/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifdef _WIN32 //needed for glut.h #include #endif #include "../OpenGLWindow/OpenGL2Include.h" #include "GL_ShapeDrawer.h" #include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h" #include "BulletCollision/CollisionShapes/btTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btBoxShape.h" #include "BulletCollision/CollisionShapes/btSphereShape.h" #include "BulletCollision/CollisionShapes/btConeShape.h" #include "BulletCollision/CollisionShapes/btCylinderShape.h" #include "BulletCollision/CollisionShapes/btTetrahedronShape.h" #include "BulletCollision/CollisionShapes/btCompoundShape.h" #include "BulletCollision/CollisionShapes/btCapsuleShape.h" #include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btUniformScalingShape.h" #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h" #include "BulletCollision/CollisionShapes/btMultiSphereShape.h" #include "BulletCollision/CollisionShapes/btConvexPolyhedron.h" #include "BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "LinearMath/btDefaultMotionState.h" /// #include "BulletCollision/CollisionShapes/btShapeHull.h" #include "LinearMath/btTransformUtil.h" #include "LinearMath/btIDebugDraw.h" //for debugmodes #include //printf debugging #include #if defined(BT_USE_DOUBLE_PRECISION) #define btglLoadMatrix glLoadMatrixd #define btglMultMatrix glMultMatrixd #define btglColor3 glColor3d #define btglVertex3 glVertex3d #else #define btglLoadMatrix glLoadMatrixf #define btglMultMatrix glMultMatrixf #define btglColor3 glColor3f #define btglVertex3 glVertex3d #endif void GL_ShapeDrawer::drawCoordSystem() { glBegin(GL_LINES); glColor3f(1, 0, 0); glVertex3d(0, 0, 0); glVertex3d(1, 0, 0); glColor3f(0, 1, 0); glVertex3d(0, 0, 0); glVertex3d(0, 1, 0); glColor3f(0, 0, 1); glVertex3d(0, 0, 0); glVertex3d(0, 0, 1); glEnd(); } class GlDrawcallback : public btTriangleCallback { public: bool m_wireframe; GlDrawcallback() : m_wireframe(false) { } virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex) { (void)triangleIndex; (void)partId; if (m_wireframe) { glBegin(GL_LINES); glColor3f(1, 0, 0); glVertex3d(triangle[0].getX(), triangle[0].getY(), triangle[0].getZ()); glVertex3d(triangle[1].getX(), triangle[1].getY(), triangle[1].getZ()); glColor3f(0, 1, 0); glVertex3d(triangle[2].getX(), triangle[2].getY(), triangle[2].getZ()); glVertex3d(triangle[1].getX(), triangle[1].getY(), triangle[1].getZ()); glColor3f(0, 0, 1); glVertex3d(triangle[2].getX(), triangle[2].getY(), triangle[2].getZ()); glVertex3d(triangle[0].getX(), triangle[0].getY(), triangle[0].getZ()); glEnd(); } else { glBegin(GL_TRIANGLES); //glColor3f(1, 1, 1); glVertex3d(triangle[0].getX(), triangle[0].getY(), triangle[0].getZ()); glVertex3d(triangle[1].getX(), triangle[1].getY(), triangle[1].getZ()); glVertex3d(triangle[2].getX(), triangle[2].getY(), triangle[2].getZ()); glVertex3d(triangle[2].getX(), triangle[2].getY(), triangle[2].getZ()); glVertex3d(triangle[1].getX(), triangle[1].getY(), triangle[1].getZ()); glVertex3d(triangle[0].getX(), triangle[0].getY(), triangle[0].getZ()); glEnd(); } } }; class