#ifndef IVL_expression_H #define IVL_expression_H /* * Copyright (c) 2011-2018 Stephen Williams (steve@icarus.com) * Copyright CERN 2015 / Stephen Williams (steve@icarus.com), * Copyright CERN 2016 * @author Maciej Suminski (maciej.suminski@cern.ch) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "StringHeap.h" # include "LineInfo.h" # include "entity.h" # include # include # include # include # include class ExpRange; class ScopeBase; class SubprogramHeader; class VType; class VTypeArray; class VTypePrimitive; class ExpName; #if __cplusplus < 201103L #define unique_ptr auto_ptr #endif /* * Helper class to recursively traverse an expression tree * (i.e. complex expressions). */ struct ExprVisitor { ExprVisitor() : level_(0) {} virtual ~ExprVisitor() {} virtual void operator() (Expression*s) = 0; // Methods to manage recursion depth. Every Expression::visit() method // should call down() in the beginning and up() in the end. inline void down() { ++level_; } inline void up() { --level_; assert(level_ >= 0); } protected: int level() const { return level_; } private: int level_; }; /* * The Expression class represents parsed expressions from the parsed * VHDL input. The Expression class is a virtual class that holds more * specific derived expression types. */ class Expression : public LineInfo { public: Expression(); virtual ~Expression() =0; // Returns a deep copy of the expression. virtual Expression*clone() const =0; // This virtual method handles the special case of elaborating // an expression that is the l-value of a sequential variable // assignment. This generates an error for most cases, but // expressions that are valid l-values return 0 and set any // flags needed to indicate their status as writable variables. virtual int elaborate_lval(Entity*ent, ScopeBase*scope, bool is_sequ); // This virtual method probes the expression to get the most // constrained type for the expression. For a given instance, // this may be called before the elaborate_expr method. virtual const VType*probe_type(Entity*ent, ScopeBase*scope) const; // The fit_type virtual method is used by the ExpConcat class // to probe the type of operands. The atype argument is the // type of the ExpConcat expression itself. This expression // returns its type as interpreted in this context. Really, // this is mostly about helping aggregate expressions within // concatenations to figure out their type. virtual const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const; // This virtual method elaborates an expression. The ltype is // the type of the lvalue expression, if known, and can be // used to calculate the type for the expression being // elaborated. virtual int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); // Return the type that this expression would be if it were an // l-value. This should only be called after elaborate_lval is // called and only if elaborate_lval succeeded. inline const VType*peek_type(void) const { return type_; } // This virtual method writes a VHDL-accurate representation // of this expression to the designated stream. This is used // for writing parsed types to library files. virtual void write_to_stream(std::ostream&fd) const =0; // The emit virtual method is called by architecture emit to // output the generated code for the expression. The derived // class fills in the details of what exactly happened. virtual int emit(ostream&out, Entity*ent, ScopeBase*scope) const =0; // The emit_package virtual message is similar, but is called // in a package context and to emit SV packages. virtual int emit_package(std::ostream&out) const; // The evaluate virtual method tries to evaluate expressions // to constant literal values. Return true and set the val // argument if the evaluation works, or return false if it // cannot be done. virtual bool evaluate(Entity*, ScopeBase*, int64_t&) const { return false; } bool evaluate(ScopeBase*scope, int64_t&val) const { return evaluate(NULL, scope, val); } // The symbolic compare returns true if the two expressions // are equal without actually calculating the value. virtual bool symbolic_compare(const Expression*that) const; // This method returns true if the drawn Verilog for this // expression is a primary. A containing expression can use // this method to know if it needs to wrap parentheses. This // is somewhat optional, so it is better to return false if // not certain. The default implementation does return false. virtual bool is_primary(void) const; // Debug dump of the expression. virtual void dump(ostream&out, int indent = 0) const =0; virtual ostream& dump_inline(ostream&out) const; // Recursively visits a tree of expressions (useful for complex expressions). virtual void visit(ExprVisitor& func) { func.down(); func(this); func.up(); } protected: // This function is called by the derived class during // elaboration to set the type of the current expression that // elaboration assigns to this expression. void set_type(const VType*); private: const VType*type_; private: // Not implemented Expression(const Expression&); Expression& operator = (const Expression&); }; /* * Checks before cloning if the other expression actually exists (!