/***************************************************************************** Copyright (c) 1994, 2021, Oracle and/or its affiliates. Copyright (c) 2012, Facebook Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file btr/btr0btr.cc The B-tree Created 6/2/1994 Heikki Tuuri *******************************************************/ #include "btr0btr.h" #ifdef UNIV_NONINL #include "btr0btr.ic" #endif #include "fsp0sysspace.h" #include "page0page.h" #include "page0zip.h" #include "gis0rtree.h" #ifndef UNIV_HOTBACKUP #include "btr0cur.h" #include "btr0sea.h" #include "btr0pcur.h" #include "rem0cmp.h" #include "lock0lock.h" #include "ibuf0ibuf.h" #include "trx0trx.h" #include "srv0mon.h" #include "gis0geo.h" #include "ut0new.h" #include "dict0boot.h" extern my_bool srv_immediate_scrub_data_uncompressed; /**************************************************************//** Checks if the page in the cursor can be merged with given page. If necessary, re-organize the merge_page. @return true if possible to merge. */ bool btr_can_merge_with_page( /*====================*/ btr_cur_t* cursor, /*!< in: cursor on the page to merge */ ulint page_no, /*!< in: a sibling page */ buf_block_t** merge_block, /*!< out: the merge block */ mtr_t* mtr); /*!< in: mini-transaction */ #endif /* UNIV_HOTBACKUP */ /**************************************************************//** Report that an index page is corrupted. */ void btr_corruption_report( /*==================*/ const buf_block_t* block, /*!< in: corrupted block */ const dict_index_t* index) /*!< in: index tree */ { ib::error() << "Flag mismatch in page " << block->page.id << " index " << index->name << " of table " << index->table->name; } #ifndef UNIV_HOTBACKUP /* Latching strategy of the InnoDB B-tree -------------------------------------- A tree latch protects all non-leaf nodes of the tree. Each node of a tree also has a latch of its own. A B-tree operation normally first acquires an S-latch on the tree. It searches down the tree and releases the tree latch when it has the leaf node latch. To save CPU time we do not acquire any latch on non-leaf nodes of the tree during a search, those pages are only bufferfixed. If an operation needs to restructure the tree, it acquires an X-latch on the tree before searching to a leaf node. If it needs, for example, to split a leaf, (1) InnoDB decides the split point in the leaf, (2) allocates a new page, (3) inserts the appropriate node pointer to the first non-leaf level, (4) releases the tree X-latch, (5) and then moves records from the leaf to the new allocated page. Node pointers ------------- Leaf pages of a B-tree contain the index records stored in the tree. On levels n > 0 we store 'node pointers' to pages on level n - 1. For each page there is exactly one node pointer stored: thus the our tree is an ordinary B-tree, not a B-link tree. A node pointer contains a prefix P of an index record. The prefix is long enough so that it determines an index record uniquely. The file page number of the child page is added as the last field. To the child page we can store node pointers or index records which are >= P in the alphabetical order, but < P1 if there is a next node pointer on the level, and P1 is its prefix. If a node pointer with a prefix P points to a non-leaf child, then the leftmost record in the child must have the same prefix P. If it points to a leaf node, the child is not required to contain any record with a prefix equal to P. The leaf case is decided this way to allow arbitrary deletions in a leaf node without touching upper levels of the tree. We have predefined a special minimum record which we define as the smallest record in any alphabetical order. A minimum record is denoted by setting a bit in the record header. A minimum record acts as the prefix of a node pointer which points to a leftmost node on any level of the tree. File page allocation -------------------- In the root node of a B-tree there are two file segment headers. The leaf pages of a tree are allocated from one file segment, to make them consecutive on disk if possible. From the other file segment we allocate pages for the non-leaf levels of the tree. */ #ifdef UNIV_BTR_DEBUG /**************************************************************//** Checks a file segment header within a B-tree root page. @return TRUE if valid */ static ibool btr_root_fseg_validate( /*===================*/ const fseg_header_t* seg_header, /*!< in: segment header */ ulint space) /*!< in: tablespace identifier */ { ulint offset = mach_read_from_2(seg_header + FSEG_HDR_OFFSET); if (UNIV_UNLIKELY(srv_pass_corrupt_table != 0)) { return (mach_read_from_4(seg_header + FSEG_HDR_SPACE) == space) && (offset >= FIL_PAGE_DATA) && (offset <= UNIV_PAGE_SIZE - FIL_PAGE_DATA_END); } ut_a(mach_read_from_4(seg_header + FSEG_HDR_SPACE) == space); ut_a(offset >= FIL_PAGE_DATA); ut_a(offset <= UNIV_PAGE_SIZE - FIL_PAGE_DATA_END); return(TRUE); } #endif /* UNIV_BTR_DEBUG */ /**************************************************************//** Gets the root node of a tree and x- or s-latches it. @return root page, x- or s-latched */ buf_block_t* btr_root_block_get( /*===============*/ const dict_index_t* index, /*!< in: index tree */ ulint mode, /*!< in: either RW_S_LATCH or RW_X_LATCH */ mtr_t* mtr) /*!< in: mtr */ { const ulint space = dict_index_get_space(index); const page_id_t page_id(space, dict_index_get_page(index)); const page_size_t page_size(dict_table_page_size(index->table)); buf_block_t* block = btr_block_get(page_id, page_size, mode, index, mtr); if (!block && index && index->table && !index->table->is_readable()) { ib::warn() << "Table in tablespace is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table."; return NULL; } SRV_CORRUPT_TABLE_CHECK(block, return(0);); btr_assert_not_corrupted(block, index); #ifdef UNIV_BTR_DEBUG if (!dict_index_is_ibuf(index)) { const page_t* root = buf_block_get_frame(block); if (UNIV_UNLIKELY(srv_pass_corrupt_table != 0)) { if (!btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_LEAF + root, space)) return(NULL); if (!btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_TOP + root, space)) return(NULL); return(block); } ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_LEAF + root, space)); ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_TOP + root, space)); } #endif /* UNIV_BTR_DEBUG */ return(block); } /**************************************************************//** Gets the root node of a tree and sx-latches it for segment access. @return root page, sx-latched */ page_t* btr_root_get( /*=========*/ const dict_index_t* index, /*!< in: index tree */ mtr_t* mtr) /*!< in: mtr */ { /* Intended to be used for segment list access. SX lock doesn't block reading user data by other threads. And block the segment list access by others.*/ buf_block_t* root = btr_root_block_get(index, RW_SX_LATCH, mtr); if (root && root->page.encrypted == true) { root = NULL; } return(root ? buf_block_get_frame(root) : NULL); } /**************************************************************//** Gets the height of the B-tree (the level of the root, when the leaf level is assumed to be 0). The caller must hold an S or X latch on the index. @return tree height (level of the root) */ ulint btr_height_get( /*===========*/ dict_index_t* index, /*!< in: index tree */ mtr_t* mtr) /*!< in/out: mini-transaction */ { ulint height=0; buf_block_t* root_block; ut_ad(srv_read_only_mode || mtr_memo_contains_flagged(mtr, dict_index_get_lock(index), MTR_MEMO_S_LOCK | MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK) || dict_table_is_intrinsic(index->table)); /* S latches the page */ root_block = btr_root_block_get(index, RW_S_LATCH, mtr); if (root_block) { height = btr_page_get_level(buf_block_get_frame(root_block), mtr); /* Release the S latch on the root page. */ mtr->memo_release(root_block, MTR_MEMO_PAGE_S_FIX); ut_d(sync_check_unlock(&root_block->lock)); } return(height); } /**************************************************************//** Checks a file segment header within a B-tree root page and updates the segment header space id. @return TRUE if valid */ static bool btr_root_fseg_adjust_on_import( /*===========================*/ fseg_header_t* seg_header, /*!< in/out: segment header */ page_zip_des_t* page_zip, /*!< in/out: compressed page, or NULL */ ulint space, /*!< in: tablespace identifier */ mtr_t* mtr) /*!< in/out: mini-transaction */ { ulint offset = mach_read_from_2(seg_header + FSEG_HDR_OFFSET); if (offset < FIL_PAGE_DATA || offset > UNIV_PAGE_SIZE - FIL_PAGE_DATA_END) { return(FALSE); } else if (page_zip) { mach_write_to_4(seg_header + FSEG_HDR_SPACE, space); page_zip_write_header(page_zip, seg_header + FSEG_HDR_SPACE, 4, mtr); } else { mlog_write_ulint(seg_header + FSEG_HDR_SPACE, space, MLOG_4BYTES, mtr); } return(TRUE); } /**************************************************************//** Checks and adjusts the root node of a tree during IMPORT TABLESPACE. @return error code, or DB_SUCCESS */ dberr_t btr_root_adjust_on_import( /*======================*/ const dict_index_t* index) /*!< in: index tree */ { dberr_t err; mtr_t mtr; page_t* page; buf_block_t* block; page_zip_des_t* page_zip; dict_table_t* table = index->table; const ulint space_id = dict_index_get_space(index); const page_id_t page_id(space_id, dict_index_get_page(index)); const page_size_t page_size(dict_table_page_size(table)); DBUG_EXECUTE_IF("ib_import_trigger_corruption_3", return(DB_CORRUPTION);); mtr_start(&mtr); mtr_set_log_mode(&mtr, MTR_LOG_NO_REDO); block = btr_block_get(page_id, page_size, RW_X_LATCH, index, &mtr); page = buf_block_get_frame(block); page_zip = buf_block_get_page_zip(block); if (!page_is_root(page)) { err = DB_CORRUPTION; } else if (dict_index_is_clust(index)) { bool page_is_compact_format; page_is_compact_format = page_is_comp(page) > 0; /* Check if the page format and table format agree. */ if (page_is_compact_format != dict_table_is_comp(table)) { err = DB_CORRUPTION; } else { /* Check that the table flags and the tablespace flags match. */ ulint flags = dict_tf_to_fsp_flags( table->flags, false, dict_table_is_encrypted(table)); ulint fsp_flags = fil_space_get_flags(table->space); err = fsp_flags_are_equal(flags, fsp_flags) ? DB_SUCCESS : DB_CORRUPTION; } } else { err = DB_SUCCESS; } /* Check and adjust the file segment headers, if all OK so far. */ if (err == DB_SUCCESS && (!btr_root_fseg_adjust_on_import( FIL_PAGE_DATA + PAGE_BTR_SEG_LEAF + page, page_zip, space_id, &mtr) || !btr_root_fseg_adjust_on_import( FIL_PAGE_DATA + PAGE_BTR_SEG_TOP + page, page_zip, space_id, &mtr))) { err = DB_CORRUPTION; } mtr_commit(&mtr); return(err); } /**************************************************************//** Creates a new index page (not the root, and also not used in page reorganization). @see btr_page_empty(). */ void btr_page_create( /*============*/ buf_block_t* block, /*!< in/out: page to be created */ page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */ dict_index_t* index, /*!< in: index */ ulint level, /*!< in: the B-tree level of the page */ mtr_t* mtr) /*!< in: mtr */ { page_t* page = buf_block_get_frame(block); ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); if (page_zip) { page_create_zip(block, index, level, 0, NULL, mtr); } else { page_create(block, mtr, dict_table_is_comp(index->table), dict_index_is_spatial(index)); /* Set the level of the new index page */ btr_page_set_level(page, NULL, level, mtr); } /* For Spatial Index, initialize the Split Sequence Number */ if (dict_index_is_spatial(index)) { page_set_ssn_id(block, page_zip, 0, mtr); } btr_page_set_index_id(page, page_zip, index->id, mtr); } /**************************************************************//** Allocates a new file page to be used in an ibuf tree. Takes the page from the free list of the tree, which must contain pages! @return new allocated block, x-latched */ static buf_block_t* btr_page_alloc_for_ibuf( /*====================*/ dict_index_t* index, /*!< in: index tree */ mtr_t* mtr) /*!< in: mtr */ { fil_addr_t node_addr; page_t* root; page_t* new_page; buf_block_t* new_block; root = btr_root_get(index, mtr); node_addr = flst_get_first(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, mtr); ut_a(node_addr.page != FIL_NULL); new_block = buf_page_get( page_id_t(dict_index_get_space(index), node_addr.page), dict_table_page_size(index->table), RW_X_LATCH, mtr); new_page = buf_block_get_frame(new_block); buf_block_dbg_add_level(new_block, SYNC_IBUF_TREE_NODE_NEW); flst_remove(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, new_page + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST_NODE, mtr); ut_ad(flst_validate(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, mtr)); return(new_block); } /**************************************************************//** Allocates a new file page to be used in an index tree. NOTE: we assume that the caller has made the reservation for free extents! @retval NULL if no page could be allocated @retval block, rw_lock_x_lock_count(&block->lock) == 1 if allocation succeeded (init_mtr == mtr, or the page was not previously freed in mtr) @retval block (not allocated or initialized) otherwise */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) buf_block_t* btr_page_alloc_low( /*===============*/ dict_index_t* index, /*!< in: index */ ulint hint_page_no, /*!< in: hint of a good page */ byte file_direction, /*!< in: direction where a possible page split is made */ ulint level, /*!< in: level where the page is placed in the tree */ mtr_t* mtr, /*!< in/out: mini-transaction for the allocation */ mtr_t* init_mtr) /*!< in/out: mtr or another mini-transaction in which the page should be initialized. If init_mtr!=mtr, but the page is already X-latched in mtr, do not initialize the page. */ { fseg_header_t* seg_header; page_t* root; root = btr_root_get(index, mtr); if (level == 0) { seg_header = root + PAGE_HEADER + PAGE_BTR_SEG_LEAF; } else { seg_header = root + PAGE_HEADER + PAGE_BTR_SEG_TOP; } /* Parameter TRUE below states that the caller has made the reservation for free extents, and thus we know that a page can be allocated: */ return(fseg_alloc_free_page_general( seg_header, hint_page_no, file_direction, TRUE, mtr, init_mtr)); } /**************************************************************//** Allocates a new file page to be used in an index tree. NOTE: we assume that the caller has made the reservation for free extents! @retval NULL if no page could be allocated @retval block, rw_lock_x_lock_count(&block->lock) == 1 if allocation succeeded (init_mtr == mtr, or the page was not previously freed in mtr) @retval block (not allocated or initialized) otherwise */ buf_block_t* btr_page_alloc( /*===========*/ dict_index_t* index, /*!< in: index */ ulint hint_page_no, /*!< in: hint of a good page */ byte file_direction, /*!< in: direction where a possible page split is made */ ulint level, /*!< in: level where the page is placed in the tree */ mtr_t* mtr, /*!< in/out: mini-transaction for the allocation */ mtr_t* init_mtr) /*!< in/out: mini-transaction for x-latching and initializing the page */ { buf_block_t* new_block; if (dict_index_is_ibuf(index)) { return(btr_page_alloc_for_ibuf(index, mtr)); } new_block = btr_page_alloc_low( index, hint_page_no, file_direction, level, mtr, init_mtr); if (new_block) { buf_block_dbg_add_level(new_block, SYNC_TREE_NODE_NEW); } return(new_block); } /**************************************************************//** Gets the number of pages in a B-tree. @return number of pages, or ULINT_UNDEFINED if the index is unavailable */ ulint btr_get_size( /*=========*/ dict_index_t* index, /*!< in: index */ ulint flag, /*!< in: BTR_N_LEAF_PAGES or BTR_TOTAL_SIZE */ mtr_t* mtr) /*!< in/out: mini-transaction where index is s-latched */ { fseg_header_t* seg_header; page_t* root; ulint n; ulint dummy; ut_ad(srv_read_only_mode || mtr_memo_contains(mtr, dict_index_get_lock(index), MTR_MEMO_S_LOCK) || dict_table_is_intrinsic(index->table)); if (index->page == FIL_NULL || dict_index_is_online_ddl(index) || !index->is_committed()) { return(ULINT_UNDEFINED); } root = btr_root_get(index, mtr); if (!root && index->table->is_readable() == false) return ULINT_UNDEFINED; SRV_CORRUPT_TABLE_CHECK(root, { mtr_commit(mtr); return(ULINT_UNDEFINED); }); if (flag == BTR_N_LEAF_PAGES) { seg_header = root + PAGE_HEADER + PAGE_BTR_SEG_LEAF; fseg_n_reserved_pages(seg_header, &n, mtr); } else if (flag == BTR_TOTAL_SIZE) { seg_header = root + PAGE_HEADER + PAGE_BTR_SEG_TOP; n = fseg_n_reserved_pages(seg_header, &dummy, mtr); seg_header = root + PAGE_HEADER + PAGE_BTR_SEG_LEAF; n += fseg_n_reserved_pages(seg_header, &dummy, mtr); } else { ut_error; } return(n); } /**************************************************************//** Frees a page used in an ibuf tree. Puts the page to the free list of the ibuf tree. */ static void btr_page_free_for_ibuf( /*===================*/ dict_index_t* index, /*!< in: index tree */ buf_block_t* block, /*!< in: block to be freed, x-latched */ mtr_t* mtr) /*!< in: mtr */ { page_t* root; ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); root = btr_root_get(index, mtr); flst_add_first(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, buf_block_get_frame(block) + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST_NODE, mtr); ut_ad(flst_validate(root + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, mtr)); } /**************************************************************//** Frees a file page used in an index tree. Can be used also to (BLOB) external storage pages. */ void btr_page_free_low( /*==============*/ dict_index_t* index, /*!