// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls import ( "crypto" "crypto/ecdsa" "crypto/rsa" "crypto/subtle" "crypto/x509" "encoding/asn1" "errors" "fmt" "io" ) // serverHandshakeState contains details of a server handshake in progress. // It's discarded once the handshake has completed. type serverHandshakeState struct { c *Conn clientHello *clientHelloMsg hello *serverHelloMsg suite *cipherSuite ellipticOk bool ecdsaOk bool rsaDecryptOk bool rsaSignOk bool sessionState *sessionState finishedHash finishedHash masterSecret []byte certsFromClient [][]byte cert *Certificate cachedClientHelloInfo *ClientHelloInfo } // serverHandshake performs a TLS handshake as a server. // c.out.Mutex <= L; c.handshakeMutex <= L. func (c *Conn) serverHandshake() error { // If this is the first server handshake, we generate a random key to // encrypt the tickets with. c.config.serverInitOnce.Do(func() { c.config.serverInit(nil) }) hs := serverHandshakeState{ c: c, } isResume, err := hs.readClientHello() if err != nil { return err } // For an overview of TLS handshaking, see https://tools.ietf.org/html/rfc5246#section-7.3 c.buffering = true if isResume { // The client has included a session ticket and so we do an abbreviated handshake. if err := hs.doResumeHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } // ticketSupported is set in a resumption handshake if the // ticket from the client was encrypted with an old session // ticket key and thus a refreshed ticket should be sent. if hs.hello.ticketSupported { if err := hs.sendSessionTicket(); err != nil { return err } } if err := hs.sendFinished(c.serverFinished[:]); err != nil { return err } if _, err := c.flush(); err != nil { return err } c.clientFinishedIsFirst = false if err := hs.readFinished(nil); err != nil { return err } c.didResume = true } else { // The client didn't include a session ticket, or it wasn't // valid so we do a full handshake. if err := hs.doFullHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } if err := hs.readFinished(c.clientFinished[:]); err != nil { return err } c.clientFinishedIsFirst = true c.buffering = true if err := hs.sendSessionTicket(); err != nil { return err } if err := hs.sendFinished(nil); err != nil { return err } if _, err := c.flush(); err != nil { return err } } c.handshakeComplete = true return nil } // readClientHello reads a ClientHello message from the client and decides // whether we will perform session resumption. func (hs *serverHandshakeState) readClientHello() (isResume bool, err error) { c := hs.c msg, err := c.readHandshake() if err != nil { return false, err } var ok bool hs.clientHello, ok = msg.(*clientHelloMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return false, unexpectedMessageError(hs.clientHello, msg) } if c.config.GetConfigForClient != nil { if newConfig, err := c.config.GetConfigForClient(hs.clientHelloInfo()); err != nil { c.sendAlert(alertInternalError) return false, err } else if newConfig != nil { newConfig.serverInitOnce.Do(func() { newConfig.serverInit(c.config) }) c.config = newConfig } } c.vers, ok = c.config.mutualVersion(hs.clientHello.vers) if !ok { c.sendAlert(alertProtocolVersion) return false, fmt.Errorf("tls: client offered an unsupported, maximum protocol version of %x", hs.clientHello.vers) } c.haveVers = true hs.hello = new(serverHelloMsg) supportedCurve := false preferredCurves := c.config.curvePreferences() Curves: for _, curve := range hs.clientHello.supportedCurves { for _, supported := range preferredCurves { if supported == curve { supportedCurve = true break Curves } } } supportedPointFormat := false for _, pointFormat := range hs.clientHello.supportedPoints { if pointFormat == pointFormatUncompressed { supportedPointFormat = true break } } hs.ellipticOk = supportedCurve && supportedPointFormat foundCompression := false // We only support null compression, so check that the client offered it. for _, compression := range hs.clientHello.compressionMethods { if compression == compressionNone { foundCompression = true break } } if !foundCompression { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: client does not support uncompressed connections") } hs.hello.vers = c.vers hs.hello.random = make([]byte, 32) _, err = io.ReadFull(c.config.rand(), hs.hello.random) if err != nil { c.sendAlert(alertInternalError) return