=NULL). */ static inline Expression*safe_clone(const Expression*other) { return (other ? other->clone() : NULL); } static inline void FILE_NAME(Expression*tgt, const LineInfo*src) { tgt->set_line(*src); } static inline ostream& operator <<(ostream&out, const Expression&exp) { return exp.dump_inline(out); } class ExpUnary : public Expression { public: explicit ExpUnary(Expression*op1); virtual ~ExpUnary() =0; inline const Expression*peek_operand() const { return operand1_; } const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const; const VType*probe_type(Entity*ent, ScopeBase*scope) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void visit(ExprVisitor& func); protected: inline void write_to_stream_operand1(std::ostream&fd) const { operand1_->write_to_stream(fd); } int emit_operand1(ostream&out, Entity*ent, ScopeBase*scope) const; void dump_operand1(ostream&out, int indent = 0) const; private: Expression*operand1_; }; /* * This is an abstract class that collects some of the common features * of binary operators. */ class ExpBinary : public Expression { public: ExpBinary(Expression*op1, Expression*op2); virtual ~ExpBinary() =0; inline const Expression* peek_operand1(void) const { return operand1_; } inline const Expression* peek_operand2(void) const { return operand2_; } const VType*probe_type(Entity*ent, ScopeBase*scope) const; void visit(ExprVisitor& func); protected: int elaborate_exprs(Entity*, ScopeBase*, const VType*); int emit_operand1(ostream&out, Entity*ent, ScopeBase*scope) const; int emit_operand2(ostream&out, Entity*ent, ScopeBase*scope) const; bool eval_operand1(Entity*ent, ScopeBase*scope, int64_t&val) const; bool eval_operand2(Entity*ent, ScopeBase*scope, int64_t&val) const; inline void write_to_stream_operand1(std::ostream&out) const { operand1_->write_to_stream(out); } inline void write_to_stream_operand2(std::ostream&out) const { operand2_->write_to_stream(out); } void dump_operands(ostream&out, int indent = 0) const; private: virtual const VType*resolve_operand_types_(const VType*t1, const VType*t2) const; private: Expression*operand1_; Expression*operand2_; }; class ExpAggregate : public Expression { public: // A "choice" is only part of an element. It is the thing that // is used to identify an element of the aggregate. It can // represent the index (or range) of an array, or the name of // a record member. class choice_t { public: // Create an "others" choice choice_t(); // Create a simple_expression choice explicit choice_t(Expression*exp); // Create a named choice explicit choice_t(perm_string name); // discreate_range choice explicit choice_t(ExpRange*ran); choice_t(const choice_t&other); ~choice_t(); // true if this represents an "others" choice bool others() const; // Return expression if this represents a simple_expression. Expression*simple_expression(bool detach_flag =true); // Return ExpRange if this represents a range_expression ExpRange*range_expressions(void); void write_to_stream(std::ostream&fd); void dump(ostream&out, int indent) const; private: std::unique_ptrexpr_; std::unique_ptr range_; private: // not implemented choice_t& operator= (const choice_t&); }; struct choice_element { choice_element() : choice(), expr() {} choice_element(const choice_element&other) { choice = other.choice ? new choice_t(*other.choice) : NULL; expr = safe_clone(other.expr); } choice_t*choice; Expression*expr; bool alias_flag; }; // Elements are the syntactic items in an aggregate // expression. Each element expressions a bunch of fields // (choices) and binds them to a single expression class element_t { public: explicit element_t(std::list*fields, Expression*val); element_t(const element_t&other); ~element_t(); size_t count_choices() const { return fields_.size(); } void map_choices(choice_element*dst); inline Expression* extract_expression() { return val_; } void write_to_stream(std::ostream&fd) const; void dump(ostream&out, int indent) const; private: std::vectorfields_; Expression*val_; private: // not implemented element_t& operator = (const element_t&); }; public: explicit