< in: index tree */ buf_block_t* block, /*!< in: block to be freed, x-latched */ ulint level, /*!< in: page level (ULINT_UNDEFINED=BLOB) */ mtr_t* mtr) /*!< in: mtr */ { fseg_header_t* seg_header; page_t* root; ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); /* The page gets invalid for optimistic searches: increment the frame modify clock */ buf_block_modify_clock_inc(block); const bool scrub = srv_immediate_scrub_data_uncompressed; if (scrub) { /* MariaDB code says that we can only use this code for blobs, * but apparently, and can only scrub parts of normal pages - * but with this approach, data remains there, and this doesn't * cause any test failures. */ page_t* page = buf_block_get_frame(block); memset(page + PAGE_HEADER, 0, srv_page_size - PAGE_HEADER); } if (dict_index_is_ibuf(index)) { btr_page_free_for_ibuf(index, block, mtr); return; } root = btr_root_get(index, mtr); if (level == 0 || level == ULINT_UNDEFINED) { seg_header = root + PAGE_HEADER + PAGE_BTR_SEG_LEAF; } else { seg_header = root + PAGE_HEADER + PAGE_BTR_SEG_TOP; } #ifdef UNIV_GIS_DEBUG if (dict_index_is_spatial(index)) { fprintf(stderr, "GIS_DIAG: Freed %ld\n", (long) block->page.id.page_no()); } #endif if (scrub) { /** * Reset page type so that scrub thread won't try to scrub it */ mlog_write_ulint(buf_block_get_frame(block) + FIL_PAGE_TYPE, FIL_PAGE_TYPE_ALLOCATED, MLOG_2BYTES, mtr); } fseg_free_page(seg_header, block->page.id.space(), block->page.id.page_no(), level != ULINT_UNDEFINED, mtr); /* The page was marked free in the allocation bitmap, but it should remain buffer-fixed until mtr_commit(mtr) or until it is explicitly freed from the mini-transaction. */ ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); /* TODO: Discard any operations on the page from the redo log and remove the block from the flush list and the buffer pool. This would free up buffer pool earlier and reduce writes to both the tablespace and the redo log. */ } /**************************************************************//** Frees a file page used in an index tree. NOTE: cannot free field external storage pages because the page must contain info on its level. */ void btr_page_free( /*==========*/ dict_index_t* index, /*!< in: index tree */ buf_block_t* block, /*!< in: block to be freed, x-latched */ mtr_t* mtr) /*!< in: mtr */ { const page_t* page = buf_block_get_frame(block); ulint level = btr_page_get_level(page, mtr); ut_ad(fil_page_index_page_check(block->frame)); ut_ad(level != ULINT_UNDEFINED); btr_page_free_low(index, block, level, mtr); } /**************************************************************//** Sets the child node file address in a node pointer. */ UNIV_INLINE void btr_node_ptr_set_child_page_no( /*===========================*/ rec_t* rec, /*!< in: node pointer record */ page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed part will be updated, or NULL */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ ulint page_no,/*!< in: child node address */ mtr_t* mtr) /*!< in: mtr */ { byte* field; ulint len; ut_ad(rec_offs_validate(rec, NULL, offsets)); ut_ad(!page_is_leaf(page_align(rec))); ut_ad(!rec_offs_comp(offsets) || rec_get_node_ptr_flag(rec)); /* The child address is in the last field */ field = rec_get_nth_field(rec, offsets, rec_offs_n_fields(offsets) - 1, &len); ut_ad(len == REC_NODE_PTR_SIZE); if (page_zip) { page_zip_write_node_ptr(page_zip, rec, rec_offs_data_size(offsets), page_no, mtr); } else { mlog_write_ulint(field, page_no, MLOG_4BYTES, mtr); } } /************************************************************//** Returns the child page of a node pointer and sx-latches it. @return child page, sx-latched */ static buf_block_t* btr_node_ptr_get_child( /*===================*/ const rec_t* node_ptr,/*!< in: node pointer */ dict_index_t* index, /*!< in: index */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ mtr_t* mtr) /*!< in: mtr */ { ut_ad(rec_offs_validate(node_ptr, index, offsets)); const page_id_t page_id( page_get_space_id(page_align(node_ptr)), btr_node_ptr_get_child_page_no(node_ptr, offsets)); return(btr_block_get(page_id, dict_table_page_size(index->table), RW_SX_LATCH, index, mtr)); } /************************************************************//** Returns the upper level node pointer to a page. It is assumed that mtr holds an sx-latch on the tree. @return rec_get_offsets() of the node pointer record */ static ulint* btr_page_get_father_node_ptr_func( /*==============================*/ ulint* offsets,/*!< in: work area for the return value */ mem_heap_t* heap, /*!< in: memory heap to use */ btr_cur_t* cursor, /*!< in: cursor pointing to user record, out: cursor on node pointer record, its page x-latched */ ulint latch_mode,/*!< in: BTR_CONT_MODIFY_TREE or BTR_CONT_SEARCH_TREE */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mtr */ { dtuple_t* tuple; rec_t* user_rec; rec_t* node_ptr; ulint level; ulint page_no; dict_index_t* index; ut_ad(latch_mode == BTR_CONT_MODIFY_TREE || latch_mode == BTR_CONT_SEARCH_TREE); page_no = btr_cur_get_block(cursor)->page.id.page_no(); index = btr_cur_get_index(cursor); ut_ad(!dict_index_is_spatial(index)); ut_ad(srv_read_only_mode || mtr_memo_contains_flagged(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK) || dict_table_is_intrinsic(index->table)); ut_ad(dict_index_get_page(index) != page_no); level = btr_page_get_level(btr_cur_get_page(cursor), mtr); user_rec = btr_cur_get_rec(cursor); ut_a(page_rec_is_user_rec(user_rec)); tuple = dict_index_build_node_ptr(index, user_rec, 0, heap, level); if (dict_table_is_intrinsic(index->table)) { btr_cur_search_to_nth_level_with_no_latch( index, level + 1, tuple, PAGE_CUR_LE, cursor, file, line, mtr); } else { btr_cur_search_to_nth_level( index, level + 1, tuple, PAGE_CUR_LE, latch_mode, cursor, 0, file, line, mtr); } node_ptr = btr_cur_get_rec(cursor); ut_ad(!page_rec_is_comp(node_ptr) || rec_get_status(node_ptr) == REC_STATUS_NODE_PTR); offsets = rec_get_offsets(node_ptr, index, offsets, ULINT_UNDEFINED, &heap); if (btr_node_ptr_get_child_page_no(node_ptr, offsets) != page_no) { rec_t* print_rec; ib::error() << "Corruption of an index tree: table " << index->table->name << " index " << index->name << ", father ptr page no " << btr_node_ptr_get_child_page_no(node_ptr, offsets) << ", child page no " << page_no; print_rec = page_rec_get_next( page_get_infimum_rec(page_align(user_rec))); offsets = rec_get_offsets(print_rec, index, offsets, ULINT_UNDEFINED, &heap); page_rec_print(print_rec, offsets); offsets = rec_get_offsets(node_ptr, index, offsets, ULINT_UNDEFINED, &heap); page_rec_print(node_ptr, offsets); ib::fatal() << "You should dump + drop + reimport the table to" << " fix the corruption. If the crash happens at" << " database startup. " << FORCE_RECOVERY_MSG << " Then dump + drop + reimport."; } return(offsets); } #define btr_page_get_father_node_ptr(of,heap,cur,mtr) \ btr_page_get_father_node_ptr_func( \ of,heap,cur,BTR_CONT_MODIFY_TREE,__FILE__,__LINE__,mtr) #define btr_page_get_father_node_ptr_for_validate(of,heap,cur,mtr) \ btr_page_get_father_node_ptr_func( \ of,heap,cur,BTR_CONT_SEARCH_TREE,__FILE__,__LINE__,mtr) /************************************************************//** Returns the upper level node pointer to a page. It is assumed that mtr holds an x-latch on the tree. @return rec_get_offsets() of the node pointer record */ static ulint* btr_page_get_father_block( /*======================*/ ulint* offsets,/*!< in: work area for the return value */ mem_heap_t* heap, /*!< in: memory heap to use */ dict_index_t* index, /*!< in: b-tree index */ buf_block_t* block, /*!< in: child page in the index */ mtr_t* mtr, /*!< in: mtr */ btr_cur_t* cursor) /*!< out: cursor on node pointer record, its page x-latched */ { rec_t* rec = page_rec_get_next(page_get_infimum_rec(buf_block_get_frame( block))); btr_cur_position(index, rec, block, cursor); return(btr_page_get_father_node_ptr(offsets, heap, cursor, mtr)); } /************************************************************//** Seeks to the upper level node pointer to a page. It is assumed that mtr holds an x-latch on the tree. */ static void btr_page_get_father( /*================*/ dict_index_t* index, /*!< in: b-tree index */ buf_block_t* block, /*!< in: child page in the index */ mtr_t* mtr, /*!< in: mtr */ btr_cur_t* cursor) /*!< out: cursor on node pointer record, its page x-latched */ { mem_heap_t* heap; rec_t* rec = page_rec_get_next(page_get_infimum_rec(buf_block_get_frame( block))); btr_cur_position(index, rec, block, cursor); heap = mem_heap_create(100); btr_page_get_father_node_ptr(NULL, heap, cursor, mtr); mem_heap_free(heap); } /** Free a B-tree root page. btr_free_but_not_root() must already have been called. In a persistent tablespace, the caller must invoke fsp_init_file_page() before mtr.commit(). @param[in,out] block index root page @param[in,out] mtr mini-transaction */ static void btr_free_root( buf_block_t* block, mtr_t* mtr) { fseg_header_t* header; ut_ad(mtr_memo_contains_flagged(mtr, block, MTR_MEMO_PAGE_X_FIX)); ut_ad(mtr->is_named_space(block->page.id.space())); SRV_CORRUPT_TABLE_CHECK(block, return;); btr_search_drop_page_hash_index(block); header = buf_block_get_frame(block) + PAGE_HEADER + PAGE_BTR_SEG_TOP; #ifdef UNIV_BTR_DEBUG ut_a(btr_root_fseg_validate(header, block->page.id.space())); #endif /* UNIV_BTR_DEBUG */ while (!fseg_free_step(header, true, mtr)) { /* Free the entire segment in small steps. */ } } /** PAGE_INDEX_ID value for freed index B-trees */ static const index_id_t BTR_FREED_INDEX_ID = 0; /** Invalidate an index root page so that btr_free_root_check() will not find it. @param[in,out] block index root page @param[in,out] mtr mini-transaction */ static void btr_free_root_invalidate( buf_block_t* block, mtr_t* mtr) { ut_ad(page_is_root(block->frame)); btr_page_set_index_id( buf_block_get_frame(block), buf_block_get_page_zip(block), BTR_FREED_INDEX_ID, mtr); } /** Prepare to free a B-tree. @param[in] page_id page id @param[in] page_size page size @param[in] index_id PAGE_INDEX_ID contents @param[in,out] mtr mini-transaction @return root block, to invoke btr_free_but_not_root() and btr_free_root() @retval NULL if the page is no longer a matching B-tree page */ static MY_ATTRIBUTE((warn_unused_result)) buf_block_t* btr_free_root_check( const page_id_t& page_id, const page_size_t& page_size, index_id_t index_id, mtr_t* mtr) { ut_ad(page_id.space() != srv_tmp_space.space_id()); ut_ad(index_id != BTR_FREED_INDEX_ID); buf_block_t* block = buf_page_get( page_id, page_size, RW_X_LATCH, mtr); if (block) { buf_block_dbg_add_level(block, SYNC_TREE_NODE); if (fil_page_index_page_check(block->frame) && index_id == btr_page_get_index_id(block->frame)) { /* This should be a root page. It should not be possible to reassign the same index_id for some other index in the tablespace. */ ut_ad(page_is_root(block->frame)); } else { block = NULL; } } return(block); } /** Create the root node for a new index tree. @param[in] type type of the index @param[in] space space where created @param[in] page_size page size @param[in] index_id index id @param[in] index index, or NULL when applying TRUNCATE log record during recovery @param[in] btr_redo_create_info used for applying TRUNCATE log @param[in] mtr mini-transaction handle record during recovery @return page number of the created root, FIL_NULL if did not succeed */ ulint btr_create( ulint type, ulint space, const page_size_t& page_size, index_id_t index_id, dict_index_t* index, const btr_create_t* btr_redo_create_info, mtr_t* mtr) { ulint page_no; buf_block_t* block; buf_frame_t* frame; page_t* page; page_zip_des_t* page_zip; ut_ad(mtr->is_named_space(space)); ut_ad(index_id != BTR_FREED_INDEX_ID); /* Create the two new segments (one, in the case of an ibuf tree) for the index tree; the segment headers are put on the allocated root page (for an ibuf tree, not in the root, but on a separate ibuf header page) */ if (type & DICT_IBUF) { /* Allocate first the ibuf header page */ buf_block_t* ibuf_hdr_block = fseg_create( space, 0, IBUF_HEADER + IBUF_TREE_SEG_HEADER, mtr); if (ibuf_hdr_block == NULL) { return(FIL_NULL); } buf_block_dbg_add_level( ibuf_hdr_block, SYNC_IBUF_TREE_NODE_NEW); ut_ad(ibuf_hdr_block->page.id.page_no() == IBUF_HEADER_PAGE_NO); /* Allocate then the next page to the segment: it will be the tree root page */ block = fseg_alloc_free_page( buf_block_get_frame(ibuf_hdr_block) + IBUF_HEADER + IBUF_TREE_SEG_HEADER, IBUF_TREE_ROOT_PAGE_NO, FSP_UP, mtr); ut_ad(block->page.id.page_no() == IBUF_TREE_ROOT_PAGE_NO); } else { block = fseg_create(space, 0, PAGE_HEADER + PAGE_BTR_SEG_TOP, mtr); } if (block == NULL) { return(FIL_NULL); } page_no = block->page.id.page_no(); frame = buf_block_get_frame(block); if (type & DICT_IBUF) { /* It is an insert buffer tree: initialize the free list */ buf_block_dbg_add_level(block, SYNC_IBUF_TREE_NODE_NEW); ut_ad(page_no == IBUF_TREE_ROOT_PAGE_NO); flst_init(frame + PAGE_HEADER + PAGE_BTR_IBUF_FREE_LIST, mtr); } else { /* It is a non-ibuf tree: create a file segment for leaf pages */ buf_block_dbg_add_level(block, SYNC_TREE_NODE_NEW); if (!fseg_create(space, page_no, PAGE_HEADER + PAGE_BTR_SEG_LEAF, mtr)) { /* Not enough space for new segment, free root segment before return. */ btr_free_root(block, mtr); if (!dict_table_is_temporary(index->table)) { btr_free_root_invalidate(block, mtr); } return(FIL_NULL); } /* The fseg create acquires a second latch on the page, therefore we must declare it: */ buf_block_dbg_add_level(block, SYNC_TREE_NODE_NEW); } /* Create a new index page on the allocated segment page */ page_zip = buf_block_get_page_zip(block); if (page_zip) { if (index != NULL) { page = page_create_zip(block, index, 0, 0, NULL, mtr); } else { /* Create a compressed index page when applying TRUNCATE log record during recovery */ ut_ad(btr_redo_create_info != NULL); redo_page_compress_t page_comp_info; page_comp_info.type = type; page_comp_info.index_id = index_id; page_comp_info.n_fields = btr_redo_create_info->n_fields; page_comp_info.field_len = btr_redo_create_info->field_len; page_comp_info.fields = btr_redo_create_info->fields; page_comp_info.trx_id_pos = btr_redo_create_info->trx_id_pos; page = page_create_zip(block, NULL, 0, 0, &page_comp_info, mtr); } } else { if (index != NULL) { page = page_create(block, mtr, dict_table_is_comp(index->table), dict_index_is_spatial(index)); } else { ut_ad(btr_redo_create_info != NULL); page = page_create( block, mtr, btr_redo_create_info->format_flags, type == DICT_SPATIAL); } /* Set the level of the new index page */ btr_page_set_level(page, NULL, 0, mtr); } /* Set the index id of the page */ btr_page_set_index_id(page, page_zip, index_id, mtr); /* Set the next node and previous node fields */ btr_page_set_next(page, page_zip, FIL_NULL, mtr); btr_page_set_prev(page, page_zip, FIL_NULL, mtr); /* We reset the free bits for the page to allow creation of several trees in the same mtr, otherwise the latch on a bitmap page would prevent it because of the latching order. index will be NULL if we are recreating the table during recovery on behalf of TRUNCATE. Note: Insert Buffering is disabled for temporary tables given that most temporary tables are smaller in size and short-lived. */ if (!(type & DICT_CLUSTERED) && (index == NULL || !dict_table_is_temporary(index->table))) { ibuf_reset_free_bits(block); } /* In the following assertion we test that two records of maximum allowed size fit on the root page: this fact is needed to ensure correctness of split algorithms */ ut_ad(page_get_max_insert_size(page, 2) > 2 * BTR_PAGE_MAX_REC_SIZE); return(page_no); } /** Free a B-tree except the root page. The root page MUST be freed after this by calling btr_free_root. @param[in,out] block root page @param[in] log_mode mtr logging mode @param[in] is_ahi_allowed false for intrinsic tables because AHI is disallowed. See dict_index_t->disable_ahi, true for other tables */ static void btr_free_but_not_root( buf_block_t* block, mtr_log_t log_mode, bool is_ahi_allowed) { ibool finished; mtr_t mtr; ut_ad(page_is_root(block->frame)); bool ahi = false; if (is_ahi_allowed) { ut_ad(mutex_own(&dict_sys->mutex)); ahi = btr_search_enabled; } leaf_loop: mtr_start(&mtr); mtr_set_log_mode(&mtr, log_mode); mtr.set_named_space(block->page.id.space()); page_t* root = block->frame; SRV_CORRUPT_TABLE_CHECK(root, { mtr_commit(&mtr); return; }); #ifdef UNIV_BTR_DEBUG ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_LEAF + root, block->page.id.space())); ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_TOP + root, block->page.id.space())); #endif /* UNIV_BTR_DEBUG */ /* NOTE: page hash indexes are dropped when a page is freed inside fsp0fsp. */ finished = fseg_free_step(root + PAGE_HEADER + PAGE_BTR_SEG_LEAF, ahi, &mtr); mtr_commit(&mtr); if (!finished) { goto leaf_loop; } top_loop: mtr_start(&mtr); mtr_set_log_mode(&mtr, log_mode); mtr.set_named_space(block->page.id.space()); root = block->frame; SRV_CORRUPT_TABLE_CHECK(root, { mtr_commit(&mtr); return; }); #ifdef UNIV_BTR_DEBUG ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_TOP + root, block->page.id.space())); #endif /* UNIV_BTR_DEBUG */ finished = fseg_free_step_not_header( root + PAGE_HEADER + PAGE_BTR_SEG_TOP, ahi, &mtr); mtr_commit(&mtr); if (!finished) { goto top_loop; } } /** Free a persistent index tree if it exists. @param[in] page_id root page id @param[in] page_size page size @param[in] index_id PAGE_INDEX_ID contents @param[in,out] mtr mini-transaction */ void btr_free_if_exists( const page_id_t& page_id, const page_size_t& page_size, index_id_t index_id, mtr_t* mtr) { buf_block_t* root = btr_free_root_check( page_id, page_size, index_id, mtr); if (root == NULL) { return; } btr_free_but_not_root(root, mtr->get_log_mode(), true); mtr->set_named_space(page_id.space()); btr_free_root(root, mtr); btr_free_root_invalidate(root, mtr); } /** Free an index tree in a temporary tablespace or during TRUNCATE TABLE. @param[in] page_id root page id @param[in] page_size page size @param[in] is_intrinsic true for intrinsic tables else false */ void btr_free( const page_id_t& page_id, const page_size_t& page_size, bool is_intrinsic) { mtr_t mtr; mtr.start(); mtr.set_log_mode(MTR_LOG_NO_REDO); buf_block_t* block = buf_page_get( page_id, page_size, RW_X_LATCH, &mtr); ut_ad(page_is_root(block->frame)); btr_free_but_not_root(block, MTR_LOG_NO_REDO, !is_intrinsic); btr_free_root(block, &mtr); mtr.commit(); } #endif /* !UNIV_HOTBACKUP */ /*************************************************************//** Reorganizes an index page. IMPORTANT: On success, the caller will have to update IBUF_BITMAP_FREE if this is a compressed leaf page in a secondary index. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(). On uncompressed pages, IBUF_BITMAP_FREE is unaffected by reorganization. @retval true if the operation was successful @retval false if it is a compressed page, and recompression failed */ bool btr_page_reorganize_low( /*====================*/ bool recovery,/*!< in: true if called in recovery: locks should not be updated, i.e., there cannot exist locks on the page, and a hash index should not be dropped: it cannot exist */ ulint z_level,/*!< in: compression level to be used if dealing with compressed page */ page_cur_t* cursor, /*!< in/out: page cursor */ dict_index_t* index, /*!< in: the index tree of the page */ mtr_t* mtr) /*!< in/out: mini-transaction */ { buf_block_t* block = page_cur_get_block(cursor); #ifndef UNIV_HOTBACKUP buf_pool_t* buf_pool = buf_pool_from_bpage(&block->page); #endif /* !UNIV_HOTBACKUP */ page_t* page = buf_block_get_frame(block); page_zip_des_t* page_zip = buf_block_get_page_zip(block); buf_block_t* temp_block; page_t* temp_page; ulint data_size1; ulint data_size2; ulint max_ins_size1; ulint max_ins_size2; bool success = false; ulint pos; bool log_compressed; bool is_spatial; ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); btr_assert_not_corrupted(block, index); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ data_size1 = page_get_data_size(page); max_ins_size1 = page_get_max_insert_size_after_reorganize(page, 1); /* Turn logging off */ mtr_log_t log_mode = mtr_set_log_mode(mtr, MTR_LOG_NONE); #ifndef UNIV_HOTBACKUP temp_block = buf_block_alloc(buf_pool); #else /* !UNIV_HOTBACKUP */ ut_ad(block == back_block1); temp_block = back_block2; #endif /* !UNIV_HOTBACKUP */ temp_page = temp_block->frame; MONITOR_INC(MONITOR_INDEX_REORG_ATTEMPTS); /* This function can be called by log redo with a "dummy" index. So we would trust more on the original page's type */ is_spatial = (fil_page_get_type(page) == FIL_PAGE_RTREE || dict_index_is_spatial(index)); /* Copy the old page to temporary space */ buf_frame_copy(temp_page, page); #ifndef UNIV_HOTBACKUP if (!recovery) { btr_search_drop_page_hash_index(block); } #endif /* !UNIV_HOTBACKUP */ /* Save the cursor position. */ pos = page_rec_get_n_recs_before(page_cur_get_rec(cursor)); /* Recreate the page: note that global data on page (possible segment headers, next page-field, etc.) is preserved intact */ page_create(block, mtr, dict_table_is_comp(index->table), is_spatial); /* Copy the records from the temporary space to the recreated page; do not copy the lock bits yet */ page_copy_rec_list_end_no_locks(block, temp_block, page_get_infimum_rec(temp_page), index, mtr); /* Multiple transactions cannot simultaneously operate on the same temp-table in parallel. max_trx_id is ignored for temp tables because it not required for MVCC. */ if (dict_index_is_sec_or_ibuf(index) && page_is_leaf(page) && !dict_table_is_temporary(index->table)) { /* Copy max trx id to recreated page */ trx_id_t max_trx_id = page_get_max_trx_id(temp_page); page_set_max_trx_id(block, NULL, max_trx_id, mtr); /* In crash recovery, dict_index_is_sec_or_ibuf() always holds, even for clustered indexes. max_trx_id is unused in clustered index pages. */ ut_ad(max_trx_id != 0 || recovery); } /* If innodb_log_compressed_pages is ON, page reorganize should log the compressed page image.*/ log_compressed = page_zip && page_zip_log_pages; if (log_compressed) { mtr_set_log_mode(mtr, log_mode); } if (page_zip && !page_zip_compress(page_zip, page, index, z_level, NULL, mtr)) { /* Restore the old page and exit. */ #if defined UNIV_DEBUG || defined UNIV_ZIP_DEBUG /* Check that the bytes that we skip are identical. */ ut_a(!memcmp(page, temp_page, PAGE_HEADER)); ut_a(!memcmp(PAGE_HEADER + PAGE_N_RECS + page, PAGE_HEADER + PAGE_N_RECS + temp_page, PAGE_DATA - (PAGE_HEADER + PAGE_N_RECS))); ut_a(!memcmp(UNIV_PAGE_SIZE - FIL_PAGE_DATA_END + page, UNIV_PAGE_SIZE - FIL_PAGE_DATA_END + temp_page, FIL_PAGE_DATA_END)); #endif /* UNIV_DEBUG || UNIV_ZIP_DEBUG */ memcpy(PAGE_HEADER + page, PAGE_HEADER + temp_page, PAGE_N_RECS - PAGE_N_DIR_SLOTS); memcpy(PAGE_DATA + page, PAGE_DATA + temp_page, UNIV_PAGE_SIZE - PAGE_DATA - FIL_PAGE_DATA_END); #if defined UNIV_DEBUG || defined UNIV_ZIP_DEBUG ut_a(!memcmp(page, temp_page, UNIV_PAGE_SIZE)); #endif /* UNIV_DEBUG || UNIV_ZIP_DEBUG */ goto func_exit; } #ifndef UNIV_HOTBACKUP /* No locks are acquried for intrinsic tables. */ if (!recovery && !dict_table_is_locking_disabled(index->table)) { /* Update the record lock bitmaps */ lock_move_reorganize_page(block, temp_block); } #endif /* !UNIV_HOTBACKUP */ data_size2 = page_get_data_size(page); max_ins_size2 = page_get_max_insert_size_after_reorganize(page, 1); if (data_size1 != data_size2 || max_ins_size1 != max_ins_size2) { ib::error() << "Page old data size " << data_size1 << " new data size " << data_size2 << ", page old max ins size " << max_ins_size1 << " new max ins size " << max_ins_size2; ib::error() << BUG_REPORT_MSG; ut_ad(0); } else { success = true; } /* Restore the cursor position. */ if (pos > 0) { cursor->rec = page_rec_get_nth(page, pos); } else { ut_ad(cursor->rec == page_get_infimum_rec(page)); } func_exit: #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ #ifndef UNIV_HOTBACKUP buf_block_free(temp_block); #endif /* !UNIV_HOTBACKUP */ /* Restore logging mode */ mtr_set_log_mode(mtr, log_mode); #ifndef UNIV_HOTBACKUP if (success) { mlog_id_t type; byte* log_ptr; /* Write the log record */ if (page_zip) { ut_ad(page_is_comp(page)); type = MLOG_ZIP_PAGE_REORGANIZE; } else if (page_is_comp(page)) { type = MLOG_COMP_PAGE_REORGANIZE; } else { type = MLOG_PAGE_REORGANIZE; } log_ptr = log_compressed ? NULL : mlog_open_and_write_index( mtr, page, index, type, page_zip ? 1 : 0); /* For compressed pages write the compression level. */ if (log_ptr && page_zip) { mach_write_to_1(log_ptr, z_level); mlog_close(mtr, log_ptr + 1); } MONITOR_INC(MONITOR_INDEX_REORG_SUCCESSFUL); } #endif /* !UNIV_HOTBACKUP */ return(success); } /*************************************************************//** Reorganizes an index page. IMPORTANT: On success, the caller will have to update IBUF_BITMAP_FREE if this is a compressed leaf page in a secondary index. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(). On uncompressed pages, IBUF_BITMAP_FREE is unaffected by reorganization. @retval true if the operation was successful @retval false if it is a compressed page, and recompression failed */ static MY_ATTRIBUTE((nonnull)) bool btr_page_reorganize_block( /*======================*/ bool recovery,/*!< in: true if called in recovery: locks should not be updated, i.e., there cannot exist locks on the page, and a hash index should not be dropped: it cannot exist */ ulint z_level,/*!< in: compression level to be used if dealing with compressed page */ buf_block_t* block, /*!< in/out: B-tree page */ dict_index_t* index, /*!< in: the index tree of the page */ mtr_t* mtr) /*!< in/out: mini-transaction */ { page_cur_t cur; page_cur_set_before_first(block, &cur); return(btr_page_reorganize_low(recovery, z_level, &cur, index, mtr)); } #ifndef UNIV_HOTBACKUP /*************************************************************//** Reorganizes an index page. IMPORTANT: On success, the caller will have to update IBUF_BITMAP_FREE if this is a compressed leaf page in a secondary index. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(). On uncompressed pages, IBUF_BITMAP_FREE is unaffected by reorganization. @retval true if the operation was successful @retval false if it is a compressed page, and recompression failed */ bool btr_page_reorganize( /*================*/ page_cur_t* cursor, /*!< in/out: page cursor */ dict_index_t* index, /*!< in: the index tree of the page */ mtr_t* mtr) /*!< in/out: mini-transaction */ { return(btr_page_reorganize_low(false, page_zip_level, cursor, index, mtr)); } #endif /* !UNIV_HOTBACKUP */ /***********************************************************//** Parses a redo log record of reorganizing a page. @return end of log record or NULL */ byte* btr_parse_page_reorganize( /*======================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ dict_index_t* index, /*!< in: record descriptor */ bool compressed,/*!< in: true if compressed page */ buf_block_t* block, /*!< in: page to be reorganized, or NULL */ mtr_t* mtr) /*!< in: mtr or NULL */ { ulint level; ut_ad(ptr != NULL); ut_ad(end_ptr != NULL); ut_ad(index != NULL); /* If dealing with a compressed page the record has the compression level used during original compression written in one byte. Otherwise record is empty. */ if (compressed) { if (ptr == end_ptr) { return(NULL); } level = mach_read_from_1(ptr); ut_a(level <= 9); ++ptr; } else { level = page_zip_level; } if (block != NULL) { btr_page_reorganize_block(true, level, block, index, mtr); } return(ptr); } #ifndef UNIV_HOTBACKUP /*************************************************************//** Empties an index page. @see btr_page_create(). */ static void btr_page_empty( /*===========*/ buf_block_t* block, /*!< in: page to be emptied */ page_zip_des_t* page_zip,/*!< out: compressed page, or NULL */ dict_index_t* index, /*!< in: index of the page */ ulint level, /*!< in: the B-tree level of the page */ mtr_t* mtr) /*!< in: mtr */ { page_t* page = buf_block_get_frame(block); ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); ut_ad(page_zip == buf_block_get_page_zip(block)); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ btr_search_drop_page_hash_index(block); /* Recreate the page: note that global data on page (possible segment headers, next page-field, etc.) is preserved intact */ if (page_zip) { page_create_zip(block, index, level, 0, NULL, mtr); } else { page_create(block, mtr, dict_table_is_comp(index->table), dict_index_is_spatial(index)); btr_page_set_level(page, NULL, level, mtr); } } /*************************************************************//** Makes tree one level higher by splitting the root, and inserts the tuple. It is assumed that mtr contains an x-latch on the tree. NOTE that the operation of this function must always succeed, we cannot reverse it: therefore enough free disk space must be guaranteed to be available before this function is called. @return inserted record */ rec_t* btr_root_raise_and_insert( /*======================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in: cursor at which to insert: must be on the root page; when the function returns, the cursor is positioned on the predecessor of the inserted record */ ulint** offsets,/*!< out: offsets on inserted record */ mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */ const dtuple_t* tuple, /*!< in: tuple to insert */ ulint n_ext, /*!< in: number of externally stored columns */ mtr_t* mtr) /*!< in: mtr */ { dict_index_t* index; page_t* root; page_t* new_page; ulint new_page_no; rec_t* rec; dtuple_t* node_ptr; ulint level; rec_t* node_ptr_rec; page_cur_t* page_cursor; page_zip_des_t* root_page_zip; page_zip_des_t* new_page_zip; buf_block_t* root_block; buf_block_t* new_block; root = btr_cur_get_page(cursor); root_block = btr_cur_get_block(cursor); root_page_zip = buf_block_get_page_zip(root_block); ut_ad(!page_is_empty(root)); index = btr_cur_get_index(cursor); #ifdef UNIV_ZIP_DEBUG ut_a(!root_page_zip || page_zip_validate(root_page_zip, root, index)); #endif /* UNIV_ZIP_DEBUG */ #ifdef UNIV_BTR_DEBUG if (!dict_index_is_ibuf(index)) { ulint space = dict_index_get_space(index); ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_LEAF + root, space)); ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_TOP + root, space)); } ut_a(dict_index_get_page(index) == page_get_page_no(root)); #endif /* UNIV_BTR_DEBUG */ ut_ad(mtr_memo_contains_flagged(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK) || dict_table_is_intrinsic(index->table)); ut_ad(mtr_is_block_fix( mtr, root_block, MTR_MEMO_PAGE_X_FIX, index->table)); /* Allocate a new page to the tree. Root splitting is done by first moving the root records to the new page, emptying the root, putting a node pointer to the new page, and then splitting the new page. */ level = btr_page_get_level(root, mtr); new_block = btr_page_alloc(index, 0, FSP_NO_DIR, level, mtr, mtr); new_page = buf_block_get_frame(new_block); new_page_zip = buf_block_get_page_zip(new_block); ut_a(!new_page_zip == !root_page_zip); ut_a(!new_page_zip || page_zip_get_size(new_page_zip) == page_zip_get_size(root_page_zip)); btr_page_create(new_block, new_page_zip, index, level, mtr); /* Set the next node and previous node fields of new page */ btr_page_set_next(new_page, new_page_zip, FIL_NULL, mtr); btr_page_set_prev(new_page, new_page_zip, FIL_NULL, mtr); /* Copy the records from root to the new page one by one. */ if (0 #ifdef UNIV_ZIP_COPY || new_page_zip #endif /* UNIV_ZIP_COPY */ || !page_copy_rec_list_end(new_block, root_block, page_get_infimum_rec(root), index, mtr)) { ut_a(new_page_zip); /* Copy the page byte for byte. */ page_zip_copy_recs(new_page_zip, new_page, root_page_zip, root, index, mtr); /* Update the lock table and possible hash index. */ if (!dict_table_is_locking_disabled(index->table)) { lock_move_rec_list_end(new_block, root_block, page_get_infimum_rec(root)); } /* Move any existing predicate locks */ if (dict_index_is_spatial(index)) { lock_prdt_rec_move(new_block, root_block); } btr_search_move_or_delete_hash_entries(new_block, root_block, index); } /* If this is a pessimistic insert which is actually done to perform a pessimistic update then we have stored the lock information of the record to be inserted on the infimum of the root page: we cannot discard the lock structs on the root page */ if (!dict_table_is_locking_disabled(index->table)) { lock_update_root_raise(new_block, root_block); } /* Create a memory heap where the node pointer is stored */ if (!*heap) { *heap = mem_heap_create(1000); } rec = page_rec_get_next(page_get_infimum_rec(new_page)); new_page_no = new_block->page.id.page_no(); /* Build the node pointer (= node key and page address) for the child */ if (dict_index_is_spatial(index)) { rtr_mbr_t new_mbr; rtr_page_cal_mbr(index, new_block, &new_mbr, *heap); node_ptr = rtr_index_build_node_ptr( index, &new_mbr, rec, new_page_no, *heap, level); } else { node_ptr = dict_index_build_node_ptr( index, rec, new_page_no, *heap, level); } /* The node pointer must be marked as the predefined minimum record, as there is no lower alphabetical limit to records in the leftmost node of a level: */ dtuple_set_info_bits(node_ptr, dtuple_get_info_bits(node_ptr) | REC_INFO_MIN_REC_FLAG); /* Rebuild the root page to get free space */ btr_page_empty(root_block, root_page_zip, index, level + 1, mtr); /* Set the next node and previous node fields, although they should already have been set. The previous node field must be FIL_NULL if root_page_zip != NULL, because the REC_INFO_MIN_REC_FLAG (of the first user record) will be set if and only if btr_page_get_prev() == FIL_NULL. */ btr_page_set_next(root, root_page_zip, FIL_NULL, mtr); btr_page_set_prev(root, root_page_zip, FIL_NULL, mtr); page_cursor = btr_cur_get_page_cur(cursor); /* Insert node pointer to the root */ page_cur_set_before_first(root_block, page_cursor); node_ptr_rec = page_cur_tuple_insert(page_cursor, node_ptr, index, offsets, heap, 0, mtr); /* The root page should only contain the node pointer to new_page at this point. Thus, the data should fit. */ ut_a(node_ptr_rec); /* We play safe and reset the free bits for the new page */ if (!dict_index_is_clust(index) && !dict_table_is_temporary(index->table)) { ibuf_reset_free_bits(new_block); } /* Reposition the cursor to the child node */ page_cur_search(new_block, index, tuple, page_cursor); /* Split the child and insert tuple */ if (dict_index_is_spatial(index)) { /* Split rtree page and insert tuple */ return(rtr_page_split_and_insert(flags, cursor, offsets, heap, tuple, n_ext, mtr)); } else { return(btr_page_split_and_insert(flags, cursor, offsets, heap, tuple, n_ext, mtr)); } } /*************************************************************//** Decides if the page should be split at the convergence point of inserts converging to the left. @return TRUE if split recommended */ ibool btr_page_get_split_rec_to_left( /*===========================*/ btr_cur_t* cursor, /*!