/* * executing Python code * * src/pl/plpython/plpy_exec.c */ #include "postgres.h" #include "access/htup_details.h" #include "access/xact.h" #include "catalog/pg_type.h" #include "commands/trigger.h" #include "executor/spi.h" #include "funcapi.h" #include "utils/builtins.h" #include "utils/rel.h" #include "utils/typcache.h" #include "plpython.h" #include "plpy_exec.h" #include "plpy_elog.h" #include "plpy_main.h" #include "plpy_procedure.h" #include "plpy_subxactobject.h" /* saved state for a set-returning function */ typedef struct PLySRFState { PyObject *iter; /* Python iterator producing results */ PLySavedArgs *savedargs; /* function argument values */ MemoryContextCallback callback; /* for releasing refcounts when done */ } PLySRFState; static PyObject *PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc); static PLySavedArgs *PLy_function_save_args(PLyProcedure *proc); static void PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs); static void PLy_function_drop_args(PLySavedArgs *savedargs); static void PLy_global_args_push(PLyProcedure *proc); static void PLy_global_args_pop(PLyProcedure *proc); static void plpython_srf_cleanup_callback(void *arg); static void plpython_return_error_callback(void *arg); static PyObject *PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc, HeapTuple *rv); static HeapTuple PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd, TriggerData *tdata, HeapTuple otup); static void plpython_trigger_error_callback(void *arg); static PyObject *PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs); static void PLy_abort_open_subtransactions(int save_subxact_level); /* function subhandler */ Datum PLy_exec_function(FunctionCallInfo fcinfo, PLyProcedure *proc) { Datum rv; PyObject *volatile plargs = NULL; PyObject *volatile plrv = NULL; FuncCallContext *volatile funcctx = NULL; PLySRFState *volatile srfstate = NULL; ErrorContextCallback plerrcontext; /* * If the function is called recursively, we must push outer-level * arguments into the stack. This must be immediately before the PG_TRY * to ensure that the corresponding pop happens. */ PLy_global_args_push(proc); PG_TRY(); { if (proc->is_setof) { /* First Call setup */ if (SRF_IS_FIRSTCALL()) { funcctx = SRF_FIRSTCALL_INIT(); srfstate = (PLySRFState *) MemoryContextAllocZero(funcctx->multi_call_memory_ctx, sizeof(PLySRFState)); /* Immediately register cleanup callback */ srfstate->callback.func = plpython_srf_cleanup_callback; srfstate->callback.arg = (void *) srfstate; MemoryContextRegisterResetCallback(funcctx->multi_call_memory_ctx, &srfstate->callback); funcctx->user_fctx = (void *) srfstate; } /* Every call setup */ funcctx = SRF_PERCALL_SETUP(); Assert(funcctx != NULL); srfstate = (PLySRFState *) funcctx->user_fctx; } if (srfstate == NULL || srfstate->iter == NULL) { /* * Non-SETOF function or first time for SETOF function: build * args, then actually execute the function. */ plargs = PLy_function_build_args(fcinfo, proc); plrv = PLy_procedure_call(proc, "args", plargs); Assert(plrv != NULL); } else { /* * Second or later call for a SETOF function: restore arguments in * globals dict to what they were when we left off. We must do * this in case multiple evaluations of the same SETOF function * are interleaved. It's a bit annoying, since the iterator may * not look at the arguments at all, but we have no way to know * that. Fortunately this isn't terribly expensive. */ if (srfstate->savedargs) PLy_function_restore_args(proc, srfstate->savedargs); srfstate->savedargs = NULL; /* deleted by restore_args */ } /* * If it returns a set, call the iterator to get the next return item. * We stay in the SPI context while doing this, because PyIter_Next() * calls back into Python code which might contain SPI calls. */ if (proc->is_setof) { if (srfstate->iter == NULL) { /* first time -- do checks and setup */ ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo; if (!rsi || !IsA(rsi, ReturnSetInfo) || (rsi->allowedModes & SFRM_ValuePerCall) == 0) { ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("unsupported set function return mode"), errdetail("PL/Python set-returning functions only support returning one value per call."))); } rsi->returnMode = SFRM_ValuePerCall; /* Make iterator out of returned object */ srfstate->iter = PyObject_GetIter(plrv); Py_DECREF(plrv); plrv = NULL; if (srfstate->iter == NULL) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("returned object cannot be iterated"), errdetail("PL/Python set-returning functions must return an iterable object."))); } /* Fetch next from iterator */ plrv = PyIter_Next(srfstate->iter); if (plrv == NULL) { /* Iterator is exhausted or error happened */ bool has_error = (PyErr_Occurred() != NULL); Py_DECREF(srfstate->iter); srfstate->iter = NULL; if (has_error) PLy_elog(ERROR, "error fetching next item from iterator"); /* Pass a null through the data-returning steps below */ Py_INCREF(Py_None); plrv = Py_None; } else { /* * This won't be last call, so save argument values. We do * this again each time in case the iterator is changing those * values. */ srfstate->savedargs = PLy_function_save_args(proc); } } /* * Disconnect from SPI manager and then create the return values datum * (if the input function does a palloc for it this must not be * allocated in the SPI memory context because SPI_finish would free * it). */ if (SPI_finish() != SPI_OK_FINISH) elog(ERROR, "SPI_finish failed"); plerrcontext.callback = plpython_return_error_callback; plerrcontext.previous = error_context_stack; error_context_stack = &plerrcontext; /* * If the function is declared to return void, the Python return value * must be None. For void-returning functions, we also treat a None * return value as a special "void datum" rather than NULL (as is the * case for non-void-returning functions). */ if (proc->result.out.d.typoid == VOIDOID) { if (plrv != Py_None) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("PL/Python function with return type \"void\" did not return None"))); fcinfo->isnull = false; rv = (Datum) 0; } else if (plrv == Py_None) { fcinfo->isnull = true; /* * In a SETOF function, the iteration-ending null isn't a real * value; don't pass it through the input function, which might * complain. */ if (srfstate && srfstate->iter == NULL) rv = (Datum) 0; else if (proc->result.is_rowtype < 1) rv = InputFunctionCall(&proc->result.out.d.typfunc, NULL, proc->result.out.d.typioparam, -1); else /* Tuple as None */ rv = (Datum) NULL; } else if (proc->result.is_rowtype >= 1) { TupleDesc desc; /* make sure it's not an unnamed record */ Assert((proc->result.out.d.typoid == RECORDOID && proc->result.out.d.typmod != -1) || (proc->result.out.d.typoid != RECORDOID && proc->result.out.d.typmod == -1)); desc = lookup_rowtype_tupdesc(proc->result.out.d.typoid, proc->result.out.d.typmod); rv = PLyObject_ToCompositeDatum(&proc->result, desc, plrv); fcinfo->isnull = (rv == (Datum) NULL); ReleaseTupleDesc(desc); } else { fcinfo->isnull = false; rv = (proc->result.out.d.func) (&proc->result.out.d, -1, plrv); } } PG_CATCH(); { /* Pop old arguments from the stack if they were pushed above */ PLy_global_args_pop(proc); Py_XDECREF(plargs); Py_XDECREF(plrv); /* * If there was an error within a SRF, the iterator might not have * been exhausted yet. Clear it so the next invocation of the * function will start the iteration again. (This code is probably * unnecessary now; plpython_srf_cleanup_callback should take care of * cleanup. But it doesn't hurt anything to do it here.) */ if (srfstate) { Py_XDECREF(srfstate->iter); srfstate->iter = NULL; /* And drop any saved args; we won't need them */ if (srfstate->savedargs) PLy_function_drop_args(srfstate->savedargs); srfstate->savedargs = NULL; } PG_RE_THROW(); } PG_END_TRY(); error_context_stack = plerrcontext.previous; /* Pop old arguments from the stack if they were pushed above */ PLy_global_args_pop(proc); Py_XDECREF(plargs); Py_DECREF(plrv); if (srfstate) { /* We're in a SRF, exit appropriately */ if (srfstate->iter == NULL) { /* Iterator exhausted, so we're done */ SRF_RETURN_DONE(funcctx); } else if (fcinfo->isnull) SRF_RETURN_NEXT_NULL(funcctx); else SRF_RETURN_NEXT(funcctx, rv); } /* Plain function, just return the Datum value (possibly null) */ return rv; } /* trigger subhandler * * the python function is expected to return Py_None if the tuple is * acceptable and unmodified. Otherwise it should return a PyString * object who's value is SKIP, or MODIFY. SKIP means don't perform * this action. MODIFY means the tuple has been modified, so update * tuple and perform action. SKIP and MODIFY assume the trigger fires * BEFORE the event and is ROW level. postgres expects the function * to take no arguments and return an argument of type trigger. */ HeapTuple PLy_exec_trigger(FunctionCallInfo fcinfo, PLyProcedure *proc) { HeapTuple rv = NULL; PyObject *volatile plargs = NULL; PyObject *volatile plrv = NULL; TriggerData *tdata; Assert(CALLED_AS_TRIGGER(fcinfo)); /* * Input/output conversion for trigger tuples. Use the result TypeInfo * variable to store the tuple conversion info. We do this over again on * each call to cover the possibility that the relation's tupdesc changed * since the trigger was last called. PLy_input_tuple_funcs and * PLy_output_tuple_funcs are responsible for not doing repetitive work. */ tdata = (TriggerData *) fcinfo->context; PLy_input_tuple_funcs(&(proc->result), tdata->tg_relation->rd_att); PLy_output_tuple_funcs(&(proc->result), tdata->tg_relation->rd_att); PG_TRY(); { plargs = PLy_trigger_build_args(fcinfo, proc, &rv); plrv = PLy_procedure_call(proc, "TD", plargs); Assert(plrv != NULL); /* * Disconnect from SPI manager */ if (SPI_finish() != SPI_OK_FINISH) elog(ERROR, "SPI_finish failed"); /* * return of None means we're happy with the tuple */ if (plrv != Py_None) { char *srv; if (PyString_Check(plrv)) srv = PyString_AsString(plrv); else if (PyUnicode_Check(plrv)) srv = PLyUnicode_AsString(plrv); else { ereport(ERROR, (errcode(ERRCODE_DATA_EXCEPTION), errmsg("unexpected return value from trigger procedure"), errdetail("Expected None or a string."))); srv = NULL; /* keep compiler quiet */ } if (pg_strcasecmp(srv, "SKIP") == 0) rv = NULL; else if (pg_strcasecmp(srv, "MODIFY") == 0) { TriggerData *tdata = (TriggerData *) fcinfo->context; if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event) || TRIGGER_FIRED_BY_UPDATE(tdata->tg_event)) rv = PLy_modify_tuple(proc, plargs, tdata, rv); else ereport(WARNING, (errmsg("PL/Python trigger function returned \"MODIFY\" in a DELETE trigger -- ignored"))); } else if (pg_strcasecmp(srv, "OK") != 0) { /* * accept "OK" as an alternative to None; otherwise, raise an * error */ ereport(ERROR, (errcode(ERRCODE_DATA_EXCEPTION), errmsg("unexpected return value from trigger procedure"), errdetail("Expected None, \"OK\", \"SKIP\", or \"MODIFY\"."))); } } } PG_CATCH(); { Py_XDECREF(plargs); Py_XDECREF(plrv); PG_RE_THROW(); } PG_END_TRY(); Py_DECREF(plargs); Py_DECREF(plrv); return rv; } /* helper functions for Python code execution */ static PyObject * PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc) { PyObject *volatile arg = NULL; PyObject *volatile args = NULL; int i; PG_TRY(); { args = PyList_New(proc->nargs); for (i = 0; i < proc->nargs; i++) { if (proc->args[i].is_rowtype > 0) { if (fcinfo->argnull[i]) arg = NULL; else { HeapTupleHeader td; Oid tupType; int32 tupTypmod; TupleDesc tupdesc; HeapTupleData tmptup; td = DatumGetHeapTupleHeader(fcinfo->arg[i]); /* Extract rowtype info and find a tupdesc */ tupType = HeapTupleHeaderGetTypeId(td); tupTypmod = HeapTupleHeaderGetTypMod(td); tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod); /* Set up I/O funcs if not done yet */ if (proc->args[i].is_rowtype != 1) PLy_input_tuple_funcs(&(proc->args[i]), tupdesc); /* Build