/* * cash.c * Written by D'Arcy J.M. Cain * darcy@druid.net * http://www.druid.net/darcy/ * * Functions to allow input and output of money normally but store * and handle it as 64 bit ints * * A slightly modified version of this file and a discussion of the * workings can be found in the book "Software Solutions in C" by * Dale Schumacher, Academic Press, ISBN: 0-12-632360-7 except that * this version handles 64 bit numbers and so can hold values up to * $92,233,720,368,547,758.07. * * src/backend/utils/adt/cash.c */ #include "postgres.h" #include #include #include #include #include "libpq/pqformat.h" #include "utils/builtins.h" #include "utils/cash.h" #include "utils/int8.h" #include "utils/numeric.h" #include "utils/pg_locale.h" /************************************************************************* * Private routines ************************************************************************/ static const char * num_word(Cash value) { static char buf[128]; static const char *small[] = { "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety" }; const char **big = small + 18; int tu = value % 100; /* deal with the simple cases first */ if (value <= 20) return small[value]; /* is it an even multiple of 100? */ if (!tu) { sprintf(buf, "%s hundred", small[value / 100]); return buf; } /* more than 99? */ if (value > 99) { /* is it an even multiple of 10 other than 10? */ if (value % 10 == 0 && tu > 10) sprintf(buf, "%s hundred %s", small[value / 100], big[tu / 10]); else if (tu < 20) sprintf(buf, "%s hundred and %s", small[value / 100], small[tu]); else sprintf(buf, "%s hundred %s %s", small[value / 100], big[tu / 10], small[tu % 10]); } else { /* is it an even multiple of 10 other than 10? */ if (value % 10 == 0 && tu > 10) sprintf(buf, "%s", big[tu / 10]); else if (tu < 20) sprintf(buf, "%s", small[tu]); else sprintf(buf, "%s %s", big[tu / 10], small[tu % 10]); } return buf; } /* num_word() */ /* cash_in() * Convert a string to a cash data type. * Format is [$]###[,]###[.##] * Examples: 123.45 $123.45 $123,456.78 * */ Datum cash_in(PG_FUNCTION_ARGS) { char *str = PG_GETARG_CSTRING(0); Cash result; Cash value = 0; Cash dec = 0; Cash sgn = 1; bool seen_dot = false; const char *s = str; int fpoint; char dsymbol; const char *ssymbol, *psymbol, *nsymbol, *csymbol; struct lconv *lconvert = PGLC_localeconv(); /* * frac_digits will be CHAR_MAX in some locales, notably C. However, just * testing for == CHAR_MAX is risky, because of compilers like gcc that * "helpfully" let you alter the platform-standard definition of whether * char is signed or not. If we are so unfortunate as to get compiled * with a nonstandard -fsigned-char or -funsigned-char switch, then our * idea of CHAR_MAX will not agree with libc's. The safest course is not * to test for CHAR_MAX at all, but to impose a range check for plausible * frac_digits values. */ fpoint = lconvert->frac_digits; if (fpoint < 0 || fpoint > 10) fpoint = 2; /* best guess in this case, I think */ /* we restrict dsymbol to be a single byte, but not the other symbols */ if (*lconvert->mon_decimal_point != '\0' && lconvert->mon_decimal_point[1] == '\0') dsymbol = *lconvert->mon_decimal_point; else dsymbol = '.'; if (*lconvert->mon_thousands_sep != '\0') ssymbol = lconvert->mon_thousands_sep; else /* ssymbol should not equal dsymbol */ ssymbol = (dsymbol != ',') ? "," : "."; csymbol = (*lconvert->currency_symbol != '\0') ? lconvert->currency_symbol : "$"; psymbol = (*lconvert->positive_sign != '\0') ? lconvert->positive_sign : "+"; nsymbol = (*lconvert->negative_sign != '\0') ? lconvert->negative_sign : "-"; #ifdef CASHDEBUG printf("cashin- precision '%d'; decimal '%c'; thousands '%s'; currency '%s'; positive '%s'; negative '%s'\n", fpoint, dsymbol, ssymbol, csymbol, psymbol, nsymbol); #endif /* we need to add all sorts of checking here. For now just */ /* strip all leading whitespace and any leading currency symbol */ while (isspace((unsigned char) *s)) s++; if (strncmp(s, csymbol, strlen(csymbol)) == 0) s += strlen(csymbol); while (isspace((unsigned char) *s)) s++; #ifdef CASHDEBUG printf("cashin- string is '%s'\n", s); #endif /* a leading minus or paren signifies a negative number */ /* again, better heuristics needed */ /* XXX - doesn't properly check for balanced parens - djmc */ if (strncmp(s, nsymbol, strlen(nsymbol)) == 0) { sgn = -1; s += strlen(nsymbol); } else if (*s == '(') { sgn = -1; s++; } else if (strncmp(s, psymbol, strlen(psymbol)) == 0) s += strlen(psymbol); #ifdef CASHDEBUG printf("cashin- string is '%s'\n", s); #endif /* allow whitespace and currency symbol after the sign, too */ while (isspace((unsigned char) *s)) s++; if (strncmp(s, csymbol, strlen(csymbol)) == 0) s += strlen(csymbol); while (isspace((unsigned char) *s)) s++; #ifdef CASHDEBUG printf("cashin- string is '%s'\n", s); #endif for (; *s; s++) { /* we look for digits as long as we have found less */ /* than the required number of decimal places */ if (isdigit((unsigned char) *s) && (!seen_dot || dec < fpoint)) { value = (value * 10) + (*s - '0'); if (seen_dot) dec++; } /* decimal point? then start counting fractions... */ else if (*s == dsymbol && !seen_dot) { seen_dot = true; } /* ignore if "thousands" separator, else we're done */ else if (strncmp(s, ssymbol, strlen(ssymbol)) == 0) s += strlen(ssymbol) - 1; else break; } /* round off if there's another digit */ if (isdigit((unsigned char) *s) && *s >= '5') value++; /* adjust for less than required decimal places */ for (; dec < fpoint; dec++) value *= 10; /* * should only be trailing digits followed by whitespace, right paren, * trailing sign, and/or trailing currency symbol */ while (isdigit((unsigned char) *s)) s++; while (*s) { if (isspace((unsigned char) *s) || *s == ')') s++; else if (strncmp(s, nsymbol, strlen(nsymbol)) == 0) { sgn = -1; s += strlen(nsymbol); } else if (strncmp(s, psymbol, strlen(psymbol)) == 0) s += strlen(psymbol); else if (strncmp(s, csymbol, strlen(csymbol)) == 0) s += strlen(csymbol); else ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("invalid input syntax for type money: \"%s\"", str))); } result = value * sgn; #ifdef CASHDEBUG printf("cashin- result is " INT64_FORMAT "\n", result); #endif PG_RETURN_CASH(result); } /* cash_out() * Function to convert cash to a dollars and cents representation, using * the lc_monetary locale's formatting. */ Datum cash_out(PG_FUNCTION_ARGS) { Cash value = PG_GETARG_CASH(0); char *result; char buf[128]; char *bufptr; int digit_pos; int points, mon_group; char dsymbol; const char *ssymbol, *csymbol, *signsymbol; char sign_posn, cs_precedes, sep_by_space; struct lconv *lconvert = PGLC_localeconv(); /* see comments about frac_digits in cash_in() */ points = lconvert->frac_digits; if (points < 0 || points > 10) points = 2; /* best guess in this case, I think */ /* * As with frac_digits, must apply a range check to mon_grouping to avoid * being fooled by variant CHAR_MAX values. */ mon_group = *lconvert->mon_grouping; if (mon_group <= 0 || mon_group > 6) mon_group = 3; /* we restrict dsymbol to be a single byte, but not the other symbols */ if (*lconvert->mon_decimal_point != '\0' && lconvert->mon_decimal_point[1] == '\0') dsymbol = *lconvert->mon_decimal_point; else dsymbol = '.'; if (*lconvert->mon_thousands_sep != '\0') ssymbol = lconvert->mon_thousands_sep; else /* ssymbol should not equal dsymbol */ ssymbol = (dsymbol != ',') ? "," : "."; csymbol = (*lconvert->currency_symbol != '\0') ? lconvert->currency_symbol : "$"; if (value < 0) { /* make the amount positive for digit-reconstruction loop */ value = -value; /* set up formatting data */ signsymbol = (*lconvert->negative_sign != '\0') ? lconvert->negative_sign : "-"; sign_posn = lconvert->n_sign_posn; cs_precedes = lconvert->n_cs_precedes; sep_by_space = lconvert->n_sep_by_space; } else { signsymbol = lconvert->positive_sign; sign_posn = lconvert->p_sign_posn; cs_precedes = lconvert->p_cs_precedes; sep_by_space = lconvert->p_sep_by_space; } /* we build the digits+decimal-point+sep string right-to-left in buf[] */ bufptr = buf + sizeof(buf) - 1; *bufptr = '\0'; /* * Generate digits till there are no non-zero digits left and we emitted * at least one to the left of the decimal point. digit_pos is the * current digit position, with zero as the digit just left of the decimal * point, increasing to the right. */ digit_pos = points; do { if (points && digit_pos == 0) { /* insert decimal point, but not if value cannot be fractional */ *(--bufptr) = dsymbol; } else if (digit_pos < 0 && (digit_pos % mon_group) == 0) { /* insert thousands sep, but only to left of radix point */ bufptr -= strlen(ssymbol); memcpy(bufptr, ssymbol, strlen(ssymbol)); } *(--bufptr) = ((uint64) value % 10) + '0'; value = ((uint64) value) / 10; digit_pos--; } while (value || digit_pos >= 0); /*---------- * Now, attach currency symbol and sign symbol in the correct order. * * The POSIX spec defines these values controlling this code: * * p/n_sign_posn: * 0 Parentheses enclose the quantity and the currency_symbol. * 1 The sign string precedes the quantity and the currency_symbol. * 2 The sign string succeeds the quantity and the currency_symbol. * 3 The sign string precedes the currency_symbol. * 4 The sign string succeeds the currency_symbol. * * p/n_cs_precedes: 0 means currency symbol after value, else before it. * * p/n_sep_by_space: * 0 No separates the currency symbol and value. * 1 If the currency symbol and sign string are adjacent, a * separates them from the value; otherwise, a separates * the currency symbol from the value. * 2 If the currency symbol and sign string are adjacent, a * separates them; otherwise, a separates the sign string * from the value. *---------- */ switch (sign_posn) { case 0: if (cs_precedes) result = psprintf("(%s%s%s)", csymbol, (sep_by_space == 1) ? " " : "", bufptr); else result = psprintf("(%s%s%s)", bufptr, (sep_by_space == 1) ? " " : "", csymbol); break; case 1: default: if (cs_precedes) result = psprintf("%s%s%s%s%s", signsymbol, (sep_by_space == 2) ? " " : "", csymbol, (sep_by_space == 1) ? " " : "", bufptr); else result = psprintf("%s%s%s%s%s", signsymbol, (sep_by_space == 2) ? " " : "", bufptr, (sep_by_space == 1) ? " " : "", csymbol); break; case 2: if (cs_precedes) result = psprintf("%s%s%s%s%s", csymbol, (sep_by_space == 1) ? " " : "", bufptr, (sep_by_space == 2) ? " " : "", signsymbol); else result = psprintf("%s%s%s%s%s", bufptr, (sep_by_space == 1) ? " " : "", csymbol, (sep_by_space == 2) ? " " : "", signsymbol); break; case 3: if (cs_precedes) result = psprintf("%s%s%s%s%s", signsymbol, (sep_by_space == 2) ? " " : "", csymbol, (sep_by_space == 1) ? " " : "", bufptr); else result = psprintf("%s%s%s%s%s", bufptr, (sep_by_space == 1) ? " " : "", signsymbol, (sep_by_space == 2) ? " " : "", csymbol); break; case 4: if (cs_precedes) result = psprintf("%s%s%s%s%s", csymbol, (sep_by_space == 2) ? " " : "", signsymbol, (sep_by_space == 1) ? " " : "", bufptr); else result = psprintf("%s%s%s%s%s", bufptr, (sep_by_space == 1) ? " " : "", csymbol, (sep_by_space == 2) ? " " : "", signsymbol); break; } PG_RETURN_CSTRING(result); } /* * cash_recv - converts external binary format to cash */ Datum cash_recv(PG_FUNCTION_ARGS) { StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); PG_RETURN_CASH((Cash) pq_getmsgint64(buf)); } /* * cash_send - converts cash to binary format */ Datum cash_send(PG_FUNCTION_ARGS) { Cash arg1 = PG_GETARG_CASH(0); StringInfoData buf; pq_begintypsend(&buf); pq_sendint64(&buf, arg1); PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); } /* * Comparison functions */ Datum cash_eq(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); PG_RETURN_BOOL(c1 == c2); } Datum cash_ne(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); PG_RETURN_BOOL(c1 != c2); } Datum cash_lt(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); PG_RETURN_BOOL(c1 < c2); } Datum cash_le(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); PG_RETURN_BOOL(c1 <= c2); } Datum cash_gt(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); PG_RETURN_BOOL(c1 > c2); } Datum cash_ge(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); PG_RETURN_BOOL(c1 >= c2); } Datum cash_cmp(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); if (c1 > c2) PG_RETURN_INT32(1); else if (c1 == c2) PG_RETURN_INT32(0); else PG_RETURN_INT32(-1); } /* cash_pl() * Add two cash values. */ Datum cash_pl(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); Cash result; result = c1 + c2; PG_RETURN_CASH(result); } /* cash_mi() * Subtract two cash values. */ Datum cash_mi(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); Cash result; result = c1 - c2; PG_RETURN_CASH(result); } /* cash_div_cash() * Divide cash by cash, returning float8. */ Datum cash_div_cash(PG_FUNCTION_ARGS) { Cash dividend = PG_GETARG_CASH(0); Cash divisor = PG_GETARG_CASH(1); float8 quotient; if (divisor == 0) ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero"))); quotient = (float8) dividend / (float8) divisor; PG_RETURN_FLOAT8(quotient); } /* cash_mul_flt8() * Multiply cash by float8. */ Datum cash_mul_flt8(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); float8 f = PG_GETARG_FLOAT8(1); Cash result; result = rint(c * f); PG_RETURN_CASH(result); } /* flt8_mul_cash() * Multiply float8 by cash. */ Datum flt8_mul_cash(PG_FUNCTION_ARGS) { float8 f = PG_GETARG_FLOAT8(0); Cash c = PG_GETARG_CASH(1); Cash result; result = rint(f * c); PG_RETURN_CASH(result); } /* cash_div_flt8() * Divide cash by float8. */ Datum cash_div_flt8(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); float8 f = PG_GETARG_FLOAT8(1); Cash result; if (f == 0.0) ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero"))); result = rint(c / f); PG_RETURN_CASH(result); } /* cash_mul_flt4() * Multiply cash by float4. */ Datum cash_mul_flt4(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); float4 f = PG_GETARG_FLOAT4(1); Cash result; result = rint(c * (float8) f); PG_RETURN_CASH(result); } /* flt4_mul_cash() * Multiply float4 by cash. */ Datum flt4_mul_cash(PG_FUNCTION_ARGS) { float4 f = PG_GETARG_FLOAT4(0); Cash c = PG_GETARG_CASH(1); Cash result; result = rint((float8) f * c); PG_RETURN_CASH(result); } /* cash_div_flt4() * Divide cash by float4. * */ Datum cash_div_flt4(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); float4 f = PG_GETARG_FLOAT4(1); Cash result; if (f == 0.0) ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero"))); result = rint(c / (float8) f); PG_RETURN_CASH(result); } /* cash_mul_int8() * Multiply cash by int8. */ Datum cash_mul_int8(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); int64 i = PG_GETARG_INT64(1); Cash result; result = c * i; PG_RETURN_CASH(result); } /* int8_mul_cash() * Multiply int8 by cash. */ Datum int8_mul_cash(PG_FUNCTION_ARGS) { int64 i = PG_GETARG_INT64(0); Cash c = PG_GETARG_CASH(1); Cash result; result = i * c; PG_RETURN_CASH(result); } /* cash_div_int8() * Divide cash by 8-byte integer. */ Datum cash_div_int8(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); int64 i = PG_GETARG_INT64(1); Cash result; if (i == 0) ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero"))); result = c / i; PG_RETURN_CASH(result); } /* cash_mul_int4() * Multiply cash by int4. */ Datum cash_mul_int4(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); int32 i = PG_GETARG_INT32(1); Cash result; result = c * i; PG_RETURN_CASH(result); } /* int4_mul_cash() * Multiply int4 by cash. */ Datum int4_mul_cash(PG_FUNCTION_ARGS) { int32 i = PG_GETARG_INT32(0); Cash c = PG_GETARG_CASH(1); Cash result; result = i * c; PG_RETURN_CASH(result); } /* cash_div_int4() * Divide cash by 4-byte integer. * */ Datum cash_div_int4(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); int32 i = PG_GETARG_INT32(1); Cash result; if (i == 0) ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero"))); result = c / i; PG_RETURN_CASH(result); } /* cash_mul_int2() * Multiply cash by int2. */ Datum cash_mul_int2(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); int16 s = PG_GETARG_INT16(1); Cash result; result = c * s; PG_RETURN_CASH(result); } /* int2_mul_cash() * Multiply int2 by cash. */ Datum int2_mul_cash(PG_FUNCTION_ARGS) { int16 s = PG_GETARG_INT16(0); Cash c = PG_GETARG_CASH(1); Cash result; result = s * c; PG_RETURN_CASH(result); } /* cash_div_int2() * Divide cash by int2. * */ Datum cash_div_int2(PG_FUNCTION_ARGS) { Cash c = PG_GETARG_CASH(0); int16 s = PG_GETARG_INT16(1); Cash result; if (s == 0) ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero"))); result = c / s; PG_RETURN_CASH(result); } /* cashlarger() * Return larger of two cash values. */ Datum cashlarger(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); Cash result; result = (c1 > c2) ? c1 : c2; PG_RETURN_CASH(result); } /* cashsmaller() * Return smaller of two cash values. */ Datum cashsmaller(PG_FUNCTION_ARGS) { Cash c1 = PG_GETARG_CASH(0); Cash c2 = PG_GETARG_CASH(1); Cash result; result = (c1 < c2) ? c1 : c2; PG_RETURN_CASH(result); } /* cash_words() * This converts an int4 as well but to a representation using words * Obviously way North American centric - sorry */ Datum cash_words(PG_FUNCTION_ARGS) { Cash value = PG_GETARG_CASH(0); uint64 val; char buf[256]; char *p = buf; Cash m0; Cash m1; Cash m2; Cash m3; Cash m4; Cash m5; Cash m6; /* work with positive numbers */ if (value < 0) { value = -value; strcpy(buf, "minus "); p += 6; } else buf[0] = '\0'; /* Now treat as unsigned, to avoid trouble at INT_MIN */ val = (uint64) value; m0 = val % INT64CONST(100); /* cents */ m1 = (val / INT64CONST(100)) % 1000; /* hundreds */ m2 = (val / INT64CONST(100000)) % 1000; /* thousands */ m3 = (val / INT64CONST(100000000)) % 1000; /* millions */ m4 = (val / INT64CONST(100000000000)) % 1000; /* billions */ m5 = (val / INT64CONST(100000000000000)) % 1000; /* trillions */ m6 = (val / INT64CONST(100000000000000000)) % 1000; /* quadrillions */ if (m6) { strcat(buf, num_word(m6)); strcat(buf, " quadrillion "); } if (m5) { strcat(buf, num_word(m5)); strcat(buf, " trillion "); } if (m4) { strcat(buf, num_word(m4)); strcat(buf, " billion "); } if (m3) { strcat(buf, num_word(m3)); strcat(buf, " million "); } if (m2) { strcat(buf, num_word(m2)); strcat(buf, " thousand "); } if (m1) strcat(buf, num_word(m1)); if (!