< in: cursor at which to insert */ rec_t** split_rec) /*!< out: if split recommended, the first record on upper half page, or NULL if tuple to be inserted should be first */ { page_t* page; rec_t* insert_point; rec_t* infimum; page = btr_cur_get_page(cursor); insert_point = btr_cur_get_rec(cursor); if (page_header_get_ptr(page, PAGE_LAST_INSERT) == page_rec_get_next(insert_point)) { infimum = page_get_infimum_rec(page); /* If the convergence is in the middle of a page, include also the record immediately before the new insert to the upper page. Otherwise, we could repeatedly move from page to page lots of records smaller than the convergence point. */ if (infimum != insert_point && page_rec_get_next(infimum) != insert_point) { *split_rec = insert_point; } else { *split_rec = page_rec_get_next(insert_point); } return(TRUE); } return(FALSE); } /*************************************************************//** Decides if the page should be split at the convergence point of inserts converging to the right. @return TRUE if split recommended */ ibool btr_page_get_split_rec_to_right( /*============================*/ btr_cur_t* cursor, /*!< in: cursor at which to insert */ rec_t** split_rec) /*!< out: if split recommended, the first record on upper half page, or NULL if tuple to be inserted should be first */ { page_t* page; rec_t* insert_point; page = btr_cur_get_page(cursor); insert_point = btr_cur_get_rec(cursor); /* We use eager heuristics: if the new insert would be right after the previous insert on the same page, we assume that there is a pattern of sequential inserts here. */ if (page_header_get_ptr(page, PAGE_LAST_INSERT) == insert_point) { rec_t* next_rec; next_rec = page_rec_get_next(insert_point); if (page_rec_is_supremum(next_rec)) { split_at_new: /* Split at the new record to insert */ *split_rec = NULL; } else { rec_t* next_next_rec = page_rec_get_next(next_rec); if (page_rec_is_supremum(next_next_rec)) { goto split_at_new; } /* If there are >= 2 user records up from the insert point, split all but 1 off. We want to keep one because then sequential inserts can use the adaptive hash index, as they can do the necessary checks of the right search position just by looking at the records on this page. */ *split_rec = next_next_rec; } return(TRUE); } return(FALSE); } /*************************************************************//** Calculates a split record such that the tuple will certainly fit on its half-page when the split is performed. We assume in this function only that the cursor page has at least one user record. @return split record, or NULL if tuple will be the first record on the lower or upper half-page (determined by btr_page_tuple_smaller()) */ static rec_t* btr_page_get_split_rec( /*===================*/ btr_cur_t* cursor, /*!< in: cursor at which insert should be made */ const dtuple_t* tuple, /*!< in: tuple to insert */ ulint n_ext) /*!< in: number of externally stored columns */ { page_t* page; page_zip_des_t* page_zip; ulint insert_size; ulint free_space; ulint total_data; ulint total_n_recs; ulint total_space; ulint incl_data; rec_t* ins_rec; rec_t* rec; rec_t* next_rec; ulint n; mem_heap_t* heap; ulint* offsets; page = btr_cur_get_page(cursor); insert_size = rec_get_converted_size(cursor->index, tuple, n_ext); free_space = page_get_free_space_of_empty(page_is_comp(page)); page_zip = btr_cur_get_page_zip(cursor); if (page_zip) { /* Estimate the free space of an empty compressed page. */ ulint free_space_zip = page_zip_empty_size( cursor->index->n_fields, page_zip_get_size(page_zip)); if (free_space > (ulint) free_space_zip) { free_space = (ulint) free_space_zip; } } /* free_space is now the free space of a created new page */ total_data = page_get_data_size(page) + insert_size; total_n_recs = page_get_n_recs(page) + 1; ut_ad(total_n_recs >= 2); total_space = total_data + page_dir_calc_reserved_space(total_n_recs); n = 0; incl_data = 0; ins_rec = btr_cur_get_rec(cursor); rec = page_get_infimum_rec(page); heap = NULL; offsets = NULL; /* We start to include records to the left half, and when the space reserved by them exceeds half of total_space, then if the included records fit on the left page, they will be put there if something was left over also for the right page, otherwise the last included record will be the first on the right half page */ do { /* Decide the next record to include */ if (rec == ins_rec) { rec = NULL; /* NULL denotes that tuple is now included */ } else if (rec == NULL) { rec = page_rec_get_next(ins_rec); } else { rec = page_rec_get_next(rec); } if (rec == NULL) { /* Include tuple */ incl_data += insert_size; } else { offsets = rec_get_offsets(rec, cursor->index, offsets, ULINT_UNDEFINED, &heap); incl_data += rec_offs_size(offsets); } n++; } while (incl_data + page_dir_calc_reserved_space(n) < total_space / 2); if (incl_data + page_dir_calc_reserved_space(n) <= free_space) { /* The next record will be the first on the right half page if it is not the supremum record of page */ if (rec == ins_rec) { rec = NULL; goto func_exit; } else if (rec == NULL) { next_rec = page_rec_get_next(ins_rec); } else { next_rec = page_rec_get_next(rec); } ut_ad(next_rec); if (!page_rec_is_supremum(next_rec)) { rec = next_rec; } } func_exit: if (heap) { mem_heap_free(heap); } return(rec); } /*************************************************************//** Returns TRUE if the insert fits on the appropriate half-page with the chosen split_rec. @return true if fits */ static MY_ATTRIBUTE((nonnull(1,3,4,6), warn_unused_result)) bool btr_page_insert_fits( /*=================*/ btr_cur_t* cursor, /*!< in: cursor at which insert should be made */ const rec_t* split_rec,/*!< in: suggestion for first record on upper half-page, or NULL if tuple to be inserted should be first */ ulint** offsets,/*!< in: rec_get_offsets( split_rec, cursor->index); out: garbage */ const dtuple_t* tuple, /*!< in: tuple to insert */ ulint n_ext, /*!< in: number of externally stored columns */ mem_heap_t** heap) /*!< in: temporary memory heap */ { page_t* page; ulint insert_size; ulint free_space; ulint total_data; ulint total_n_recs; const rec_t* rec; const rec_t* end_rec; page = btr_cur_get_page(cursor); ut_ad(!split_rec || !page_is_comp(page) == !rec_offs_comp(*offsets)); ut_ad(!split_rec || rec_offs_validate(split_rec, cursor->index, *offsets)); insert_size = rec_get_converted_size(cursor->index, tuple, n_ext); free_space = page_get_free_space_of_empty(page_is_comp(page)); /* free_space is now the free space of a created new page */ total_data = page_get_data_size(page) + insert_size; total_n_recs = page_get_n_recs(page) + 1; /* We determine which records (from rec to end_rec, not including end_rec) will end up on the other half page from tuple when it is inserted. */ if (split_rec == NULL) { rec = page_rec_get_next(page_get_infimum_rec(page)); end_rec = page_rec_get_next(btr_cur_get_rec(cursor)); } else if (cmp_dtuple_rec(tuple, split_rec, *offsets) >= 0) { rec = page_rec_get_next(page_get_infimum_rec(page)); end_rec = split_rec; } else { rec = split_rec; end_rec = page_get_supremum_rec(page); } if (total_data + page_dir_calc_reserved_space(total_n_recs) <= free_space) { /* Ok, there will be enough available space on the half page where the tuple is inserted */ return(true); } while (rec != end_rec) { /* In this loop we calculate the amount of reserved space after rec is removed from page. */ *offsets = rec_get_offsets(rec, cursor->index, *offsets, ULINT_UNDEFINED, heap); total_data -= rec_offs_size(*offsets); total_n_recs--; if (total_data + page_dir_calc_reserved_space(total_n_recs) <= free_space) { /* Ok, there will be enough available space on the half page where the tuple is inserted */ return(true); } rec = page_rec_get_next_const(rec); } return(false); } /*******************************************************//** Inserts a data tuple to a tree on a non-leaf level. It is assumed that mtr holds an x-latch on the tree. */ void btr_insert_on_non_leaf_level_func( /*==============================*/ ulint flags, /*!< in: undo logging and locking flags */ dict_index_t* index, /*!< in: index */ ulint level, /*!< in: level, must be > 0 */ dtuple_t* tuple, /*!< in: the record to be inserted */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mtr */ { big_rec_t* dummy_big_rec; btr_cur_t cursor; dberr_t err; rec_t* rec; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); rtr_info_t rtr_info; ut_ad(level > 0); if (!dict_index_is_spatial(index)) { if (dict_table_is_intrinsic(index->table)) { btr_cur_search_to_nth_level_with_no_latch( index, level, tuple, PAGE_CUR_LE, &cursor, __FILE__, __LINE__, mtr); } else { btr_cur_search_to_nth_level( index, level, tuple, PAGE_CUR_LE, BTR_CONT_MODIFY_TREE, &cursor, 0, file, line, mtr); } } else { /* For spatial index, initialize structures to track its parents etc. */ rtr_init_rtr_info(&rtr_info, false, &cursor, index, false); rtr_info_update_btr(&cursor, &rtr_info); btr_cur_search_to_nth_level(index, level, tuple, PAGE_CUR_RTREE_INSERT, BTR_CONT_MODIFY_TREE, &cursor, 0, file, line, mtr); } ut_ad(cursor.flag == BTR_CUR_BINARY); err = btr_cur_optimistic_insert( flags | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG | BTR_NO_UNDO_LOG_FLAG, &cursor, &offsets, &heap, tuple, &rec, &dummy_big_rec, 0, NULL, mtr); if (err == DB_FAIL) { err = btr_cur_pessimistic_insert(flags | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG | BTR_NO_UNDO_LOG_FLAG, &cursor, &offsets, &heap, tuple, &rec, &dummy_big_rec, 0, NULL, mtr); ut_a(err == DB_SUCCESS); } if (heap != NULL) { mem_heap_free(heap); } if (dict_index_is_spatial(index)) { ut_ad(cursor.rtr_info); rtr_clean_rtr_info(&rtr_info, true); } } /**************************************************************//** Attaches the halves of an index page on the appropriate level in an index tree. */ static MY_ATTRIBUTE((nonnull)) void btr_attach_half_pages( /*==================*/ ulint flags, /*!< in: undo logging and locking flags */ dict_index_t* index, /*!< in: the index tree */ buf_block_t* block, /*!< in/out: page to be split */ const rec_t* split_rec, /*!< in: first record on upper half page */ buf_block_t* new_block, /*!< in/out: the new half page */ ulint direction, /*!< in: FSP_UP or FSP_DOWN */ mtr_t* mtr) /*!< in: mtr */ { ulint prev_page_no; ulint next_page_no; ulint level; page_t* page = buf_block_get_frame(block); page_t* lower_page; page_t* upper_page; ulint lower_page_no; ulint upper_page_no; page_zip_des_t* lower_page_zip; page_zip_des_t* upper_page_zip; dtuple_t* node_ptr_upper; mem_heap_t* heap; buf_block_t* prev_block = NULL; buf_block_t* next_block = NULL; ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); ut_ad(mtr_is_block_fix( mtr, new_block, MTR_MEMO_PAGE_X_FIX, index->table)); /* Create a memory heap where the data tuple is stored */ heap = mem_heap_create(1024); /* Based on split direction, decide upper and lower pages */ if (direction == FSP_DOWN) { btr_cur_t cursor; ulint* offsets; lower_page = buf_block_get_frame(new_block); lower_page_no = new_block->page.id.page_no(); lower_page_zip = buf_block_get_page_zip(new_block); upper_page = buf_block_get_frame(block); upper_page_no = block->page.id.page_no(); upper_page_zip = buf_block_get_page_zip(block); /* Look up the index for the node pointer to page */ offsets = btr_page_get_father_block(NULL, heap, index, block, mtr, &cursor); /* Replace the address of the old child node (= page) with the address of the new lower half */ btr_node_ptr_set_child_page_no( btr_cur_get_rec(&cursor), btr_cur_get_page_zip(&cursor), offsets, lower_page_no, mtr); mem_heap_empty(heap); } else { lower_page = buf_block_get_frame(block); lower_page_no = block->page.id.page_no(); lower_page_zip = buf_block_get_page_zip(block); upper_page = buf_block_get_frame(new_block); upper_page_no = new_block->page.id.page_no(); upper_page_zip = buf_block_get_page_zip(new_block); } /* Get the previous and next pages of page */ prev_page_no = btr_page_get_prev(page, mtr); next_page_no = btr_page_get_next(page, mtr); const ulint space = block->page.id.space(); /* for consistency, both blocks should be locked, before change */ if (prev_page_no != FIL_NULL && direction == FSP_DOWN) { prev_block = btr_block_get( page_id_t(space, prev_page_no), block->page.size, RW_X_LATCH, index, mtr); } if (next_page_no != FIL_NULL && direction != FSP_DOWN) { next_block = btr_block_get( page_id_t(space, next_page_no), block->page.size, RW_X_LATCH, index, mtr); } /* Get the level of the split pages */ level = btr_page_get_level(buf_block_get_frame(block), mtr); ut_ad(level == btr_page_get_level(buf_block_get_frame(new_block), mtr)); /* Build the node pointer (= node key and page address) for the upper half */ node_ptr_upper = dict_index_build_node_ptr(index, split_rec, upper_page_no, heap, level); /* Insert it next to the pointer to the lower half. Note that this may generate recursion leading to a split on the higher level. */ btr_insert_on_non_leaf_level(flags, index, level + 1, node_ptr_upper, mtr); /* Free the memory heap */ mem_heap_free(heap); /* Update page links of the level */ if (prev_block) { #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(prev_block->frame) == page_is_comp(page)); ut_a(btr_page_get_next(prev_block->frame, mtr) == block->page.id.page_no()); #endif /* UNIV_BTR_DEBUG */ btr_page_set_next(buf_block_get_frame(prev_block), buf_block_get_page_zip(prev_block), lower_page_no, mtr); } if (next_block) { #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(next_block->frame) == page_is_comp(page)); ut_a(btr_page_get_prev(next_block->frame, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ btr_page_set_prev(buf_block_get_frame(next_block), buf_block_get_page_zip(next_block), upper_page_no, mtr); } if (direction == FSP_DOWN) { /* lower_page is new */ btr_page_set_prev(lower_page, lower_page_zip, prev_page_no, mtr); } else { ut_ad(btr_page_get_prev(lower_page, mtr) == prev_page_no); } btr_page_set_next(lower_page, lower_page_zip, upper_page_no, mtr); btr_page_set_prev(upper_page, upper_page_zip, lower_page_no, mtr); if (direction != FSP_DOWN) { /* upper_page is new */ btr_page_set_next(upper_page, upper_page_zip, next_page_no, mtr); } else { ut_ad(btr_page_get_next(upper_page, mtr) == next_page_no); } } /*************************************************************//** Determine if a tuple is smaller than any record on the page. @return TRUE if smaller */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) bool btr_page_tuple_smaller( /*===================*/ btr_cur_t* cursor, /*!< in: b-tree cursor */ const dtuple_t* tuple, /*!< in: tuple to consider */ ulint** offsets,/*!< in/out: temporary storage */ ulint n_uniq, /*!< in: number of unique fields in the index page records */ mem_heap_t** heap) /*!