//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This pass implements a data flow analysis that propagates debug location /// information by inserting additional DBG_VALUE insts into the machine /// instruction stream. Before running, each DBG_VALUE inst corresponds to a /// source assignment of a variable. Afterwards, a DBG_VALUE inst specifies a /// variable location for the current basic block (see SourceLevelDebugging.rst). /// /// This is a separate pass from DbgValueHistoryCalculator to facilitate /// testing and improve modularity. /// /// Each variable location is represented by a VarLoc object that identifies the /// source variable, its current machine-location, and the DBG_VALUE inst that /// specifies the location. Each VarLoc is indexed in the (function-scope) /// VarLocMap, giving each VarLoc a unique index. Rather than operate directly /// on machine locations, the dataflow analysis in this pass identifies /// locations by their index in the VarLocMap, meaning all the variable /// locations in a block can be described by a sparse vector of VarLocMap /// indexes. /// //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "livedebugvalues" STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed"); // If @MI is a DBG_VALUE with debug value described by a defined // register, returns the number of this register. In the other case, returns 0. static Register isDbgValueDescribedByReg(const MachineInstr &MI) { assert(MI.isDebugValue() && "expected a DBG_VALUE"); assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); // If location of variable is described using a register (directly // or indirectly), this register is always a first operand. return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register(); } /// If \p Op is a stack or frame register return true, otherwise return false. /// This is used to avoid basing the debug entry values on the registers, since /// we do not support it at the moment. static bool isRegOtherThanSPAndFP(const MachineOperand &Op, const MachineInstr &MI, const TargetRegisterInfo *TRI) { if (!Op.isReg()) return false; const MachineFunction *MF = MI.getParent()->getParent(); const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); Register FP = TRI->getFrameRegister(*MF); Register Reg = Op.getReg(); return Reg && Reg != SP && Reg != FP; } namespace { using DefinedRegsSet = SmallSet; class LiveDebugValues : public MachineFunctionPass { private: const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; const TargetFrameLowering *TFI; BitVector CalleeSavedRegs; LexicalScopes LS; enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; /// Keeps track of lexical scopes associated with a user value's source /// location. class UserValueScopes { DebugLoc DL; LexicalScopes &LS; SmallPtrSet LBlocks; public: UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {} /// Return true if current scope dominates at least one machine /// instruction in a given machine basic block. bool dominates(MachineBasicBlock *MBB) { if (LBlocks.empty()) LS.getMachineBasicBlocks(DL, LBlocks); return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB); } }; using FragmentInfo = DIExpression::FragmentInfo; using OptFragmentInfo = Optional; /// A pair of debug variable and value location. struct VarLoc { // The location at which a spilled variable resides. It consists of a // register and an offset. struct SpillLoc { unsigned SpillBase; int SpillOffset; bool operator==(const SpillLoc &Other) const { return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; } }; /// Identity of the variable at this location. const DebugVariable Var; /// The expression applied to this location. const DIExpression *Expr; /// DBG_VALUE to clone var/expr information from if this location /// is moved. const MachineInstr &MI; mutable UserValueScopes UVS; enum VarLocKind { InvalidKind = 0, RegisterKind, SpillLocKind, ImmediateKind, EntryValueKind, EntryValueBackupKind, EntryValueCopyBackupKind } Kind = InvalidKind; /// The value location. Stored separately to avoid repeatedly /// extracting it from MI. union { uint64_t RegNo; SpillLoc SpillLocation; uint64_t Hash; int64_t Immediate; const ConstantFP *FPImm; const ConstantInt *CImm; } Loc; VarLoc(const MachineInstr &MI, LexicalScopes &LS) : Var(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()), Expr(MI.getDebugExpression()), MI(MI), UVS(MI.getDebugLoc(), LS) { static_assert((sizeof(Loc) == sizeof(uint64_t)), "hash does not cover all members of Loc"); assert(MI.isDebugValue() && "not a DBG_VALUE"); assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); if (int RegNo = isDbgValueDescribedByReg(MI)) { Kind = RegisterKind; Loc.RegNo = RegNo; } else if (MI.getOperand(0).isImm()) { Kind = ImmediateKind; Loc.Immediate = MI.getOperand(0).getImm(); } else if (MI.getOperand(0).isFPImm()) { Kind = ImmediateKind; Loc.FPImm = MI.getOperand(0).getFPImm(); } else if (MI.getOperand(0).isCImm()) { Kind = ImmediateKind; Loc.CImm = MI.getOperand(0).getCImm(); } // We create the debug entry values from the factory functions rather than // from this ctor. assert(Kind != EntryValueKind && !isEntryBackupLoc()); } /// Take the variable and machine-location in DBG_VALUE MI, and build an /// entry location using the given expression. static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, const DIExpression *EntryExpr, unsigned Reg) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Kind = EntryValueKind; VL.Expr = EntryExpr; VL.Loc.RegNo = Reg; return VL; } /// Take the variable and machine-location from the DBG_VALUE (from the /// function entry), and build an entry value backup location. The backup /// location will turn into the normal location if the backup is valid at /// the time of the primary location clobbering. static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, LexicalScopes &LS, const DIExpression *EntryExpr) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Kind = EntryValueBackupKind; VL.Expr = EntryExpr; return VL; } /// Take the variable and machine-location from the DBG_VALUE (from the /// function entry), and build a copy of an entry value backup location by /// setting the register location to NewReg. static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, LexicalScopes &LS, const DIExpression *EntryExpr, unsigned NewReg) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Kind = EntryValueCopyBackupKind; VL.Expr = EntryExpr; VL.Loc.RegNo = NewReg; return VL; } /// Copy the register location in DBG_VALUE MI, updating the register to /// be NewReg. static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS, unsigned NewReg) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Loc.RegNo = NewReg; return VL; } /// Take the variable described by DBG_VALUE MI, and create a VarLoc /// locating it in the specified spill location. static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase, int SpillOffset, LexicalScopes &LS) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Kind = SpillLocKind; VL.Loc.SpillLocation = {SpillBase, SpillOffset}; return VL; } /// Create a DBG_VALUE representing this VarLoc in the given function. /// Copies variable-specific information such as DILocalVariable and /// inlining information from the original DBG_VALUE instruction, which may /// have been several transfers ago. MachineInstr *BuildDbgValue(MachineFunction &MF) const { const DebugLoc &DbgLoc = MI.getDebugLoc(); bool Indirect = MI.isIndirectDebugValue(); const auto &IID = MI.getDesc(); const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *DIExpr = MI.getDebugExpression(); switch (Kind) { case EntryValueKind: // An entry value is a register location -- but with an updated // expression. The register location of such DBG_VALUE is always the one // from the entry DBG_VALUE, it does not matter if the entry value was // copied in to another register due to some optimizations. return BuildMI(MF, DbgLoc, IID, Indirect, MI.getOperand(0).getReg(), Var, Expr); case RegisterKind: // Register locations are like the source DBG_VALUE, but with the // register number from this VarLoc. return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr); case SpillLocKind: { // Spills are indirect DBG_VALUEs, with a base register and offset. // Use the original DBG_VALUEs expression to build the spilt location // on top of. FIXME: spill locations created before this pass runs // are not recognized, and not handled here. auto *SpillExpr = DIExpression::prepend( DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset); unsigned Base = Loc.SpillLocation.SpillBase; return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr); } case ImmediateKind: { MachineOperand MO = MI.getOperand(0); return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr); } case EntryValueBackupKind: case EntryValueCopyBackupKind: case InvalidKind: llvm_unreachable( "Tried to produce DBG_VALUE for invalid or backup VarLoc"); } llvm_unreachable("Unrecognized LiveDebugValues.VarLoc.Kind enum"); } /// Is the Loc field a constant or constant object? bool isConstant() const { return Kind == ImmediateKind; } /// Check if the Loc field is an entry backup location. bool isEntryBackupLoc() const { return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind; } /// If this variable is described by a register holding the entry value, /// return it, otherwise return 0. unsigned getEntryValueBackupReg() const { if (Kind == EntryValueBackupKind) return Loc.RegNo; return 0; } /// If this variable is described by a register holding the copy of the /// entry value, return it, otherwise return 0. unsigned getEntryValueCopyBackupReg() const { if (Kind == EntryValueCopyBackupKind) return Loc.RegNo; return 0; } /// If this variable is described by a register, return it, /// otherwise return 0. unsigned isDescribedByReg() const { if (Kind == RegisterKind) return Loc.RegNo; return 0; } /// Determine whether the lexical scope of this value's debug location /// dominates MBB. bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) // TRI can be null. void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { dbgs() << "VarLoc("; switch (Kind) { case RegisterKind: case EntryValueKind: case EntryValueBackupKind: case EntryValueCopyBackupKind: dbgs() << printReg(Loc.RegNo, TRI); break; case SpillLocKind: dbgs() << printReg(Loc.SpillLocation.SpillBase, TRI); dbgs() << "[" << Loc.SpillLocation.SpillOffset << "]"; break; case ImmediateKind: dbgs() << Loc.Immediate; break; case InvalidKind: llvm_unreachable("Invalid VarLoc in dump method"); } dbgs() << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; if (Var.getInlinedAt()) dbgs() << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; else dbgs() << "(null))"; if (isEntryBackupLoc()) dbgs() << " (backup loc)\n"; else dbgs() << "\n"; } #endif bool operator==(const VarLoc &Other) const { return Kind == Other.Kind && Var == Other.Var && Loc.Hash == Other.Loc.Hash && Expr == Other.Expr; } /// This operator guarantees that VarLocs are sorted by Variable first. bool operator<(const VarLoc &Other) const { return std::tie(Var, Kind, Loc.Hash, Expr) < std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr); } }; using VarLocMap = UniqueVector; using VarLocSet = SparseBitVector<>; using VarLocInMBB = SmallDenseMap; struct TransferDebugPair { MachineInstr *TransferInst; /// Instruction where this transfer occurs. unsigned LocationID; /// Location number for the transfer dest. }; using TransferMap = SmallVector; // Types for recording sets of variable fragments that overlap. For a given // local variable, we record all other fragments of that variable that could // overlap it, to reduce search time. using FragmentOfVar = std::pair; using OverlapMap = DenseMap>; // Helper while building OverlapMap, a map of all fragments seen for a given // DILocalVariable. using VarToFragments = DenseMap>; /// This holds the working set of currently open ranges. For fast /// access, this is done both as a set of VarLocIDs, and a map of /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all /// previous open ranges for the same variable. In addition, we keep /// two different maps (Vars/EntryValuesBackupVars), so erase/insert /// methods act differently depending on whether a VarLoc is primary /// location or backup one. In the case the VarLoc is backup location /// we will erase/insert from the EntryValuesBackupVars map, otherwise /// we perform the operation on the Vars. class OpenRangesSet { VarLocSet VarLocs; // Map the DebugVariable to recent