TriangleGlDrawcallback : public btInternalTriangleIndexCallback { public: virtual void internalProcessTriangleIndex(btVector3* triangle, int partId, int triangleIndex) { (void)triangleIndex; (void)partId; glBegin(GL_TRIANGLES); //LINES); glColor3f(1, 0, 0); glVertex3d(triangle[0].getX(), triangle[0].getY(), triangle[0].getZ()); glVertex3d(triangle[1].getX(), triangle[1].getY(), triangle[1].getZ()); glColor3f(0, 1, 0); glVertex3d(triangle[2].getX(), triangle[2].getY(), triangle[2].getZ()); glVertex3d(triangle[1].getX(), triangle[1].getY(), triangle[1].getZ()); glColor3f(0, 0, 1); glVertex3d(triangle[2].getX(), triangle[2].getY(), triangle[2].getZ()); glVertex3d(triangle[0].getX(), triangle[0].getY(), triangle[0].getZ()); glEnd(); } }; void GL_ShapeDrawer::drawSphere(btScalar radius, int lats, int longs) { int i, j; for (i = 0; i <= lats; i++) { btScalar lat0 = SIMD_PI * (-btScalar(0.5) + (btScalar)(i - 1) / lats); btScalar z0 = radius * std::sin(lat0); btScalar zr0 = radius * std::cos(lat0); btScalar lat1 = SIMD_PI * (-btScalar(0.5) + (btScalar)i / lats); btScalar z1 = radius * std::sin(lat1); btScalar zr1 = radius * std::cos(lat1); glBegin(GL_QUAD_STRIP); for (j = 0; j <= longs; j++) { btScalar lng = 2 * SIMD_PI * (btScalar)(j - 1) / longs; btScalar x = std::cos(lng); btScalar y = std::sin(lng); glNormal3f(x * zr1, y * zr1, z1); glVertex3f(x * zr1, y * zr1, z1); glNormal3f(x * zr0, y * zr0, z0); glVertex3f(x * zr0, y * zr0, z0); } glEnd(); } } GL_ShapeDrawer::ShapeCache* GL_ShapeDrawer::cache(btConvexShape* shape) { ShapeCache* sc = (ShapeCache*)shape->getUserPointer(); if (!sc) { sc = new (btAlignedAlloc(sizeof(ShapeCache), 16)) ShapeCache(shape); sc->m_shapehull.buildHull(shape->getMargin()); m_shapecaches.push_back(sc); shape->setUserPointer(sc); /* Build edges */ const int ni = sc->m_shapehull.numIndices(); const int nv = sc->m_shapehull.numVertices(); const unsigned int* pi = sc->m_shapehull.getIndexPointer(); const btVector3* pv = sc->m_shapehull.getVertexPointer(); btAlignedObjectArray edges; sc->m_edges.reserve(ni); edges.resize(nv * nv, 0); for (int i = 0; i < ni; i += 3) { const unsigned int* ti = pi + i; const btVector3 nrm = btCross(pv[ti[1]] - pv[ti[0]], pv[ti[2]] - pv[ti[0]]).normalized(); for (int j = 2, k = 0; k < 3; j = k++) { const unsigned int a = ti[j]; const unsigned int b = ti[k]; ShapeCache::Edge*& e = edges[btMin(a, b) * nv + btMax(a, b)]; if (!e) { sc->m_edges.push_back(ShapeCache::Edge()); e = &sc->m_edges[sc->m_edges.size() - 1]; e->n[0] = nrm; e->n[1] = -nrm; e->v[0] = a; e->v[1] = b; } else { e->n[1] = nrm; } } } } return (sc); } void renderSquareA(float x, float y, float z) { glBegin(GL_LINE_LOOP); glVertex3f(x, y, z); glVertex3f(x + 10.f, y, z); glVertex3f(x + 10.f, y + 10.f, z); glVertex3f(x, y + 10.f, z); glEnd(); } inline void glDrawVector(const btVector3& v) { glVertex3d(v[0], v[1], v[2]); } void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, const btVector3& color, int debugMode, const