< in/out: heap for offsets */ { buf_block_t* block; const rec_t* first_rec; page_cur_t pcur; /* Read the first user record in the page. */ block = btr_cur_get_block(cursor); page_cur_set_before_first(block, &pcur); page_cur_move_to_next(&pcur); first_rec = page_cur_get_rec(&pcur); *offsets = rec_get_offsets( first_rec, cursor->index, *offsets, n_uniq, heap); return(cmp_dtuple_rec(tuple, first_rec, *offsets) < 0); } /** Insert the tuple into the right sibling page, if the cursor is at the end of a page. @param[in] flags undo logging and locking flags @param[in,out] cursor cursor at which to insert; when the function succeeds, the cursor is positioned before the insert point. @param[out] offsets offsets on inserted record @param[in,out] heap memory heap for allocating offsets @param[in] tuple tuple to insert @param[in] n_ext number of externally stored columns @param[in,out] mtr mini-transaction @return inserted record (first record on the right sibling page); the cursor will be positioned on the page infimum @retval NULL if the operation was not performed */ static rec_t* btr_insert_into_right_sibling( ulint flags, btr_cur_t* cursor, ulint** offsets, mem_heap_t* heap, const dtuple_t* tuple, ulint n_ext, mtr_t* mtr) { buf_block_t* block = btr_cur_get_block(cursor); page_t* page = buf_block_get_frame(block); ulint next_page_no = btr_page_get_next(page, mtr); ut_ad(dict_table_is_intrinsic(cursor->index->table) || mtr_memo_contains_flagged( mtr, dict_index_get_lock(cursor->index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); ut_ad(mtr_is_block_fix( mtr, block, MTR_MEMO_PAGE_X_FIX, cursor->index->table)); ut_ad(heap); if (next_page_no == FIL_NULL || !page_rec_is_supremum( page_rec_get_next(btr_cur_get_rec(cursor)))) { return(NULL); } page_cur_t next_page_cursor; buf_block_t* next_block; page_t* next_page; btr_cur_t next_father_cursor; rec_t* rec = NULL; ulint max_size; const ulint space = block->page.id.space(); next_block = btr_block_get( page_id_t(space, next_page_no), block->page.size, RW_X_LATCH, cursor->index, mtr); next_page = buf_block_get_frame(next_block); bool is_leaf = page_is_leaf(next_page); btr_page_get_father( cursor->index, next_block, mtr, &next_father_cursor); page_cur_search( next_block, cursor->index, tuple, PAGE_CUR_LE, &next_page_cursor); max_size = page_get_max_insert_size_after_reorganize(next_page, 1); /* Extends gap lock for the next page */ if (!dict_table_is_locking_disabled(cursor->index->table)) { lock_update_split_left(next_block, block); } rec = page_cur_tuple_insert( &next_page_cursor, tuple, cursor->index, offsets, &heap, n_ext, mtr); if (rec == NULL) { if (is_leaf && next_block->page.size.is_compressed() && !dict_index_is_clust(cursor->index) && !dict_table_is_temporary(cursor->index->table)) { /* Reset the IBUF_BITMAP_FREE bits, because page_cur_tuple_insert() will have attempted page reorganize before failing. */ ibuf_reset_free_bits(next_block); } return(NULL); } ibool compressed; dberr_t err; ulint level = btr_page_get_level(next_page, mtr); /* adjust cursor position */ *btr_cur_get_page_cur(cursor) = next_page_cursor; ut_ad(btr_cur_get_rec(cursor) == page_get_infimum_rec(next_page)); ut_ad(page_rec_get_next(page_get_infimum_rec(next_page)) == rec); /* We have to change the parent node pointer */ compressed = btr_cur_pessimistic_delete( &err, TRUE, &next_father_cursor, BTR_CREATE_FLAG, false, mtr); ut_a(err == DB_SUCCESS); if (!compressed) { btr_cur_compress_if_useful(&next_father_cursor, FALSE, mtr); } dtuple_t* node_ptr = dict_index_build_node_ptr( cursor->index, rec, next_block->page.id.page_no(), heap, level); btr_insert_on_non_leaf_level( flags, cursor->index, level + 1, node_ptr, mtr); ut_ad(rec_offs_validate(rec, cursor->index, *offsets)); if (is_leaf && !dict_index_is_clust(cursor->index) && !dict_table_is_temporary(cursor->index->table)) { /* Update the free bits of the B-tree page in the insert buffer bitmap. */ if (next_block->page.size.is_compressed()) { ibuf_update_free_bits_zip(next_block, mtr); } else { ibuf_update_free_bits_if_full( next_block, max_size, rec_offs_size(*offsets) + PAGE_DIR_SLOT_SIZE); } } return(rec); } /*************************************************************//** Splits an index page to halves and inserts the tuple. It is assumed that mtr holds an x-latch to the index tree. NOTE: the tree x-latch is released within this function! NOTE that the operation of this function must always succeed, we cannot reverse it: therefore enough free disk space (2 pages) must be guaranteed to be available before this function is called. @return inserted record */ rec_t* btr_page_split_and_insert( /*======================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in: cursor at which to insert; when the function returns, the cursor is positioned on the predecessor of the inserted record */ ulint** offsets,/*!< out: offsets on inserted record */ mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */ const dtuple_t* tuple, /*!< in: tuple to insert */ ulint n_ext, /*!< in: number of externally stored columns */ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; page_t* page; page_zip_des_t* page_zip; ulint page_no; byte direction; ulint hint_page_no; buf_block_t* new_block; page_t* new_page; page_zip_des_t* new_page_zip; rec_t* split_rec; buf_block_t* left_block; buf_block_t* right_block; buf_block_t* insert_block; page_cur_t* page_cursor; rec_t* first_rec; byte* buf = 0; /* remove warning */ rec_t* move_limit; ibool insert_will_fit; ibool insert_left; ulint n_iterations = 0; rec_t* rec; ulint n_uniq; dict_index_t* index; index = btr_cur_get_index(cursor); if (dict_index_is_spatial(index)) { /* Split rtree page and update parent */ return(rtr_page_split_and_insert(flags, cursor, offsets, heap, tuple, n_ext, mtr)); } if (!*heap) { *heap = mem_heap_create(1024); } n_uniq = dict_index_get_n_unique_in_tree(cursor->index); func_start: mem_heap_empty(*heap); *offsets = NULL; ut_ad(mtr_memo_contains_flagged(mtr, dict_index_get_lock(cursor->index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK) || dict_table_is_intrinsic(cursor->index->table)); ut_ad(!dict_index_is_online_ddl(cursor->index) || (flags & BTR_CREATE_FLAG) || dict_index_is_clust(cursor->index)); ut_ad(rw_lock_own_flagged(dict_index_get_lock(cursor->index), RW_LOCK_FLAG_X | RW_LOCK_FLAG_SX) || dict_table_is_intrinsic(cursor->index->table)); block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); page_zip = buf_block_get_page_zip(block); ut_ad(mtr_is_block_fix( mtr, block, MTR_MEMO_PAGE_X_FIX, cursor->index->table)); ut_ad(!page_is_empty(page)); /* try to insert to the next page if possible before split */ rec = btr_insert_into_right_sibling( flags, cursor, offsets, *heap, tuple, n_ext, mtr); if (rec != NULL) { return(rec); } page_no = block->page.id.page_no(); /* 1. Decide the split record; split_rec == NULL means that the tuple to be inserted should be the first record on the upper half-page */ insert_left = FALSE; if (n_iterations > 0) { direction = FSP_UP; hint_page_no = page_no + 1; split_rec = btr_page_get_split_rec(cursor, tuple, n_ext); if (split_rec == NULL) { insert_left = btr_page_tuple_smaller( cursor, tuple, offsets, n_uniq, heap); } } else if (btr_page_get_split_rec_to_right(cursor, &split_rec)) { direction = FSP_UP; hint_page_no = page_no + 1; } else if (btr_page_get_split_rec_to_left(cursor, &split_rec)) { direction = FSP_DOWN; hint_page_no = page_no - 1; ut_ad(split_rec); } else { direction = FSP_UP; hint_page_no = page_no + 1; /* If there is only one record in the index page, we can't split the node in the middle by default. We need to determine whether the new record will be inserted to the left or right. */ if (page_get_n_recs(page) > 1) { split_rec = page_get_middle_rec(page); } else if (btr_page_tuple_smaller(cursor, tuple, offsets, n_uniq, heap)) { split_rec = page_rec_get_next( page_get_infimum_rec(page)); } else { split_rec = NULL; } } /* 2. Allocate a new page to the index */ new_block = btr_page_alloc(cursor->index, hint_page_no, direction, btr_page_get_level(page, mtr), mtr, mtr); new_page = buf_block_get_frame(new_block); new_page_zip = buf_block_get_page_zip(new_block); btr_page_create(new_block, new_page_zip, cursor->index, btr_page_get_level(page, mtr), mtr); /* 3. Calculate the first record on the upper half-page, and the first record (move_limit) on original page which ends up on the upper half */ if (split_rec) { first_rec = move_limit = split_rec; *offsets = rec_get_offsets(split_rec, cursor->index, *offsets, n_uniq, heap); insert_left = cmp_dtuple_rec(tuple, split_rec, *offsets) < 0; if (!insert_left && new_page_zip && n_iterations > 0) { /* If a compressed page has already been split, avoid further splits by inserting the record to an empty page. */ split_rec = NULL; goto insert_empty; } } else if (insert_left) { ut_a(n_iterations > 0); first_rec = page_rec_get_next(page_get_infimum_rec(page)); move_limit = page_rec_get_next(btr_cur_get_rec(cursor)); } else { insert_empty: ut_ad(!split_rec); ut_ad(!insert_left); buf = UT_NEW_ARRAY_NOKEY( byte, rec_get_converted_size(cursor->index, tuple, n_ext)); first_rec = rec_convert_dtuple_to_rec(buf, cursor->index, tuple, n_ext); move_limit = page_rec_get_next(btr_cur_get_rec(cursor)); } /* 4. Do first the modifications in the tree structure */ btr_attach_half_pages(flags, cursor->index, block, first_rec, new_block, direction, mtr); /* If the split is made on the leaf level and the insert will fit on the appropriate half-page, we may release the tree x-latch. We can then move the records after releasing the tree latch, thus reducing the tree latch contention. */ if (split_rec) { insert_will_fit = !new_page_zip && btr_page_insert_fits(cursor, split_rec, offsets, tuple, n_ext, heap); } else { if (!insert_left) { UT_DELETE_ARRAY(buf); buf = NULL; } insert_will_fit = !new_page_zip && btr_page_insert_fits(cursor, NULL, offsets, tuple, n_ext, heap); } if (!srv_read_only_mode && !dict_table_is_intrinsic(cursor->index->table) && insert_will_fit && page_is_leaf(page) && !dict_index_is_online_ddl(cursor->index)) { mtr->memo_release( dict_index_get_lock(cursor->index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK); /* NOTE: We cannot release root block latch here, because it has segment header and already modified in most of cases.*/ } /* 5. Move then the records to the new page */ if (direction == FSP_DOWN) { /* fputs("Split left\n", stderr); */ if (0 #ifdef UNIV_ZIP_COPY || page_zip #endif /* UNIV_ZIP_COPY */ || !page_move_rec_list_start(new_block, block, move_limit, cursor->index, mtr)) { /* For some reason, compressing new_page failed, even though it should contain fewer records than the original page. Copy the page byte for byte and then delete the records from both pages as appropriate. Deleting will always succeed. */ ut_a(new_page_zip); page_zip_copy_recs(new_page_zip, new_page, page_zip, page, cursor->index, mtr); page_delete_rec_list_end(move_limit - page + new_page, new_block, cursor->index, ULINT_UNDEFINED, ULINT_UNDEFINED, mtr); /* Update the lock table and possible hash index. */ if (!dict_table_is_locking_disabled( cursor->index->table)) { lock_move_rec_list_start( new_block, block, move_limit, new_page + PAGE_NEW_INFIMUM); } btr_search_move_or_delete_hash_entries( new_block, block, cursor->index); /* Delete the records from the source page. */ page_delete_rec_list_start(move_limit, block, cursor->index, mtr); } left_block = new_block; right_block = block; if (!dict_table_is_locking_disabled(cursor->index->table)) { lock_update_split_left(right_block, left_block); } } else { /* fputs("Split right\n", stderr); */ if (0 #ifdef UNIV_ZIP_COPY || page_zip #endif /* UNIV_ZIP_COPY */ || !page_move_rec_list_end(new_block, block, move_limit, cursor->index, mtr)) { /* For some reason, compressing new_page failed, even though it should contain fewer records than the original page. Copy the page byte for byte and then delete the records from both pages as appropriate. Deleting will always succeed. */ ut_a(new_page_zip); page_zip_copy_recs(new_page_zip, new_page, page_zip, page, cursor->index, mtr); page_delete_rec_list_start(move_limit - page + new_page, new_block, cursor->index, mtr); /* Update the lock table and possible hash index. */ if (!dict_table_is_locking_disabled( cursor->index->table)) { lock_move_rec_list_end( new_block, block, move_limit); } ut_ad(!dict_index_is_spatial(index)); btr_search_move_or_delete_hash_entries( new_block, block, cursor->index); /* Delete the records from the source page. */ page_delete_rec_list_end(move_limit, block, cursor->index, ULINT_UNDEFINED, ULINT_UNDEFINED, mtr); } left_block = block; right_block = new_block; if (!dict_table_is_locking_disabled(cursor->index->table)) { lock_update_split_right(right_block, left_block); } } #ifdef UNIV_ZIP_DEBUG if (page_zip) { ut_a(page_zip_validate(page_zip, page, cursor->index)); ut_a(page_zip_validate(new_page_zip, new_page, cursor->index)); } #endif /* UNIV_ZIP_DEBUG */ /* At this point, split_rec, move_limit and first_rec may point to garbage on the old page. */ /* 6. The split and the tree modification is now completed. Decide the page where the tuple should be inserted */ if (insert_left) { insert_block = left_block; } else { insert_block = right_block; } /* 7. Reposition the cursor for insert and try insertion */ page_cursor = btr_cur_get_page_cur(cursor); page_cur_search(insert_block, cursor->index, tuple, page_cursor); rec = page_cur_tuple_insert(page_cursor, tuple, cursor->index, offsets, heap, n_ext, mtr); #ifdef UNIV_ZIP_DEBUG { page_t* insert_page = buf_block_get_frame(insert_block); page_zip_des_t* insert_page_zip = buf_block_get_page_zip(insert_block); ut_a(!insert_page_zip || page_zip_validate(insert_page_zip, insert_page, cursor->index)); } #endif /* UNIV_ZIP_DEBUG */ if (rec != NULL) { goto func_exit; } /* 8. If insert did not fit, try page reorganization. For compressed pages, page_cur_tuple_insert() will have attempted this already. */ if (page_cur_get_page_zip(page_cursor) || !btr_page_reorganize(page_cursor, cursor->index, mtr)) { goto insert_failed; } rec = page_cur_tuple_insert(page_cursor, tuple, cursor->index, offsets, heap, n_ext, mtr); if (rec == NULL) { /* The insert did not fit on the page: loop back to the start of the function for a new split */ insert_failed: /* We play safe and reset the free bits for new_page */ if (!dict_index_is_clust(cursor->index) && !dict_table_is_temporary(cursor->index->table)) { ibuf_reset_free_bits(new_block); ibuf_reset_free_bits(block); } n_iterations++; ut_ad(n_iterations < 2 || buf_block_get_page_zip(insert_block)); ut_ad(!insert_will_fit); goto func_start; } func_exit: /* Insert fit on the page: update the free bits for the left and right pages in the same mtr */ if (!dict_index_is_clust(cursor->index) && !dict_table_is_temporary(cursor->index->table) && page_is_leaf(page)) { ibuf_update_free_bits_for_two_pages_low( left_block, right_block, mtr); } MONITOR_INC(MONITOR_INDEX_SPLIT); ut_ad(page_validate(buf_block_get_frame(left_block), cursor->index)); ut_ad(page_validate(buf_block_get_frame(right_block), cursor->index)); ut_ad(!rec || rec_offs_validate(rec, cursor->index, *offsets)); return(rec); } /** Removes a page from the level list of pages. @param[in] space space where removed @param[in] page_size page size @param[in,out] page page to remove @param[in] index index tree @param[in,out] mtr mini-transaction */ # define btr_level_list_remove(space,page_size,page,index,mtr) \ btr_level_list_remove_func(space,page_size,page,index,mtr) /** Removes a page from the level list of pages. @param[in] space space where removed @param[in] page_size page size @param[in,out] page page to remove @param[in] index index tree @param[in,out] mtr mini-transaction */ static void btr_level_list_remove_func( ulint space, const page_size_t& page_size, page_t* page, const dict_index_t* index, mtr_t* mtr) { ut_ad(page != NULL); ut_ad(mtr != NULL); ut_ad(mtr_is_page_fix(mtr, page, MTR_MEMO_PAGE_X_FIX, index->table)); ut_ad(space == page_get_space_id(page)); /* Get the previous and next page numbers of page */ const ulint prev_page_no = btr_page_get_prev(page, mtr); const ulint next_page_no = btr_page_get_next(page, mtr); /* Update page links of the level */ if (prev_page_no != FIL_NULL) { buf_block_t* prev_block = btr_block_get(page_id_t(space, prev_page_no), page_size, RW_X_LATCH, index, mtr); page_t* prev_page = buf_block_get_frame(prev_block); #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(prev_page) == page_is_comp(page)); ut_a(btr_page_get_next(prev_page, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ btr_page_set_next(prev_page, buf_block_get_page_zip(prev_block), next_page_no, mtr); } if (next_page_no != FIL_NULL) { buf_block_t* next_block = btr_block_get( page_id_t(space, next_page_no), page_size, RW_X_LATCH, index, mtr); page_t* next_page = buf_block_get_frame(next_block); #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(next_page) == page_is_comp(page)); ut_a(btr_page_get_prev(next_page, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ btr_page_set_prev(next_page, buf_block_get_page_zip(next_block), prev_page_no, mtr); } } /****************************************************************//** Writes the redo log record for setting an index record as the predefined minimum record. */ UNIV_INLINE void btr_set_min_rec_mark_log( /*=====================*/ rec_t* rec, /*!< in: record */ mlog_id_t type, /*!< in: MLOG_COMP_REC_MIN_MARK or MLOG_REC_MIN_MARK */ mtr_t* mtr) /*!< in: mtr */ { mlog_write_initial_log_record(rec, type, mtr); /* Write rec offset as a 2-byte ulint */ mlog_catenate_ulint(mtr, page_offset(rec), MLOG_2BYTES); } #else /* !UNIV_HOTBACKUP */ # define btr_set_min_rec_mark_log(rec,comp,mtr) ((void) 0) #endif /* !UNIV_HOTBACKUP */ /****************************************************************//** Parses the redo log record for setting an index record as the predefined minimum record. @return end of log record or NULL */ byte* btr_parse_set_min_rec_mark( /*=======================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ ulint comp, /*!< in: nonzero=compact page format */ page_t* page, /*!< in: page or NULL */ mtr_t* mtr) /*!< in: mtr or NULL */ { rec_t* rec; if (end_ptr < ptr + 2) { return(NULL); } if (page) { ut_a(!page_is_comp(page) == !comp); rec = page + mach_read_from_2(ptr); btr_set_min_rec_mark(rec, mtr); } return(ptr + 2); } /****************************************************************//** Sets a record as the predefined minimum record. */ void btr_set_min_rec_mark( /*=================*/ rec_t* rec, /*!< in: record */ mtr_t* mtr) /*!< in: mtr */ { ulint info_bits; if (page_rec_is_comp(rec)) { info_bits = rec_get_info_bits(rec, TRUE); rec_set_info_bits_new(rec, info_bits | REC_INFO_MIN_REC_FLAG); btr_set_min_rec_mark_log(rec, MLOG_COMP_REC_MIN_MARK, mtr); } else { info_bits = rec_get_info_bits(rec, FALSE); rec_set_info_bits_old(rec, info_bits | REC_INFO_MIN_REC_FLAG); btr_set_min_rec_mark_log(rec, MLOG_REC_MIN_MARK, mtr); } } #ifndef UNIV_HOTBACKUP /*************************************************************//** Deletes on the upper level the node pointer to a page. */ void btr_node_ptr_delete( /*================*/ dict_index_t* index, /*!< in: index tree */ buf_block_t* block, /*!< in: page whose node pointer is deleted */ mtr_t* mtr) /*!