//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/STLExtras.h" #include "gtest/gtest.h" #include #include using namespace llvm; namespace { int f(rank<0>) { return 0; } int f(rank<1>) { return 1; } int f(rank<2>) { return 2; } int f(rank<4>) { return 4; } TEST(STLExtrasTest, Rank) { // We shouldn't get ambiguities and should select the overload of the same // rank as the argument. EXPECT_EQ(0, f(rank<0>())); EXPECT_EQ(1, f(rank<1>())); EXPECT_EQ(2, f(rank<2>())); // This overload is missing so we end up back at 2. EXPECT_EQ(2, f(rank<3>())); // But going past 3 should work fine. EXPECT_EQ(4, f(rank<4>())); // And we can even go higher and just fall back to the last overload. EXPECT_EQ(4, f(rank<5>())); EXPECT_EQ(4, f(rank<6>())); } TEST(STLExtrasTest, EnumerateLValue) { // Test that a simple LValue can be enumerated and gives correct results with // multiple types, including the empty container. std::vector foo = {'a', 'b', 'c'}; typedef std::pair CharPairType; std::vector CharResults; for (auto X : llvm::enumerate(foo)) { CharResults.emplace_back(X.index(), X.value()); } ASSERT_EQ(3u, CharResults.size()); EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]); EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]); EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]); // Test a const range of a different type. typedef std::pair IntPairType; std::vector IntResults; const std::vector bar = {1, 2, 3}; for (auto X : llvm::enumerate(bar)) { IntResults.emplace_back(X.index(), X.value()); } ASSERT_EQ(3u, IntResults.size()); EXPECT_EQ(IntPairType(0u, 1), IntResults[0]); EXPECT_EQ(IntPairType(1u, 2), IntResults[1]); EXPECT_EQ(IntPairType(2u, 3), IntResults[2]); // Test an empty range. IntResults.clear(); const std::vector baz{}; for (auto X : llvm::enumerate(baz)) { IntResults.emplace_back(X.index(), X.value()); } EXPECT_TRUE(IntResults.empty()); } TEST(STLExtrasTest, EnumerateModifyLValue) { // Test that you can modify the underlying entries of an lvalue range through // the enumeration iterator. std::vector foo = {'a', 'b', 'c'}; for (auto X : llvm::enumerate(foo)) { ++X.value(); } EXPECT_EQ('b', foo[0]); EXPECT_EQ('c', foo[1]); EXPECT_EQ('d', foo[2]); } TEST(STLExtrasTest, EnumerateRValueRef) { // Test that an rvalue can be enumerated. typedef std::pair PairType; std::vector Results; auto Enumerator = llvm::enumerate(std::vector{1, 2, 3}); for (auto X : llvm::enumerate(std::vector{1, 2, 3})) { Results.emplace_back(X.index(), X.value()); } ASSERT_EQ(3u, Results.size()); EXPECT_EQ(PairType(0u, 1), Results[0]); EXPECT_EQ(PairType(1u, 2), Results[1]); EXPECT_EQ(PairType(2u, 3), Results[2]); } TEST(STLExtrasTest, EnumerateModifyRValue) { // Test that when enumerating an rvalue, modification still works (even if // this isn't terribly useful, it at least shows that we haven't snuck an // extra const in there somewhere. typedef std::pair PairType; std::vector Results; for (auto X : llvm::enumerate(std::vector{'1', '2', '3'})) { ++X.value(); Results.emplace_back(X.index(), X.value()); } ASSERT_EQ(3u, Results.size()); EXPECT_EQ(PairType(0u, '2'), Results[0]); EXPECT_EQ(PairType(1u, '3'), Results[1]); EXPECT_EQ(PairType(2u, '4'), Results[2]); } template struct CanMove {}; template <> struct CanMove { CanMove(CanMove &&) = delete; CanMove() = default; CanMove(const CanMove &) = default; }; template struct CanCopy {}; template <> struct CanCopy { CanCopy(const CanCopy &) = delete; CanCopy() = default; CanCopy(CanCopy &&) = default; }; template struct Range : CanMove, CanCopy { explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {} Range(const Range &R) : CanCopy(R), C(R.C), M(R.M), D(R.D) { ++C; } Range(Range &&R) : CanMove(std::move(R)), C(R.C), M(R.M), D(R.D) { ++M; } ~Range() { ++D; } int &C; int &M; int &D; int *begin() { return nullptr; } int *end() { return