//===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the pass which inserts x86 AVX vzeroupper instructions // before calls to SSE encoded functions. This avoids transition latency // penalty when transferring control between AVX encoded instructions and old // SSE encoding mode. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "x86-vzeroupper" static cl::opt UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, cl::desc("Minimize AVX to SSE transition penalty"), cl::init(true)); STATISTIC(NumVZU, "Number of vzeroupper instructions inserted"); namespace { class VZeroUpperInserter : public MachineFunctionPass { public: VZeroUpperInserter() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return "X86 vzeroupper inserter"; } private: void processBasicBlock(MachineBasicBlock &MBB); void insertVZeroUpper(MachineBasicBlock::iterator I, MachineBasicBlock &MBB); void addDirtySuccessor(MachineBasicBlock &MBB); using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY }; static const char* getBlockExitStateName(BlockExitState ST); // Core algorithm state: // BlockState - Each block is either: // - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor // vzeroupper instructions in this block. // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this // block that will ensure that YMM/ZMM is clean on exit. // - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no // subsequent vzeroupper in the block clears it. // // AddedToDirtySuccessors - This flag is raised when a block is added to the // DirtySuccessors list to ensure that it's not // added multiple times. // // FirstUnguardedCall - Records the location of the first unguarded call in // each basic block that may need to be guarded by a // vzeroupper. We won't know whether it actually needs // to be guarded until we discover a predecessor that // is DIRTY_OUT. struct BlockState { BlockExitState ExitState = PASS_THROUGH; bool AddedToDirtySuccessors = false; MachineBasicBlock::iterator FirstUnguardedCall; BlockState() = default; }; using BlockStateMap = SmallVector; using DirtySuccessorsWorkList = SmallVector; BlockStateMap BlockStates; DirtySuccessorsWorkList DirtySuccessors; bool EverMadeChange; bool IsX86INTR; const TargetInstrInfo *TII; static char ID; }; } // end anonymous namespace char VZeroUpperInserter::ID = 0; FunctionPass *llvm::createX86IssueVZeroUpperPass() { return new VZeroUpperInserter(); } #ifndef NDEBUG const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) { switch (ST) { case PASS_THROUGH: return "Pass-through"; case EXITS_DIRTY: return "Exits-dirty"; case EXITS_CLEAN: return "Exits-clean"; } llvm_unreachable("Invalid block exit state."); } #endif /// VZEROUPPER cleans state that is related to Y/ZMM0-15 only. /// Thus, there is no need to check for Y/ZMM16 and above. static bool isYmmOrZmmReg(unsigned Reg) { return (Reg >= X86::YMM0 && Reg <= X86::YMM15) || (Reg >= X86::ZMM0 && Reg <= X86::ZMM15); } static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) { for (std::pair LI : MRI.liveins()) if (isYmmOrZmmReg(LI.first)) return true; return false; } static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) { for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) { if (!MO.clobbersPhysReg(reg)) return false; } for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) { if (!MO.clobbersPhysReg(reg)) return false; } return true; } static bool hasYmmOrZmmReg(MachineInstr &MI) { for (const MachineOperand &MO : MI.operands()) { if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO)) return true; if (!MO.isReg()) continue; if (MO.isDebug()) continue; if (isYmmOrZmmReg(MO.getReg())) return true; } return false; } /// Check if given call instruction has a RegMask operand. static bool callHasRegMask(MachineInstr &MI) { assert(MI.isCall() && "Can only be called on call instructions."); for (const MachineOperand &MO : MI.operands()) { if (MO.isRegMask()) return true; } return false; } /// Insert a vzeroupper instruction before I. void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I, MachineBasicBlock &MBB) { DebugLoc dl = I->getDebugLoc(); BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER)); ++NumVZU; EverMadeChange = true; } /// Add MBB to the DirtySuccessors list if it hasn't already been added. void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) { if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) { DirtySuccessors.push_back(&MBB); BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true; } } /// Loop over all of the instructions in the basic block, inserting vzeroupper /// instructions before function calls. void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) { // Start by assuming that the block is PASS_THROUGH which implies no unguarded // calls. BlockExitState CurState = PASS_THROUGH; BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end(); for (MachineInstr &MI : MBB) { bool IsCall = MI.isCall(); bool IsReturn = MI.isReturn(); bool IsControlFlow = IsCall || IsReturn; // No need for vzeroupper before iret in interrupt handler function, // epilogue will restore YMM/ZMM registers if needed. if (IsX86INTR && IsReturn) continue; // An existing VZERO* instruction resets the state. if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) { CurState = EXITS_CLEAN; continue; } // Shortcut: don't need to check regular instructions in dirty state. if (!IsControlFlow && CurState == EXITS_DIRTY) continue; if (hasYmmOrZmmReg(MI)) { // We found a ymm/zmm-using instruction; this could be an AVX/AVX512 // instruction, or it could be control flow. CurState = EXITS_DIRTY; continue; } // Check for control-flow out of the current function (which might // indirectly execute SSE instructions). if (!IsControlFlow) continue; // If the call has no RegMask, skip it as well. It usually happens on // helper function calls (such as '_chkstk', '_ftol2') where standard // calling convention is not used (RegMask is not used to mark register // clobbered and register usage (def/implicit-def/use) is well-defined and // explicitly specified. if (IsCall && !callHasRegMask(MI)) continue; // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15 // registers. In addition, the processor changes back to Clean state, after // which execution of SSE instructions or AVX instructions has no transition // penalty. Add the VZEROUPPER instruction before any function call/return // that might execute SSE code. // FIXME: In some cases, we may want to move the VZEROUPPER into a // predecessor block. if (CurState == EXITS_DIRTY) { // After the inserted VZEROUPPER the state becomes clean again, but // other YMM/ZMM may appear before other subsequent calls or even before // the end of the BB. insertVZeroUpper(MI, MBB); CurState = EXITS_CLEAN; } else if (CurState == PASS_THROUGH) { // If this block is currently in pass-through state and we encounter a // call then whether we need a vzeroupper or not depends on whether this // block has successors that exit dirty. Record the location of the call, // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet. // It will be inserted later if necessary. BlockStates[MBB.getNumber()].FirstUnguardedCall = MI; CurState = EXITS_CLEAN; } } LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: " << getBlockExitStateName(CurState) << '\n'); if (CurState == EXITS_DIRTY) for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) addDirtySuccessor(**SI); BlockStates[MBB.getNumber()].ExitState = CurState; } /// Loop over all of the basic blocks, inserting vzeroupper instructions before /// function calls. bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) { if (!UseVZeroUpper) return false; const X86Subtarget &ST = MF.getSubtarget(); if (!ST.hasAVX() || !ST.insertVZEROUPPER()) return false; TII = ST.getInstrInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); EverMadeChange = false; IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR; bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI); // Fast check: if the function doesn't use any ymm/zmm registers, we don't // need to insert any VZEROUPPER instructions. This is constant-time, so it // is cheap in the common case of no ymm/zmm use. bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm; for (auto *RC : {&X86::VR256RegClass, &X86::VR512_0_15RegClass}) { if (!YmmOrZmmUsed) { for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e; i++) { if (!MRI.reg_nodbg_empty(*i)) { YmmOrZmmUsed = true; break; } } } } if (!YmmOrZmmUsed) return false; assert(BlockStates.empty() && DirtySuccessors.empty() && "X86VZeroUpper state should be clear"); BlockStates.resize(MF.getNumBlockIDs()); // Process all blocks. This will compute block exit states, record the first // unguarded call in each block, and add successors of dirty blocks to the // DirtySuccessors list. for (MachineBasicBlock &MBB : MF) processBasicBlock(MBB); // If any YMM/ZMM regs are live-in to this function, add the entry block to // the DirtySuccessors list if (FnHasLiveInYmmOrZmm) addDirtySuccessor(MF.front()); // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY // through PASS_THROUGH blocks. while (!DirtySuccessors.empty()) { MachineBasicBlock &MBB = *DirtySuccessors.back(); DirtySuccessors.pop_back(); BlockState &BBState = BlockStates[MBB.getNumber()]; // MBB is a successor of a dirty block, so its first call needs to be // guarded. if (BBState.FirstUnguardedCall != MBB.end()) insertVZeroUpper(BBState.FirstUnguardedCall, MBB); // If this successor was a pass-through block, then it is now dirty. Its // successors need to be added to the worklist (if they haven't been // already). if (BBState.ExitState == PASS_THROUGH) { LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " was Pass-through, is now Dirty-out.\n"); for (MachineBasicBlock *Succ : MBB.successors()) addDirtySuccessor(*Succ); } } BlockStates.clear(); return EverMadeChange; }