< in: mtr */ { btr_cur_t cursor; ibool compressed; dberr_t err; ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); /* Delete node pointer on father page */ btr_page_get_father(index, block, mtr, &cursor); compressed = btr_cur_pessimistic_delete(&err, TRUE, &cursor, BTR_CREATE_FLAG, false, mtr); ut_a(err == DB_SUCCESS); if (!compressed) { btr_cur_compress_if_useful(&cursor, FALSE, mtr); } } /*************************************************************//** If page is the only on its level, this function moves its records to the father page, thus reducing the tree height. @return father block */ static buf_block_t* btr_lift_page_up( /*=============*/ dict_index_t* index, /*!< in: index tree */ buf_block_t* block, /*!< in: page which is the only on its level; must not be empty: use btr_discard_only_page_on_level if the last record from the page should be removed */ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* father_block; page_t* father_page; ulint page_level; page_zip_des_t* father_page_zip; page_t* page = buf_block_get_frame(block); ulint root_page_no; buf_block_t* blocks[BTR_MAX_LEVELS]; ulint n_blocks; /*!< last used index in blocks[] */ ulint i; bool lift_father_up; buf_block_t* block_orig = block; ut_ad(btr_page_get_prev(page, mtr) == FIL_NULL); ut_ad(btr_page_get_next(page, mtr) == FIL_NULL); ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); page_level = btr_page_get_level(page, mtr); root_page_no = dict_index_get_page(index); { btr_cur_t cursor; ulint* offsets = NULL; mem_heap_t* heap = mem_heap_create( sizeof(*offsets) * (REC_OFFS_HEADER_SIZE + 1 + 1 + index->n_fields)); buf_block_t* b; if (dict_index_is_spatial(index)) { offsets = rtr_page_get_father_block( NULL, heap, index, block, mtr, NULL, &cursor); } else { offsets = btr_page_get_father_block(offsets, heap, index, block, mtr, &cursor); } father_block = btr_cur_get_block(&cursor); father_page_zip = buf_block_get_page_zip(father_block); father_page = buf_block_get_frame(father_block); n_blocks = 0; /* Store all ancestor pages so we can reset their levels later on. We have to do all the searches on the tree now because later on, after we've replaced the first level, the tree is in an inconsistent state and can not be searched. */ for (b = father_block; b->page.id.page_no() != root_page_no; ) { ut_a(n_blocks < BTR_MAX_LEVELS); if (dict_index_is_spatial(index)) { offsets = rtr_page_get_father_block( NULL, heap, index, b, mtr, NULL, &cursor); } else { offsets = btr_page_get_father_block(offsets, heap, index, b, mtr, &cursor); } blocks[n_blocks++] = b = btr_cur_get_block(&cursor); } lift_father_up = (n_blocks && page_level == 0); if (lift_father_up) { /* The father page also should be the only on its level (not root). We should lift up the father page at first. Because the leaf page should be lifted up only for root page. The freeing page is based on page_level (==0 or !=0) to choose segment. If the page_level is changed ==0 from !=0, later freeing of the page doesn't find the page allocation to be freed.*/ block = father_block; page = buf_block_get_frame(block); page_level = btr_page_get_level(page, mtr); ut_ad(btr_page_get_prev(page, mtr) == FIL_NULL); ut_ad(btr_page_get_next(page, mtr) == FIL_NULL); ut_ad(mtr_is_block_fix( mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); father_block = blocks[0]; father_page_zip = buf_block_get_page_zip(father_block); father_page = buf_block_get_frame(father_block); } mem_heap_free(heap); } btr_search_drop_page_hash_index(block); /* Make the father empty */ btr_page_empty(father_block, father_page_zip, index, page_level, mtr); page_level++; /* Copy the records to the father page one by one. */ if (0 #ifdef UNIV_ZIP_COPY || father_page_zip #endif /* UNIV_ZIP_COPY */ || !page_copy_rec_list_end(father_block, block, page_get_infimum_rec(page), index, mtr)) { const page_zip_des_t* page_zip = buf_block_get_page_zip(block); ut_a(father_page_zip); ut_a(page_zip); /* Copy the page byte for byte. */ page_zip_copy_recs(father_page_zip, father_page, page_zip, page, index, mtr); /* Update the lock table and possible hash index. */ if (!dict_table_is_locking_disabled(index->table)) { lock_move_rec_list_end(father_block, block, page_get_infimum_rec(page)); } /* Also update the predicate locks */ if (dict_index_is_spatial(index)) { lock_prdt_rec_move(father_block, block); } btr_search_move_or_delete_hash_entries(father_block, block, index); } if (!dict_table_is_locking_disabled(index->table)) { /* Free predicate page locks on the block */ if (dict_index_is_spatial(index)) { lock_mutex_enter(); lock_prdt_page_free_from_discard( block, lock_sys->prdt_page_hash); lock_mutex_exit(); } lock_update_copy_and_discard(father_block, block); } /* Go upward to root page, decrementing levels by one. */ for (i = lift_father_up ? 1 : 0; i < n_blocks; i++, page_level++) { page_t* page = buf_block_get_frame(blocks[i]); page_zip_des_t* page_zip= buf_block_get_page_zip(blocks[i]); ut_ad(btr_page_get_level(page, mtr) == page_level + 1); btr_page_set_level(page, page_zip, page_level, mtr); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ } if (dict_index_is_spatial(index)) { rtr_check_discard_page(index, NULL, block); } /* Free the file page */ btr_page_free(index, block, mtr); /* We play it safe and reset the free bits for the father */ if (!dict_index_is_clust(index) && !dict_table_is_temporary(index->table)) { ibuf_reset_free_bits(father_block); } ut_ad(page_validate(father_page, index)); ut_ad(btr_check_node_ptr(index, father_block, mtr)); return(lift_father_up ? block_orig : father_block); } /*************************************************************//** Tries to merge the page first to the left immediate brother if such a brother exists, and the node pointers to the current page and to the brother reside on the same page. If the left brother does not satisfy these conditions, looks at the right brother. If the page is the only one on that level lifts the records of the page to the father page, thus reducing the tree height. It is assumed that mtr holds an x-latch on the tree and on the page. If cursor is on the leaf level, mtr must also hold x-latches to the brothers, if they exist. @return TRUE on success */ ibool btr_compress( /*=========*/ btr_cur_t* cursor, /*!< in/out: cursor on the page to merge or lift; the page must not be empty: when deleting records, use btr_discard_page() if the page would become empty */ ibool adjust, /*!< in: TRUE if should adjust the cursor position even if compression occurs */ mtr_t* mtr) /*!< in/out: mini-transaction */ { dict_index_t* index; ulint space; ulint left_page_no; ulint right_page_no; buf_block_t* merge_block; page_t* merge_page = NULL; page_zip_des_t* merge_page_zip; ibool is_left; buf_block_t* block; page_t* page; btr_cur_t father_cursor; mem_heap_t* heap; ulint* offsets; ulint nth_rec = 0; /* remove bogus warning */ bool mbr_changed = false; #ifdef UNIV_DEBUG bool leftmost_child; #endif DBUG_ENTER("btr_compress"); block = btr_cur_get_block(cursor); page = btr_cur_get_page(cursor); index = btr_cur_get_index(cursor); btr_assert_not_corrupted(block, index); #ifdef UNIV_DEBUG if (dict_index_is_spatial(index)) { ut_ad(mtr_memo_contains_flagged(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK)); } else { ut_ad(mtr_memo_contains_flagged(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK) || dict_table_is_intrinsic(index->table)); } #endif /* UNIV_DEBUG */ ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); space = dict_index_get_space(index); const page_size_t page_size(dict_table_page_size(index->table)); MONITOR_INC(MONITOR_INDEX_MERGE_ATTEMPTS); left_page_no = btr_page_get_prev(page, mtr); right_page_no = btr_page_get_next(page, mtr); #ifdef UNIV_DEBUG if (!page_is_leaf(page) && left_page_no == FIL_NULL) { ut_a(REC_INFO_MIN_REC_FLAG & rec_get_info_bits( page_rec_get_next(page_get_infimum_rec(page)), page_is_comp(page))); } #endif /* UNIV_DEBUG */ heap = mem_heap_create(100); if (dict_index_is_spatial(index)) { offsets = rtr_page_get_father_block( NULL, heap, index, block, mtr, cursor, &father_cursor); ut_ad(cursor->page_cur.block->page.id.page_no() == block->page.id.page_no()); rec_t* my_rec = father_cursor.page_cur.rec; ulint page_no = btr_node_ptr_get_child_page_no(my_rec, offsets); if (page_no != block->page.id.page_no()) { ib::info() << "father positioned on page " << page_no << "instead of " << block->page.id.page_no(); offsets = btr_page_get_father_block( NULL, heap, index, block, mtr, &father_cursor); } } else { offsets = btr_page_get_father_block( NULL, heap, index, block, mtr, &father_cursor); } if (adjust) { nth_rec = page_rec_get_n_recs_before(btr_cur_get_rec(cursor)); ut_ad(nth_rec > 0); } if (left_page_no == FIL_NULL && right_page_no == FIL_NULL) { /* The page is the only one on the level, lift the records to the father */ merge_block = btr_lift_page_up(index, block, mtr); goto func_exit; } ut_d(leftmost_child = left_page_no != FIL_NULL && (page_rec_get_next( page_get_infimum_rec( btr_cur_get_page(&father_cursor))) == btr_cur_get_rec(&father_cursor))); /* Decide the page to which we try to merge and which will inherit the locks */ is_left = btr_can_merge_with_page(cursor, left_page_no, &merge_block, mtr); DBUG_EXECUTE_IF("ib_always_merge_right", is_left = FALSE;); retry: if (!is_left && !btr_can_merge_with_page(cursor, right_page_no, &merge_block, mtr)) { if (!merge_block) { merge_page = NULL; } goto err_exit; } merge_page = buf_block_get_frame(merge_block); #ifdef UNIV_BTR_DEBUG if (is_left) { ut_a(btr_page_get_next(merge_page, mtr) == block->page.id.page_no()); } else { ut_a(btr_page_get_prev(merge_page, mtr) == block->page.id.page_no()); } #endif /* UNIV_BTR_DEBUG */ #ifdef UNIV_GIS_DEBUG if (dict_index_is_spatial(index)) { if (is_left) { fprintf(stderr, "GIS_DIAG: merge left %ld to %ld \n", (long) block->page.id.page_no(), left_page_no); } else { fprintf(stderr, "GIS_DIAG: merge right %ld to %ld\n", (long) block->page.id.page_no(), right_page_no); } } #endif /* UNIV_GIS_DEBUG */ ut_ad(page_validate(merge_page, index)); merge_page_zip = buf_block_get_page_zip(merge_block); #ifdef UNIV_ZIP_DEBUG if (merge_page_zip) { const page_zip_des_t* page_zip = buf_block_get_page_zip(block); ut_a(page_zip); ut_a(page_zip_validate(merge_page_zip, merge_page, index)); ut_a(page_zip_validate(page_zip, page, index)); } #endif /* UNIV_ZIP_DEBUG */ /* Move records to the merge page */ if (is_left) { btr_cur_t cursor2; rtr_mbr_t new_mbr; ulint* offsets2 = NULL; /* For rtree, we need to update father's mbr. */ if (dict_index_is_spatial(index)) { /* We only support merge pages with the same parent page */ if (!rtr_check_same_block( index, &cursor2, btr_cur_get_block(&father_cursor), merge_block, heap)) { is_left = false; goto retry; } /* Set rtr_info for cursor2, since it is necessary in recursive page merge. */ cursor2.rtr_info = cursor->rtr_info; cursor2.tree_height = cursor->tree_height; offsets2 = rec_get_offsets( btr_cur_get_rec(&cursor2), index, NULL, ULINT_UNDEFINED, &heap); /* Check if parent entry needs to be updated */ mbr_changed = rtr_merge_mbr_changed( &cursor2, &father_cursor, offsets2, offsets, &new_mbr, merge_block, block, index); } rec_t* orig_pred = page_copy_rec_list_start( merge_block, block, page_get_supremum_rec(page), index, mtr); if (!orig_pred) { goto err_exit; } btr_search_drop_page_hash_index(block); /* Remove the page from the level list */ btr_level_list_remove(space, page_size, page, index, mtr); if (dict_index_is_spatial(index)) { rec_t* my_rec = father_cursor.page_cur.rec; ulint page_no = btr_node_ptr_get_child_page_no( my_rec, offsets); if (page_no != block->page.id.page_no()) { ib::fatal() << "father positioned on " << page_no << " instead of " << block->page.id.page_no(); ut_ad(0); } if (mbr_changed) { #ifdef UNIV_DEBUG bool success = rtr_update_mbr_field( &cursor2, offsets2, &father_cursor, merge_page, &new_mbr, NULL, mtr); ut_ad(success); #else rtr_update_mbr_field( &cursor2, offsets2, &father_cursor, merge_page, &new_mbr, NULL, mtr); #endif } else { rtr_node_ptr_delete( index, &father_cursor, block, mtr); } /* No GAP lock needs to be worrying about */ lock_mutex_enter(); lock_prdt_page_free_from_discard( block, lock_sys->prdt_page_hash); lock_rec_free_all_from_discard_page(block); lock_mutex_exit(); } else { btr_node_ptr_delete(index, block, mtr); if (!dict_table_is_locking_disabled(index->table)) { lock_update_merge_left( merge_block, orig_pred, block); } } if (adjust) { nth_rec += page_rec_get_n_recs_before(orig_pred); } } else { rec_t* orig_succ; ibool compressed; dberr_t err; btr_cur_t cursor2; /* father cursor pointing to node ptr of the right sibling */ #ifdef UNIV_BTR_DEBUG byte fil_page_prev[4]; #endif /* UNIV_BTR_DEBUG */ if (dict_index_is_spatial(index)) { cursor2.rtr_info = NULL; /* For spatial index, we disallow merge of blocks with different parents, since the merge would need to update entry (for MBR and Primary key) in the parent of block being merged */ if (!rtr_check_same_block( index, &cursor2, btr_cur_get_block(&father_cursor), merge_block, heap)) { goto err_exit; } /* Set rtr_info for cursor2, since it is necessary in recursive page merge. */ cursor2.rtr_info = cursor->rtr_info; cursor2.tree_height = cursor->tree_height; } else { btr_page_get_father(index, merge_block, mtr, &cursor2); } if (merge_page_zip && left_page_no == FIL_NULL) { /* The function page_zip_compress(), which will be invoked by page_copy_rec_list_end() below, requires that FIL_PAGE_PREV be FIL_NULL. Clear the field, but prepare to restore it. */ #ifdef UNIV_BTR_DEBUG memcpy(fil_page_prev, merge_page + FIL_PAGE_PREV, 4); #endif /* UNIV_BTR_DEBUG */ #if FIL_NULL != 0xffffffff # error "FIL_NULL != 0xffffffff" #endif memset(merge_page + FIL_PAGE_PREV, 0xff, 4); } orig_succ = page_copy_rec_list_end(merge_block, block, page_get_infimum_rec(page), cursor->index, mtr); if (!orig_succ) { ut_a(merge_page_zip); #ifdef UNIV_BTR_DEBUG if (left_page_no == FIL_NULL) { /* FIL_PAGE_PREV was restored from merge_page_zip. */ ut_a(!memcmp(fil_page_prev, merge_page + FIL_PAGE_PREV, 4)); } #endif /* UNIV_BTR_DEBUG */ goto err_exit; } btr_search_drop_page_hash_index(block); #ifdef UNIV_BTR_DEBUG if (merge_page_zip && left_page_no == FIL_NULL) { /* Restore FIL_PAGE_PREV in order to avoid an assertion failure in btr_level_list_remove(), which will set the field again to FIL_NULL. Even though this makes merge_page and merge_page_zip inconsistent for a split second, it is harmless, because the pages are X-latched. */ memcpy(merge_page + FIL_PAGE_PREV, fil_page_prev, 4); } #endif /* UNIV_BTR_DEBUG */ /* Remove the page from the level list */ btr_level_list_remove(space, page_size, page, index, mtr); ut_ad(btr_node_ptr_get_child_page_no( btr_cur_get_rec(&father_cursor), offsets) == block->page.id.page_no()); /* Replace the address of the old child node (= page) with the address of the merge page to the right */ btr_node_ptr_set_child_page_no( btr_cur_get_rec(&father_cursor), btr_cur_get_page_zip(&father_cursor), offsets, right_page_no, mtr); #ifdef UNIV_DEBUG if (!page_is_leaf(page) && left_page_no == FIL_NULL) { ut_ad(REC_INFO_MIN_REC_FLAG & rec_get_info_bits( page_rec_get_next(page_get_infimum_rec( buf_block_get_frame(merge_block))), page_is_comp(page))); } #endif /* UNIV_DEBUG */ /* For rtree, we need to update father's mbr. */ if (dict_index_is_spatial(index)) { ulint* offsets2; ulint rec_info; offsets2 = rec_get_offsets( btr_cur_get_rec(&cursor2), index, NULL, ULINT_UNDEFINED, &heap); ut_ad(btr_node_ptr_get_child_page_no( btr_cur_get_rec(&cursor2), offsets2) == right_page_no); rec_info = rec_get_info_bits( btr_cur_get_rec(&father_cursor), rec_offs_comp(offsets)); if (rec_info & REC_INFO_MIN_REC_FLAG) { /* When the father node ptr is minimal rec, we will keep it and delete the node ptr of merge page. */ rtr_merge_and_update_mbr(&father_cursor, &cursor2, offsets, offsets2, merge_page, merge_block, block, index, mtr); } else { /* Otherwise, we will keep the node ptr of merge page and delete the father node ptr. This is for keeping the rec order in upper level. */ rtr_merge_and_update_mbr(&cursor2, &father_cursor, offsets2, offsets, merge_page, merge_block, block, index, mtr); } lock_mutex_enter(); lock_prdt_page_free_from_discard( block, lock_sys->prdt_page_hash); lock_rec_free_all_from_discard_page(block); lock_mutex_exit(); } else { compressed = btr_cur_pessimistic_delete(&err, TRUE, &cursor2, BTR_CREATE_FLAG, false, mtr); ut_a(err == DB_SUCCESS); if (!compressed) { btr_cur_compress_if_useful(&cursor2, FALSE, mtr); } if (!dict_table_is_locking_disabled(index->table)) { lock_update_merge_right( merge_block, orig_succ, block); } } } if (!dict_index_is_clust(index) && !dict_table_is_temporary(index->table) && page_is_leaf(merge_page)) { /* Update the free bits of the B-tree page in the insert buffer bitmap. This has to be done in a separate mini-transaction that is committed before the main mini-transaction. We cannot update the insert buffer bitmap in this mini-transaction, because btr_compress() can be invoked recursively without committing the mini-transaction in between. Since insert buffer bitmap pages have a lower rank than B-tree pages, we must not access other pages in the same mini-transaction after accessing an insert buffer bitmap page. */ /* The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to decrement or reset the bits in the bitmap in a mini-transaction that is committed before the mini-transaction that affects the free space. */ /* It is unsafe to increment the bits in a separately committed mini-transaction, because in crash recovery, the free bits could momentarily be set too high. */ if (page_size.is_compressed()) { /* Because the free bits may be incremented and we cannot update the insert buffer bitmap in the same mini-transaction, the only safe thing we can do here is the pessimistic approach: reset the free bits. */ ibuf_reset_free_bits(merge_block); } else { /* On uncompressed pages, the free bits will never increase here. Thus, it is safe to write the bits accurately in a separate mini-transaction. */ ibuf_update_free_bits_if_full(merge_block, UNIV_PAGE_SIZE, ULINT_UNDEFINED); } } ut_ad(page_validate(merge_page, index)); #ifdef UNIV_ZIP_DEBUG ut_a(!merge_page_zip || page_zip_validate(merge_page_zip, merge_page, index)); #endif /* UNIV_ZIP_DEBUG */ if (dict_index_is_spatial(index)) { #ifdef UNIV_GIS_DEBUG fprintf(stderr, "GIS_DIAG: compressed away %ld\n", (long) block->page.id.page_no()); fprintf(stderr, "GIS_DIAG: merged to %ld\n", (long) merge_block->page.id.page_no()); #endif rtr_check_discard_page(index, NULL, block); } /* Free the file page */ btr_page_free(index, block, mtr); /* btr_check_node_ptr() needs parent block latched. If the merge_block's parent block is not same, we cannot use btr_check_node_ptr() */ ut_ad(leftmost_child || btr_check_node_ptr(index, merge_block, mtr)); func_exit: mem_heap_free(heap); if (adjust) { ut_ad(nth_rec > 0); btr_cur_position( index, page_rec_get_nth(merge_block->frame, nth_rec), merge_block, cursor); } MONITOR_INC(MONITOR_INDEX_MERGE_SUCCESSFUL); DBUG_RETURN(TRUE); err_exit: /* We play it safe and reset the free bits. */ if (page_size.is_compressed() && merge_page && page_is_leaf(merge_page) && !dict_index_is_clust(index)) { ibuf_reset_free_bits(merge_block); } mem_heap_free(heap); DBUG_RETURN(FALSE); } /*************************************************************//** Discards a page that is the only page on its level. This will empty the whole B-tree, leaving just an empty root page. This function should never be reached, because btr_compress(), which is invoked in delete operations, calls btr_lift_page_up() to flatten the B-tree. */ static void btr_discard_only_page_on_level( /*===========================*/ dict_index_t* index, /*!