//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass lowers the pseudo control flow instructions to real /// machine instructions. /// /// All control flow is handled using predicated instructions and /// a predicate stack. Each Scalar ALU controls the operations of 64 Vector /// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs /// by writting to the 64-bit EXEC register (each bit corresponds to a /// single vector ALU). Typically, for predicates, a vector ALU will write /// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each /// Vector ALU) and then the ScalarALU will AND the VCC register with the /// EXEC to update the predicates. /// /// For example: /// %vcc = V_CMP_GT_F32 %vgpr1, %vgpr2 /// %sgpr0 = SI_IF %vcc /// %vgpr0 = V_ADD_F32 %vgpr0, %vgpr0 /// %sgpr0 = SI_ELSE %sgpr0 /// %vgpr0 = V_SUB_F32 %vgpr0, %vgpr0 /// SI_END_CF %sgpr0 /// /// becomes: /// /// %sgpr0 = S_AND_SAVEEXEC_B64 %vcc // Save and update the exec mask /// %sgpr0 = S_XOR_B64 %sgpr0, %exec // Clear live bits from saved exec mask /// S_CBRANCH_EXECZ label0 // This instruction is an optional /// // optimization which allows us to /// // branch if all the bits of /// // EXEC are zero. /// %vgpr0 = V_ADD_F32 %vgpr0, %vgpr0 // Do the IF block of the branch /// /// label0: /// %sgpr0 = S_OR_SAVEEXEC_B64 %sgpr0 // Restore the exec mask for the Then block /// %exec = S_XOR_B64 %sgpr0, %exec // Update the exec mask /// S_BRANCH_EXECZ label1 // Use our branch optimization /// // instruction again. /// %vgpr0 = V_SUB_F32 %vgpr0, %vgpr // Do the THEN block /// label1: /// %exec = S_OR_B64 %exec, %sgpr0 // Re-enable saved exec mask bits //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineFunctionPass.h" using namespace llvm; #define DEBUG_TYPE "si-lower-control-flow" static cl::opt RemoveRedundantEndcf("amdgpu-remove-redundant-endcf", cl::init(true), cl::ReallyHidden); namespace { class SILowerControlFlow : public MachineFunctionPass { private: const SIRegisterInfo *TRI = nullptr; const SIInstrInfo *TII = nullptr; LiveIntervals *LIS = nullptr; MachineRegisterInfo *MRI = nullptr; SetVector LoweredEndCf; DenseSet LoweredIf; SmallSet KillBlocks; const TargetRegisterClass *BoolRC = nullptr; unsigned AndOpc; unsigned OrOpc; unsigned XorOpc; unsigned MovTermOpc; unsigned Andn2TermOpc; unsigned XorTermrOpc; unsigned OrTermrOpc; unsigned OrSaveExecOpc; unsigned Exec; bool hasKill(const MachineBasicBlock *Begin, const MachineBasicBlock *End); void emitIf(MachineInstr &MI); void emitElse(MachineInstr &MI); void emitIfBreak(MachineInstr &MI); void emitLoop(MachineInstr &MI); MachineBasicBlock *emitEndCf(MachineInstr &MI); void lowerInitExec(MachineBasicBlock *MBB, MachineInstr &MI); void findMaskOperands(MachineInstr &MI, unsigned OpNo, SmallVectorImpl &Src) const; void combineMasks(MachineInstr &MI); bool removeMBBifRedundant(MachineBasicBlock &MBB); MachineBasicBlock *process(MachineInstr &MI); // Skip to the next instruction, ignoring debug instructions, and trivial // block boundaries (blocks that have one (typically fallthrough) successor, // and the successor has one predecessor. MachineBasicBlock::iterator skipIgnoreExecInstsTrivialSucc(MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const; /// Find the insertion point for a new conditional branch. MachineBasicBlock::iterator skipToUncondBrOrEnd(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { assert(I->isTerminator()); // FIXME: