/* * Copyright (C) 1995-2011 University of Karlsruhe. All right reserved. * * This file is part of libFirm. * * This file may be distributed and/or modified under the terms of the * GNU General Public License version 2 as published by the Free Software * Foundation and appearing in the file LICENSE.GPL included in the * packaging of this file. * * Licensees holding valid libFirm Professional Edition licenses may use * this file in accordance with the libFirm Commercial License. * Agreement provided with the Software. * * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE. */ /** * @file * @brief Machine dependent Firm optimizations. * @date 28.9.2004 * @author Sebastian Hack, Michael Beck * * Implements "Strength Reduction of Multiplications by Integer Constants" * by Youfeng Wu. * Implements Division and Modulo by Consts from "Hackers Delight", */ #include "config.h" #include #include #include "irnode_t.h" #include "irgraph_t.h" #include "irmode_t.h" #include "iropt_t.h" #include "ircons_t.h" #include "irgmod.h" #include "irverify.h" #include "tv_t.h" #include "dbginfo_t.h" #include "iropt_dbg.h" #include "irflag_t.h" #include "irhooks.h" #include "ircons.h" #include "irarch.h" #include "irflag.h" #include "be.h" #include "error.h" /** The bit mask, which optimizations to apply. */ static arch_dep_opts_t opts; void arch_dep_set_opts(arch_dep_opts_t the_opts) { opts = the_opts; } /** check, whether a mode allows a Mulh instruction. */ static int allow_Mulh(const ir_settings_arch_dep_t *params, ir_mode *mode) { if (get_mode_size_bits(mode) > params->max_bits_for_mulh) return 0; return (mode_is_signed(mode) && params->allow_mulhs) || (!mode_is_signed(mode) && params->allow_mulhu); } /** * An instruction, */ typedef struct instruction instruction; struct instruction { insn_kind kind; /**< the instruction kind */ instruction *in[2]; /**< the ins */ unsigned shift_count; /**< shift count for LEA and SHIFT */ ir_node *irn; /**< the generated node for this instruction if any. */ int costs; /**< the costs for this instruction */ }; /** * The environment for the strength reduction of multiplications. */ typedef struct mul_env { struct obstack obst; /**< an obstack for local space. */ const ir_settings_arch_dep_t *params; ir_mode *mode; /**< the mode of the multiplication constant */ unsigned bits; /**< number of bits in the mode */ unsigned max_S; /**< the maximum LEA shift value. */ instruction *root; /**< the root of the instruction tree */ ir_node *op; /**< the operand that is multiplied */ ir_node *blk; /**< the block where the new graph is built */ ir_graph *irg; dbg_info *dbg; /**< the debug info for the new graph. */ ir_mode *shf_mode; /**< the (unsigned) mode for the shift constants */ int fail; /**< set to 1 if the instruction sequence fails the constraints */ int n_shift; /**< maximum number of allowed shift instructions */ evaluate_costs_func evaluate; /**< the evaluate callback */ } mul_env; /** * Some kind of default evaluator. Return the cost of * instructions. */ static int default_evaluate(insn_kind kind, const ir_mode *mode, ir_tarval *tv) { (void) mode; (void) tv; if (kind == MUL) return 13; return 1; } /** * emit a LEA (or an Add) instruction */ static instruction *emit_LEA(mul_env *env, instruction *a, instruction *b, unsigned shift) { instruction *res = OALLOC(&env->obst, instruction); res->kind = shift > 0 ? LEA : ADD; res->in[0] = a; res->in[1] = b; res->shift_count = shift; res->irn = NULL; res->costs = -1; return res; } /** * emit a SHIFT (or an Add or a Zero) instruction */ static instruction *emit_SHIFT(mul_env *env, instruction *a, unsigned shift) { instruction *res = OALLOC(&env->obst, instruction); if (shift == env->bits) { /* a 2^bits with bits resolution is a zero */ res->kind = ZERO; res->in[0] = NULL; res->in[1] = NULL; res->shift_count = 0; } else if (shift != 1) { res->kind = SHIFT; res->in[0] = a; res->in[1] = NULL; res->shift_count = shift; } else { res->kind = ADD; res->in[0] = a; res->in[1] = a; res->shift_count = 0; } res->irn = NULL; res->costs = -1; return res; } /** * emit a SUB instruction */ static instruction *emit_SUB(mul_env *env, instruction *a, instruction *b) { instruction *res = OALLOC(&env->obst, instruction); res->kind = SUB; res->in[0] = a; res->in[1] = b; res->shift_count = 0; res->irn = NULL; res->costs = -1; return res; } /** * emit the ROOT instruction */ static instruction *emit_ROOT(mul_env *env, ir_node *root_op) { instruction *res = OALLOC(&env->obst, instruction); res->kind = ROOT; res->in[0] = NULL; res->in[1] = NULL; res->shift_count = 0; res->irn = root_op; res->costs = 0; return res; } /** * Returns the condensed representation of the tarval tv */ static unsigned char *value_to_condensed(mul_env *env, ir_tarval *tv, int *pr) { ir_mode *mode = get_tarval_mode(tv); int bits = get_mode_size_bits(mode); char *bitstr = get_tarval_bitpattern(tv); int i, l, r; unsigned char *R = (unsigned char*)obstack_alloc(&env->obst, bits); l = r = 0; for (i = 0; bitstr[i] != '\0'; ++i) { if (bitstr[i] == '1') { R[r] = i - l; l = i; ++r; } } free(bitstr); *pr = r; return R; } /** * Calculate the gain when using the generalized complementary technique */ static int calculate_gain(unsigned char *R, int r) { int max_gain = 0; int idx = -1, i; int gain; /* the gain for r == 1 */ gain = 2 - 3 - R[0]; for (i = 2; i < r; ++i) { /* calculate the gain for r from the gain for r-1 */ gain += 2 - R[i - 1]; if (gain > max_gain) { max_gain = gain; idx = i; } } return idx; } /** * Calculates the condensed complement of a given (R,r) tuple */ static unsigned char *complement_condensed(mul_env *env, unsigned char *R, int r, int gain, int *prs) { unsigned char *value = (unsigned char*)obstack_alloc(&env->obst, env->bits); int i, l, j; unsigned char c; memset(value, 0, env->bits); j = 0; for (i = 0; i < gain; ++i) { j += R[i]; value[j] = 1; } /* negate and propagate 1 */ c = 1; for (i = 0; i <= j; ++i) { unsigned char v = !value[i]; value[i] = v ^ c; c = v & c; } /* condense it again */ l = r = 0; R = value; for (i = 0; i <= j; ++i) { if (value[i] == 1) { R[r] = i - l; l = i; ++r; } } *prs = r; return R; } /** * creates a tarval from a condensed representation. */ static ir_tarval *condensed_to_value(mul_env *env, unsigned char *R, int r) { ir_tarval *tv = get_mode_one(env->mode); ir_tarval *res = NULL; for (int i = 0; i < r; ++i) { int j = R[i]; if (j) { ir_tarval *t = new_tarval_from_long(j, mode_Iu); tv = tarval_shl(tv, t); } res = res ? tarval_add(res, tv) : tv; } return res; } /* forward */ static instruction *basic_decompose_mul(mul_env *env, unsigned char *R, int r, ir_tarval *N); /* * handle simple cases with up-to 2 bits set */ static instruction *decompose_simple_cases(mul_env *env, unsigned char *R, int r, ir_tarval *N) { instruction *ins, *ins2; (void) N; if (r == 1) { return emit_SHIFT(env, env->root, R[0]); } else { assert(r == 2); ins = env->root; if (R[1] <= env->max_S) { ins = emit_LEA(env, ins, ins, R[1]); if (R[0] != 0) { ins = emit_SHIFT(env, ins, R[0]); } return ins; } if (R[0] != 0) { ins = emit_SHIFT(env, ins, R[0]); } ins2 = emit_SHIFT(env, env->root, R[0] + R[1]); return emit_LEA(env, ins, ins2, 0); } } /** * Main decompose driver. */ static instruction *decompose_mul(mul_env *env, unsigned char *R, int r, ir_tarval *N) { unsigned i; int gain; if (r <= 2) return decompose_simple_cases(env, R, r, N); if (env->params->also_use_subs) { gain = calculate_gain(R, r); if (gain > 0) { instruction *instr1, *instr2; unsigned char *R1, *R2; int r1, r2, i, k, j; R1 = complement_condensed(env, R, r, gain, &r1); r2 = r - gain + 1; R2 = (unsigned char*)obstack_alloc(&env->obst, r2); k = 1; for (i = 0; i < gain; ++i) { k += R[i]; } R2[0] = k; R2[1] = R[gain] - 1; j = 2; if (R2[1] == 0) { /* Two identical bits: normalize */ ++R2[0]; --j; --r2; } for (i = gain + 1; i < r; ++i) { R2[j++] = R[i]; } instr1 = decompose_mul(env, R1, r1, NULL); instr2 = decompose_mul(env, R2, r2, NULL); return emit_SUB(env, instr2, instr1); } } if (N == NULL) N = condensed_to_value(env, R, r); for (i = env->max_S; i > 0; --i) { ir_tarval *div_res, *mod_res; ir_tarval *tv = new_tarval_from_long((1 << i) + 1, env->mode); div_res = tarval_divmod(N, tv, &mod_res); if (mod_res == get_mode_null(env->mode)) { unsigned char *Rs; int rs; Rs = value_to_condensed(env, div_res, &rs); if (rs < r) { instruction *N1 = decompose_mul(env, Rs, rs, div_res); return emit_LEA(env, N1, N1, i); } } } return basic_decompose_mul(env, R, r, N); } #define IMAX(a,b) ((a) > (b) ? (a) : (b)) /** * basic decomposition routine */ static instruction *basic_decompose_mul(mul_env *env, unsigned char *R, int r, ir_tarval *N) { instruction *Ns; unsigned t; if (R[0] == 0) { /* Case 1 */ t = R[1] > IMAX(env->max_S, R[1]); R[1] -= t; Ns = decompose_mul(env, &R[1], r - 1, N); return emit_LEA(env, env->root, Ns, t); } else if (R[0] <= env->max_S) { /* Case 2 */ t = R[0]; R[1] += t; Ns = decompose_mul(env, &R[1], r - 1, N); return emit_LEA(env, Ns, env->root, t); } else { t = R[0]; R[0] = 0; Ns = decompose_mul(env, R, r, N); return emit_SHIFT(env, Ns, t); } } /** * recursive build the graph form the instructions. * * @param env the environment * @param inst the instruction */ static ir_node *build_graph(mul_env *env, instruction *inst) { ir_node *l, *r, *c; ir_graph *irg = env->irg; if (inst->irn) return inst->irn; switch (inst->kind) { case LEA: l = build_graph(env, inst->in[0]); r = build_graph(env, inst->in[1]); c = new_r_Const_long(irg, env->shf_mode, inst->shift_count); r = new_rd_Shl(env->dbg, env->blk, r, c, env->mode); return inst->irn = new_rd_Add(env->dbg, env->blk, l, r, env->mode); case SHIFT: l = build_graph(env, inst->in[0]); c = new_r_Const_long(irg, env->shf_mode, inst->shift_count); return inst->irn = new_rd_Shl(env->dbg, env->blk, l, c, env->mode); case SUB: l = build_graph(env, inst->in[0]); r = build_graph(env, inst->in[1]); return inst->irn = new_rd_Sub(env->dbg, env->blk, l, r, env->mode); case ADD: l = build_graph(env, inst->in[0]); r = build_graph(env, inst->in[1]); return inst->irn = new_rd_Add(env->dbg, env->blk, l, r, env->mode); case ZERO: return inst->irn = new_r_Const(irg, get_mode_null(env->mode)); default: panic("Unsupported instruction kind"); } } /** * Calculate the costs for the given instruction sequence. * Note that additional costs due to higher register pressure are NOT evaluated yet */ static int evaluate_insn(mul_env *env, instruction *inst) { int costs; if (inst->costs >= 0) { /* was already evaluated */ return 0; } switch (inst->kind) { case LEA: case SUB: case ADD: costs = evaluate_insn(env, inst->in[0]); costs += evaluate_insn(env, inst->in[1]); costs += env->evaluate(inst->kind, env->mode, NULL); inst->costs = costs; return costs; case SHIFT: if (inst->shift_count > env->params->highest_shift_amount) env->fail = 1; if (env->n_shift <= 0) env->fail = 1; else --env->n_shift; costs = evaluate_insn(env, inst->in[0]); costs += env->evaluate(inst->kind, env->mode, NULL); inst->costs = costs; return costs; case ZERO: inst->costs = costs = env->evaluate(inst->kind, env->mode, NULL); return costs; case MUL: case ROOT: break; } panic("Unsupported instruction kind"); } /** * Evaluate the replacement instructions and build a new graph * if faster than the Mul. * Returns the root of the new graph then or irn otherwise. * * @param irn the Mul operation * @param operand the multiplication operand * @param tv the multiplication constant * * @return the new graph */ static ir_node *do_decomposition(ir_node *irn, ir_node *operand, ir_tarval *tv) { mul_env env; instruction *inst; unsigned char *R; int r; ir_node *res = irn; int mul_costs; obstack_init(&env.obst); env.params = be_get_backend_param()->dep_param; env.mode = get_tarval_mode(tv); env.bits = (unsigned)get_mode_size_bits(env.mode); env.max_S = 3; env.root = emit_ROOT(&env, operand); env.fail = 0; env.n_shift = env.params->maximum_shifts; env.evaluate = env.params->evaluate != NULL ? env.params->evaluate : default_evaluate; env.irg = get_irn_irg(irn); R = value_to_condensed(&env, tv, &r); inst = decompose_mul(&env, R, r, tv); /* the paper suggests 70% here */ mul_costs = (env.evaluate(MUL, env.mode, tv) * 7 + 5) / 10; if (evaluate_insn(&env, inst) <= mul_costs && !env.fail) { env.op = operand; env.blk = get_nodes_block(irn); env.dbg = get_irn_dbg_info(irn); env.shf_mode = find_unsigned_mode(env.mode); if (env.shf_mode == NULL) env.shf_mode = mode_Iu; res = build_graph(&env, inst); } obstack_free(&env.obst, NULL); return res; } /* Replace Muls with Shifts and Add/Subs. */ ir_node *arch_dep_replace_mul_with_shifts(ir_node *irn) { ir_node *res = irn; ir_mode *mode = get_irn_mode(irn); ir_graph *irg; ir_node *left; ir_node *right; ir_node *operand; ir_tarval *tv; const ir_settings_arch_dep_t *params = be_get_backend_param()->dep_param; /* If the architecture dependent optimizations were not initialized or this optimization was not