frames); if exist(voicing_name, "file") == 2 pitche = load(voicing_name); voicing = pitche(:, 3); end % Load in C vectors and compare ----------------------------------------- load(sprintf("%s/tnewamp1_out.txt", path_to_unittest)); K = 20; [frames tmp] = size(rate_K_surface_c); [rate_K_surface sample_freqs_kHz] = resample_const_rate_f_mel(model(1:frames,:), K); melvq; load train_120_1.txt; load train_120_2.txt; train_120_vq(:,:,1)= train_120_1; train_120_vq(:,:,2)= train_120_2; m=5; m=5; eq = zeros(1,K); for f=1:frames mean_f(f) = mean(rate_K_surface(f,:)); rate_K_surface_no_mean(f,:) = rate_K_surface(f,:) - mean_f(f); [rate_K_vec eq] = front_eq(rate_K_surface_no_mean(f,:), eq); rate_K_surface_no_mean(f,:) = rate_K_vec; end [res rate_K_surface_no_mean_ ind] = mbest(train_120_vq, rate_K_surface_no_mean, m); for f=1:frames rate_K_surface_no_mean_(f,:) = post_filter(rate_K_surface_no_mean_(f,:), sample_freqs_kHz, 1.5); end rate_K_surface_ = zeros(frames, K); interpolated_surface_ = zeros(frames, K); energy_q = create_energy_q; M = 4; for f=1:frames [mean_f_ indx] = quantise(energy_q, mean_f(f)); indexes(f,3) = indx - 1; rate_K_surface_(f,:) = rate_K_surface_no_mean_(f,:) + mean_f_; end % simulated decoder % break into segments of M frames. We have 2 samples spaced M apart % and interpolate the rest. Nfft_phase = 128; % note this needs to be 512 (FFT_ENC in codec2 if using --awread) % with --hmread 128 is preferred as less memory/CPU model_ = zeros(frames, max_amp+2); voicing_ = zeros(1,frames); Aw = zeros(frames, Nfft_phase); H = zeros(frames, max_amp); model_(1,1) = Wo_left = 2*pi/100; voicing_left = 0; left_vec = zeros(1,K); % decoder runs on every M-th frame, 25Hz frame rate, offset at % start is to minimise processing delay (thanks Jeroen!) for f=M:M:frames if voicing(f) index = encode_log_Wo(model(f,1), 6); if index == 0 index = 1; end model_(f,1) = decode_log_Wo(index, 6); else model_(f,1) = 2*pi/100; end Wo_right = model_(f,1); voicing_right = voicing(f); [Wo_ avoicing_] = interp_Wo_v(Wo_left, Wo_right, voicing_left, voicing_right); #{ for i=1:4 fprintf(stderr, " Wo: %4.3f L: %d v: %d\n", Wo_(i), floor(pi/Wo_(i)), avoicing_(i)); end fprintf(stderr," rate_K_vec: "); for i=1:5 fprintf(stderr,"%5.3f ", rate_K_surface_(f,i)); end fprintf(stderr,"\n"); #} if f > M model_(f-M:f-1,1) = Wo_; voicing_(f-M:f-1) = avoicing_; model_(f-M:f-1,2) = floor(pi ./ model_(f-M:f-1,1)); % calculate L for each interpolated Wo end right_vec = rate_K_surface_(f,:); if f > M sample_points = [f-M f]; resample_points = f-M:f-1; for k=1:K interpolated_surface_(resample_points,k) = interp_linear(sample_points, [left_vec(k) right_vec(k)], resample_points); end for k=f-M:f-1 model_(k,:) = resample_rate_L(model_(k,:), interpolated_surface_(k,:), sample_freqs_kHz); Aw(k,:) = determine_phase(model_, k, Nfft_phase); for m=1:model_(k,2) b = round(m*model_(k,1)*Nfft_phase/(2*pi)); % map harmonic centre to DFT bin H(k,m) = exp(j*Aw(k, b+1)); end end end % update for next time Wo_left = Wo_right; voicing_left = voicing_right; left_vec = right_vec; end f = figure(1); clf; mesh(angle(H)); f = figure(2); clf; mesh(angle(H_c(:,1:max_amp))); f = figure(3); clf; mesh(abs(H - H_c(:,1:max_amp))); passes = 0; tests = 0; passes += check(eq, eq_c, 'Equaliser', 0.01); tests++; passes += check(rate_K_surface, rate_K_surface_c, 'rate_K_surface', 0.01); tests++; passes += check(mean_f, mean_c, 'mean', 0.01); tests++; passes += check(rate_K_surface_, rate_K_surface__c, 'rate_K_surface_', 0.01); tests++; passes += check(interpolated_surface_, interpolated_surface__c, 'interpolated_surface_', 0.01); tests++; passes += check(model_(:,1), model__c(:,1), 'interpolated Wo_', 0.001); tests++; passes += check(voicing_, voicing__c, 'interpolated voicing'); tests++; passes += check(model_(:,3:max_amp+2), model__c(:,3:max_amp+2), 'rate L Am surface ', 0.1); tests++; passes += check(H, H_c(:,1:max_amp), 'phase surface'); tests++; printf("passes: %d fails: %d\n", passes, tests - passes); #{ % Save to disk to check synthesis is OK with c2sim output_prefix = input_prefix; Am_out_name = sprintf("%s_am.out", output_prefix); fam = fopen(Am_out_name,"wb"); Wo_out_name = sprintf("%s_Wo.out", output_prefix); fWo = fopen(Wo_out_name,"wb"); Aw_out_name = sprintf("%s_aw.out", output_prefix); faw = fopen(Aw_out_name,"wb"); Hm_out_name = sprintf("%s_hm.out", output_prefix); fhm = fopen(Hm_out_name,"wb"); printf("Generating files for c2sim: "); for f=1:frames printf(".", f); Wo = model_(f,1); L = min([model_(f,2) max_amp-1]); Am = model_(f,3:(L+2)); Am_ = zeros(1,2*max_amp); Am_(2:L) = Am(1:L-1); fwrite(fam, Am_, "float32"); fwrite(fWo, Wo, "float32"); % Note we send opposite phase as c2sim expects phase of LPC % analysis filter, just a convention based on historical % development of Codec 2 Aw1 = zeros(1, Nfft_phase*2); Aw1(1:2:Nfft_phase*2) = cos(Aw(f,:)); Aw1(2:2:Nfft_phase*2) = -sin(Aw(f,:)); fwrite(faw, Aw1, "float32"); Hm = zeros(1, 2*2*max_amp); for m=1:L Hm(2*m+1) = real(H(f,m)); Hm(2*m+2) = imag(H(f,m)); end fwrite(fhm, Hm, "float32"); end fclose(fam); fclose(fWo); fclose(faw); fclose(fhm); v_out_name = sprintf("%s_v.txt", output_prefix); fv = fopen(v_out_name,"wt"); for f=1:length(voicing__c) fprintf(fv,"%d\n", voicing__c(f)); end fclose(fv); #} endfunction