primary location ID. SmallDenseMap Vars; // Map the DebugVariable to recent backup location ID. SmallDenseMap EntryValuesBackupVars; OverlapMap &OverlappingFragments; public: OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {} const VarLocSet &getVarLocs() const { return VarLocs; } /// Terminate all open ranges for VL.Var by removing it from the set. void erase(const VarLoc &VL); /// Terminate all open ranges listed in \c KillSet by removing /// them from the set. void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs); /// Insert a new range into the set. void insert(unsigned VarLocID, const VarLoc &VL); /// Insert a set of ranges. void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) { for (unsigned Id : ToLoad) { const VarLoc &VarL = Map[Id]; insert(Id, VarL); } } llvm::Optional getEntryValueBackup(DebugVariable Var); /// Empty the set. void clear() { VarLocs.clear(); Vars.clear(); EntryValuesBackupVars.clear(); } /// Return whether the set is empty or not. bool empty() const { assert(Vars.empty() == EntryValuesBackupVars.empty() && Vars.empty() == VarLocs.empty() && "open ranges are inconsistent"); return VarLocs.empty(); } }; /// Tests whether this instruction is a spill to a stack location. bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); /// Decide if @MI is a spill instruction and return true if it is. We use 2 /// criteria to make this decision: /// - Is this instruction a store to a spill slot? /// - Is there a register operand that is both used and killed? /// TODO: Store optimization can fold spills into other stores (including /// other spills). We do not handle this yet (more than one memory operand). bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg); /// Returns true if the given machine instruction is a debug value which we /// can emit entry values for. /// /// Currently, we generate debug entry values only for parameters that are /// unmodified throughout the function and located in a register. bool isEntryValueCandidate(const MachineInstr &MI, const DefinedRegsSet &Regs) const; /// If a given instruction is identified as a spill, return the spill location /// and set \p Reg to the spilled register. Optional isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg); /// Given a spill instruction, extract the register and offset used to /// address the spill location in a target independent way. VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind, unsigned NewReg = 0); void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, const VarLoc &EntryVL); void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, SparseBitVector<> &KillSet); void recordEntryValue(const MachineInstr &MI, const DefinedRegsSet &DefinedRegs, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); void process(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, OverlapMap &OLapMap); bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, const VarLocMap &VarLocIDs, SmallPtrSet &Visited, SmallPtrSetImpl &ArtificialBlocks, VarLocInMBB &PendingInLocs); /// Create DBG_VALUE insts for inlocs that have been propagated but /// had their instruction creation deferred. void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); bool ExtendRanges(MachineFunction &MF); public: static char ID; /// Default construct and initialize the pass. LiveDebugValues(); /// Tell the pass manager which passes we depend on and what /// information we preserve. void getAnalysisUsage(AnalysisUsage &AU) const override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } /// Print to ostream with a message. void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, const VarLocMap &VarLocIDs, const char *msg, raw_ostream &Out) const; /// Calculate the liveness information for the given machine function. bool runOnMachineFunction(MachineFunction &MF) override; }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation //===----------------------------------------------------------------------===// char LiveDebugValues::ID = 0; char &llvm::LiveDebugValuesID = LiveDebugValues::ID; INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis", false, false) /// Default construct and initialize the pass. LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) { initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry()); } /// Tell the pass manager which passes we depend on and what information we /// preserve. void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } /// Erase a variable from the set of open ranges, and additionally erase any /// fragments that may overlap it. If the VarLoc is a buckup location, erase /// the variable from the EntryValuesBackupVars set, indicating we should stop /// tracking its backup entry location. Otherwise, if the VarLoc is primary /// location, erase the variable from the Vars set. void LiveDebugValues::OpenRangesSet::erase(const VarLoc &VL) { // Erasure helper. auto DoErase = [VL, this](DebugVariable VarToErase) { auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; auto It = EraseFrom->find(VarToErase); if (It != EraseFrom->end()) { unsigned ID = It->second; VarLocs.reset(ID); EraseFrom->erase(It); } }; DebugVariable Var = VL.Var; // Erase the variable/fragment that ends here. DoErase(Var); // Extract the fragment. Interpret an empty fragment as one that covers all // possible bits. FragmentInfo ThisFragment = Var.getFragmentOrDefault(); // There may be fragments that overlap the designated fragment. Look them up // in the pre-computed overlap map, and erase them too. auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); if (MapIt != OverlappingFragments.end()) { for (auto Fragment : MapIt->second) { LiveDebugValues::OptFragmentInfo FragmentHolder; if (!DebugVariable::isDefaultFragment(Fragment)) FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment); DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); } } } void LiveDebugValues::OpenRangesSet::erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) { VarLocs.intersectWithComplement(KillSet); for (unsigned ID : KillSet) { const VarLoc *VL = &VarLocIDs[ID]; auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; EraseFrom->erase(VL->Var); } } void LiveDebugValues::OpenRangesSet::insert(unsigned VarLocID, const VarLoc &VL) { auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; VarLocs.set(VarLocID); InsertInto->insert({VL.Var, VarLocID}); } /// Return the Loc ID of an entry value backup location, if it exists for the /// variable. llvm::Optional LiveDebugValues::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { auto It = EntryValuesBackupVars.find(Var); if (It != EntryValuesBackupVars.end()) return It->second; return llvm::None; } //===----------------------------------------------------------------------===// // Debug Range Extension Implementation //===----------------------------------------------------------------------===// #ifndef NDEBUG void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, const VarLocMap &VarLocIDs, const char *msg, raw_ostream &Out) const { Out << '\n' << msg << '\n'; for (const MachineBasicBlock &BB : MF) { const VarLocSet &L = V.lookup(&BB); if (L.empty()) continue; Out << "MBB: " << BB.getNumber() << ":\n"; for (unsigned VLL : L) { const VarLoc &VL = VarLocIDs[VLL]; Out << " Var: " << VL.Var.getVariable()->getName(); Out << " MI: "; VL.dump(TRI, Out); } } Out << "\n"; } #endif LiveDebugValues::VarLoc::SpillLoc LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) { assert(MI.hasOneMemOperand() && "Spill instruction does not have exactly one memory operand?"); auto MMOI = MI.memoperands_begin(); const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); assert(PVal->kind() == PseudoSourceValue::FixedStack && "Inconsistent memory operand in spill instruction"); int FI = cast(PVal)->getFrameIndex(); const MachineBasicBlock *MBB = MI.getParent(); unsigned Reg; int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); return {Reg, Offset}; } /// Try to salvage the debug entry value if we encounter a new debug value /// describing the same parameter, otherwise stop tracking the value. Return /// true if we should stop tracking the entry value, otherwise return false. bool LiveDebugValues::removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, const VarLoc &EntryVL) { // Skip the DBG_VALUE which is the debug entry value itself. if (MI.isIdenticalTo(EntryVL.MI)) return false; // If the parameter's location is not register location, we can not track // the entry value any more. In addition, if the debug expression from the // DBG_VALUE is not empty, we can assume the parameter's value has changed // indicating that we should stop tracking its entry value as well. if (!MI.getOperand(0).isReg() || MI.getDebugExpression()->getNumElements() != 0) return true; // If the DBG_VALUE comes from a copy instruction that copies the entry value, // it means the parameter's value has not changed and we should be able to use // its entry value. bool TrySalvageEntryValue = false; Register Reg = MI.getOperand(0).getReg(); auto I = std::next(MI.getReverseIterator()); const MachineOperand *SrcRegOp, *DestRegOp; if (I != MI.getParent()->rend()) { // TODO: Try to keep tracking of an entry value if we encounter a propagated // DBG_VALUE describing the copy of the entry value. (Propagated entry value // does not indicate the parameter modification.) auto DestSrc = TII->isCopyInstr(*I); if (!DestSrc) return true; SrcRegOp = DestSrc->Source; DestRegOp = DestSrc->Destination; if (Reg != DestRegOp->getReg()) return true; TrySalvageEntryValue = true; } if (TrySalvageEntryValue) { for (unsigned ID : OpenRanges.getVarLocs()) { const VarLoc &VL = VarLocIDs[ID]; if (!VL.isEntryBackupLoc()) continue; if (VL.getEntryValueCopyBackupReg() == Reg && VL.MI.getOperand(0).getReg() == SrcRegOp->getReg()) return false; } } return true; } /// End all previous ranges related to @MI and start a new range from @MI /// if it is a DBG_VALUE instr. void LiveDebugValues::transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs) { if (!MI.isDebugValue()) return; const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *Expr = MI.getDebugExpression(); const DILocation *DebugLoc = MI.getDebugLoc(); const DILocation *InlinedAt = DebugLoc->getInlinedAt(); assert(Var->isValidLocationForIntrinsic(DebugLoc) && "Expected inlined-at fields to agree"); DebugVariable V(Var, Expr, InlinedAt); // Check if this DBG_VALUE indicates a parameter's value changing. // If that is the case, we should stop tracking its entry value. auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); if (Var->isParameter() && EntryValBackupID) { const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) { LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; MI.print(dbgs(), /*IsStandalone*/ false, /*SkipOpers*/ false, /*SkipDebugLoc*/ false, /*AddNewLine*/ true, TII)); OpenRanges.erase(EntryVL); } } unsigned ID; if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) { // Use normal VarLoc constructor for registers and immediates. VarLoc VL(MI, LS); // End all previous ranges of VL.Var. OpenRanges.erase(VL); ID = VarLocIDs.insert(VL); // Add the VarLoc to OpenRanges from this DBG_VALUE. OpenRanges.insert(ID, VL); } else if (MI.hasOneMemOperand()) { llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); } else { // This must be an undefined location. We should leave OpenRanges closed. assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 && "Unexpected non-undef DBG_VALUE encountered"); } } /// Turn the entry value backup locations into primary locations. void LiveDebugValues::emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, SparseBitVector<> &KillSet) { for (unsigned ID : KillSet) { if (!VarLocIDs[ID].Var.getVariable()->isParameter()) continue; auto DebugVar = VarLocIDs[ID].Var; auto EntryValBackupID = OpenRanges.getEntryValueBackup(DebugVar); // If the parameter has the entry value backup, it means we should // be able to use its entry value. if (!EntryValBackupID) continue; const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo); unsigned EntryValueID = VarLocIDs.insert(EntryLoc); Transfers.push_back({&MI, EntryValueID}); OpenRanges.insert(EntryValueID, EntryLoc); } } /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc /// with \p OldVarID should be deleted form \p OpenRanges and replaced with /// new VarLoc. If \p NewReg is different than default zero value then the /// new location will be register location created by the copy like instruction, /// otherwise it is variable's