ExpAggregate(std::list*el); ~ExpAggregate(); Expression*clone() const; const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); private: int elaborate_expr_array_(Entity*ent, ScopeBase*scope, const VTypeArray*ltype); int elaborate_expr_record_(Entity*ent, ScopeBase*scope, const VTypeRecord*ltype); int emit_array_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeArray*ltype) const; int emit_record_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeRecord*ltype) const; private: // This is the elements as directly parsed. std::vector elements_; // These are the elements after elaboration. This form is // easier to check and emit. std::vector aggregate_; }; class ExpArithmetic : public ExpBinary { public: enum fun_t { PLUS, MINUS, MULT, DIV, MOD, REM, POW, xCONCAT }; public: ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2); ~ExpArithmetic(); Expression*clone() const { return new ExpArithmetic(fun_, peek_operand1()->clone(), peek_operand2()->clone()); } int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; virtual bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; private: const VType* resolve_operand_types_(const VType*t1, const VType*t2) const; private: fun_t fun_; }; class ExpAttribute : public Expression { public: ExpAttribute(perm_string name,std::list*args); virtual ~ExpAttribute(); inline perm_string peek_attribute() const { return name_; } // Constants for the standard attributes static const perm_string LEFT; static const perm_string RIGHT; protected: std::list*clone_args() const; int elaborate_args(Entity*ent, ScopeBase*scope, const VType*ltype); void visit_args(ExprVisitor& func); bool evaluate_type_attr(const VType*type, Entity*ent, ScopeBase*scope, int64_t&val) const; bool test_array_type(const VType*type) const; perm_string name_; std::list*args_; }; class ExpObjAttribute : public ExpAttribute { public: ExpObjAttribute(ExpName*base, perm_string name, std::list*args); ~ExpObjAttribute(); Expression*clone() const; inline const ExpName* peek_base() const { return base_; } int emit(ostream&out, Entity*ent, ScopeBase*scope) const; const VType*probe_type(Entity*ent, ScopeBase*scope) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; // Some attributes can be evaluated at compile time bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); private: ExpName*base_; }; class ExpTypeAttribute : public ExpAttribute { public: ExpTypeAttribute(const VType*base, perm_string name, std::list*args); // no destructor - VType objects (base_) are shared between many expressions Expression*clone() const; inline const VType* peek_base() const { return base_; } int emit(ostream&out, Entity*ent, ScopeBase*scope) const; const VType*probe_type(Entity*ent, ScopeBase*scope) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; // Some attributes can be evaluated at compile time bool evaluate(ScopeBase*scope, int64_t&val) const; bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); private: const VType*base_; }; class ExpBitstring : public Expression { public: explicit ExpBitstring(const char*); ExpBitstring(const ExpBitstring&other) : Expression() { value_ = other.value_; } ~ExpBitstring(); Expression*clone() const { return new ExpBitstring(*this); } const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; private: std::vectorvalue_; }; class ExpCharacter : public Expression { public: explicit ExpCharacter(char val); ExpCharacter(const ExpCharacter&other) : Expression() { value_ = other.value_; } ~ExpCharacter(); Expression*clone() const { return new ExpCharacter(*this); } const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; bool is_primary(void) const; void dump(ostream&out, int indent = 0) const; char value() const { return value_; } private: int emit_primitive_bit_(ostream&out, Entity*ent, ScopeBase*scope, const VTypePrimitive*etype) const; private: char value_; }; class ExpConcat : public Expression { public: ExpConcat(Expression*op1, Expression*op2); ~ExpConcat(); Expression*clone() const { return new ExpConcat(operand1_->clone(), operand2_->clone()); } const VType*probe_type(Entity*ent, ScopeBase*scope) const; const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; bool is_primary(void) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); private: int elaborate_expr_array_(Entity*ent, ScopeBase*scope, const VTypeArray*ltype); private: Expression*operand1_; Expression*operand2_; }; /* * The conditional expression represents the VHDL when-else * expressions. Note that by the VHDL syntax rules, these cannot show * up other than at the root of an expression. */ class ExpConditional : public Expression { public: class case_t : public LineInfo { public: case_t(Expression*cond, std::list*tru); case_t(const case_t&other); ~case_t(); inline Expression*condition() const { return cond_; } inline void set_condition(Expression*cond) { cond_ = cond; } inline const std::list& true_clause() const { return true_clause_; } int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*lt); int emit_option(ostream&out, Entity*ent, ScopeBase*scope) const; int emit_default(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; std::list& extract_true_clause() { return true_clause_; } void visit(ExprVisitor& func); private: Expression*cond_; std::list true_clause_; }; public: ExpConditional(Expression*cond, std::list*tru, std::list*options); virtual ~ExpConditional(); virtual Expression*clone() const; const VType*probe_type(Entity*ent, ScopeBase*scope) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); protected: std::list options_; }; /* * Expression to handle selected assignments (with .. select target <= value when ..) */ class ExpSelected : public ExpConditional { public: ExpSelected(Expression*selector, std::list*options); ~ExpSelected(); Expression*clone() const; private: Expression*selector_; }; /* * This is a special expression type that represents posedge/negedge * expressions in sensitivity lists. */ class ExpEdge : public ExpUnary { public: enum fun_t { NEGEDGE, ANYEDGE, POSEDGE }; public: explicit ExpEdge(ExpEdge::fun_t ty, Expression*op); ~ExpEdge(); Expression*clone() const { return new ExpEdge(fun_, peek_operand()->clone()); } inline fun_t edge_fun() const { return fun_; } void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; class ExpFunc : public Expression { public: explicit ExpFunc(perm_string nn); ExpFunc(perm_string nn, std::list*args); ~ExpFunc(); Expression*clone() const; const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const; inline perm_string func_name() const { return name_; } inline size_t func_args() const { return argv_.size(); } inline const Expression*func_arg(size_t idx) const { return argv_[idx]; } const VType*func_ret_type() const; public: // Base methods const VType*probe_type(Entity*ent, ScopeBase*scope) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); // NOTE: does not handle expressions in subprogram body // Returns a subprogram header that matches the function call SubprogramHeader*match_signature(Entity*ent, ScopeBase*scope) const; private: perm_string name_; std::vector argv_; mutable SubprogramHeader*def_; }; class ExpInteger : public Expression { public: explicit ExpInteger(int64_t val); ExpInteger(const ExpInteger&other) : Expression(), value_(other.value_) {} ~ExpInteger(); Expression*clone() const { return new ExpInteger(*this); } const VType*probe_type(Entity*ent, ScopeBase*scope) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; int emit_package(std::ostream&out) const; bool is_primary(void) const { return true; } bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; virtual ostream& dump_inline(ostream&out) const; private: int64_t value_; }; class ExpReal : public Expression { public: explicit ExpReal(double val); ExpReal(const ExpReal&other) : Expression(), value_(other.value_) {} ~ExpReal(); Expression*clone() const { return new ExpReal(*this); } const VType*probe_type(Entity*ent, ScopeBase*scope) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; int emit_package(std::ostream&out) const; bool is_primary(void) const; void dump(ostream&out, int indent = 0) const; virtual ostream& dump_inline(ostream&out) const; private: double value_; }; class ExpLogical : public ExpBinary { public: enum fun_t { AND, OR, NAND, NOR, XOR, XNOR }; public: ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2); ~ExpLogical(); Expression*clone() const { return new ExpLogical(fun_, peek_operand1()->clone(), peek_operand2()->clone()); } inline fun_t logic_fun() const { return fun_; } int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; /* * The ExpName class represents an expression that is an identifier or * other sort of name. The ExpNameALL is a special case of ExpName * that represents the "all" keyword is contexts that can handle it. */ class ExpName : public Expression { public: explicit ExpName(perm_string nn); ExpName(perm_string nn, std::list*indices); ExpName(ExpName*prefix, perm_string nn, std::list*indices = NULL); virtual ~ExpName(); public: // Base methods Expression*clone() const; int elaborate_lval(Entity*ent, ScopeBase*scope, bool); int elaborate_rval(Entity*ent, ScopeBase*scope, const InterfacePort*); const VType* probe_type(Entity*ent, ScopeBase*scope) const; const