btVector3& worldBoundsMin, const btVector3& worldBoundsMax) { if (shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) { btVector3 org(m[12], m[13], m[14]); btVector3 dx(m[0], m[1], m[2]); btVector3 dy(m[4], m[5], m[6]); // btVector3 dz(m[8], m[9], m[10]); const btBoxShape* boxShape = static_cast(shape); btVector3 halfExtent = boxShape->getHalfExtentsWithMargin(); dx *= halfExtent[0]; dy *= halfExtent[1]; // dz *= halfExtent[2]; glColor3f(1, 1, 1); glDisable(GL_LIGHTING); glLineWidth(2); glBegin(GL_LINE_LOOP); glDrawVector(org - dx - dy); glDrawVector(org - dx + dy); glDrawVector(org + dx + dy); glDrawVector(org + dx - dy); glEnd(); return; } else if ((shape->getShapeType() == BOX_SHAPE_PROXYTYPE) && (debugMode & btIDebugDraw::DBG_FastWireframe)) { btVector3 org(m[12], m[13], m[14]); btVector3 dx(m[0], m[1], m[2]); btVector3 dy(m[4], m[5], m[6]); btVector3 dz(m[8], m[9], m[10]); const btBoxShape* boxShape = static_cast(shape); btVector3 halfExtent = boxShape->getHalfExtentsWithMargin(); dx *= halfExtent[0]; dy *= halfExtent[1]; dz *= halfExtent[2]; glBegin(GL_LINE_LOOP); glDrawVector(org - dx - dy - dz); glDrawVector(org + dx - dy - dz); glDrawVector(org + dx + dy - dz); glDrawVector(org - dx + dy - dz); glDrawVector(org - dx + dy + dz); glDrawVector(org + dx + dy + dz); glDrawVector(org + dx - dy + dz); glDrawVector(org - dx - dy + dz); glEnd(); glBegin(GL_LINES); glDrawVector(org + dx - dy - dz); glDrawVector(org + dx - dy + dz); glDrawVector(org + dx + dy - dz); glDrawVector(org + dx + dy + dz); glDrawVector(org - dx - dy - dz); glDrawVector(org - dx + dy - dz); glDrawVector(org - dx - dy + dz); glDrawVector(org - dx + dy + dz); glEnd(); return; } glPushMatrix(); btglMultMatrix(m); if (shape->getShapeType() == UNIFORM_SCALING_SHAPE_PROXYTYPE) { const btUniformScalingShape* scalingShape = static_cast(shape); const btConvexShape* convexShape = scalingShape->getChildShape(); float scalingFactor = (float)scalingShape->getUniformScalingFactor(); { btScalar tmpScaling[4][4] = {{scalingFactor, 0, 0, 0}, {0, scalingFactor, 0, 0}, {0, 0, scalingFactor, 0}, {0, 0, 0, 1}}; drawOpenGL((btScalar*)tmpScaling, convexShape, color, debugMode, worldBoundsMin, worldBoundsMax); } glPopMatrix(); return; } if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE) { const btCompoundShape* compoundShape = static_cast(shape); for (int i = compoundShape->getNumChildShapes() - 1; i >= 0; i--) { btTransform childTrans = compoundShape->getChildTransform(i); const btCollisionShape* colShape = compoundShape->getChildShape(i); ATTRIBUTE_ALIGNED16(btScalar) childMat[16]; childTrans.getOpenGLMatrix(childMat); drawOpenGL(childMat, colShape, color, debugMode, worldBoundsMin, worldBoundsMax); } } else { if (m_textureenabled && (!m_textureinitialized)) { GLubyte* image = new GLubyte[256 * 256 * 4]; for (int y = 0; y < 256; ++y) { const int t = y >> 4; GLubyte* pi = image + y * 256 * 3; for (int x = 0; x < 256; ++x) { const int s = x >> 4; const GLubyte b = 180; GLubyte c = b + ((s + (t & 1)) & 1) * (255 - b); pi[0] = pi[1] = pi[2] = pi[3] = c; pi += 3; } } glGenTextures(1, (GLuint*)&m_texturehandle); glBindTexture(GL_TEXTURE_2D, m_texturehandle); glGenTextures(1, (GLuint*)&m_texturehandle); glBindTexture(GL_TEXTURE_2D, m_texturehandle); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, 3, 256, 256, 0, GL_RGB, GL_UNSIGNED_BYTE, image); //glGenerateMipmap(GL_TEXTURE_2D); delete[] image; } glMatrixMode(GL_TEXTURE); glLoadIdentity(); glScalef(0.025f, 0.025f, 0.025f); glMatrixMode(GL_MODELVIEW); static const GLfloat planex[] = {1, 0, 0, 0}; // static const GLfloat planey[]={0,1,0,0}; static const GLfloat planez[] = {0, 0, 1, 0}; glTexGenfv(GL_S, GL_OBJECT_PLANE, planex); glTexGenfv(GL_T, GL_OBJECT_PLANE, planez); glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR); glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR); glEnable(GL_TEXTURE_GEN_S); glEnable(GL_TEXTURE_GEN_T); glEnable(GL_TEXTURE_GEN_R); m_textureinitialized = true; //drawCoordSystem(); //glPushMatrix(); glEnable(GL_COLOR_MATERIAL); if (m_textureenabled) { glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, m_texturehandle); } else { glDisable(GL_TEXTURE_2D); } glColor3f(color.x(), color.y(), color.z()); //bool useWireframeFallback = true; if (!(debugMode & btIDebugDraw::DBG_DrawWireframe)) { ///you can comment out any of the specific cases, and use the default ///the benefit of 'default' is that it approximates the actual collision shape including collision margin //int shapetype=m_textureenabled?MAX_BROADPHASE_COLLISION_TYPES:shape->getShapeType(); int shapetype = shape->getShapeType(); switch (shapetype) { case SPHERE_SHAPE_PROXYTYPE: { const btSphereShape* sphereShape = static_cast(shape); float radius = sphereShape->getMargin(); //radius doesn't include the margin, so draw with margin drawSphere(radius, 10, 10); //useWireframeFallback = false; break; } case BOX_SHAPE_PROXYTYPE: { const btBoxShape* boxShape = static_cast(shape); btVector3 halfExtent = boxShape->getHalfExtentsWithMargin(); static int indices[36] = { 0, 1, 2, 3, 2, 1, 4, 0, 6, 6, 0, 2, 5, 1, 4, 4, 1, 0, 7, 3, 1, 7, 1, 5, 5, 4, 7, 7, 4, 6, 7, 2, 3, 7, 6, 2}; btVector3 vertices[8] = { btVector3(halfExtent[0], halfExtent[1], halfExtent[2]), btVector3(-halfExtent[0], halfExtent[1], halfExtent[2]), btVector3(halfExtent[0], -halfExtent[1], halfExtent[2]), btVector3(-halfExtent[0], -halfExtent[1], halfExtent[2]), btVector3(halfExtent[0], halfExtent[1], -halfExtent[2]), btVector3(-halfExtent[0], halfExtent[1], -halfExtent[2]), btVector3(halfExtent[0], -halfExtent[1], -halfExtent[2]), btVector3(-halfExtent[0], -halfExtent[1], -halfExtent[2])}; #if 1 glBegin(GL_TRIANGLES); int si = 36; for (int i = 0; i < si; i += 3) { const btVector3& v1 = vertices[indices[i]]; ; const btVector3& v2 = vertices[indices[i + 1]]; const btVector3& v3 = vertices[indices[i + 2]]; btVector3 normal = (v3 - v1).cross(v2 - v1); normal.normalize(); glNormal3f(normal.getX(), normal.getY(), normal.getZ()); glVertex3f(v1.x(), v1.y(), v1.z()); glVertex3f(v2.x(), v2.y(), v2.z()); glVertex3f(v3.x(), v3.y(), v3.z()); } glEnd(); #endif //useWireframeFallback = false; break; } #if 0 case CONE_SHAPE_PROXYTYPE: { const btConeShape* coneShape = static_cast(shape); int upIndex = coneShape->getConeUpIndex(); float radius = coneShape->getRadius();//+coneShape->getMargin(); float height = coneShape->getHeight();//+coneShape->getMargin(); switch (upIndex) { case 0: glRotatef(90.0, 0.0, 1.0, 0.0); break; case 1: glRotatef(-90.0, 1.0, 0.0, 0.0); break; case 2: break; default: { } }; glTranslatef(0.0, 0.0, -0.5*height); glutSolidCone(radius,height,10,10); //useWireframeFallback = false; break; } #endif case STATIC_PLANE_PROXYTYPE: { const btStaticPlaneShape* staticPlaneShape = static_cast(shape); btScalar planeConst = staticPlaneShape->getPlaneConstant(); const btVector3& planeNormal = staticPlaneShape->getPlaneNormal(); btVector3 planeOrigin = planeNormal * planeConst; btVector3 vec0, vec1; btPlaneSpace1(planeNormal, vec0, vec1); btScalar vecLen = 100.f; btVector3 pt0 = planeOrigin + vec0 * vecLen; btVector3 pt1 = planeOrigin - vec0 * vecLen; btVector3 pt2 = planeOrigin + vec1 * vecLen; btVector3 pt3 = planeOrigin - vec1 * vecLen; glBegin(GL_LINES); glVertex3f(pt0.getX(), pt0.getY(), pt0.getZ()); glVertex3f(pt1.getX(), pt1.getY(), pt1.getZ()); glVertex3f(pt2.getX(), pt2.getY(), pt2.getZ()); glVertex3f(pt3.getX(), pt3.getY(), pt3.getZ()); glEnd(); break; } case MULTI_SPHERE_SHAPE_PROXYTYPE: { const btMultiSphereShape* multiSphereShape = static_cast(shape); btTransform childTransform; childTransform.setIdentity(); for (int i = multiSphereShape->getSphereCount() - 1; i >= 0; i--) { btSphereShape sc(multiSphereShape->getSphereRadius(i)); childTransform.setOrigin(multiSphereShape->getSpherePosition(i)); ATTRIBUTE_ALIGNED16(btScalar) childMat[16]; childTransform.getOpenGLMatrix(childMat); drawOpenGL(childMat, &sc, color, debugMode, worldBoundsMin, worldBoundsMax); } break; } default: { if (shape->isConvex()) { const btConvexPolyhedron* poly = shape->isPolyhedral() ? ((btPolyhedralConvexShape*)shape)->getConvexPolyhedron() : 0; if (poly) { int i; glBegin(GL_TRIANGLES); for (i = 0; i < poly->m_faces.size(); i++) { btVector3 centroid(0, 0, 0); int numVerts = poly->m_faces[i].m_indices.size(); if (numVerts > 2) { btVector3 v1 = poly->m_vertices[poly->m_faces[i].m_indices[0]]; for (int v = 0; v < poly->m_faces[i].m_indices.size() - 2; v++) { btVector3 v2 = poly->m_vertices[poly->m_faces[i].m_indices[v + 1]]; btVector3 v3 = poly->m_vertices[poly->m_faces[i].m_indices[v + 2]]; btVector3 normal = (v3 - v1).cross(v2 - v1); normal.normalize(); glNormal3f(normal.getX(), normal.getY(), normal.getZ()); glVertex3f(v1.x(), v1.y(), v1.z()); glVertex3f(v2.x(), v2.y(), v2.z()); glVertex3f(v3.x(), v3.y(), v3.z()); } } } glEnd(); } else { ShapeCache* sc = cache((btConvexShape*)shape); //glutSolidCube(1.0); btShapeHull* hull = &sc->m_shapehull /*(btShapeHull*)shape->getUserPointer()*/; if (hull->numTriangles() > 0) { int index = 0; const unsigned int* idx = hull->getIndexPointer(); const btVector3* vtx = hull->getVertexPointer(); glBegin(GL_TRIANGLES); for (int i = 0; i < hull->numTriangles(); i++) { int i1 = index++; int i2 = index++; int i3 = index++; btAssert(i1 < hull->numIndices() && i2 < hull->numIndices() && i3 < hull->numIndices()); int index1 = idx[i1]; int index2 = idx[i2]; int index3 = idx[i3]; btAssert(index1 < hull->numVertices() && index2 < hull->numVertices() && index3 < hull->numVertices()); btVector3 v1 = vtx[index1]; btVector3 v2 = vtx[index2]; btVector3 v3 = vtx[index3]; btVector3 normal = (v3 - v1).cross(v2 - v1); normal.normalize(); glNormal3f(normal.getX(), normal.getY(), normal.getZ()); glVertex3f(v1.x(), v1.y(), v1.z()); glVertex3f(v2.x(), v2.y(), v2.z()); glVertex3f(v3.x(), v3.y(), v3.z()); } glEnd(); } } } } } } glNormal3f(0, 1, 0); /// for polyhedral shapes if (debugMode == btIDebugDraw::DBG_DrawFeaturesText && (shape->isPolyhedral())) { btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*)shape; { glColor3f(1.f, 1.f, 1.f); int i; for (i = 0; i < polyshape->getNumVertices(); i++) { btVector3 vtx; polyshape->getVertex(i, vtx); char buf[12]; sprintf(buf, " %d", i); //btDrawString(BMF_GetFont(BMF_kHelvetica10),buf); } for (i = 0; i < polyshape->getNumPlanes(); i++) { btVector3 normal; btVector3 vtx; polyshape->getPlane(normal, vtx, i); //btScalar d = vtx.dot(normal); //char buf[12]; //sprintf(buf," plane %d",i); //btDrawString(BMF_GetFont(BMF_kHelvetica10),buf); } } } } glPopMatrix(); glDisable(GL_TEXTURE_2D); } // void GL_ShapeDrawer::drawShadow(btScalar* m, const btVector3& extrusion, const btCollisionShape* shape, const btVector3& worldBoundsMin, const btVector3& worldBoundsMax) { glPushMatrix(); btglMultMatrix(m); if (shape->getShapeType() == UNIFORM_SCALING_SHAPE_PROXYTYPE) { const btUniformScalingShape* scalingShape = static_cast(shape); const btConvexShape* convexShape = scalingShape->getChildShape(); float scalingFactor = (float)scalingShape->getUniformScalingFactor(); btScalar tmpScaling[4][4] = {{scalingFactor, 0, 0, 0}, {0, scalingFactor, 0, 0}, {0, 0, scalingFactor, 0}, {0, 0, 0, 1}}; drawShadow((btScalar*)tmpScaling, extrusion, convexShape, worldBoundsMin, worldBoundsMax); glPopMatrix(); return; } else if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE) { const btCompoundShape* compoundShape = static_cast(shape); for (int i = compoundShape->getNumChildShapes() - 1; i >= 0; i--) { btTransform childTrans = compoundShape->getChildTransform(i); const btCollisionShape* colShape = compoundShape->getChildShape(i); ATTRIBUTE_ALIGNED16(btScalar) childMat[16]; childTrans.getOpenGLMatrix(childMat); drawShadow(childMat, extrusion * childTrans.getBasis(), colShape, worldBoundsMin, worldBoundsMax); } } else { // bool useWireframeFallback = true; if (shape->isConvex()) { ShapeCache* sc = cache((btConvexShape*)shape); btShapeHull* hull = &sc->m_shapehull; glBegin(GL_QUADS); for (int i = 0; i < sc->m_edges.size(); ++i) { const btScalar d = btDot(sc->m_edges[i].n[0], extrusion); if ((d * btDot(sc->m_edges[i].n[1], extrusion)) < 0) { const int q = d < 0 ? 