nullptr; } }; TEST(STLExtrasTest, EnumerateLifetimeSemantics) { // Test that when enumerating lvalues and rvalues, there are no surprise // copies or moves. // With an rvalue, it should not be destroyed until the end of the scope. int Copies = 0; int Moves = 0; int Destructors = 0; { auto E1 = enumerate(Range(Copies, Moves, Destructors)); // Doesn't compile. rvalue ranges must be moveable. // auto E2 = enumerate(Range(Copies, Moves, Destructors)); EXPECT_EQ(0, Copies); EXPECT_EQ(1, Moves); EXPECT_EQ(1, Destructors); } EXPECT_EQ(0, Copies); EXPECT_EQ(1, Moves); EXPECT_EQ(2, Destructors); Copies = Moves = Destructors = 0; // With an lvalue, it should not be destroyed even after the end of the scope. // lvalue ranges need be neither copyable nor moveable. Range R(Copies, Moves, Destructors); { auto Enumerator = enumerate(R); (void)Enumerator; EXPECT_EQ(0, Copies); EXPECT_EQ(0, Moves); EXPECT_EQ(0, Destructors); } EXPECT_EQ(0, Copies); EXPECT_EQ(0, Moves); EXPECT_EQ(0, Destructors); } TEST(STLExtrasTest, ApplyTuple) { auto T = std::make_tuple(1, 3, 7); auto U = llvm::apply_tuple( [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); }, T); EXPECT_EQ(-2, std::get<0>(U)); EXPECT_EQ(-4, std::get<1>(U)); EXPECT_EQ(6, std::get<2>(U)); auto V = llvm::apply_tuple( [](int A, int B, int C) { return std::make_tuple(std::make_pair(A, char('A' + A)), std::make_pair(B, char('A' + B)), std::make_pair(C, char('A' + C))); }, T); EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V)); EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V)); EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V)); } class apply_variadic { static int apply_one(int X) { return X + 1; } static char apply_one(char C) { return C + 1; } static StringRef apply_one(StringRef S) { return S.drop_back(); } public: template auto operator()(Ts &&... Items) -> decltype(std::make_tuple(apply_one(Items)...)) { return std::make_tuple(apply_one(Items)...); } }; TEST(STLExtrasTest, ApplyTupleVariadic) { auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X'); auto Values = apply_tuple(apply_variadic(), Items); EXPECT_EQ(2, std::get<0>(Values)); EXPECT_EQ("Tes", std::get<1>(Values)); EXPECT_EQ('Y', std::get<2>(Values)); } TEST(STLExtrasTest, CountAdaptor) { std::vector v; v.push_back(1); v.push_back(2); v.push_back(1); v.push_back(4); v.push_back(3); v.push_back(2); v.push_back(1); EXPECT_EQ(3, count(v, 1)); EXPECT_EQ(2, count(v, 2)); EXPECT_EQ(1, count(v, 3)); EXPECT_EQ(1, count(v, 4)); } TEST(STLExtrasTest, for_each) { std::vector v{0, 1, 2, 3, 4}; int count = 0; llvm::for_each(v, [&count](int) { ++count; }); EXPECT_EQ(5, count); } TEST(STLExtrasTest, ToVector) { std::vector v = {'a', 'b', 'c'}; auto Enumerated = to_vector<4>(enumerate(v)); ASSERT_EQ(3u, Enumerated.size()); for (size_t I = 0; I < v.size(); ++I) { EXPECT_EQ(I, Enumerated[I].index()); EXPECT_EQ(v[I], Enumerated[I].value()); } } TEST(STLExtrasTest, ConcatRange) { std::vector Expected = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector Test; std::vector V1234 = {1, 2, 3, 4}; std::list L56 = {5, 6}; SmallVector SV78 = {7, 8}; // Use concat across different sized ranges of different types with different // iterators. for (int &i : concat(V1234, L56, SV78)) Test.push_back(i); EXPECT_EQ(Expected, Test); // Use concat between a temporary, an L-value, and an R-value to make sure // complex lifetimes work well. Test.clear(); for (int &i : concat(std::vector(V1234), L56, std::move(SV78))) Test.push_back(i); EXPECT_EQ(Expected, Test); } TEST(STLExtrasTest, PartitionAdaptor) { std::vector V = {1, 2, 3, 4, 5, 6, 7, 8}; auto I = partition(V, [](int i) { return i % 2 == 0; }); ASSERT_EQ(V.begin() + 4, I); // Sort the two halves as partition may have messed with the order. llvm::sort(V.begin(), I); llvm::sort(I, V.end()); EXPECT_EQ(2, V[0]); EXPECT_EQ(4, V[1]); EXPECT_EQ(6, V[2]); EXPECT_EQ(8, V[3]); EXPECT_EQ(1, V[4]); EXPECT_EQ(3, V[5]); EXPECT_EQ(5, V[6]); EXPECT_EQ(7, V[7]); } TEST(STLExtrasTest, EraseIf) { std::vector