< in: index tree */ buf_block_t* block, /*!< in: page which is the only on its level */ mtr_t* mtr) /*!< in: mtr */ { ulint page_level = 0; trx_id_t max_trx_id; /* Save the PAGE_MAX_TRX_ID from the leaf page. */ max_trx_id = page_get_max_trx_id(buf_block_get_frame(block)); while (block->page.id.page_no() != dict_index_get_page(index)) { btr_cur_t cursor; buf_block_t* father; const page_t* page = buf_block_get_frame(block); ut_a(page_get_n_recs(page) == 1); ut_a(page_level == btr_page_get_level(page, mtr)); ut_a(btr_page_get_prev(page, mtr) == FIL_NULL); ut_a(btr_page_get_next(page, mtr) == FIL_NULL); ut_ad(mtr_is_block_fix( mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); btr_search_drop_page_hash_index(block); if (dict_index_is_spatial(index)) { /* Check any concurrent search having this page */ rtr_check_discard_page(index, NULL, block); rtr_page_get_father(index, block, mtr, NULL, &cursor); } else { btr_page_get_father(index, block, mtr, &cursor); } father = btr_cur_get_block(&cursor); if (!dict_table_is_locking_disabled(index->table)) { lock_update_discard( father, PAGE_HEAP_NO_SUPREMUM, block); } /* Free the file page */ btr_page_free(index, block, mtr); block = father; page_level++; } /* block is the root page, which must be empty, except for the node pointer to the (now discarded) block(s). */ #ifdef UNIV_BTR_DEBUG if (!dict_index_is_ibuf(index)) { const page_t* root = buf_block_get_frame(block); const ulint space = dict_index_get_space(index); ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_LEAF + root, space)); ut_a(btr_root_fseg_validate(FIL_PAGE_DATA + PAGE_BTR_SEG_TOP + root, space)); } #endif /* UNIV_BTR_DEBUG */ btr_page_empty(block, buf_block_get_page_zip(block), index, 0, mtr); ut_ad(page_is_leaf(buf_block_get_frame(block))); if (!dict_index_is_clust(index) && !dict_table_is_temporary(index->table)) { /* We play it safe and reset the free bits for the root */ ibuf_reset_free_bits(block); ut_a(max_trx_id); page_set_max_trx_id(block, buf_block_get_page_zip(block), max_trx_id, mtr); } } /*************************************************************//** Discards a page from a B-tree. This is used to remove the last record from a B-tree page: the whole page must be removed at the same time. This cannot be used for the root page, which is allowed to be empty. */ void btr_discard_page( /*=============*/ btr_cur_t* cursor, /*!< in: cursor on the page to discard: not on the root page */ mtr_t* mtr) /*!< in: mtr */ { dict_index_t* index; ulint left_page_no; ulint right_page_no; buf_block_t* merge_block; page_t* merge_page; buf_block_t* block; page_t* page; rec_t* node_ptr; #ifdef UNIV_DEBUG btr_cur_t parent_cursor; bool parent_is_different = false; #endif block = btr_cur_get_block(cursor); index = btr_cur_get_index(cursor); ut_ad(dict_index_get_page(index) != block->page.id.page_no()); ut_ad(mtr_memo_contains_flagged(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK) || dict_table_is_intrinsic(index->table)); ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); const ulint space = dict_index_get_space(index); MONITOR_INC(MONITOR_INDEX_DISCARD); #ifdef UNIV_DEBUG if (dict_index_is_spatial(index)) { rtr_page_get_father(index, block, mtr, cursor, &parent_cursor); } else { btr_page_get_father(index, block, mtr, &parent_cursor); } #endif /* Decide the page which will inherit the locks */ left_page_no = btr_page_get_prev(buf_block_get_frame(block), mtr); right_page_no = btr_page_get_next(buf_block_get_frame(block), mtr); const page_size_t page_size(dict_table_page_size(index->table)); if (left_page_no != FIL_NULL) { merge_block = btr_block_get( page_id_t(space, left_page_no), page_size, RW_X_LATCH, index, mtr); merge_page = buf_block_get_frame(merge_block); #ifdef UNIV_BTR_DEBUG ut_a(btr_page_get_next(merge_page, mtr) == block->page.id.page_no()); #endif /* UNIV_BTR_DEBUG */ ut_d(parent_is_different = (page_rec_get_next( page_get_infimum_rec( btr_cur_get_page( &parent_cursor))) == btr_cur_get_rec(&parent_cursor))); } else if (right_page_no != FIL_NULL) { merge_block = btr_block_get( page_id_t(space, right_page_no), page_size, RW_X_LATCH, index, mtr); merge_page = buf_block_get_frame(merge_block); #ifdef UNIV_BTR_DEBUG ut_a(btr_page_get_prev(merge_page, mtr) == block->page.id.page_no()); #endif /* UNIV_BTR_DEBUG */ ut_d(parent_is_different = page_rec_is_supremum( page_rec_get_next(btr_cur_get_rec(&parent_cursor)))); } else { btr_discard_only_page_on_level(index, block, mtr); return; } page = buf_block_get_frame(block); ut_a(page_is_comp(merge_page) == page_is_comp(page)); btr_search_drop_page_hash_index(block); if (left_page_no == FIL_NULL && !page_is_leaf(page)) { /* We have to mark the leftmost node pointer on the right side page as the predefined minimum record */ node_ptr = page_rec_get_next(page_get_infimum_rec(merge_page)); ut_ad(page_rec_is_user_rec(node_ptr)); /* This will make page_zip_validate() fail on merge_page until btr_level_list_remove() completes. This is harmless, because everything will take place within a single mini-transaction and because writing to the redo log is an atomic operation (performed by mtr_commit()). */ btr_set_min_rec_mark(node_ptr, mtr); } if (dict_index_is_spatial(index)) { btr_cur_t father_cursor; /* Since rtr_node_ptr_delete doesn't contain get father node ptr, so, we need to get father node ptr first and then delete it. */ rtr_page_get_father(index, block, mtr, cursor, &father_cursor); rtr_node_ptr_delete(index, &father_cursor, block, mtr); } else { btr_node_ptr_delete(index, block, mtr); } /* Remove the page from the level list */ btr_level_list_remove(space, page_size, page, index, mtr); #ifdef UNIV_ZIP_DEBUG { page_zip_des_t* merge_page_zip = buf_block_get_page_zip(merge_block); ut_a(!merge_page_zip || page_zip_validate(merge_page_zip, merge_page, index)); } #endif /* UNIV_ZIP_DEBUG */ if (!dict_table_is_locking_disabled(index->table)) { if (left_page_no != FIL_NULL) { lock_update_discard(merge_block, PAGE_HEAP_NO_SUPREMUM, block); } else { lock_update_discard(merge_block, lock_get_min_heap_no(merge_block), block); } } if (dict_index_is_spatial(index)) { rtr_check_discard_page(index, cursor, block); } /* Free the file page */ btr_page_free(index, block, mtr); /* btr_check_node_ptr() needs parent block latched. If the merge_block's parent block is not same, we cannot use btr_check_node_ptr() */ ut_ad(parent_is_different || btr_check_node_ptr(index, merge_block, mtr)); } #ifdef UNIV_BTR_PRINT /*************************************************************//** Prints size info of a B-tree. */ void btr_print_size( /*===========*/ dict_index_t* index) /*!< in: index tree */ { page_t* root; fseg_header_t* seg; mtr_t mtr; if (dict_index_is_ibuf(index)) { fputs("Sorry, cannot print info of an ibuf tree:" " use ibuf functions\n", stderr); return; } mtr_start(&mtr); root = btr_root_get(index, &mtr); seg = root + PAGE_HEADER + PAGE_BTR_SEG_TOP; fputs("INFO OF THE NON-LEAF PAGE SEGMENT\n", stderr); fseg_print(seg, &mtr); if (!dict_index_is_ibuf(index)) { seg = root + PAGE_HEADER + PAGE_BTR_SEG_LEAF; fputs("INFO OF THE LEAF PAGE SEGMENT\n", stderr); fseg_print(seg, &mtr); } mtr_commit(&mtr); } /************************************************************//** Prints recursively index tree pages. */ static void btr_print_recursive( /*================*/ dict_index_t* index, /*!< in: index tree */ buf_block_t* block, /*!< in: index page */ ulint width, /*!< in: print this many entries from start and end */ mem_heap_t** heap, /*!< in/out: heap for rec_get_offsets() */ ulint** offsets,/*!< in/out: buffer for rec_get_offsets() */ mtr_t* mtr) /*!< in: mtr */ { const page_t* page = buf_block_get_frame(block); page_cur_t cursor; ulint n_recs; ulint i = 0; mtr_t mtr2; ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_SX_FIX, index->table)); ib::info() << "NODE ON LEVEL " << btr_page_get_level(page, mtr) << " page " << block->page.id; page_print(block, index, width, width); n_recs = page_get_n_recs(page); page_cur_set_before_first(block, &cursor); page_cur_move_to_next(&cursor); while (!page_cur_is_after_last(&cursor)) { if (page_is_leaf(page)) { /* If this is the leaf level, do nothing */ } else if ((i <= width) || (i >= n_recs - width)) { const rec_t* node_ptr; mtr_start(&mtr2); node_ptr = page_cur_get_rec(&cursor); *offsets = rec_get_offsets(node_ptr, index, *offsets, ULINT_UNDEFINED, heap); btr_print_recursive(index, btr_node_ptr_get_child(node_ptr, index, *offsets, &mtr2), width, heap, offsets, &mtr2); mtr_commit(&mtr2); } page_cur_move_to_next(&cursor); i++; } } /**************************************************************//** Prints directories and other info of all nodes in the tree. */ void btr_print_index( /*============*/ dict_index_t* index, /*!< in: index */ ulint width) /*!< in: print this many entries from start and end */ { mtr_t mtr; buf_block_t* root; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); fputs("--------------------------\n" "INDEX TREE PRINT\n", stderr); mtr_start(&mtr); root = btr_root_block_get(index, RW_SX_LATCH, &mtr); btr_print_recursive(index, root, width, &heap, &offsets, &mtr); if (heap) { mem_heap_free(heap); } mtr_commit(&mtr); ut_ad(btr_validate_index(index, 0, false)); } #endif /* UNIV_BTR_PRINT */ #ifdef UNIV_DEBUG /************************************************************//** Checks that the node pointer to a page is appropriate. @return TRUE */ ibool btr_check_node_ptr( /*===============*/ dict_index_t* index, /*!< in: index tree */ buf_block_t* block, /*!< in: index page */ mtr_t* mtr) /*!< in: mtr */ { mem_heap_t* heap; dtuple_t* tuple; ulint* offsets; btr_cur_t cursor; page_t* page = buf_block_get_frame(block); ut_ad(mtr_is_block_fix(mtr, block, MTR_MEMO_PAGE_X_FIX, index->table)); if (dict_index_get_page(index) == block->page.id.page_no()) { return(TRUE); } heap = mem_heap_create(256); if (dict_index_is_spatial(index)) { offsets = rtr_page_get_father_block(NULL, heap, index, block, mtr, NULL, &cursor); } else { offsets = btr_page_get_father_block(NULL, heap, index, block, mtr, &cursor); } if (page_is_leaf(page)) { goto func_exit; } tuple = dict_index_build_node_ptr( index, page_rec_get_next(page_get_infimum_rec(page)), 0, heap, btr_page_get_level(page, mtr)); /* For spatial index, the MBR in the parent rec could be different with that of first rec of child, their relationship should be "WITHIN" relationship */ if (dict_index_is_spatial(index)) { ut_a(!cmp_dtuple_rec_with_gis( tuple, btr_cur_get_rec(&cursor), offsets, PAGE_CUR_WITHIN)); } else { ut_a(!cmp_dtuple_rec(tuple, btr_cur_get_rec(&cursor), offsets)); } func_exit: mem_heap_free(heap); return(TRUE); } #endif /* UNIV_DEBUG */ /************************************************************//** Display identification information for a record. */ static void btr_index_rec_validate_report( /*==========================*/ const page_t* page, /*!< in: index page */ const rec_t* rec, /*!< in: index record */ const dict_index_t* index) /*!< in: index */ { ib::info() << "Record in index " << index->name << " of table " << index->table->name << ", page " << page_id_t(page_get_space_id(page), page_get_page_no(page)) << ", at offset " << page_offset(rec); } /************************************************************//** Checks the size and number of fields in a record based on the definition of the index. @return TRUE if ok */ ibool btr_index_rec_validate( /*===================*/ const rec_t* rec, /*!< in: index record */ const dict_index_t* index, /*!< in: index */ ibool dump_on_error) /*!< in: TRUE if the function should print hex dump of record and page on error */ { ulint len; ulint n; ulint i; const page_t* page; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); page = page_align(rec); if (dict_index_is_ibuf(index)) { /* The insert buffer index tree can contain records from any other index: we cannot check the number of fields or their length */ return(TRUE); } #ifdef VIRTUAL_INDEX_DEBUG if (dict_index_has_virtual(index)) { fprintf(stderr, "index name is %s\n", index->name()); } #endif if ((ibool)!!page_is_comp(page) != dict_table_is_comp(index->table)) { btr_index_rec_validate_report(page, rec, index); ib::error() << "Compact flag=" << !!page_is_comp(page) << ", should be " << dict_table_is_comp(index->table); return(FALSE); } n = dict_index_get_n_fields(index); if (!page_is_comp(page) && (rec_get_n_fields_old(rec) != n /* a record for older SYS_INDEXES table (missing merge_threshold column) is acceptable. */ && !(index->id == DICT_INDEXES_ID && rec_get_n_fields_old(rec) == n - 1))) { btr_index_rec_validate_report(page, rec, index); ib::error() << "Has " << rec_get_n_fields_old(rec) << " fields, should have " << n; if (dump_on_error) { fputs("InnoDB: corrupt record ", stderr); rec_print_old(stderr, rec); putc('\n', stderr); } return(FALSE); } offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); for (i = 0; i < n; i++) { dict_field_t* field = dict_index_get_nth_field(index, i); ulint fixed_size = dict_col_get_fixed_size( dict_field_get_col(field), page_is_comp(page)); rec_get_nth_field_offs(offsets, i, &len); /* Note that if fixed_size != 0, it equals the length of a fixed-size column in the clustered index, except the DATA_POINT, whose length would be MBR_LEN when it's indexed in a R-TREE. We should adjust it here. A prefix index of the column is of fixed, but different length. When fixed_size == 0, prefix_len is the maximum length of the prefix index column. */ if (dict_field_get_col(field)->mtype == DATA_POINT) { ut_ad(fixed_size == DATA_POINT_LEN); if (dict_index_is_spatial(index)) { /* For DATA_POINT data, when it has R-tree index, the fixed_len is the MBR of the point. But if it's a primary key and on R-TREE as the PK pointer, the length shall be DATA_POINT_LEN as well. */ ut_ad((field->fixed_len == DATA_MBR_LEN && i == 0) || (field->fixed_len == DATA_POINT_LEN && i != 0)); fixed_size = field->fixed_len; } } if ((field->prefix_len == 0 && len != UNIV_SQL_NULL && fixed_size && len != fixed_size) || (field->prefix_len > 0 && len != UNIV_SQL_NULL && len > field->prefix_len)) { btr_index_rec_validate_report(page, rec, index); ib::error error; error << "Field " << i << " len is " << len << ", should be " << fixed_size; if (dump_on_error) { error << "; "; rec_print(error.m_oss, rec, rec_get_info_bits( rec, rec_offs_comp(offsets)), offsets); } if (heap) { mem_heap_free(heap); } return(FALSE); } } #ifdef VIRTUAL_INDEX_DEBUG if (dict_index_has_virtual(index)) { rec_print_new(stderr, rec, offsets); } #endif if (heap) { mem_heap_free(heap); } return(TRUE); } /************************************************************//** Checks the size and number of fields in records based on the definition of the index. @return TRUE if ok */ static ibool btr_index_page_validate( /*====================*/ buf_block_t* block, /*!< in: index page */ dict_index_t* index) /*!