What if we had multiple pre-existing conditional branches? MachineBasicBlock::iterator End = MBB.end(); while (I != End && !I->isUnconditionalBranch()) ++I; return I; } // Remove redundant SI_END_CF instructions. void optimizeEndCf(); public: static char ID; SILowerControlFlow() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Lower control flow pseudo instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { // Should preserve the same set that TwoAddressInstructions does. AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(LiveVariablesID); MachineFunctionPass::getAnalysisUsage(AU); } }; } // end anonymous namespace char SILowerControlFlow::ID = 0; INITIALIZE_PASS(SILowerControlFlow, DEBUG_TYPE, "SI lower control flow", false, false) static void setImpSCCDefDead(MachineInstr &MI, bool IsDead) { MachineOperand &ImpDefSCC = MI.getOperand(3); assert(ImpDefSCC.getReg() == AMDGPU::SCC && ImpDefSCC.isDef()); ImpDefSCC.setIsDead(IsDead); } char &llvm::SILowerControlFlowID = SILowerControlFlow::ID; bool SILowerControlFlow::hasKill(const MachineBasicBlock *Begin, const MachineBasicBlock *End) { DenseSet Visited; SmallVector Worklist(Begin->successors()); while (!Worklist.empty()) { MachineBasicBlock *MBB = Worklist.pop_back_val(); if (MBB == End || !Visited.insert(MBB).second) continue; if (KillBlocks.contains(MBB)) return true; Worklist.append(MBB->succ_begin(), MBB->succ_end()); } return false; } static bool isSimpleIf(const MachineInstr &MI, const MachineRegisterInfo *MRI) { Register SaveExecReg = MI.getOperand(0).getReg(); auto U = MRI->use_instr_nodbg_begin(SaveExecReg); if (U == MRI->use_instr_nodbg_end() || std::next(U) != MRI->use_instr_nodbg_end() || U->getOpcode() != AMDGPU::SI_END_CF) return false; return true; } void SILowerControlFlow::emitIf(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); Register SaveExecReg = MI.getOperand(0).getReg(); MachineOperand& Cond = MI.getOperand(1); assert(Cond.getSubReg() == AMDGPU::NoSubRegister); MachineOperand &ImpDefSCC = MI.getOperand(4); assert(ImpDefSCC.getReg() == AMDGPU::SCC && ImpDefSCC.isDef()); // If there is only one use of save exec register and that use is SI_END_CF, // we can optimize SI_IF by returning the full saved exec mask instead of // just cleared bits. bool SimpleIf = isSimpleIf(MI, MRI); if (SimpleIf) { // Check for SI_KILL_*_TERMINATOR on path from if to endif. // if there is any such terminator simplifications are not safe. auto UseMI = MRI->use_instr_nodbg_begin(SaveExecReg); SimpleIf = !hasKill(MI.getParent(), UseMI->getParent()); } // Add an implicit def of exec to discourage scheduling VALU after this which // will interfere with trying to form s_and_saveexec_b64 later. Register CopyReg = SimpleIf ? SaveExecReg : MRI->createVirtualRegister(BoolRC); MachineInstr *CopyExec = BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), CopyReg) .addReg(Exec) .addReg(Exec, RegState::ImplicitDefine); LoweredIf.insert(CopyReg); Register Tmp = MRI->createVirtualRegister(BoolRC); MachineInstr *And = BuildMI(MBB, I, DL, TII->get(AndOpc), Tmp) .addReg(CopyReg) .add(Cond); setImpSCCDefDead(*And, true); MachineInstr *Xor = nullptr; if (!SimpleIf) { Xor = BuildMI(MBB, I, DL, TII->get(XorOpc), SaveExecReg) .addReg(Tmp) .addReg(CopyReg); setImpSCCDefDead(*Xor, ImpDefSCC.isDead()); } // Use a copy that is a terminator to get correct spill code placement it with // fast regalloc. MachineInstr *SetExec = BuildMI(MBB, I, DL, TII->get(MovTermOpc), Exec) .addReg(Tmp, RegState::Kill); // Skip ahead to the unconditional branch in case there are other terminators // present. I = skipToUncondBrOrEnd(MBB, I); // Insert the S_CBRANCH_EXECZ instruction which will be optimized later // during SIRemoveShortExecBranches. MachineInstr *NewBr = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ)) .add(MI.getOperand(2)); if (!LIS) { MI.eraseFromParent(); return; } LIS->InsertMachineInstrInMaps(*CopyExec); // Replace with and so we don't need to fix the live interval for condition // register. LIS->ReplaceMachineInstrInMaps(MI, *And); if (!SimpleIf) LIS->InsertMachineInstrInMaps(*Xor); LIS->InsertMachineInstrInMaps(*SetExec); LIS->InsertMachineInstrInMaps(*NewBr); LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC); MI.eraseFromParent(); // FIXME: Is there a better way of adjusting the liveness? It shouldn't be // hard to add another def here but I'm not sure how to correctly update the // valno. LIS->removeInterval(SaveExecReg); LIS->createAndComputeVirtRegInterval(SaveExecReg); LIS->createAndComputeVirtRegInterval(Tmp); if (!SimpleIf) LIS->createAndComputeVirtRegInterval(CopyReg); } void SILowerControlFlow::emitElse(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); Register DstReg = MI.getOperand(0).getReg(); MachineBasicBlock::iterator Start = MBB.begin(); // This must be inserted before phis and any spill code inserted before the // else. Register SaveReg = MRI->createVirtualRegister(BoolRC); MachineInstr *OrSaveExec = BuildMI(MBB, Start, DL, TII->get(OrSaveExecOpc), SaveReg) .add(MI.getOperand(1)); // Saved EXEC MachineBasicBlock *DestBB = MI.getOperand(2).getMBB(); MachineBasicBlock::iterator ElsePt(MI); // This accounts for any modification of the EXEC mask within the block and // can be optimized out pre-RA when not required. MachineInstr *And = BuildMI(MBB, ElsePt, DL, TII->get(AndOpc), DstReg) .addReg(Exec) .addReg(SaveReg); if (LIS) LIS->InsertMachineInstrInMaps(*And); MachineInstr *Xor = BuildMI(MBB, ElsePt, DL, TII->get(XorTermrOpc), Exec) .addReg(Exec) .addReg(DstReg); // Skip ahead to the unconditional branch in case there are other terminators // present. ElsePt = skipToUncondBrOrEnd(MBB, ElsePt); MachineInstr *Branch = BuildMI(MBB, ElsePt, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ)) .addMBB(DestBB); if (!LIS) { MI.eraseFromParent(); return; } LIS->RemoveMachineInstrFromMaps(MI); MI.eraseFromParent(); LIS->InsertMachineInstrInMaps(*OrSaveExec); LIS->InsertMachineInstrInMaps(*Xor); LIS->InsertMachineInstrInMaps(*Branch); LIS->removeInterval(DstReg); LIS->createAndComputeVirtRegInterval(DstReg); LIS->createAndComputeVirtRegInterval(SaveReg); // Let this be recomputed. LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC); } void SILowerControlFlow::emitIfBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); auto Dst = MI.getOperand(0).getReg(); // Skip ANDing with exec if the break condition is already masked by exec // because it is a V_CMP in the same basic block. (We know the break // condition operand was an i1 in IR, so if it is a VALU instruction it must // be one with a carry-out.) bool SkipAnding = false; if (MI.getOperand(1).isReg()) { if (MachineInstr *Def = MRI->getUniqueVRegDef(MI.getOperand(1).getReg())) { SkipAnding = Def->getParent() == MI.getParent() && SIInstrInfo::isVALU(*Def); } } // AND the break condition operand with exec, then OR