V = {1, 2, 3, 4, 5, 6, 7, 8}; erase_if(V, [](int i) { return i % 2 == 0; }); EXPECT_EQ(4u, V.size()); EXPECT_EQ(1, V[0]); EXPECT_EQ(3, V[1]); EXPECT_EQ(5, V[2]); EXPECT_EQ(7, V[3]); } namespace some_namespace { struct some_struct { std::vector data; std::string swap_val; }; std::vector::const_iterator begin(const some_struct &s) { return s.data.begin(); } std::vector::const_iterator end(const some_struct &s) { return s.data.end(); } void swap(some_struct &lhs, some_struct &rhs) { // make swap visible as non-adl swap would even seem to // work with std::swap which defaults to moving lhs.swap_val = "lhs"; rhs.swap_val = "rhs"; } } // namespace some_namespace TEST(STLExtrasTest, ADLTest) { some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""}; some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""}; EXPECT_EQ(*adl_begin(s), 1); EXPECT_EQ(*(adl_end(s) - 1), 5); adl_swap(s, s2); EXPECT_EQ(s.swap_val, "lhs"); EXPECT_EQ(s2.swap_val, "rhs"); int count = 0; llvm::for_each(s, [&count](int) { ++count; }); EXPECT_EQ(5, count); } TEST(STLExtrasTest, EmptyTest) { std::vector V; EXPECT_TRUE(llvm::empty(V)); V.push_back(nullptr); EXPECT_FALSE(llvm::empty(V)); std::initializer_list E = {}; std::initializer_list NotE = {7, 13, 42}; EXPECT_TRUE(llvm::empty(E)); EXPECT_FALSE(llvm::empty(NotE)); auto R0 = make_range(V.begin(), V.begin()); EXPECT_TRUE(llvm::empty(R0)); auto R1 = make_range(V.begin(), V.end()); EXPECT_FALSE(llvm::empty(R1)); } TEST(STLExtrasTest, EarlyIncrementTest) { std::list L = {1, 2, 3, 4}; auto EIR = make_early_inc_range(L); auto I = EIR.begin(); auto EI = EIR.end(); EXPECT_NE(I, EI); EXPECT_EQ(1, *I); #if LLVM_ENABLE_ABI_BREAKING_CHECKS #ifndef NDEBUG // Repeated dereferences are not allowed. EXPECT_DEATH(*I, "Cannot dereference"); // Comparison after dereference is not allowed. EXPECT_DEATH((void)(I == EI), "Cannot compare"); EXPECT_DEATH((void)(I != EI), "Cannot compare"); #endif #endif ++I; EXPECT_NE(I, EI); #if LLVM_ENABLE_ABI_BREAKING_CHECKS #ifndef NDEBUG // You cannot increment prior to dereference. EXPECT_DEATH(++I, "Cannot increment"); #endif #endif EXPECT_EQ(2, *I); #if LLVM_ENABLE_ABI_BREAKING_CHECKS #ifndef NDEBUG // Repeated dereferences are not allowed. EXPECT_DEATH(*I, "Cannot dereference"); #endif #endif // Inserting shouldn't break anything. We should be able to keep dereferencing // the currrent iterator and increment. The increment to go to the "next" // iterator from before we inserted. L.insert(std::next(L.begin(), 2), -1); ++I; EXPECT_EQ(3, *I); // Erasing the front including the current doesn't break incrementing. L.erase(L.begin(), std::prev(L.end())); ++I; EXPECT_EQ(4, *I); ++I; EXPECT_EQ(EIR.end(), I); } TEST(STLExtrasTest, splat) { std::vector V; EXPECT_FALSE(is_splat(V)); V.push_back(1); EXPECT_TRUE(is_splat(V)); V.push_back(1); V.push_back(1); EXPECT_TRUE(is_splat(V)); V.push_back(2); EXPECT_FALSE(is_splat(V)); } TEST(STLExtrasTest, to_address) { int *V1 = new int; EXPECT_EQ(V1, to_address(V1)); // Check fancy pointer overload for unique_ptr std::unique_ptr V2 = make_unique(0); EXPECT_EQ(V2.get(), to_address(V2)); V2.reset(V1); EXPECT_EQ(V1, to_address(V2)); V2.release(); // Check fancy pointer overload for shared_ptr std::shared_ptr V3 = std::make_shared(0); std::shared_ptr V4 = V3; EXPECT_EQ(V3.get(), V4.get()); EXPECT_EQ(V3.get(), to_address(V3)); EXPECT_EQ(V4.get(), to_address(V4)); V3.reset(V1); EXPECT_EQ(V1, to_address(V3)); } TEST(STLExtrasTest, partition_point) { std::vector V = {1, 3, 5, 7, 9}; // Range version. EXPECT_EQ(V.begin() + 3, partition_point(V, [](unsigned X) { return X < 7; })); EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; })); EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; })); } } // namespace