false, err } if len(hs.clientHello.secureRenegotiation) != 0 { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: initial handshake had non-empty renegotiation extension") } hs.hello.secureRenegotiationSupported = hs.clientHello.secureRenegotiationSupported hs.hello.compressionMethod = compressionNone if len(hs.clientHello.serverName) > 0 { c.serverName = hs.clientHello.serverName } if len(hs.clientHello.alpnProtocols) > 0 { if selectedProto, fallback := mutualProtocol(hs.clientHello.alpnProtocols, c.config.NextProtos); !fallback { hs.hello.alpnProtocol = selectedProto c.clientProtocol = selectedProto } } else { // Although sending an empty NPN extension is reasonable, Firefox has // had a bug around this. Best to send nothing at all if // c.config.NextProtos is empty. See // https://golang.org/issue/5445. if hs.clientHello.nextProtoNeg && len(c.config.NextProtos) > 0 { hs.hello.nextProtoNeg = true hs.hello.nextProtos = c.config.NextProtos } } hs.cert, err = c.config.getCertificate(hs.clientHelloInfo()) if err != nil { c.sendAlert(alertInternalError) return false, err } if hs.clientHello.scts { hs.hello.scts = hs.cert.SignedCertificateTimestamps } if priv, ok := hs.cert.PrivateKey.(crypto.Signer); ok { switch priv.Public().(type) { case *ecdsa.PublicKey: hs.ecdsaOk = true case *rsa.PublicKey: hs.rsaSignOk = true default: c.sendAlert(alertInternalError) return false, fmt.Errorf("tls: unsupported signing key type (%T)", priv.Public()) } } if priv, ok := hs.cert.PrivateKey.(crypto.Decrypter); ok { switch priv.Public().(type) { case *rsa.PublicKey: hs.rsaDecryptOk = true default: c.sendAlert(alertInternalError) return false, fmt.Errorf("tls: unsupported decryption key type (%T)", priv.Public()) } } if hs.checkForResumption() { return true, nil } var preferenceList, supportedList []uint16 if c.config.PreferServerCipherSuites { preferenceList = c.config.cipherSuites() supportedList = hs.clientHello.cipherSuites } else { preferenceList = hs.clientHello.cipherSuites supportedList = c.config.cipherSuites() } for _, id := range preferenceList { if hs.setCipherSuite(id, supportedList, c.vers) { break } } if hs.suite == nil { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: no cipher suite supported by both client and server") } // See https://tools.ietf.org/html/rfc7507. for _, id := range hs.clientHello.cipherSuites { if id == TLS_FALLBACK_SCSV { // The client is doing a fallback connection. if hs.clientHello.vers < c.config.maxVersion() { c.sendAlert(alertInappropriateFallback) return false, errors.New("tls: client using inappropriate protocol fallback") } break } } return false, nil } // checkForResumption reports whether we should perform resumption on this connection. func (hs *serverHandshakeState) checkForResumption() bool { c := hs.c if c.config.SessionTicketsDisabled { return false } var ok bool var sessionTicket = append([]uint8{}, hs.clientHello.sessionTicket...) if hs.sessionState, ok = c.decryptTicket(sessionTicket); !ok { return false } // Never resume a session for a different TLS version. if c.vers != hs.sessionState.vers { return false } cipherSuiteOk := false // Check that the client is still offering the ciphersuite in the session. for _, id := range hs.clientHello.cipherSuites { if id == hs.sessionState.cipherSuite { cipherSuiteOk = true break } } if !cipherSuiteOk { return false } // Check that we also support the ciphersuite from the session. if !hs.setCipherSuite(hs.sessionState.cipherSuite, c.config.cipherSuites(), hs.sessionState.vers) { return false } sessionHasClientCerts := len(hs.sessionState.certificates) != 0 needClientCerts := c.config.ClientAuth == RequireAnyClientCert || c.config.ClientAuth == RequireAndVerifyClientCert if needClientCerts && !sessionHasClientCerts { return false } if sessionHasClientCerts && c.config.ClientAuth == NoClientCert { return false } return true } func (hs *serverHandshakeState) doResumeHandshake() error { c := hs.c hs.hello.cipherSuite = hs.suite.id // We echo the client's session ID in the ServerHello to let it know // that we're doing a resumption. hs.hello.sessionId = hs.clientHello.sessionId hs.hello.ticketSupported = hs.sessionState.usedOldKey hs.finishedHash = newFinishedHash(c.vers, hs.suite) hs.finishedHash.discardHandshakeBuffer() hs.finishedHash.Write(hs.clientHello.marshal()) hs.finishedHash.Write(hs.hello.marshal()) if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil { return err } if len(hs.sessionState.certificates) > 0 { if _, err := hs.processCertsFromClient(hs.sessionState.certificates); err != nil { return err } } hs.masterSecret = hs.sessionState.masterSecret return nil } func (hs *serverHandshakeState) doFullHandshake() error { c := hs.c if hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0 { hs.hello.ocspStapling = true } hs.hello.ticketSupported = hs.clientHello.ticketSupported && !c.config.SessionTicketsDisabled hs.hello.cipherSuite = hs.suite.id hs.finishedHash = newFinishedHash(hs.c.vers, hs.suite) if c.config.ClientAuth == NoClientCert { // No need to keep a full record of the handshake if client // certificates won't be used. hs.finishedHash.discardHandshakeBuffer() } hs.finishedHash.Write(hs.clientHello.marshal()) hs.finishedHash.Write(hs.hello.marshal()) if _, err := c.writeRecord(recordTypeHandshake, hs.hello.marshal()); err != nil { return err } certMsg := new(certificateMsg) certMsg.certificates = hs.cert.Certificate hs.finishedHash.Write(certMsg.marshal()) if _, err := c.writeRecord(recordTypeHandshake, certMsg.marshal()); err != nil { return err } if hs.hello.ocspStapling { certStatus := new(certificateStatusMsg) certStatus.statusType = statusTypeOCSP certStatus.response = hs.cert.OCSPStaple hs.finishedHash.Write(certStatus.marshal()) if _, err := c.writeRecord(recordTypeHandshake, certStatus.marshal()); err != nil { return err } } keyAgreement := hs.suite.ka(c.vers) skx, err := keyAgreement.generateServerKeyExchange(c.config, hs.cert, hs.clientHello, hs.hello) if err != nil { c.sendAlert(alertHandshakeFailure) return err } if skx != nil { hs.finishedHash.Write(skx.marshal()) if _, err := c.writeRecord(recordTypeHandshake, skx.marshal()); err != nil { return err } } if c.config.ClientAuth >= RequestClientCert { // Request a client certificate certReq := new(certificateRequestMsg) certReq.certificateTypes = []byte{ byte(certTypeRSASign), byte(certTypeECDSASign), } if c.vers >= VersionTLS12 { certReq.hasSignatureAndHash = true certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithms } // An empty list of certificateAuthorities signals to // the client that it may send any certificate in response // to our request. When we know the CAs we trust, then // we can send them down, so that the client can choose // an appropriate certificate to give to us. if c.config.ClientCAs != nil { certReq.certificateAuthorities = c.config.ClientCAs.Subjects() } hs.finishedHash.Write(certReq.marshal()) if _, err := c.writeRecord(recordTypeHandshake, certReq.marshal()); err != nil { return err } } helloDone := new(serverHelloDoneMsg) hs.finishedHash.Write(helloDone.marshal()) if _, err := c.writeRecord(recordTypeHandshake, helloDone.marshal()); err != nil { return err } if _, err := c.flush(); err != nil { return err } var pub crypto.PublicKey // public key for client auth, if any msg, err := c.readHandshake() if err != nil { return err } var ok bool // If we requested a client certificate, then the client must send a // certificate message, even if it's empty. if c.config.ClientAuth >= RequestClientCert { if certMsg, ok = msg.(*certificateMsg); !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } hs.finishedHash.Write(certMsg.marshal()) if len(certMsg.certificates) == 0 { // The client didn't actually send a certificate switch c.config.ClientAuth { case RequireAnyClientCert, RequireAndVerifyClientCert: c.sendAlert(alertBadCertificate) return errors.New("tls: client didn't provide a certificate") } } pub, err = hs.processCertsFromClient(certMsg.certificates) if err != nil { return err } msg, err = c.readHandshake() if err != nil { return err } } // Get client key exchange ckx, ok := msg.(*clientKeyExchangeMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(ckx, msg) } hs.finishedHash.Write(ckx.marshal()) preMasterSecret, err := keyAgreement.processClientKeyExchange(c.config, hs.cert, ckx, c.vers) if err != nil { c.sendAlert(alertHandshakeFailure) return err } hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.clientHello.random, hs.hello.random) if err := c.config.writeKeyLog(hs.clientHello.random, hs.masterSecret); err != nil { c.sendAlert(alertInternalError) return err } // If we received a client cert in response to our certificate request message, // the client will send us a certificateVerifyMsg immediately after the // clientKeyExchangeMsg. This message is a digest of all preceding // handshake-layer messages that is signed using the private key corresponding // to the client's certificate. This allows us to verify that the client is in // possession of the private key of the certificate. if len(c.peerCertificates) > 0 { msg, err = c.readHandshake() if err != nil { return err } certVerify, ok := msg.