a temporary HeapTuple control structure */ tmptup.t_len = HeapTupleHeaderGetDatumLength(td); tmptup.t_data = td; arg = PLyDict_FromTuple(&(proc->args[i]), &tmptup, tupdesc); ReleaseTupleDesc(tupdesc); } } else { if (fcinfo->argnull[i]) arg = NULL; else { arg = (proc->args[i].in.d.func) (&(proc->args[i].in.d), fcinfo->arg[i]); } } if (arg == NULL) { Py_INCREF(Py_None); arg = Py_None; } if (PyList_SetItem(args, i, arg) == -1) PLy_elog(ERROR, "PyList_SetItem() failed, while setting up arguments"); if (proc->argnames && proc->argnames[i] && PyDict_SetItemString(proc->globals, proc->argnames[i], arg) == -1) PLy_elog(ERROR, "PyDict_SetItemString() failed, while setting up arguments"); arg = NULL; } /* Set up output conversion for functions returning RECORD */ if (proc->result.out.d.typoid == RECORDOID) { TupleDesc desc; if (get_call_result_type(fcinfo, NULL, &desc) != TYPEFUNC_COMPOSITE) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("function returning record called in context " "that cannot accept type record"))); /* cache the output conversion functions */ PLy_output_record_funcs(&(proc->result), desc); } } PG_CATCH(); { Py_XDECREF(arg); Py_XDECREF(args); PG_RE_THROW(); } PG_END_TRY(); return args; } /* * Construct a PLySavedArgs struct representing the current values of the * procedure's arguments in its globals dict. This can be used to restore * those values when exiting a recursive call level or returning control to a * set-returning function. * * This would not be necessary except for an ancient decision to make args * available via the proc's globals :-( ... but we're stuck with that now. */ static PLySavedArgs * PLy_function_save_args(PLyProcedure *proc) { PLySavedArgs *result; /* saved args are always allocated in procedure's context */ result = (PLySavedArgs *) MemoryContextAllocZero(proc->mcxt, offsetof(PLySavedArgs, namedargs) + proc->nargs * sizeof(PyObject *)); result->nargs = proc->nargs; /* Fetch the "args" list */ result->args = PyDict_GetItemString(proc->globals, "args"); Py_XINCREF(result->args); /* Fetch all the named arguments */ if (proc->argnames) { int i; for (i = 0; i < result->nargs; i++) { if (proc->argnames[i]) { result->namedargs[i] = PyDict_GetItemString(proc->globals, proc->argnames[i]); Py_XINCREF(result->namedargs[i]); } } } return result; } /* * Restore procedure's arguments from a PLySavedArgs struct, * then free the struct. */ static void PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs) { /* Restore named arguments into their slots in the globals dict */ if (proc->argnames) { int i; for (i = 0; i < savedargs->nargs; i++) { if (proc->argnames[i] && savedargs->namedargs[i]) { PyDict_SetItemString(proc->globals, proc->argnames[i], savedargs->namedargs[i]); Py_DECREF(savedargs->namedargs[i]); } } } /* Restore the "args" object, too */ if (savedargs->args) { PyDict_SetItemString(proc->globals, "args", savedargs->args); Py_DECREF(savedargs->args); } /* And free the PLySavedArgs struct */ pfree(savedargs); } /* * Free a PLySavedArgs struct without restoring the values. */ static void PLy_function_drop_args(PLySavedArgs *savedargs) { int i; /* Drop references for named args */ for (i = 0; i < savedargs->nargs; i++) { Py_XDECREF(savedargs->namedargs[i]); } /* Drop ref to the "args" object, too */ Py_XDECREF(savedargs->args); /* And free the PLySavedArgs struct */ pfree(savedargs); } /* * Save away any existing arguments for the given procedure, so that we can * install new values for a recursive call. This should be invoked before * doing PLy_function_build_args(). * * NB: caller must ensure that PLy_global_args_pop gets invoked once, and * only once, per successful completion of PLy_global_args_push. Otherwise * we'll end up out-of-sync between the actual call stack and the contents * of proc->argstack. */ static void PLy_global_args_push(PLyProcedure *proc) { /* We only need to push if we are already inside some active call */ if (proc->calldepth > 0) { PLySavedArgs *node; /* Build a struct containing current argument values */ node = PLy_function_save_args(proc); /* * Push the saved argument values into the procedure's stack. Once we * modify either proc->argstack or proc->calldepth, we had better * return without the possibility of error. */ node->next = proc->argstack; proc->argstack = node; } proc->calldepth++; } /* * Pop old arguments when exiting a recursive call. * * Note: the idea here is to adjust the proc's callstack state before doing * anything that could possibly fail. In event of any error, we want the * callstack to look like we've done the pop. Leaking a bit of memory is * tolerable. */ static void PLy_global_args_pop(PLyProcedure *proc) { Assert(proc->calldepth > 0); /* We only need to pop if we were already inside some active call */ if (proc->calldepth > 1) { PLySavedArgs *ptr = proc->argstack; /* Pop the callstack */ Assert(ptr != NULL); proc->argstack = ptr->next; proc->calldepth--; /* Restore argument values, then free ptr */ PLy_function_restore_args(proc, ptr); } else { /* Exiting call depth 1 */ Assert(proc->argstack == NULL); proc->calldepth--; /* * We used to delete the named arguments (but not "args") from the * proc's globals dict when exiting the outermost call level for a * function. This seems rather pointless though: nothing can see the * dict until the function is called again, at which time we'll * overwrite those dict entries. So don't bother with that. */ } } /* * Memory context deletion callback for cleaning up a PLySRFState. * We need this in case execution of the SRF is terminated early, * due to error or the caller simply not running it to completion. */ static void plpython_srf_cleanup_callback(void *arg) { PLySRFState *srfstate = (PLySRFState *) arg; /* Release refcount on the iter, if we still have one */ Py_XDECREF(srfstate->iter); srfstate->iter = NULL; /* And drop any saved args; we won't need them */ if (srfstate->savedargs) PLy_function_drop_args(srfstate->savedargs); srfstate->savedargs = NULL; } static void plpython_return_error_callback(void *arg) { PLyExecutionContext *exec_ctx = PLy_current_execution_context(); if (exec_ctx->curr_proc) errcontext("while creating return value"); } static PyObject * PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc, HeapTuple *rv) { TriggerData *tdata = (TriggerData *) fcinfo->context; PyObject *pltname, *pltevent, *pltwhen, *pltlevel, *pltrelid, *plttablename, *plttableschema; PyObject *pltargs, *pytnew, *pytold; PyObject *volatile pltdata = NULL; char *stroid; PG_TRY(); { pltdata = PyDict_New(); if (!pltdata) PLy_elog(ERROR, "could not create new dictionary while building trigger arguments"); pltname = PyString_FromString(tdata->tg_trigger->tgname); PyDict_SetItemString(pltdata, "name", pltname); Py_DECREF(pltname); stroid = DatumGetCString(DirectFunctionCall1(oidout, ObjectIdGetDatum(tdata->tg_relation->rd_id))); pltrelid = PyString_FromString(stroid); PyDict_SetItemString(pltdata, "relid", pltrelid); Py_DECREF(pltrelid); pfree(stroid); stroid = SPI_getrelname(tdata->tg_relation); plttablename = PyString_FromString(stroid); PyDict_SetItemString(pltdata, "table_name", plttablename); Py_DECREF(plttablename); pfree(stroid); stroid = SPI_getnspname(tdata->tg_relation); plttableschema = PyString_FromString(stroid); PyDict_SetItemString(pltdata, "table_schema", plttableschema); Py_DECREF(plttableschema); pfree(stroid); if (TRIGGER_FIRED_BEFORE(tdata->tg_event)) pltwhen = PyString_FromString("BEFORE"); else if (TRIGGER_FIRED_AFTER(tdata->tg_event)) pltwhen = PyString_FromString("AFTER"); else if (TRIGGER_FIRED_INSTEAD(tdata->tg_event)) pltwhen = PyString_FromString("INSTEAD OF"); else { elog(ERROR, "unrecognized WHEN tg_event: %u", tdata->tg_event); pltwhen = NULL; /* keep compiler quiet */ } PyDict_SetItemString(pltdata, "when", pltwhen); Py_DECREF(pltwhen); if (TRIGGER_FIRED_FOR_ROW(tdata->tg_event)) { pltlevel = PyString_FromString("ROW"); PyDict_SetItemString(pltdata, "level", pltlevel); Py_DECREF(pltlevel); if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event)) { pltevent = PyString_FromString("INSERT"); PyDict_SetItemString(pltdata, "old", Py_None); pytnew = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple, tdata->tg_relation->rd_att); PyDict_SetItemString(pltdata, "new", pytnew); Py_DECREF(pytnew); *rv = tdata->tg_trigtuple; } else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event)) { pltevent = PyString_FromString("DELETE"); PyDict_SetItemString(pltdata, "new", Py_None); pytold = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple, tdata->tg_relation->rd_att); PyDict_SetItemString(pltdata, "old", pytold); Py_DECREF(pytold); *rv = tdata->tg_trigtuple; } else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event)) { pltevent = PyString_FromString("UPDATE"); pytnew = PLyDict_FromTuple(&(proc->result), tdata->tg_newtuple, tdata->tg_relation->rd_att); PyDict_SetItemString(pltdata, "new", pytnew); Py_DECREF(pytnew); pytold = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple, tdata->tg_relation->rd_att); PyDict_SetItemString(pltdata, "old", pytold); Py_DECREF(pytold); *rv = tdata->tg_newtuple; } else { elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event); pltevent = NULL; /* keep compiler quiet */ } PyDict_SetItemString(pltdata, "event", pltevent); Py_DECREF(pltevent); } else if (TRIGGER_FIRED_FOR_STATEMENT(tdata->tg_event)) { pltlevel = PyString_FromString("STATEMENT"); PyDict_SetItemString(pltdata, "level", pltlevel); Py_DECREF(pltlevel); PyDict_SetItemString(pltdata, "old", Py_None); PyDict_SetItemString(pltdata, "new", Py_None); *rv = NULL; if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event)) pltevent = PyString_FromString("INSERT"); else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event)) pltevent = PyString_FromString("DELETE"); else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event)) pltevent = PyString_FromString("UPDATE"); else if (TRIGGER_FIRED_BY_TRUNCATE(tdata->tg_event)) pltevent = PyString_FromString("TRUNCATE"); else { elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event); pltevent = NULL; /* keep compiler quiet */ } PyDict_SetItemString(pltdata, "event", pltevent); Py_DECREF(pltevent); } else elog(ERROR, "unrecognized LEVEL tg_event: %u", tdata->tg_event); if (tdata->tg_trigger->tgnargs) { /* * all strings... */ int i; PyObject *pltarg; pltargs = PyList_New(tdata->tg_trigger->tgnargs); for (i = 0; i < tdata->tg_trigger->tgnargs; i++) { pltarg = PyString_FromString(tdata->tg_trigger->tgargs[i]); /* * stolen, don't Py_DECREF */ PyList_SetItem(pltargs, i, pltarg); } } else { Py_INCREF(Py_None); pltargs = Py_None; } PyDict_SetItemString(pltdata, "args", pltargs); Py_DECREF(pltargs); } PG_CATCH(); { Py_XDECREF(pltdata); PG_RE_THROW(); } PG_END_TRY(); return pltdata; } static HeapTuple PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd, TriggerData *tdata, HeapTuple otup) { PyObject *volatile plntup; PyObject *volatile plkeys; PyObject *volatile plval; HeapTuple rtup; int natts, i, attn, atti; int *volatile modattrs; Datum *volatile modvalues; char *volatile modnulls; TupleDesc tupdesc; ErrorContextCallback plerrcontext; plerrcontext.callback = plpython_trigger_error_callback; plerrcontext.previous = error_context_stack; error_context_stack = &plerrcontext; plntup = plkeys = plval = NULL; modattrs = NULL; modvalues = NULL; modnulls = NULL; PG_TRY(); { if ((plntup = PyDict_GetItemString(pltd, "new")) == NULL) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_OBJECT), errmsg("TD[\"new\"] deleted, cannot modify row"))); Py_INCREF(plntup); if (!PyDict_Check(plntup)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("TD[\"new\"] is not a dictionary"))); plkeys = PyDict_Keys(plntup); natts = PyList_Size(plkeys); modattrs = (int *) palloc(natts * sizeof(int)); modvalues = (Datum *) palloc(natts * sizeof(Datum)); modnulls = (char *) palloc(natts * sizeof(char)); tupdesc = tdata->tg_relation->rd_att; for (i = 0; i < natts; i++) { PyObject *platt; char *plattstr; platt = PyList_GetItem(plkeys, i); if (PyString_Check(platt)) plattstr = PyString_AsString(platt); else if (PyUnicode_Check(platt)) plattstr = PLyUnicode_AsString(platt); else { ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("TD[\"new\"] dictionary key at ordinal position %d is not a string", i))); plattstr = NULL; /* keep compiler quiet */ } attn = SPI_fnumber(tupdesc, plattstr); if (attn == SPI_ERROR_NOATTRIBUTE) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_COLUMN), errmsg("key \"%s\" found in TD[\"new\"] does not exist as a column in the triggering row", plattstr))); atti = attn - 1; plval = PyDict_GetItem(plntup, platt); if (plval == NULL) elog(FATAL, "Python interpreter is probably corrupted"); Py_INCREF(plval); modattrs[i] = attn; if (tupdesc->attrs[atti]->attisdropped) { modvalues[i] = (Datum) 0; modnulls[i] = 'n'; } else if (plval != Py_None) { PLyObToDatum *att = &proc->result.out.r.atts[atti]; modvalues[i] = (att->func) (att, tupdesc->attrs[atti]->atttypmod, plval); modnulls[i] = ' '; } else { modvalues[i] = InputFunctionCall(&proc->result.out.r.atts[atti].typfunc, NULL, proc->result.out.r.atts[atti].typioparam, tupdesc->attrs[atti]->atttypmod); modnulls[i] = 'n'; } Py_DECREF(plval); plval = NULL; } rtup = SPI_modifytuple(tdata->tg_relation, otup, natts, modattrs, modvalues, modnulls); if (rtup == NULL) elog(ERROR, "SPI_modifytuple failed: error %d", SPI_result); } PG_CATCH(); { Py_XDECREF(plntup); Py_XDECREF(plkeys); Py_XDECREF(plval); if (modnulls) pfree(modnulls); if (modvalues) pfree(modvalues); if (modattrs) pfree(modattrs); PG_RE_THROW(); } PG_END_TRY(); Py_DECREF(plntup); Py_DECREF(plkeys); pfree(modattrs); pfree(modvalues); pfree(modnulls); error_context_stack = plerrcontext.previous; return rtup; } static void plpython_trigger_error_callback(void *arg) { PLyExecutionContext *exec_ctx = PLy_current_execution_context(); if (exec_ctx->curr_proc) errcontext("while modifying trigger row"); } /* execute Python code, propagate Python errors to the backend */ static PyObject * PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs) { PyObject *rv; int volatile save_subxact_level = list_length(explicit_subtransactions); PyDict_SetItemString(proc->globals, kargs, vargs); PG_TRY(); { #if PY_VERSION_HEX >= 0x03020000 rv = PyEval_EvalCode(proc->code, proc->globals, proc->globals); #else rv = PyEval_EvalCode((PyCodeObject *) proc->code, proc->globals, proc->globals); #endif /* * Since plpy will only let you close subtransactions that you * started, you cannot *unnest* subtransactions, only *nest* them * without closing. */ Assert(list_length(explicit_subtransactions) >= save_subxact_level); } PG_CATCH(); { PLy_abort_open_subtransactions(save_subxact_level); PG_RE_THROW(); } PG_END_TRY(); PLy_abort_open_subtransactions(save_subxact_level); /* If the Python code returned an error, propagate it */ if (rv == NULL) PLy_elog(ERROR, NULL); return rv; } /* * Abort lingering subtransactions that have been explicitly started * by plpy.subtransaction().start() and not properly closed. */ static void PLy_abort_open_subtransactions(int save_subxact_level) { Assert(save_subxact_level >= 0); while (list_length(explicit_subtransactions) > save_subxact_level) { PLySubtransactionData *subtransactiondata; Assert(explicit_subtransactions != NIL); ereport(WARNING, (errmsg("forcibly aborting a subtransaction that has not been exited"))); RollbackAndReleaseCurrentSubTransaction(); SPI_restore_connection(); subtransactiondata = (PLySubtransactionData *) linitial(explicit_subtransactions); explicit_subtransactions = list_delete_first(explicit_subtransactions); MemoryContextSwitchTo(subtransactiondata->oldcontext); CurrentResourceOwner = subtransactiondata->oldowner; pfree(subtransactiondata); } }