location on the stack. void LiveDebugValues::insertTransferDebugPair( MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind, unsigned NewReg) { const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { unsigned LocId = VarLocIDs.insert(VL); // Close this variable's previous location range. OpenRanges.erase(VL); // Record the new location as an open range, and a postponed transfer // inserting a DBG_VALUE for this location. OpenRanges.insert(LocId, VL); TransferDebugPair MIP = {&MI, LocId}; Transfers.push_back(MIP); }; // End all previous ranges of VL.Var. OpenRanges.erase(VarLocIDs[OldVarID]); switch (Kind) { case TransferKind::TransferCopy: { assert(NewReg && "No register supplied when handling a copy of a debug value"); // Create a DBG_VALUE instruction to describe the Var in its new // register location. VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for register copy:"; VL.dump(TRI); }); return; } case TransferKind::TransferSpill: { // Create a DBG_VALUE instruction to describe the Var in its spilled // location. VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for spill:"; VL.dump(TRI); }); return; } case TransferKind::TransferRestore: { assert(NewReg && "No register supplied when handling a restore of a debug value"); // DebugInstr refers to the pre-spill location, therefore we can reuse // its expression. VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for restore:"; VL.dump(TRI); }); return; } } llvm_unreachable("Invalid transfer kind"); } /// A definition of a register may mark the end of a range. void LiveDebugValues::transferRegisterDef( MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { MachineFunction *MF = MI.getMF(); const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); SparseBitVector<> KillSet; for (const MachineOperand &MO : MI.operands()) { // Determine whether the operand is a register def. Assume that call // instructions never clobber SP, because some backends (e.g., AArch64) // never list SP in the regmask. if (MO.isReg() && MO.isDef() && MO.getReg() && Register::isPhysicalRegister(MO.getReg()) && !(MI.isCall() && MO.getReg() == SP)) { // Remove ranges of all aliased registers. for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) for (unsigned ID : OpenRanges.getVarLocs()) if (VarLocIDs[ID].isDescribedByReg() == *RAI) KillSet.set(ID); } else if (MO.isRegMask()) { // Remove ranges of all clobbered registers. Register masks don't usually // list SP as preserved. While the debug info may be off for an // instruction or two around callee-cleanup calls, transferring the // DEBUG_VALUE across the call is still a better user experience. for (unsigned ID : OpenRanges.getVarLocs()) { unsigned Reg = VarLocIDs[ID].isDescribedByReg(); if (Reg && Reg != SP && MO.clobbersPhysReg(Reg)) KillSet.set(ID); } } } OpenRanges.erase(KillSet, VarLocIDs); if (auto *TPC = getAnalysisIfAvailable()) { auto &TM = TPC->getTM(); if (TM.Options.EnableDebugEntryValues) emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet); } } bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI, MachineFunction *MF) { // TODO: Handle multiple stores folded into one. if (!MI.hasOneMemOperand()) return false; if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) return false; // This is not a spill instruction, since no valid size was // returned from either function. return true; } bool LiveDebugValues::isLocationSpill(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg) { if (!isSpillInstruction(MI, MF)) return false; auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { if (!MO.isReg() || !MO.isUse()) { Reg = 0; return false; } Reg = MO.getReg(); return MO.isKill(); }; for (const MachineOperand &MO : MI.operands()) { // In a spill instruction generated by the InlineSpiller the spilled // register has its kill flag set. if (isKilledReg(MO, Reg)) return true; if (Reg != 0) { // Check whether next instruction kills the spilled register. // FIXME: Current solution does not cover search for killed register in // bundles and instructions further down the chain. auto NextI = std::next(MI.getIterator()); // Skip next instruction that points to basic block end iterator. if (MI.getParent()->end() == NextI) continue; unsigned RegNext; for (const MachineOperand &MONext : NextI->operands()) { // Return true if we came across the register from the // previous spill instruction that is killed in NextI. if (isKilledReg(MONext, RegNext) && RegNext == Reg) return true; } } } // Return false if we didn't find spilled register. return false; } Optional LiveDebugValues::isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg) { if (!MI.hasOneMemOperand()) return None; // FIXME: Handle folded restore instructions with more than one memory // operand. if (MI.getRestoreSize(TII)) { Reg = MI.getOperand(0).getReg(); return extractSpillBaseRegAndOffset(MI); } return None; } /// A spilled register may indicate that we have to end the current range of /// a variable and create a new one for the spill location. /// A restored register may indicate the reverse situation. /// We don't want to insert any instructions in process(), so we just create /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. /// It will be inserted into the BB when we're done iterating over the /// instructions. void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { MachineFunction *MF = MI.getMF(); TransferKind TKind; unsigned Reg; Optional Loc; LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); // First, if there are any DBG_VALUEs pointing at a spill slot that is // written to, then close the variable location. The value in memory // will have changed. VarLocSet KillSet; if (isSpillInstruction(MI, MF)) { Loc = extractSpillBaseRegAndOffset(MI); for (unsigned ID : OpenRanges.getVarLocs()) { const VarLoc &VL = VarLocIDs[ID]; if (VL.Kind == VarLoc::SpillLocKind && VL.Loc.SpillLocation == *Loc) { // This location is overwritten by the current instruction -- terminate // the open range, and insert an explicit DBG_VALUE $noreg. // // Doing this at a later stage would require re-interpreting all // DBG_VALUes and DIExpressions to identify whether they point at // memory, and then analysing all memory writes to see if they // overwrite that memory, which is expensive. // // At this stage, we already know which DBG_VALUEs are for spills and // where they are located; it's best to fix handle overwrites now. KillSet.set(ID); VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0); unsigned UndefLocID = VarLocIDs.insert(UndefVL); Transfers.push_back({&MI, UndefLocID}); } } OpenRanges.erase(KillSet, VarLocIDs); } // Try to recognise spill and restore instructions that may create a new // variable location. if (isLocationSpill(MI, MF, Reg)) { TKind = TransferKind::TransferSpill; LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) << "\n"); } else { if (!