(*certificateVerifyMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certVerify, msg) } // Determine the signature type. var signatureAlgorithm SignatureScheme var sigType uint8 if certVerify.hasSignatureAndHash { signatureAlgorithm = certVerify.signatureAlgorithm if !isSupportedSignatureAlgorithm(signatureAlgorithm, supportedSignatureAlgorithms) { return errors.New("tls: unsupported hash function for client certificate") } sigType = signatureFromSignatureScheme(signatureAlgorithm) } else { // Before TLS 1.2 the signature algorithm was implicit // from the key type, and only one hash per signature // algorithm was possible. Leave signatureAlgorithm // unset. switch pub.(type) { case *ecdsa.PublicKey: sigType = signatureECDSA case *rsa.PublicKey: sigType = signatureRSA } } switch key := pub.(type) { case *ecdsa.PublicKey: if sigType != signatureECDSA { err = errors.New("tls: bad signature type for client's ECDSA certificate") break } ecdsaSig := new(ecdsaSignature) if _, err = asn1.Unmarshal(certVerify.signature, ecdsaSig); err != nil { break } if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 { err = errors.New("tls: ECDSA signature contained zero or negative values") break } var digest []byte if digest, _, err = hs.finishedHash.hashForClientCertificate(sigType, signatureAlgorithm, hs.masterSecret); err != nil { break } if !ecdsa.Verify(key, digest, ecdsaSig.R, ecdsaSig.S) { err = errors.New("tls: ECDSA verification failure") } case *rsa.PublicKey: if sigType != signatureRSA { err = errors.New("tls: bad signature type for client's RSA certificate") break } var digest []byte var hashFunc crypto.Hash if digest, hashFunc, err = hs.finishedHash.hashForClientCertificate(sigType, signatureAlgorithm, hs.masterSecret); err != nil { break } err = rsa.VerifyPKCS1v15(key, hashFunc, digest, certVerify.signature) } if err != nil { c.sendAlert(alertBadCertificate) return errors.New("tls: could not validate signature of connection nonces: " + err.Error()) } hs.finishedHash.Write(certVerify.marshal()) } hs.finishedHash.discardHandshakeBuffer() return nil } func (hs *serverHandshakeState) establishKeys() error { c := hs.c clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen) var clientCipher, serverCipher interface{} var clientHash, serverHash macFunction if hs.suite.aead == nil { clientCipher = hs.suite.cipher(clientKey, clientIV, true /* for reading */) clientHash = hs.suite.mac(c.vers, clientMAC) serverCipher = hs.suite.cipher(serverKey, serverIV, false /* not for reading */) serverHash = hs.suite.mac(c.vers, serverMAC) } else { clientCipher = hs.suite.aead(clientKey, clientIV) serverCipher = hs.suite.aead(serverKey, serverIV) } c.in.prepareCipherSpec(c.vers, clientCipher, clientHash) c.out.prepareCipherSpec(c.vers, serverCipher, serverHash) return nil } func (hs *serverHandshakeState) readFinished(out []byte) error { c := hs.c c.readRecord(recordTypeChangeCipherSpec) if c.in.err != nil { return c.in.err } if hs.hello.nextProtoNeg { msg, err := c.readHandshake() if err != nil { return err } nextProto, ok := msg.(*nextProtoMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(nextProto, msg) } hs.finishedHash.Write(nextProto.marshal()) c.clientProtocol = nextProto.proto } msg, err := c.readHandshake() if err != nil { return err } clientFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(clientFinished, msg) } verify := hs.finishedHash.clientSum(hs.masterSecret) if len(verify) != len(clientFinished.verifyData) || subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 { c.sendAlert(alertHandshakeFailure) return errors.New("tls: client's Finished message is incorrect") } hs.finishedHash.Write(clientFinished.marshal()) copy(out, verify) return nil } func (hs *serverHandshakeState) sendSessionTicket() error { if !hs.hello.ticketSupported { return nil } c := hs.c m := new(newSessionTicketMsg) var err error