VType* fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*host) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit_indices(ostream&out, Entity*ent, ScopeBase*scope) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; bool is_primary(void) const; bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const; bool symbolic_compare(const Expression*that) const; void dump(ostream&out, int indent = 0) const; inline const char* name() const { return name_; } inline const perm_string& peek_name() const { return name_; } void add_index(std::list*idx); void visit(ExprVisitor& func); private: class index_t { public: index_t(Expression*idx, Expression*size, Expression*offset = NULL) : idx_(idx), size_(size), offset_(offset) {} ~index_t() { delete idx_; delete size_; delete offset_; } int emit(ostream&out, Entity*ent, ScopeBase*scope) const; private: Expression*idx_; Expression*size_; Expression*offset_; }; const VType* elaborate_adjust_type_with_range_(Entity*ent, ScopeBase*scope, const VType*type); int elaborate_lval_(Entity*ent, ScopeBase*scope, bool, ExpName*suffix); const VType* probe_prefix_type_(Entity*ent, ScopeBase*scope) const; const VType* probe_prefixed_type_(Entity*ent, ScopeBase*scope) const; int emit_as_prefix_(ostream&out, Entity*ent, ScopeBase*scope) const; // There are some workarounds required for constant arrays/records, as // they are currently emitted as flat localparams (without any type // information). The following workarounds adjust the access indices // to select appropriate parts of the localparam. bool try_workarounds_(ostream&out, Entity*ent, ScopeBase*scope, list&indices, int&data_size) const; bool check_const_array_workaround_(const VTypeArray*arr, ScopeBase*scope, list&indices, int&data_size) const; bool check_const_record_workaround_(const VTypeRecord*rec, ScopeBase*scope, list&indices, int&data_size) const; int emit_workaround_(ostream&out, Entity*ent, ScopeBase*scope, const list&indices, int field_size) const; private: Expression*index(unsigned int number) const; std::unique_ptr prefix_; perm_string name_; std::list*indices_; }; class ExpNameALL : public ExpName { public: ExpNameALL() : ExpName(empty_perm_string) { } public: const VType* probe_type(Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent =0) const; }; class ExpRelation : public ExpBinary { public: enum fun_t { EQ, LT, GT, NEQ, LE, GE }; inline fun_t relation_fun(void) const { return fun_; } public: ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2); ~ExpRelation(); Expression*clone() const { return new ExpRelation(fun_, peek_operand1()->clone(), peek_operand2()->clone()); } const VType* probe_type(Entity*ent, ScopeBase*scope) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; /* * Helper class to handle name expressions coming from another scope. As such, * we get more information regarding their type, etc. from the associated scope. */ class ExpScopedName : public Expression { public: ExpScopedName(perm_string scope, ExpName*exp); ~ExpScopedName(); Expression*clone() const { return new ExpScopedName(scope_name_, static_cast(name_->clone())); } int elaborate_lval(Entity*ent, ScopeBase*scope, bool is_sequ) { return name_->elaborate_lval(ent, get_scope(scope), is_sequ); } int elaborate_rval(Entity*ent, ScopeBase*scope, const InterfacePort*lval) { return name_->elaborate_rval(ent, get_scope(scope), lval); } const VType* probe_type(Entity*ent, ScopeBase*scope) const { return name_->probe_type(ent, get_scope(scope)); } const VType* fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*host) const { return name_->fit_type(ent, get_scope(scope), host); } int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype) { return name_->elaborate_expr(ent, get_scope(scope), ltype); } void write_to_stream(std::ostream&fd) const { name_->write_to_stream(fd); } int emit(ostream&out, Entity*ent, ScopeBase*scope) const { out << scope_name_ << "."; return name_->emit(out, ent, scope); } bool is_primary(void) const { return name_->is_primary(); } bool evaluate(Entity*ent, ScopeBase*, int64_t&val) const { return name_->evaluate(ent, scope_, val); } bool symbolic_compare(const Expression*that) const { return name_->symbolic_compare(that); } void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor&func); private: // Functions that resolve the origin scope for the name expression ScopeBase*get_scope(const ScopeBase*scope); ScopeBase*get_scope(const ScopeBase*scope) const; perm_string scope_name_; ScopeBase*scope_; ExpName*name_; }; class ExpShift : public ExpBinary { public: enum shift_t { SRL, SLL, SRA, SLA, ROL, ROR }; public: ExpShift(ExpShift::shift_t op, Expression*op1, Expression*op2); Expression*clone() const { return new