1 : 0; const btVector3& a = hull->getVertexPointer()[sc->m_edges[i].v[q]]; const btVector3& b = hull->getVertexPointer()[sc->m_edges[i].v[1 - q]]; glVertex3f(a[0], a[1], a[2]); glVertex3f(b[0], b[1], b[2]); glVertex3f(b[0] + extrusion[0], b[1] + extrusion[1], b[2] + extrusion[2]); glVertex3f(a[0] + extrusion[0], a[1] + extrusion[1], a[2] + extrusion[2]); } } glEnd(); } } if (shape->isConcave()) //>getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE||shape->getShapeType() == GIMPACT_SHAPE_PROXYTYPE) // if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE) { btConcaveShape* concaveMesh = (btConcaveShape*)shape; GlDrawcallback drawCallback; drawCallback.m_wireframe = false; concaveMesh->processAllTriangles(&drawCallback, worldBoundsMin, worldBoundsMax); } glPopMatrix(); } // GL_ShapeDrawer::GL_ShapeDrawer() { m_texturehandle = 0; m_textureenabled = false; m_textureinitialized = false; } GL_ShapeDrawer::~GL_ShapeDrawer() { int i; for (i = 0; i < m_shapecaches.size(); i++) { m_shapecaches[i]->~ShapeCache(); btAlignedFree(m_shapecaches[i]); } m_shapecaches.clear(); if (m_textureinitialized) { glDeleteTextures(1, (const GLuint*)&m_texturehandle); } } void GL_ShapeDrawer::drawSceneInternal(const btDiscreteDynamicsWorld* dynamicsWorld, int pass, int cameraUpAxis) { btAssert(dynamicsWorld); btScalar m[16]; btMatrix3x3 rot; rot.setIdentity(); const int numObjects = dynamicsWorld->getNumCollisionObjects(); btVector3 wireColor(1, 0, 0); //glDisable(GL_CULL_FACE); for (int i = 0; i < numObjects; i++) { const btCollisionObject* colObj = dynamicsWorld->getCollisionObjectArray()[i]; const btRigidBody* body = btRigidBody::upcast(colObj); if (body && body->getMotionState()) { btDefaultMotionState* myMotionState = (btDefaultMotionState*)body->getMotionState(); myMotionState->m_graphicsWorldTrans.getOpenGLMatrix(m); rot = myMotionState->m_graphicsWorldTrans.getBasis(); } else { colObj->getWorldTransform().getOpenGLMatrix(m); rot = colObj->getWorldTransform().getBasis(); } btVector3 wireColor(1.f, 1.0f, 0.5f); //wants deactivation if (i & 1) wireColor = btVector3(0.f, 0.0f, 1.f); ///color differently for active, sleeping, wantsdeactivation states if (colObj->getActivationState() == 1) //active { if (i & 1) { wireColor += btVector3(1.f, 0.f, 0.f); } else { wireColor += btVector3(.5f, 0.f, 0.f); } } if (colObj->getActivationState() == 2) //ISLAND_SLEEPING { if (i & 1) { wireColor += btVector3(0.f, 1.f, 0.f); } else { wireColor += btVector3(0.f, 0.5f, 0.f); } } btVector3 aabbMin(0, 0, 0), aabbMax(0, 0, 0); //m_dynamicsWorld->getBroadphase()->getBroadphaseAabb(aabbMin,aabbMax); aabbMin -= btVector3(BT_LARGE_FLOAT, BT_LARGE_FLOAT, BT_LARGE_FLOAT); aabbMax += btVector3(BT_LARGE_FLOAT, BT_LARGE_FLOAT, BT_LARGE_FLOAT); // printf("aabbMin=(%f,%f,%f)\n",aabbMin.getX(),aabbMin.getY(),aabbMin.getZ()); // printf("aabbMax=(%f,%f,%f)\n",aabbMax.getX(),aabbMax.getY(),aabbMax.getZ()); // m_dynamicsWorld->getDebugDrawer()->drawAabb(aabbMin,aabbMax,btVector3(1,1,1)); //switch(pass) //if (!