state := sessionState{ vers: c.vers, cipherSuite: hs.suite.id, masterSecret: hs.masterSecret, certificates: hs.certsFromClient, } m.ticket, err = c.encryptTicket(&state) if err != nil { return err } hs.finishedHash.Write(m.marshal()) if _, err := c.writeRecord(recordTypeHandshake, m.marshal()); err != nil { return err } return nil } func (hs *serverHandshakeState) sendFinished(out []byte) error { c := hs.c if _, err := c.writeRecord(recordTypeChangeCipherSpec, []byte{1}); err != nil { return err } finished := new(finishedMsg) finished.verifyData = hs.finishedHash.serverSum(hs.masterSecret) hs.finishedHash.Write(finished.marshal()) if _, err := c.writeRecord(recordTypeHandshake, finished.marshal()); err != nil { return err } c.cipherSuite = hs.suite.id copy(out, finished.verifyData) return nil } // processCertsFromClient takes a chain of client certificates either from a // Certificates message or from a sessionState and verifies them. It returns // the public key of the leaf certificate. func (hs *serverHandshakeState) processCertsFromClient(certificates [][]byte) (crypto.PublicKey, error) { c := hs.c hs.certsFromClient = certificates certs := make([]*x509.Certificate, len(certificates)) var err error for i, asn1Data := range certificates { if certs[i], err = x509.ParseCertificate(asn1Data); err != nil { c.sendAlert(alertBadCertificate) return nil, errors.New("tls: failed to parse client certificate: " + err.Error()) } } if c.config.ClientAuth >= VerifyClientCertIfGiven && len(certs) > 0 { opts := x509.VerifyOptions{ Roots: c.config.ClientCAs, CurrentTime: c.config.time(), Intermediates: x509.NewCertPool(), KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth}, } for _, cert := range certs[1:] { opts.Intermediates.AddCert(cert) } chains, err := certs[0].Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return nil, errors.New("tls: failed to verify client's certificate: " + err.Error()) } c.verifiedChains = chains } if c.config.VerifyPeerCertificate != nil { if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil { c.sendAlert(alertBadCertificate) return nil, err } } if len(certs) == 0 { return nil, nil } var pub crypto.PublicKey switch key := certs[0].PublicKey.(type) { case *ecdsa.PublicKey, *rsa.PublicKey: pub = key default: c.sendAlert(alertUnsupportedCertificate) return nil, fmt.Errorf("tls: client's certificate contains an unsupported public key of type %T", certs[0].PublicKey) } c.peerCertificates = certs return pub, nil } // setCipherSuite sets a cipherSuite with the given id as the serverHandshakeState // suite if that cipher suite is acceptable to use. // It returns a bool indicating if the suite was set. func (hs *serverHandshakeState) setCipherSuite(id uint16, supportedCipherSuites []uint16, version uint16) bool { for _, supported := range supportedCipherSuites { if id == supported { var candidate *cipherSuite for _, s := range cipherSuites { if s.id == id { candidate = s break } } if candidate == nil { continue } // Don't select a ciphersuite which we can't // support for this client. if candidate.flags&suiteECDHE != 0 { if !hs.ellipticOk { continue } if candidate.flags&suiteECDSA != 0 { if !hs.ecdsaOk { continue } } else if !hs.rsaSignOk { continue } } else if !hs.rsaDecryptOk { continue } if version < VersionTLS12 && candidate.flags&suiteTLS12 != 0 { continue } hs.suite = candidate return true } } return false } // suppVersArray is the backing array of ClientHelloInfo.SupportedVersions var suppVersArray = [...]uint16{VersionTLS12, VersionTLS11, VersionTLS10, VersionSSL30} func (hs *serverHandshakeState) clientHelloInfo() *ClientHelloInfo { if hs.cachedClientHelloInfo != nil { return hs.cachedClientHelloInfo } var supportedVersions []uint16 if hs.clientHello.vers > VersionTLS12 { supportedVersions = suppVersArray[:] } else if hs.clientHello.vers >= VersionSSL30 { supportedVersions = suppVersArray[VersionTLS12-hs.clientHello.vers:] } hs.cachedClientHelloInfo = &ClientHelloInfo{ CipherSuites: hs.clientHello.cipherSuites, ServerName: hs.clientHello.serverName, SupportedCurves: hs.clientHello.supportedCurves, SupportedPoints: hs.clientHello.supportedPoints, SignatureSchemes: hs.clientHello.supportedSignatureAlgorithms, SupportedProtos: hs.clientHello.alpnProtocols, SupportedVersions: supportedVersions, Conn: hs.c.conn, } return hs.cachedClientHelloInfo }