< in: index */ { page_cur_t cur; ibool ret = TRUE; #ifndef NDEBUG ulint nth = 1; #endif /* !NDEBUG */ page_cur_set_before_first(block, &cur); /* Directory slot 0 should only contain the infimum record. */ DBUG_EXECUTE_IF("check_table_rec_next", ut_a(page_rec_get_nth_const( page_cur_get_page(&cur), 0) == cur.rec); ut_a(page_dir_slot_get_n_owned( page_dir_get_nth_slot( page_cur_get_page(&cur), 0)) == 1);); page_cur_move_to_next(&cur); for (;;) { if (page_cur_is_after_last(&cur)) { break; } if (!btr_index_rec_validate(cur.rec, index, TRUE)) { return(FALSE); } /* Verify that page_rec_get_nth_const() is correctly retrieving each record. */ DBUG_EXECUTE_IF("check_table_rec_next", ut_a(cur.rec == page_rec_get_nth_const( page_cur_get_page(&cur), page_rec_get_n_recs_before( cur.rec))); ut_a(nth++ == page_rec_get_n_recs_before( cur.rec));); page_cur_move_to_next(&cur); } return(ret); } /************************************************************//** Report an error on one page of an index tree. */ static void btr_validate_report1( /*=================*/ dict_index_t* index, /*!< in: index */ ulint level, /*!< in: B-tree level */ const buf_block_t* block) /*!< in: index page */ { ib::error error; error << "In page " << block->page.id.page_no() << " of index " << index->name << " of table " << index->table->name; if (level > 0) { error << ", index tree level " << level; } } /************************************************************//** Report an error on two pages of an index tree. */ static void btr_validate_report2( /*=================*/ const dict_index_t* index, /*!< in: index */ ulint level, /*!< in: B-tree level */ const buf_block_t* block1, /*!< in: first index page */ const buf_block_t* block2) /*!< in: second index page */ { ib::error error; error << "In pages " << block1->page.id << " and " << block2->page.id << " of index " << index->name << " of table " << index->table->name; if (level > 0) { error << ", index tree level " << level; } } /************************************************************//** Validates index tree level. @return TRUE if ok */ static bool btr_validate_level( /*===============*/ dict_index_t* index, /*!< in: index tree */ const trx_t* trx, /*!< in: transaction or NULL */ ulint level, /*!< in: level number */ bool lockout)/*!< in: true if X-latch index is intended */ { buf_block_t* block; page_t* page; buf_block_t* right_block = 0; /* remove warning */ page_t* right_page = 0; /* remove warning */ page_t* father_page; btr_cur_t node_cur; btr_cur_t right_node_cur; rec_t* rec; ulint right_page_no; ulint left_page_no; page_cur_t cursor; dtuple_t* node_ptr_tuple; bool ret = true; mtr_t mtr; mem_heap_t* heap = mem_heap_create(256); fseg_header_t* seg; ulint* offsets = NULL; ulint* offsets2= NULL; #ifdef UNIV_ZIP_DEBUG page_zip_des_t* page_zip; #endif /* UNIV_ZIP_DEBUG */ ulint savepoint = 0; ulint savepoint2 = 0; ulint parent_page_no = FIL_NULL; ulint parent_right_page_no = FIL_NULL; bool rightmost_child = false; mtr_start(&mtr); if (!srv_read_only_mode) { if (lockout) { mtr_x_lock(dict_index_get_lock(index), &mtr); } else { mtr_sx_lock(dict_index_get_lock(index), &mtr); } } block = btr_root_block_get(index, RW_SX_LATCH, &mtr); page = buf_block_get_frame(block); seg = page + PAGE_HEADER + PAGE_BTR_SEG_TOP; #ifdef UNIV_DEBUG if (dict_index_is_spatial(index)) { fprintf(stderr, "Root page no: %lu\n", (ulong) page_get_page_no(page)); } #endif const fil_space_t* space = fil_space_get(index->space); const page_size_t table_page_size( dict_table_page_size(index->table)); const page_size_t space_page_size(space->flags); if (!table_page_size.equals_to(space_page_size)) { ib::warn() << "Flags mismatch: table=" << index->table->flags << ", tablespace=" << space->flags; mtr_commit(&mtr); return(false); } while (level != btr_page_get_level(page, &mtr)) { const rec_t* node_ptr; if (fseg_page_is_free(seg, block->page.id.space(), block->page.id.page_no())) { btr_validate_report1(index, level, block); ib::warn() << "Page is free"; ret = false; } ut_a(index->space == block->page.id.space()); ut_a(index->space == page_get_space_id(page)); #ifdef UNIV_ZIP_DEBUG page_zip = buf_block_get_page_zip(block); ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ ut_a(!page_is_leaf(page)); page_cur_set_before_first(block, &cursor); page_cur_move_to_next(&cursor); node_ptr = page_cur_get_rec(&cursor); offsets = rec_get_offsets(node_ptr, index, offsets, ULINT_UNDEFINED, &heap); savepoint2 = mtr_set_savepoint(&mtr); block = btr_node_ptr_get_child(node_ptr, index, offsets, &mtr); page = buf_block_get_frame(block); /* For R-Tree, since record order might not be the same as linked index page in the lower level, we need to travers backwards to get the first page rec in this level. This is only used for index validation. Spatial index does not use such scan for any of its DML or query operations */ if (dict_index_is_spatial(index)) { left_page_no = btr_page_get_prev(page, &mtr); while (left_page_no != FIL_NULL) { page_id_t left_page_id( index->space, left_page_no); /* To obey latch order of tree blocks, we should release the right_block once to obtain lock of the uncle block. */ mtr_release_block_at_savepoint( &mtr, savepoint2, block); savepoint2 = mtr_set_savepoint(&mtr); block = btr_block_get( left_page_id, table_page_size, RW_SX_LATCH, index, &mtr); page = buf_block_get_frame(block); left_page_no = btr_page_get_prev(page, &mtr); } } } /* Now we are on the desired level. Loop through the pages on that level. */ if (level == 0) { /* Leaf pages are managed in their own file segment. */ seg -= PAGE_BTR_SEG_TOP - PAGE_BTR_SEG_LEAF; } loop: mem_heap_empty(heap); offsets = offsets2 = NULL; if (!srv_read_only_mode) { if (lockout) { mtr_x_lock(dict_index_get_lock(index), &mtr); } else { mtr_sx_lock(dict_index_get_lock(index), &mtr); } } #ifdef UNIV_ZIP_DEBUG page_zip = buf_block_get_page_zip(block); ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ ut_a(block->page.id.space() == index->space); if (fseg_page_is_free(seg, block->page.id.space(), block->page.id.page_no())) { btr_validate_report1(index, level, block); ib::warn() << "Page is marked as free"; ret = false; } else if (btr_page_get_index_id(page) != index->id) { ib::error() << "Page index id " << btr_page_get_index_id(page) << " != data dictionary index id " << index->id; ret = false; } else if (!page_validate(page, index)) { btr_validate_report1(index, level, block); ret = false; } else if (level == 0 && !btr_index_page_validate(block, index)) { /* We are on level 0. Check that the records have the right number of fields, and field lengths are right. */ ret = false; } ut_a(btr_page_get_level(page, &mtr) == level); right_page_no = btr_page_get_next(page, &mtr); left_page_no = btr_page_get_prev(page, &mtr); ut_a(!page_is_empty(page) || (level == 0 && page_get_page_no(page) == dict_index_get_page(index))); if (right_page_no != FIL_NULL) { const rec_t* right_rec; savepoint = mtr_set_savepoint(&mtr); right_block = btr_block_get( page_id_t(index->space, right_page_no), table_page_size, RW_SX_LATCH, index, &mtr); right_page = buf_block_get_frame(right_block); if (btr_page_get_prev(right_page, &mtr) != page_get_page_no(page)) { btr_validate_report2(index, level, block, right_block); fputs("InnoDB: broken FIL_PAGE_NEXT" " or FIL_PAGE_PREV links\n", stderr); ret = false; } if (page_is_comp(right_page) != page_is_comp(page)) { btr_validate_report2(index, level, block, right_block); fputs("InnoDB: 'compact' flag mismatch\n", stderr); ret = false; goto node_ptr_fails; } rec = page_rec_get_prev(page_get_supremum_rec(page)); right_rec = page_rec_get_next(page_get_infimum_rec( right_page)); offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); offsets2 = rec_get_offsets(right_rec, index, offsets2, ULINT_UNDEFINED, &heap); /* For spatial index, we cannot guarantee the key ordering across pages, so skip the record compare verification for now. Will enhanced in special R-Tree index validation scheme */ if (!dict_index_is_spatial(index) && cmp_rec_rec(rec, right_rec, offsets, offsets2, index, false) >= 0) { btr_validate_report2(index, level, block, right_block); fputs("InnoDB: records in wrong order" " on adjacent pages\n", stderr); fputs("InnoDB: record ", stderr); rec = page_rec_get_prev(page_get_supremum_rec(page)); rec_print(stderr, rec, index); putc('\n', stderr); fputs("InnoDB: record ", stderr); rec = page_rec_get_next( page_get_infimum_rec(right_page)); rec_print(stderr, rec, index); putc('\n', stderr); ret = false; } } if (level > 0 && left_page_no == FIL_NULL) { ut_a(REC_INFO_MIN_REC_FLAG & rec_get_info_bits( page_rec_get_next(page_get_infimum_rec(page)), page_is_comp(page))); } /* Similarly skip the father node check for spatial index for now, for a couple of reasons: 1) As mentioned, there is no ordering relationship between records in parent level and linked pages in the child level. 2) Search parent from root is very costly for R-tree. We will add special validation mechanism for R-tree later (WL #7520) */ if (!dict_index_is_spatial(index) && block->page.id.page_no() != dict_index_get_page(index)) { /* Check father node pointers */ rec_t* node_ptr; btr_cur_position( index, page_rec_get_next(page_get_infimum_rec(page)), block, &node_cur); offsets = btr_page_get_father_node_ptr_for_validate( offsets, heap, &node_cur, &mtr); father_page = btr_cur_get_page(&node_cur); node_ptr = btr_cur_get_rec(&node_cur); parent_page_no = page_get_page_no(father_page); parent_right_page_no = btr_page_get_next(father_page, &mtr); rightmost_child = page_rec_is_supremum( page_rec_get_next(node_ptr)); btr_cur_position( index, page_rec_get_prev(page_get_supremum_rec(page)), block, &node_cur); offsets = btr_page_get_father_node_ptr_for_validate( offsets, heap, &node_cur, &mtr); if (node_ptr != btr_cur_get_rec(&node_cur) || btr_node_ptr_get_child_page_no(node_ptr, offsets) != block->page.id.page_no()) { btr_validate_report1(index, level, block); fputs("InnoDB: node pointer to the page is wrong\n", stderr); fputs("InnoDB: node ptr ", stderr); rec_print(stderr, node_ptr, index); rec = btr_cur_get_rec(&node_cur); fprintf(stderr, "\n" "InnoDB: node ptr child page n:o %lu\n", (ulong) btr_node_ptr_get_child_page_no( rec, offsets)); fputs("InnoDB: record on page ", stderr); rec_print_new(stderr, rec, offsets); putc('\n', stderr); ret = false; goto node_ptr_fails; } if (!page_is_leaf(page)) { node_ptr_tuple = dict_index_build_node_ptr( index, page_rec_get_next(page_get_infimum_rec(page)), 0, heap, btr_page_get_level(page, &mtr)); if (cmp_dtuple_rec(node_ptr_tuple, node_ptr, offsets)) { const rec_t* first_rec = page_rec_get_next( page_get_infimum_rec(page)); btr_validate_report1(index, level, block); ib::error() << "Node ptrs differ on levels > 0"; fputs("InnoDB: node ptr ",stderr); rec_print_new(stderr, node_ptr, offsets); fputs("InnoDB: first rec ", stderr); rec_print(stderr, first_rec, index); putc('\n', stderr); ret = false; goto node_ptr_fails; } } if (left_page_no == FIL_NULL) { ut_a(node_ptr == page_rec_get_next( page_get_infimum_rec(father_page))); ut_a(btr_page_get_prev(father_page, &mtr) == FIL_NULL); } if (right_page_no == FIL_NULL) { ut_a(node_ptr == page_rec_get_prev( page_get_supremum_rec(father_page))); ut_a(btr_page_get_next(father_page, &mtr) == FIL_NULL); } else { const rec_t* right_node_ptr; right_node_ptr = page_rec_get_next(node_ptr); if (!lockout && rightmost_child) { /* To obey latch order of tree blocks, we should release the right_block once to obtain lock of the uncle block. */ mtr_release_block_at_savepoint( &mtr, savepoint, right_block); btr_block_get( page_id_t(index->space, parent_right_page_no), table_page_size, RW_SX_LATCH, index, &mtr); right_block = btr_block_get( page_id_t(index->space, right_page_no), table_page_size, RW_SX_LATCH, index, &mtr); } btr_cur_position( index, page_rec_get_next( page_get_infimum_rec( buf_block_get_frame( right_block))), right_block, &right_node_cur); offsets = btr_page_get_father_node_ptr_for_validate( offsets, heap, &right_node_cur, &mtr); if (right_node_ptr != page_get_supremum_rec(father_page)) { if (btr_cur_get_rec(&right_node_cur) != right_node_ptr) { ret = false; fputs("InnoDB: node pointer to" " the right page is wrong\n", stderr); btr_validate_report1(index, level, block); } } else { page_t* right_father_page = btr_cur_get_page(&right_node_cur); if (btr_cur_get_rec(&right_node_cur) != page_rec_get_next( page_get_infimum_rec( right_father_page))) { ret = false; fputs("InnoDB: node pointer 2 to" " the right page is wrong\n", stderr); btr_validate_report1(index, level, block); } if (page_get_page_no(right_father_page) != btr_page_get_next(father_page, &mtr)) { ret = false; fputs("InnoDB: node pointer 3 to" " the right page is wrong\n", stderr); btr_validate_report1(index, level, block); } } } } node_ptr_fails: /* Commit the mini-transaction to release the latch on 'page'. Re-acquire the latch on right_page, which will become 'page' on the next loop. The page has already been checked. */ mtr_commit(&mtr); if (trx_is_interrupted(trx)) { /* On interrupt, return the current status. */ } else if (right_page_no != FIL_NULL) { mtr_start(&mtr); if (!lockout) { if (rightmost_child) { if (parent_right_page_no != FIL_NULL) { btr_block_get( page_id_t( index->space, parent_right_page_no), table_page_size, RW_SX_LATCH, index, &mtr); } } else if (parent_page_no != FIL_NULL) { btr_block_get( page_id_t(index->space, parent_page_no), table_page_size, RW_SX_LATCH, index, &mtr); } } block = btr_block_get( page_id_t(index->space, right_page_no), table_page_size, RW_SX_LATCH, index, &mtr); page = buf_block_get_frame(block); goto loop; } mem_heap_free(heap); return(ret); } /**************************************************************//** Do an index level validation of spaital index tree. @return true if no error found */ bool btr_validate_spatial_index( /*=======================*/ dict_index_t* index, /*!< in: index */ const trx_t* trx) /*!< in: transaction or NULL */ { mtr_t mtr; bool ok = true; mtr_start(&mtr); mtr_x_lock(dict_index_get_lock(index), &mtr); page_t* root = btr_root_get(index, &mtr); ulint n = btr_page_get_level(root, &mtr); #ifdef UNIV_RTR_DEBUG fprintf(stderr, "R-tree level is %lu\n", n); #endif /* UNIV_RTR_DEBUG */ for (ulint i = 0; i <= n; ++i) { #ifdef UNIV_RTR_DEBUG fprintf(stderr, "Level %lu:\n", n - i); #endif /* UNIV_RTR_DEBUG */ if (!btr_validate_level(index, trx, n - i, true)) { ok = false; break; } } mtr_commit(&mtr); return(ok); } /**************************************************************//** Checks the consistency of an index tree. @return DB_SUCCESS if ok, error code if not */ dberr_t btr_validate_index( /*===============*/ dict_index_t* index, /*!< in: index */ const trx_t* trx, /*!< in: transaction or NULL */ bool lockout)/*!< in: true if X-latch index is intended */ { dberr_t err = DB_SUCCESS; /* Full Text index are implemented by auxiliary tables, not the B-tree */ if (dict_index_is_online_ddl(index) || (index->type & DICT_FTS)) { return(err); } if (dict_index_is_spatial(index)) { if (!btr_validate_spatial_index(index, trx)) { err = DB_ERROR; } } mtr_t mtr; mtr_start(&mtr); if (!srv_read_only_mode) { if (lockout) { mtr_x_lock(dict_index_get_lock(index), &mtr); } else { mtr_sx_lock(dict_index_get_lock(index), &mtr); } } page_t* root = btr_root_get(index, &mtr); if (root == NULL && !index->is_readable()) { err = DB_DECRYPTION_FAILED; mtr_commit(&mtr); return err; } SRV_CORRUPT_TABLE_CHECK(root, { mtr_commit(&mtr); return DB_CORRUPTION; }); ulint n = btr_page_get_level(root, &mtr); for (ulint i = 0; i <= n; ++i) { if (!btr_validate_level(index, trx, n - i, lockout)) { err = DB_CORRUPTION; break; } } mtr_commit(&mtr); return(err); } /**************************************************************//** Checks if the page in the cursor can be merged with given page. If necessary, re-organize the merge_page. @return true if possible to merge. */ bool btr_can_merge_with_page( /*====================*/ btr_cur_t* cursor, /*!< in: cursor on the page to merge */ ulint page_no, /*!< in: a sibling page */ buf_block_t** merge_block, /*!< out: the merge block */ mtr_t* mtr) /*!< in: mini-transaction */ { dict_index_t* index; page_t* page; ulint n_recs; ulint data_size; ulint max_ins_size_reorg; ulint max_ins_size; buf_block_t* mblock; page_t* mpage; DBUG_ENTER("btr_can_merge_with_page"); if (page_no == FIL_NULL) { *merge_block = NULL; DBUG_RETURN(false); } index = btr_cur_get_index(cursor); page = btr_cur_get_page(cursor); const page_id_t page_id(dict_index_get_space(index), page_no); const page_size_t page_size(dict_table_page_size(index->table)); mblock = btr_block_get(page_id, page_size, RW_X_LATCH, index, mtr); mpage = buf_block_get_frame(mblock); n_recs = page_get_n_recs(page); data_size = page_get_data_size(page); max_ins_size_reorg = page_get_max_insert_size_after_reorganize( mpage, n_recs); if (data_size > max_ins_size_reorg) { goto error; } /* If compression padding tells us that merging will result in too packed up page i.e.: which is likely to cause compression failure then don't merge the pages. */ if (page_size.is_compressed() && page_is_leaf(mpage) && (page_get_data_size(mpage) + data_size >= dict_index_zip_pad_optimal_page_size(index))) { goto error; } max_ins_size = page_get_max_insert_size(mpage, n_recs); if (data_size > max_ins_size) { /* We have to reorganize mpage */ if (!btr_page_reorganize_block( false, page_zip_level, mblock, index, mtr)) { goto error; } max_ins_size = page_get_max_insert_size(mpage, n_recs); ut_ad(page_validate(mpage, index)); ut_ad(max_ins_size == max_ins_size_reorg); if (data_size > max_ins_size) { /* Add fault tolerance, though this should never happen */ goto error; } } *merge_block = mblock; DBUG_RETURN(true); error: *merge_block = NULL; DBUG_RETURN(false); } #endif /* !UNIV_HOTBACKUP */