/* * Copyright (c) 2007 - 2015 Joseph Gaeddert * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // // Matrix Cholesky decomposition method definitions // #include #include "liquid.internal.h" #define DEBUG_MATRIX_CHOL 0 // Compute Cholesky decomposition of a symmetric/Hermitian positive- // definite matrix as A = L * L^T // _A : input square matrix [size: _n x _n] // _n : input matrix dimension // _L : output lower-triangular matrix void MATRIX(_chol)(T * _A, unsigned int _n, T * _L) { // reset L unsigned int i; for (i=0; i<_n*_n; i++) _L[i] = 0.0; unsigned int j; unsigned int k; T A_jj; T L_jj; T L_ik; T L_jk; TP t0; T t1; for (j=0; j<_n; j++) { // assert that A_jj is real, positive A_jj = matrix_access(_A,_n,_n,j,j); if ( creal(A_jj) < 0.0 ) { fprintf(stderr,"warning: matrix_chol(), matrix is not positive definite (real{A[%u,%u]} = %12.4e < 0)\n",j,j,creal(A_jj)); return; } #if T_COMPLEX if ( fabs(cimag(A_jj)) > 0.0 ) { fprintf(stderr,"warning: matrix_chol(), matrix is not positive definite (|imag{A[%u,%u]}| = %12.4e > 0)\n",j,j,fabs(cimag(A_jj))); return; } #endif // compute L_jj and store it in output matrix t0 = 0.0; for (k=0; k t0 if ( creal(A_jj) < t0 ) { fprintf(stderr,"warning: matrix_chol(), matrix is not positive definite (real{A[%u,%u]} = %12.4e < %12.4e)\n",j,j,creal(A_jj),t0); return; } L_jj = sqrt( A_jj - t0 ); matrix_access(_L,_n,_n,j,j) = L_jj; for (i=j+1; i<_n; i++) { t1 = matrix_access(_A,_n,_n,i,j); for (k=0; k