ExpShift(shift_, peek_operand1()->clone(), peek_operand2()->clone()); } int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; private: shift_t shift_; }; class ExpString : public Expression { public: explicit ExpString(const char*); ExpString(const ExpString&other) : Expression(), value_(other.value_) {} ~ExpString(); Expression*clone() const { return new ExpString(*this); } const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const; int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; bool is_primary(void) const; void dump(ostream&out, int indent = 0) const; const std::string& get_value() const { return value_; } // Converts quotation marks (") to its escaped // counterpart in SystemVerilog (\") static std::string escape_quot(const std::string& str); private: int emit_as_array_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeArray*arr) const; private: std::string value_; }; class ExpUAbs : public ExpUnary { public: explicit ExpUAbs(Expression*op1); ~ExpUAbs(); Expression*clone() const { return new ExpUAbs(peek_operand()->clone()); } void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; }; class ExpUNot : public ExpUnary { public: explicit ExpUNot(Expression*op1); ~ExpUNot(); Expression*clone() const { return new ExpUNot(peek_operand()->clone()); } void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; }; class ExpUMinus : public ExpUnary { public: explicit ExpUMinus(Expression*op1); ~ExpUMinus(); Expression*clone() const { return new ExpUMinus(peek_operand()->clone()); } void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; }; /* * Class that wraps other expressions to cast them to other types. */ class ExpCast : public Expression { public: ExpCast(Expression*base, const VType*type); ~ExpCast(); Expression*clone() const { return new ExpCast(base_->clone(), type_->clone()); } inline int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*) { return base_->elaborate_expr(ent, scope, type_); } void write_to_stream(std::ostream&fd) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); private: Expression*base_; const VType*type_; }; /* * Class that handles 'new' statement. VHDL is not capable of dynamic memory * allocation, but it is useful for emitting some cases. */ class ExpNew : public Expression { public: explicit ExpNew(Expression*size); ~ExpNew(); Expression*clone() const { return new ExpNew(size_->clone()); } // There is no 'new' in VHDL - do not emit anything void write_to_stream(std::ostream&) const {}; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); private: Expression*size_; }; class ExpTime : public Expression { public: typedef enum { FS, PS, NS, US, MS, S } timeunit_t; ExpTime(uint64_t amount, timeunit_t unit); Expression*clone() const { return new ExpTime(amount_, unit_); } int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; //bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; private: // Returns the time value expressed in femtoseconds double to_fs() const; uint64_t amount_; timeunit_t unit_; }; class ExpRange : public Expression { public: typedef enum { DOWNTO, TO, AUTO } range_dir_t; // Regular range ExpRange(Expression*left_idx, Expression*right_idx, range_dir_t dir); // 'range/'reverse range attribute ExpRange(ExpName*base, bool reverse_range); ~ExpRange(); Expression*clone() const; // Returns the upper boundary Expression*msb(); // Returns the lower boundary Expression*lsb(); Expression*left(); Expression*right(); range_dir_t direction() const { return direction_; } int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; private: // Regular range related fields Expression*left_, *right_; range_dir_t direction_; // 'range/'reverse_range attribute related fields // Flag to indicate it is a 'range/'reverse_range expression bool range_expr_; // Object name to which the attribute is applied ExpName*range_base_; // Flag to distinguish between 'range & 'reverse_range bool range_reverse_; }; // Helper class that wraps other expression to specify delay. class ExpDelay : public Expression { public: ExpDelay(Expression*expr, Expression*delay); ~ExpDelay(); Expression*clone() const { return new ExpDelay(expr_->clone(), delay_->clone()); } int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype); void write_to_stream(std::ostream&) const; int emit(ostream&out, Entity*ent, ScopeBase*scope) const; void dump(ostream&out, int indent = 0) const; void visit(ExprVisitor& func); const Expression*peek_expr() const { return expr_; } const Expression*peek_delay() const { return delay_; } private: Expression*expr_; Expression*delay_; }; #if __cplusplus < 201103L #undef unique_ptr #endif #endif /* IVL_expression_H */