enabled. */ if (params == NULL || (opts & arch_dep_mul_to_shift) == 0) return res; assert(is_Mul(irn)); if (!mode_is_int(mode)) return res; /* we should never do the reverse transformations again (like x+x -> 2*x) */ irg = get_irn_irg(irn); add_irg_constraints(irg, IR_GRAPH_CONSTRAINT_ARCH_DEP); left = get_binop_left(irn); right = get_binop_right(irn); tv = NULL; operand = NULL; /* Look, if one operand is a constant. */ if (is_Const(left)) { tv = get_Const_tarval(left); operand = right; } else if (is_Const(right)) { tv = get_Const_tarval(right); operand = left; } /* multiplications with 0 are a special case which we leave for * equivalent_node_Mul because the code here can't handle them */ if (tv == get_mode_null(mode)) return res; if (tv != NULL) { res = do_decomposition(irn, operand, tv); if (res != irn) { hook_arch_dep_replace_mul_with_shifts(irn); exchange(irn, res); } } return res; } /** * calculated the ld2 of a tarval if tarval is 2^n, else returns -1. */ static int tv_ld2(ir_tarval *tv, int bits) { int i, k = 0, num; for (num = i = 0; i < bits; ++i) { unsigned char v = get_tarval_sub_bits(tv, i); if (v) { int j; for (j = 0; j < 8; ++j) if ((1 << j) & v) { ++num; k = 8 * i + j; } } } if (num == 1) return k; return -1; } /* for shorter lines */ #define ABS(a) tarval_abs(a) #define NEG(a) tarval_neg(a) #define NOT(a) tarval_not(a) #define SHL(a, b) tarval_shl(a, b) #define SHR(a, b) tarval_shr(a, b) #define ADD(a, b) tarval_add(a, b) #define SUB(a, b) tarval_sub(a, b, NULL) #define MUL(a, b) tarval_mul(a, b) #define DIV(a, b) tarval_div(a, b) #define MOD(a, b) tarval_mod(a, b) #define CMP(a, b) tarval_cmp(a, b) #define CNV(a, m) tarval_convert_to(a, m) #define ONE(m) get_mode_one(m) #define ZERO(m) get_mode_null(m) /** The result of a the magic() function. */ struct ms { ir_tarval *M; /**< magic number */ int s; /**< shift amount */ int need_add; /**< an additional add is needed */ int need_sub; /**< an additional sub is needed */ }; /** * Signed division by constant d: calculate the Magic multiplier M and the shift amount s * * see Hacker's Delight: 10-6 Integer Division by Constants: Incorporation into a Compiler */ static struct ms magic(ir_tarval *d) { ir_mode *mode = get_tarval_mode(d); ir_mode *u_mode = find_unsigned_mode(mode); int bits = get_mode_size_bits(u_mode); int p; ir_tarval *ad, *anc, *delta, *q1, *r1, *q2, *r2, *t; /* unsigned */ ir_relation d_cmp, M_cmp; ir_tarval *bits_minus_1, *two_bits_1; struct ms mag; tarval_int_overflow_mode_t rem = tarval_get_integer_overflow_mode(); /* we need overflow mode to work correctly */ tarval_set_integer_overflow_mode(TV_OVERFLOW_WRAP); /* 2^(bits-1) */ bits_minus_1 = new_tarval_from_long(bits - 1, u_mode); two_bits_1 = SHL(get_mode_one(u_mode), bits_minus_1); ad = CNV(ABS(d), u_mode); t = ADD(two_bits_1, SHR(CNV(d, u_mode), bits_minus_1)); anc = SUB(SUB(t, ONE(u_mode)), MOD(t, ad)); /* Absolute value of nc */ p = bits - 1; /* Init: p */ q1 = DIV(two_bits_1, anc); /* Init: q1 = 2^p/|nc| */ r1 = SUB(two_bits_1, MUL(q1, anc)); /* Init: r1 = rem(2^p, |nc|) */ q2 = DIV(two_bits_1, ad); /* Init: q2 = 2^p/|d| */ r2 = SUB(two_bits_1, MUL(q2, ad)); /* Init: r2 = rem(2^p, |d|) */ do { ++p; q1 = ADD(q1, q1); /* Update q1 = 