(Loc = isRestoreInstruction(MI, MF, Reg))) return; TKind = TransferKind::TransferRestore; LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) << "\n"); } // Check if the register or spill location is the location of a debug value. for (unsigned ID : OpenRanges.getVarLocs()) { if (TKind == TransferKind::TransferSpill && VarLocIDs[ID].isDescribedByReg() == Reg) { LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' << VarLocIDs[ID].Var.getVariable()->getName() << ")\n"); } else if (TKind == TransferKind::TransferRestore && VarLocIDs[ID].Kind == VarLoc::SpillLocKind && VarLocIDs[ID].Loc.SpillLocation == *Loc) { LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' << VarLocIDs[ID].Var.getVariable()->getName() << ")\n"); } else continue; insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind, Reg); return; } } /// If \p MI is a register copy instruction, that copies a previously tracked /// value from one register to another register that is callee saved, we /// create new DBG_VALUE instruction described with copy destination register. void LiveDebugValues::transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { auto DestSrc = TII->isCopyInstr(MI); if (!DestSrc) return; const MachineOperand *DestRegOp = DestSrc->Destination; const MachineOperand *SrcRegOp = DestSrc->Source; if (!DestRegOp->isDef()) return; auto isCalleeSavedReg = [&](unsigned Reg) { for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) if (CalleeSavedRegs.test(*RAI)) return true; return false; }; Register SrcReg = SrcRegOp->getReg(); Register DestReg = DestRegOp->getReg(); // We want to recognize instructions where destination register is callee // saved register. If register that could be clobbered by the call is // included, there would be a great chance that it is going to be clobbered // soon. It is more likely that previous register location, which is callee // saved, is going to stay unclobbered longer, even if it is killed. if (!isCalleeSavedReg(DestReg)) return; // Remember an entry value movement. If we encounter a new debug value of // a parameter describing only a moving of the value around, rather then // modifying it, we are still able to use the entry value if needed. if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { for (unsigned ID : OpenRanges.getVarLocs()) { if (VarLocIDs[ID].getEntryValueBackupReg() == SrcReg) { LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); VarLoc EntryValLocCopyBackup = VarLoc::CreateEntryCopyBackupLoc( VarLocIDs[ID].MI, LS, VarLocIDs[ID].Expr, DestReg); // Stop tracking the original entry value. OpenRanges.erase(VarLocIDs[ID]); // Start tracking the entry value copy. unsigned EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup); OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup); break; } } } if (!SrcRegOp->isKill()) return; for (unsigned ID : OpenRanges.getVarLocs()) { if (VarLocIDs[ID].isDescribedByReg() == SrcReg) { insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TransferKind::TransferCopy, DestReg); return; } } } /// Terminate all open ranges at the end of the current basic block. bool LiveDebugValues::transferTerminator(MachineBasicBlock *CurMBB, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs) { bool Changed = false; LLVM_DEBUG(for (unsigned ID : OpenRanges.getVarLocs()) { // Copy OpenRanges to OutLocs, if not already present. dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; VarLocIDs[ID].dump(TRI); }); VarLocSet &VLS = OutLocs[CurMBB]; Changed = VLS != OpenRanges.getVarLocs(); // New OutLocs set may be different due to spill, restore or register // copy instruction processing. if (Changed) VLS = OpenRanges.getVarLocs(); OpenRanges.clear(); return Changed; } /// Accumulate a mapping between each DILocalVariable fragment and other /// fragments of that DILocalVariable which overlap. This reduces work during /// the data-flow stage from "Find any overlapping fragments" to "Check if the /// known-to-overlap fragments are present". /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for /// fragment usage. /// \param SeenFragments Map from DILocalVariable to all fragments of that /// Variable which are known to exist. /// \param OverlappingFragments The overlap map being constructed, from one /// Var/Fragment pair to a vector of fragments known to overlap. void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, OverlapMap &OverlappingFragments) { DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); // If this is the first sighting of this variable, then we are guaranteed // there are currently no overlapping fragments either. Initialize the set // of seen fragments, record no overlaps for the current one, and return. auto SeenIt = SeenFragments.find(MIVar.getVariable()); if (SeenIt == SeenFragments.end()) { SmallSet OneFragment; OneFragment.insert(ThisFragment); SeenFragments.insert({MIVar.getVariable(), OneFragment}); OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); return; } // If this particular Variable/Fragment pair already exists in the overlap // map, it has already been accounted for. auto IsInOLapMap = OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); if (!IsInOLapMap.second) return; auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; auto &AllSeenFragments = SeenIt->second; // Otherwise, examine all other seen fragments for this variable, with "this" // fragment being a previously unseen fragment. Record any pair of // overlapping fragments. for (auto &ASeenFragment : AllSeenFragments) { // Does this previously seen fragment overlap? if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { // Yes: Mark the current fragment as being