that into the "loop // exit" mask. MachineInstr *And = nullptr, *Or = nullptr; if (!SkipAnding) { Register AndReg = MRI->createVirtualRegister(BoolRC); And = BuildMI(MBB, &MI, DL, TII->get(AndOpc), AndReg) .addReg(Exec) .add(MI.getOperand(1)); Or = BuildMI(MBB, &MI, DL, TII->get(OrOpc), Dst) .addReg(AndReg) .add(MI.getOperand(2)); if (LIS) LIS->createAndComputeVirtRegInterval(AndReg); } else Or = BuildMI(MBB, &MI, DL, TII->get(OrOpc), Dst) .add(MI.getOperand(1)) .add(MI.getOperand(2)); if (LIS) { if (And) LIS->InsertMachineInstrInMaps(*And); LIS->ReplaceMachineInstrInMaps(MI, *Or); } MI.eraseFromParent(); } void SILowerControlFlow::emitLoop(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineInstr *AndN2 = BuildMI(MBB, &MI, DL, TII->get(Andn2TermOpc), Exec) .addReg(Exec) .add(MI.getOperand(0)); auto BranchPt = skipToUncondBrOrEnd(MBB, MI.getIterator()); MachineInstr *Branch = BuildMI(MBB, BranchPt, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .add(MI.getOperand(1)); if (LIS) { LIS->ReplaceMachineInstrInMaps(MI, *AndN2); LIS->InsertMachineInstrInMaps(*Branch); } MI.eraseFromParent(); } MachineBasicBlock::iterator SILowerControlFlow::skipIgnoreExecInstsTrivialSucc( MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { SmallSet Visited; MachineBasicBlock *B = &MBB; do { if (!Visited.insert(B).second) return MBB.end(); auto E = B->end(); for ( ; It != E; ++It) { if (TII->mayReadEXEC(*MRI, *It)) break; } if (It != E) return It; if (B->succ_size() != 1) return MBB.end(); // If there is one trivial successor, advance to the next block. MachineBasicBlock *Succ = *B->succ_begin(); It = Succ->begin(); B = Succ; } while (true); } MachineBasicBlock *SILowerControlFlow::emitEndCf(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator InsPt = MBB.begin(); // If we have instructions that aren't prolog instructions, split the block // and emit a terminator instruction. This ensures correct spill placement. // FIXME: We should unconditionally split the block here. bool NeedBlockSplit = false; Register DataReg = MI.getOperand(0).getReg(); for (MachineBasicBlock::iterator I = InsPt, E = MI.getIterator(); I != E; ++I) { if (I->modifiesRegister(DataReg, TRI)) { NeedBlockSplit = true; break; } } unsigned Opcode = OrOpc; MachineBasicBlock *SplitBB = &MBB; if (NeedBlockSplit) { SplitBB = MBB.splitAt(MI, /*UpdateLiveIns*/true, LIS); Opcode = OrTermrOpc; InsPt = MI; } MachineInstr *NewMI = BuildMI(MBB, InsPt, DL, TII->get(Opcode), Exec) .addReg(Exec) .add(MI.getOperand(0)); LoweredEndCf.insert(NewMI); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *NewMI); MI.eraseFromParent(); if (LIS) LIS->handleMove(*NewMI); return SplitBB; } // Returns replace operands for a logical operation, either single result // for exec or two operands if source was another equivalent operation. void SILowerControlFlow::findMaskOperands(MachineInstr &MI, unsigned OpNo, SmallVectorImpl &Src) const { MachineOperand &Op = MI.getOperand(OpNo); if (!Op.isReg() || !Op.getReg().isVirtual()) { Src.push_back(Op); return; } MachineInstr *Def = MRI->getUniqueVRegDef(Op.getReg()); if (!Def || Def->getParent() != MI.getParent() || !(Def->isFullCopy() || (Def->getOpcode() == MI.getOpcode()))) return; // Make sure we do not modify exec between def and use. // A copy with implcitly defined exec inserted earlier is an exclusion, it // does not really modify exec. for (auto I = Def->getIterator(); I != MI.getIterator(); ++I) if (I->modifiesRegister(AMDGPU::EXEC, TRI) && !