*p) strcat(buf, "zero"); strcat(buf, (val / 100) == 1 ? " dollar and " : " dollars and "); strcat(buf, num_word(m0)); strcat(buf, m0 == 1 ? " cent" : " cents"); /* capitalize output */ buf[0] = pg_toupper((unsigned char) buf[0]); /* return as text datum */ PG_RETURN_TEXT_P(cstring_to_text(buf)); } /* cash_numeric() * Convert cash to numeric. */ Datum cash_numeric(PG_FUNCTION_ARGS) { Cash money = PG_GETARG_CASH(0); Datum result; int fpoint; struct lconv *lconvert = PGLC_localeconv(); /* see comments about frac_digits in cash_in() */ fpoint = lconvert->frac_digits; if (fpoint < 0 || fpoint > 10) fpoint = 2; /* convert the integral money value to numeric */ result = DirectFunctionCall1(int8_numeric, Int64GetDatum(money)); /* scale appropriately, if needed */ if (fpoint > 0) { int64 scale; int i; Datum numeric_scale; Datum quotient; /* compute required scale factor */ scale = 1; for (i = 0; i < fpoint; i++) scale *= 10; numeric_scale = DirectFunctionCall1(int8_numeric, Int64GetDatum(scale)); /* * Given integral inputs approaching INT64_MAX, select_div_scale() * might choose a result scale of zero, causing loss of fractional * digits in the quotient. We can ensure an exact result by setting * the dscale of either input to be at least as large as the desired * result scale. numeric_round() will do that for us. */ numeric_scale = DirectFunctionCall2(numeric_round, numeric_scale, Int32GetDatum(fpoint)); /* Now we can safely divide ... */ quotient = DirectFunctionCall2(numeric_div, result, numeric_scale); /* ... and forcibly round to exactly the intended number of digits */ result = DirectFunctionCall2(numeric_round, quotient, Int32GetDatum(fpoint)); } PG_RETURN_DATUM(result); } /* numeric_cash() * Convert numeric to cash. */ Datum numeric_cash(PG_FUNCTION_ARGS) { Datum amount = PG_GETARG_DATUM(0); Cash result; int fpoint; int64 scale; int i; Datum numeric_scale; struct lconv *lconvert = PGLC_localeconv(); /* see comments about frac_digits in cash_in() */ fpoint = lconvert->frac_digits; if (fpoint < 0 || fpoint > 10) fpoint = 2; /* compute required scale factor */ scale = 1; for (i = 0; i < fpoint; i++) scale *= 10; /* multiply the input amount by scale factor */ numeric_scale = DirectFunctionCall1(int8_numeric, Int64GetDatum(scale)); amount = DirectFunctionCall2(numeric_mul, amount, numeric_scale); /* note that numeric_int8 will round to nearest integer for us */ result = DatumGetInt64(DirectFunctionCall1(numeric_int8, amount)); PG_RETURN_CASH(result); } /* int4_cash() * Convert int4 (int) to cash */ Datum int4_cash(PG_FUNCTION_ARGS) { int32 amount = PG_GETARG_INT32(0); Cash result; int fpoint; int64 scale; int i; struct lconv *lconvert = PGLC_localeconv(); /* see comments about frac_digits in cash_in() */ fpoint = lconvert->frac_digits; if (fpoint < 0 || fpoint > 10) fpoint = 2; /* compute required scale factor */ scale = 1; for (i = 0; i < fpoint; i++) scale *= 10; /* compute amount * scale, checking for overflow */ result = DatumGetInt64(DirectFunctionCall2(int8mul, Int64GetDatum(amount), Int64GetDatum(scale))); PG_RETURN_CASH(result); } /* int8_cash() * Convert int8 (bigint) to cash */ Datum int8_cash(PG_FUNCTION_ARGS) { int64 amount = PG_GETARG_INT64(0); Cash result; int fpoint; int64 scale; int i; struct lconv *lconvert = PGLC_localeconv(); /* see comments about frac_digits in cash_in() */ fpoint = lconvert->frac_digits; if (fpoint < 0 || fpoint > 10) fpoint = 2; /* compute required scale factor */ scale = 1; for (i = 0; i < fpoint; i++) scale *= 10; /* compute amount * scale, checking for overflow */ result = DatumGetInt64(DirectFunctionCall2(int8mul, Int64GetDatum(amount), Int64GetDatum(scale))); PG_RETURN_CASH(result); }