(getDebugMode()& btIDebugDraw::DBG_DrawWireframe)) int debugMode = 0; //getDebugMode() //btVector3 m_sundirection(-1,-1,-1); btVector3 m_sundirection(btVector3(1, -2, 1) * 1000); if (cameraUpAxis == 2) { m_sundirection = btVector3(1, 1, -2) * 1000; } switch (pass) { case 0: drawOpenGL(m, colObj->getCollisionShape(), wireColor, debugMode, aabbMin, aabbMax); break; case 1: drawShadow(m, m_sundirection * rot, colObj->getCollisionShape(), aabbMin, aabbMax); break; case 2: drawOpenGL(m, colObj->getCollisionShape(), wireColor * btScalar(0.3), 0, aabbMin, aabbMax); break; } } } //this GL_ShapeDrawer will be removed, in the meanwhile directly access this global 'useShadoMaps' extern bool useShadowMap; void GL_ShapeDrawer::drawScene(const btDiscreteDynamicsWorld* dynamicsWorld, bool useShadows1, int cameraUpAxis) { bool useShadows = useShadowMap; GLfloat light_ambient[] = {btScalar(0.2), btScalar(0.2), btScalar(0.2), btScalar(1.0)}; GLfloat light_diffuse[] = {btScalar(1.0), btScalar(1.0), btScalar(1.0), btScalar(1.0)}; GLfloat light_specular[] = {btScalar(1.0), btScalar(1.0), btScalar(1.0), btScalar(1.0)}; /* light_position is NOT default value */ GLfloat light_position0[] = {btScalar(1.0), btScalar(10.0), btScalar(1.0), btScalar(0.0)}; GLfloat light_position1[] = {btScalar(-1.0), btScalar(-10.0), btScalar(-1.0), btScalar(0.0)}; glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse); glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular); glLightfv(GL_LIGHT0, GL_POSITION, light_position0); glLightfv(GL_LIGHT1, GL_AMBIENT, light_ambient); glLightfv(GL_LIGHT1, GL_DIFFUSE, light_diffuse); glLightfv(GL_LIGHT1, GL_SPECULAR, light_specular); glLightfv(GL_LIGHT1, GL_POSITION, light_position1); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); glShadeModel(GL_SMOOTH); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glClearColor(btScalar(0.7), btScalar(0.7), btScalar(0.7), btScalar(0)); if (useShadows) { glClear(GL_STENCIL_BUFFER_BIT); glEnable(GL_CULL_FACE); drawSceneInternal(dynamicsWorld, 0, cameraUpAxis); glDisable(GL_LIGHTING); glDepthMask(GL_FALSE); glDepthFunc(GL_LEQUAL); glEnable(GL_STENCIL_TEST); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glStencilFunc(GL_ALWAYS, 1, 0xFFFFFFFFL); glFrontFace(GL_CCW); glStencilOp(GL_KEEP, GL_KEEP, GL_INCR); drawSceneInternal(dynamicsWorld, 1, cameraUpAxis); glFrontFace(GL_CW); glStencilOp(GL_KEEP, GL_KEEP, GL_DECR); drawSceneInternal(dynamicsWorld, 1, cameraUpAxis); glFrontFace(GL_CCW); glPolygonMode(GL_FRONT, GL_FILL); glPolygonMode(GL_BACK, GL_FILL); glShadeModel(GL_SMOOTH); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glEnable(GL_LIGHTING); glDepthMask(GL_TRUE); glCullFace(GL_BACK); glFrontFace(GL_CCW); glEnable(GL_CULL_FACE); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glDepthFunc(GL_LEQUAL); glStencilFunc(GL_NOTEQUAL, 0, 0xFFFFFFFFL); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glDisable(GL_LIGHTING); drawSceneInternal(dynamicsWorld, 2, cameraUpAxis); glEnable(GL_LIGHTING); glDepthFunc(GL_LESS); glDisable(GL_STENCIL_TEST); glDisable(GL_CULL_FACE); } else { glDisable(GL_CULL_FACE); drawSceneInternal(dynamicsWorld, 0, cameraUpAxis); } }