overlapped. ThisFragmentsOverlaps.push_back(ASeenFragment); // Mark the previously seen fragment as being overlapped by the current // one. auto ASeenFragmentsOverlaps = OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && "Previously seen var fragment has no vector of overlaps"); ASeenFragmentsOverlaps->second.push_back(ThisFragment); } } AllSeenFragments.insert(ThisFragment); } /// This routine creates OpenRanges. void LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { transferDebugValue(MI, OpenRanges, VarLocIDs); transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers); transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); } /// This routine joins the analysis results of all incoming edges in @MBB by /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same /// source variable in all the predecessors of @MBB reside in the same location. bool LiveDebugValues::join( MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, const VarLocMap &VarLocIDs, SmallPtrSet &Visited, SmallPtrSetImpl &ArtificialBlocks, VarLocInMBB &PendingInLocs) { LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); bool Changed = false; VarLocSet InLocsT; // Temporary incoming locations. // For all predecessors of this MBB, find the set of VarLocs that // can be joined. int NumVisited = 0; for (auto p : MBB.predecessors()) { // Ignore backedges if we have not visited the predecessor yet. As the // predecessor hasn't yet had locations propagated into it, most locations // will not yet be valid, so treat them as all being uninitialized and // potentially valid. If a location guessed to be correct here is // invalidated later, we will remove it when we revisit this block. if (!Visited.count(p)) { LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() << "\n"); continue; } auto OL = OutLocs.find(p); // Join is null in case of empty OutLocs from any of the pred. if (OL == OutLocs.end()) return false; // Just copy over the Out locs to incoming locs for the first visited // predecessor, and for all other predecessors join the Out locs. if (!NumVisited) InLocsT = OL->second; else InLocsT &= OL->second; LLVM_DEBUG({ if (!InLocsT.empty()) { for (auto ID : InLocsT) dbgs() << " gathered candidate incoming var: " << VarLocIDs[ID].Var.getVariable()->getName() << "\n"; } }); NumVisited++; } // Filter out DBG_VALUES that are out of scope. VarLocSet KillSet; bool IsArtificial = ArtificialBlocks.count(&MBB); if (!IsArtificial) { for (auto ID : InLocsT) { if (!VarLocIDs[ID].dominates(MBB)) { KillSet.set(ID); LLVM_DEBUG({ auto Name = VarLocIDs[ID].Var.getVariable()->getName(); dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; }); } } } InLocsT.intersectWithComplement(KillSet); // As we are processing blocks in reverse post-order we // should have processed at least one predecessor, unless it // is the entry block which has no predecessor. assert((NumVisited || MBB.pred_empty()) && "Should have processed at least one predecessor"); VarLocSet &ILS = InLocs[&MBB]; VarLocSet &Pending = PendingInLocs[&MBB]; // New locations will have DBG_VALUE insts inserted at the start of the // block, after location propagation has finished. Record the insertions // that we need to perform in the Pending set. VarLocSet Diff = InLocsT; Diff.intersectWithComplement(ILS); for (auto ID : Diff) { Pending.set(ID); ILS.set(ID); ++NumInserted; Changed = true; } // We may have lost locations by learning about a predecessor that either // loses or moves a variable. Find any locations in ILS that are not in the // new in-locations, and delete those. VarLocSet Removed = ILS; Removed.intersectWithComplement(InLocsT); for (auto ID : Removed) { Pending.reset(ID); ILS.reset(ID); ++NumRemoved; Changed = true; } return Changed; } void LiveDebugValues::flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs) { // PendingInLocs records all locations propagated into blocks, which have // not had DBG_VALUE insts created. Go through and create those insts now. for (auto &Iter : PendingInLocs) { // Map is keyed on a constant pointer, unwrap it so we can insert insts. auto &MBB = const_cast(*Iter.first); VarLocSet &Pending = Iter.second; for (unsigned ID : Pending) { // The ID location is live-in to MBB -- work out what kind of machine // location it is and create a DBG_VALUE. const VarLoc &DiffIt = VarLocIDs[ID]; if (DiffIt.isEntryBackupLoc()) continue; MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); MBB.insert(MBB.instr_begin(), MI); (void)MI; LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); } } } bool LiveDebugValues::isEntryValueCandidate( const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { assert(MI.isDebugValue() && "This must be DBG_VALUE."); // TODO: Add support for local variables that are expressed in terms of // parameters entry values. // TODO: Add support for modified arguments that can be expressed // by using its entry value. auto *DIVar = MI.getDebugVariable(); if (!DIVar->isParameter()) return false; // Do not consider parameters that belong to an inlined function. if (MI.getDebugLoc()->getInlinedAt()) return false; // Do not consider indirect debug values (TODO: explain why). if (MI.isIndirectDebugValue()) return false; // Only consider parameters that are described using registers. Parameters // that are passed on the stack are not yet supported, so ignore debug // values that are described by the frame or stack pointer. if (!isRegOtherThanSPAndFP(MI.getOperand(0), MI, TRI)) return false; // If a parameter's value has been propagated from the caller, then the // parameter's DBG_VALUE may be described using a register defined by some // instruction in the entry block, in which case we shouldn't create an // entry value. if (DefinedRegs.count(MI.getOperand(0).getReg())) return false; // TODO: Add support for parameters that have a pre-existing debug expressions // (e.g. fragments, or indirect parameters using DW_OP_deref). if (MI.getDebugExpression()->getNumElements() > 0) return false; return true; } /// Collect all register defines (including aliases) for the given instruction. static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, const TargetRegisterInfo *TRI) { for (const MachineOperand &MO : MI.operands()) if (MO.isReg() && MO.isDef() && MO.getReg()) for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) Regs.insert(*AI); } /// This routine records the entry values of function parameters. The values /// could be used as backup values. If we loose the track of some unmodified /// parameters, the backup values will be used as a primary locations. void LiveDebugValues::recordEntryValue(const MachineInstr &MI, const DefinedRegsSet &DefinedRegs, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs) { if (auto *TPC = getAnalysisIfAvailable()) { auto &TM = TPC->getTM(); if (!TM.Options.EnableDebugEntryValues) return; } DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); if (!isEntryValueCandidate(MI, DefinedRegs) || OpenRanges.getEntryValueBackup(V)) return; LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); // Create the entry value and use it as a backup location until it is // valid. It is valid until a parameter is not changed. DIExpression *NewExpr = DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); unsigned EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup); OpenRanges.insert(EntryValLocID, EntryValLocAsBackup); } /// Calculate the liveness information for the given machine function and /// extend ranges across basic blocks. bool LiveDebugValues::ExtendRanges(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); bool Changed = false; bool OLChanged = false; bool MBBJoined = false; VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. OverlapMap OverlapFragments; // Map of overlapping variable fragments. OpenRangesSet OpenRanges(OverlapFragments); // Ranges that are open until end of bb. VarLocInMBB OutLocs; // Ranges that exist beyond bb. VarLocInMBB InLocs; // Ranges that are incoming after joining. TransferMap Transfers; // DBG_VALUEs associated with transfers (such as // spills, copies and restores). VarLocInMBB PendingInLocs; // Ranges that are incoming after joining, but // that we have deferred creating DBG_VALUE insts // for immediately. VarToFragments SeenFragments; // Blocks which are artificial, i.e. blocks which exclusively contain // instructions without locations, or with line 0 locations. SmallPtrSet ArtificialBlocks; DenseMap OrderToBB; DenseMap BBToOrder; std::priority_queue, std::greater> Worklist; std::priority_queue, std::greater> Pending; // Set of register defines that are seen when traversing the entry block // looking for debug entry value candidates. DefinedRegsSet DefinedRegs; // Only in the case of entry MBB collect DBG_VALUEs representing // function parameters in order to generate debug entry values for them. MachineBasicBlock &First_MBB = *(MF.begin()); for (auto &MI : First_MBB) { collectRegDefs(MI, DefinedRegs, TRI); if (MI.isDebugValue()) recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); } // Initialize per-block structures and scan for fragment overlaps. for (auto &MBB : MF) { PendingInLocs[&MBB] = VarLocSet(); for (auto &MI : MBB) { if (MI.isDebugValue()) accumulateFragmentMap(MI, SeenFragments, OverlapFragments); } } auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { if (const DebugLoc &DL = MI.getDebugLoc()) return DL.getLine() != 0; return false; }; for (auto &MBB : MF) if (none_of(MBB.instrs(), hasNonArtificialLocation)) ArtificialBlocks.insert(&MBB); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "OutLocs after initialization", dbgs())); ReversePostOrderTraversal RPOT(&MF); unsigned int RPONumber = 0; for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { OrderToBB[RPONumber] = *RI; BBToOrder[*RI] = RPONumber; Worklist.push(RPONumber); ++RPONumber; } // This is a standard "union of predecessor outs" dataflow problem. // To solve it, we perform join() and process() using the two worklist method // until the ranges converge. // Ranges have converged when both worklists are empty. SmallPtrSet Visited; while (!Worklist.empty() || !Pending.empty()) { // We track what is on the pending worklist to avoid inserting the same // thing twice. We could avoid this with a custom priority queue, but this // is probably not worth it. SmallPtrSet OnPending; LLVM_DEBUG(dbgs() << "Processing Worklist\n"); while (!Worklist.empty()) { MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; Worklist.pop(); MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks, PendingInLocs); MBBJoined |= Visited.insert(MBB).second; if (MBBJoined) { MBBJoined = false; Changed = true; // Now that we have started to extend ranges across BBs we need to // examine spill, copy and restore instructions to see whether they // operate with registers that correspond to user variables. // First load any pending inlocs. OpenRanges.insertFromLocSet(PendingInLocs[MBB], VarLocIDs); for (auto &MI : *MBB) process(MI, OpenRanges, VarLocIDs, Transfers); OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "OutLocs after propagating", dbgs())); LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "InLocs after propagating", dbgs())); if (OLChanged) { OLChanged = false; for (auto s : MBB->successors()) if (OnPending.insert(s).second) { Pending.push(BBToOrder[s]); } } } } Worklist.swap(Pending); // At this point, pending must be empty, since it was just the empty // worklist assert(Pending.empty() && "Pending should be empty"); } // Add any DBG_VALUE instructions created by location transfers. for (auto &TR : Transfers) { MachineBasicBlock *MBB = TR.TransferInst->getParent(); const VarLoc &VL = VarLocIDs[TR.LocationID]; MachineInstr *MI = VL.BuildDbgValue(MF); MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); } Transfers.clear(); // Deferred inlocs will not have had any DBG_VALUE insts created; do // that now. flushPendingLocs(PendingInLocs, VarLocIDs); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); return Changed; } bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) { if (!MF.getFunction().getSubprogram()) // LiveDebugValues will already have removed all DBG_VALUEs. return false; // Skip functions from NoDebug compilation units. if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) return false; TRI = MF.getSubtarget().getRegisterInfo(); TII = MF.getSubtarget().getInstrInfo(); TFI = MF.getSubtarget().getFrameLowering(); TFI->getCalleeSaves(MF, CalleeSavedRegs); LS.initialize(MF); bool Changed = ExtendRanges(MF); return Changed; }