2^p/|nc| */ r1 = ADD(r1, r1); /* Update r1 = rem(2^p, |nc|) */ if (CMP(r1, anc) & ir_relation_greater_equal) { q1 = ADD(q1, ONE(u_mode)); r1 = SUB(r1, anc); } q2 = ADD(q2, q2); /* Update q2 = 2^p/|d| */ r2 = ADD(r2, r2); /* Update r2 = rem(2^p, |d|) */ if (CMP(r2, ad) & ir_relation_greater_equal) { q2 = ADD(q2, ONE(u_mode)); r2 = SUB(r2, ad); } delta = SUB(ad, r2); } while (CMP(q1, delta) & ir_relation_less || (CMP(q1, delta) & ir_relation_equal && CMP(r1, ZERO(u_mode)) & ir_relation_equal)); d_cmp = CMP(d, ZERO(mode)); if (d_cmp & ir_relation_greater_equal) mag.M = ADD(CNV(q2, mode), ONE(mode)); else mag.M = SUB(ZERO(mode), ADD(CNV(q2, mode), ONE(mode))); M_cmp = CMP(mag.M, ZERO(mode)); mag.s = p - bits; /* need an add if d > 0 && M < 0 */ mag.need_add = d_cmp & ir_relation_greater && M_cmp & ir_relation_less; /* need a sub if d < 0 && M > 0 */ mag.need_sub = d_cmp & ir_relation_less && M_cmp & ir_relation_greater; tarval_set_integer_overflow_mode(rem); return mag; } /** The result of the magicu() function. */ struct mu { ir_tarval *M; /**< magic add constant */ int s; /**< shift amount */ int need_add; /**< add indicator */ }; /** * Unsigned division by constant d: calculate the Magic multiplier M and the shift amount s * * see Hacker's Delight: 10-10 Integer Division by Constants: Incorporation into a Compiler (Unsigned) */ static struct mu magicu(ir_tarval *d) { ir_mode *mode = get_tarval_mode(d); int bits = get_mode_size_bits(mode); int p; ir_tarval *nc, *delta, *q1, *r1, *q2, *r2; ir_tarval *bits_minus_1, *two_bits_1, *seven_ff; struct mu magu; tarval_int_overflow_mode_t rem = tarval_get_integer_overflow_mode(); /* we need overflow mode to work correctly */ tarval_set_integer_overflow_mode(TV_OVERFLOW_WRAP); bits_minus_1 = new_tarval_from_long(bits - 1, mode); two_bits_1 = SHL(get_mode_one(mode), bits_minus_1); seven_ff = SUB(two_bits_1, ONE(mode)); magu.need_add = 0; /* initialize the add indicator */ nc = SUB(NEG(ONE(mode)), MOD(NEG(d), d)); p = bits - 1; /* Init: p */ q1 = DIV(two_bits_1, nc); /* Init: q1 = 2^p/nc */ r1 = SUB(two_bits_1, MUL(q1, nc)); /* Init: r1 = rem(2^p, nc) */ q2 = DIV(seven_ff, d); /* Init: q2 = (2^p - 1)/d */ r2 = SUB(seven_ff, MUL(q2, d)); /* Init: r2 = rem(2^p - 1, d) */ do { ++p; if (CMP(r1, SUB(nc, r1)) & ir_relation_greater_equal) { q1 = ADD(ADD(q1, q1), ONE(mode)); r1 = SUB(ADD(r1, r1), nc); } else { q1 = ADD(q1, q1); r1 = ADD(r1, r1); } if (CMP(ADD(r2, ONE(mode)), SUB(d, r2)) & ir_relation_greater_equal) { if (CMP(q2, seven_ff) & ir_relation_greater_equal) magu.need_add = 1; q2 = ADD(ADD(q2, q2), ONE(mode)); r2 = SUB(ADD(ADD(r2, r2), ONE(mode)), d); } else { if (CMP(q2, two_bits_1) & ir_relation_greater_equal) magu.need_add = 1; q2 = ADD(q2, q2); r2 = ADD(ADD(r2, r2), ONE(mode)); } delta = SUB(SUB(d, ONE(mode)), r2); } while (p < 2*bits && (CMP(q1, delta) & ir_relation_less || (CMP(q1, delta) & ir_relation_equal && CMP(r1, ZERO(mode)) & ir_relation_equal))); magu.M = ADD(q2, ONE(mode)); /* Magic number */ magu.s = p - bits; /* and shift amount */ tarval_set_integer_overflow_mode(rem); return magu; } /** * Build the Mulh replacement code for n / tv. * * Note that 'div' might be a Mod operation as well */ static ir_node *replace_div_by_mulh(ir_node *div, ir_tarval *tv) { dbg_info *dbg = get_irn_dbg_info(div); ir_node *n = get_binop_left(div); ir_node *block = get_nodes_block(div); ir_mode *mode = get_irn_mode(n); int bits = get_mode_size_bits(mode); ir_node *q; /* Beware: do not transform bad code */ if (is_Bad(n) || is_Bad(block)) return div; if (mode_is_signed(mode)) { ir_graph *irg = get_irn_irg(div); struct ms mag = magic(tv); /* generate the Mulh instruction */ ir_node *c = new_r_Const(irg, mag.M); ir_node *t; q = new_rd_Mulh(dbg, block, n, c, mode); /* do we need an Add or Sub */ if (mag.need_add) q = new_rd_Add(dbg, block, q, n, mode); else if (mag.need_sub) q = new_rd_Sub(dbg, block, q, n, mode); /* Do we need the shift */ if (mag.s > 0) { c = new_r_Const_long(irg, mode_Iu, mag.s); q = new_rd_Shrs(dbg, block, q, c, mode); } /* final */ c = new_r_Const_long(irg, mode_Iu, bits - 1); t = new_rd_Shr(dbg, block, q, c, mode); q = new_rd_Add(dbg, block, q, t, mode); } else { struct mu mag = magicu(tv); ir_graph *irg = get_irn_irg(div); /* generate the Mulh instruction */ ir_node *c = new_r_Const(irg, mag.M); q = new_rd_Mulh(dbg, block, n, c, mode); if (mag.need_add) { if (mag.s > 0) { /* use the GM scheme */ ir_node *t = new_rd_Sub(dbg, block, n, q, mode); c = new_r_Const(irg, get_mode_one(mode_Iu)); t = new_rd_Shr(dbg, block, t, c, mode); t = new_rd_Add(dbg, block, t, q, mode); c = new_r_Const_long(irg, mode_Iu, mag.s - 1); q = new_rd_Shr(dbg, block, t, c, mode); } else { /* use the default scheme */ q = new_rd_Add(dbg, block, q, n, mode); } } else if (mag.s > 0) { /* default scheme, shift needed */ c = new_r_Const_long(irg, mode_Iu, mag.s); q = new_rd_Shr(dbg, block, q, c, mode); } } return q; } /* Replace Divs with Shifts and Add/Subs and Mulh. */ ir_node *arch_dep_replace_div_by_const(ir_node *irn) { const ir_settings_arch_dep_t *params = be_get_backend_param()->dep_param; ir_node *res = irn; /* If the architecture dependent optimizations were not initialized or this optimization was not enabled. */ if (params == NULL || (opts & arch_dep_div_by_const) == 0) return irn; if (!is_Div(irn)) return irn; ir_node *c = get_Div_right(irn); ir_node *block, *left; ir_mode *mode; ir_tarval *tv, *ntv; dbg_info *dbg; int n, bits; int k; int n_flag = 0; if (! is_Const(c)) return irn; tv = get_Const_tarval(c); /* check for division by zero */ if (tarval_is_null(tv)) return irn; left = get_Div_left(irn); mode = get_irn_mode(left); /* can only handle integer Div's */ if (!mode_is_int(mode)) return irn; block = get_nodes_block(irn); dbg = get_irn_dbg_info(irn); bits = get_mode_size_bits(mode); n = (bits + 7) / 8; k = -1; if (mode_is_signed(mode)) { /* for signed divisions, the algorithm works for a / -2^k by negating the result */ ntv = tarval_neg(tv); n_flag = 1; k = tv_ld2(ntv, n); } if (k < 0) { n_flag = 0; k = tv_ld2(tv, n); } if (k > 0) { /* division by 2^k or -2^k */ ir_graph *irg = get_irn_irg(irn); if (mode_is_signed(mode)) { ir_node *k_node; ir_node *curr = left; /* create the correction code for signed values only if there might be a remainder */ if (! get_Div_no_remainder(irn)) { if (k != 1) { k_node = new_r_Const_long(irg, mode_Iu, k - 1); curr = new_rd_Shrs(dbg, block, left, k_node, mode); } k_node = new_r_Const_long(irg, mode_Iu, bits - k); curr = new_rd_Shr(dbg, block, curr, k_node, mode); /* curr is now 2^(k-1) in case left < 0 * or 0 in case left >= 0 * * For an example, where this fixup is necessary consider -3 / 2, * which should compute to -1, * but simply shifting right by one computes -2. */ curr = new_rd_Add(dbg, block, left, curr, mode); } k_node = new_r_Const_long(irg, mode_Iu, k); res = new_rd_Shrs(dbg, block, curr, k_node, mode); if (n_flag) { /* negate the result */ k_node = new_r_Const(irg, get_mode_null(mode)); res = new_rd_Sub(dbg, block, k_node, res, mode); } } else { /* unsigned case */ ir_node *k_node; k_node = new_r_Const_long(irg, mode_Iu, k); res = new_rd_Shr(dbg, block, left, k_node, mode); } } else if (k != 0) { /* other constant */ if (allow_Mulh(params, mode)) res = replace_div_by_mulh(irn, tv); } else { /* k == 0 i.e. division by 1 */ res = left; } if (res != irn) hook_arch_dep_replace_division_by_const(irn); return res; } /* Replace Mods with Shifts and Add/Subs and Mulh. */ ir_node *arch_dep_replace_mod_by_const(ir_node *irn) { const ir_settings_arch_dep_t *params = be_get_backend_param()->dep_param; ir_node *res = irn; /* If the architecture dependent optimizations were not initialized or this optimization was not enabled. */ if (params == NULL || (opts & arch_dep_mod_by_const) == 0) return irn; if (is_Mod(irn)) { ir_node *c = get_Mod_right(irn); ir_node *block, *left; ir_mode *mode; ir_tarval *tv, *ntv; dbg_info *dbg; int n, bits; int k; if (! is_Const(c)) return irn; tv = get_Const_tarval(c); /* check for division by zero */ if (tarval_is_null(tv)) return irn; left = get_Mod_left(irn); mode = get_irn_mode(left); block = get_nodes_block(irn); dbg = get_irn_dbg_info(irn); bits = get_mode_size_bits(mode); n = (bits + 7) / 8; k = -1; if (mode_is_signed(mode)) { /* for signed divisions, the algorithm works for a / -2^k by negating the result */ ntv = tarval_neg(tv); k = tv_ld2(ntv, n); } if (k < 0) { k = tv_ld2(tv, n); } /* k == 0 i.e. modulo by 1 */ if (k == 0) { ir_graph *irg = get_irn_irg(irn); res = new_r_Const(irg, get_mode_null(mode)); } else if (k > 0) { ir_graph *irg = get_irn_irg(irn); /* division by 2^k or -2^k: * we use "modulus" here, so x % y == x % -y that's why is no difference between the case 2^k and -2^k */ if (mode_is_signed(mode)) { ir_node *k_node; ir_node *curr = left; if (k != 1) { k_node = new_r_Const_long(irg, mode_Iu, k - 1); curr = new_rd_Shrs(dbg, block, left, k_node, mode); } k_node = new_r_Const_long(irg, mode_Iu, bits - k); curr = new_rd_Shr(dbg, block, curr, k_node, mode); curr = new_rd_Add(dbg, block, left, curr, mode); k_node = new_r_Const_long(irg, mode, (-1) << k); curr = new_rd_And(dbg, block, curr, k_node, mode); res = new_rd_Sub(dbg, block, left, curr, mode); } else { /* unsigned case */ ir_node *k_node; k_node = new_r_Const_long(irg, mode, (1 << k) - 1); res = new_rd_And(dbg, block, left, k_node, mode); } } else { /* other constant */ if (allow_Mulh(params, mode)) { res = replace_div_by_mulh(irn, tv); res = new_rd_Mul(dbg, block, res, c, mode); /* res = arch_dep_mul_to_shift(res); */ res = new_rd_Sub(dbg, block, left, res, mode); } } } if (res != irn) hook_arch_dep_replace_division_by_const(irn); return res; }