(I->isCopy() && I->getOperand(0).getReg() != Exec)) return; for (const auto &SrcOp : Def->explicit_operands()) if (SrcOp.isReg() && SrcOp.isUse() && (SrcOp.getReg().isVirtual() || SrcOp.getReg() == Exec)) Src.push_back(SrcOp); } // Search and combine pairs of equivalent instructions, like // S_AND_B64 x, (S_AND_B64 x, y) => S_AND_B64 x, y // S_OR_B64 x, (S_OR_B64 x, y) => S_OR_B64 x, y // One of the operands is exec mask. void SILowerControlFlow::combineMasks(MachineInstr &MI) { assert(MI.getNumExplicitOperands() == 3); SmallVector Ops; unsigned OpToReplace = 1; findMaskOperands(MI, 1, Ops); if (Ops.size() == 1) OpToReplace = 2; // First operand can be exec or its copy findMaskOperands(MI, 2, Ops); if (Ops.size() != 3) return; unsigned UniqueOpndIdx; if (Ops[0].isIdenticalTo(Ops[1])) UniqueOpndIdx = 2; else if (Ops[0].isIdenticalTo(Ops[2])) UniqueOpndIdx = 1; else if (Ops[1].isIdenticalTo(Ops[2])) UniqueOpndIdx = 1; else return; Register Reg = MI.getOperand(OpToReplace).getReg(); MI.RemoveOperand(OpToReplace); MI.addOperand(Ops[UniqueOpndIdx]); if (MRI->use_empty(Reg)) MRI->getUniqueVRegDef(Reg)->eraseFromParent(); } void SILowerControlFlow::optimizeEndCf() { // If the only instruction immediately following this END_CF is an another // END_CF in the only successor we can avoid emitting exec mask restore here. if (!RemoveRedundantEndcf) return; for (MachineInstr *MI : LoweredEndCf) { MachineBasicBlock &MBB = *MI->getParent(); auto Next = skipIgnoreExecInstsTrivialSucc(MBB, std::next(MI->getIterator())); if (Next == MBB.end() || !LoweredEndCf.count(&*Next)) continue; // Only skip inner END_CF if outer ENDCF belongs to SI_IF. // If that belongs to SI_ELSE then saved mask has an inverted value. Register SavedExec = TII->getNamedOperand(*Next, AMDGPU::OpName::src1)->getReg(); assert(SavedExec.isVirtual() && "Expected saved exec to be src1!"); const MachineInstr *Def = MRI->getUniqueVRegDef(SavedExec); if (Def && LoweredIf.count(SavedExec)) { LLVM_DEBUG(dbgs() << "Skip redundant "; MI->dump()); if (LIS) LIS->RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); removeMBBifRedundant(MBB); } } } MachineBasicBlock *SILowerControlFlow::process(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); MachineBasicBlock::iterator I(MI); MachineInstr *Prev = (I != MBB.begin()) ? &*(std::prev(I)) : nullptr; MachineBasicBlock *SplitBB = &MBB; switch (MI.getOpcode()) { case AMDGPU::SI_IF: emitIf(MI); break; case AMDGPU::SI_ELSE: emitElse(MI); break; case AMDGPU::SI_IF_BREAK: emitIfBreak(MI); break; case AMDGPU::SI_LOOP: emitLoop(MI); break; case AMDGPU::SI_WATERFALL_LOOP: MI.setDesc(TII->get(AMDGPU::S_CBRANCH_EXECNZ)); break; case AMDGPU::SI_END_CF: SplitBB = emitEndCf(MI); break; default: assert(false && "Attempt to process unsupported instruction"); break; } MachineBasicBlock::iterator Next; for (I = Prev ? Prev->getIterator() : MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MaskMI = *I; switch (MaskMI.getOpcode()) { case AMDGPU::S_AND_B64: case AMDGPU::S_OR_B64: case AMDGPU::S_AND_B32: case AMDGPU::S_OR_B32: // Cleanup bit manipulations on exec mask combineMasks(MaskMI); break; default: I = MBB.end(); break; } } return SplitBB; } void SILowerControlFlow::lowerInitExec(MachineBasicBlock *MBB, MachineInstr &MI) { MachineFunction &MF = *MBB->getParent(); const GCNSubtarget &ST = MF.getSubtarget(); bool IsWave32 = ST.isWave32(); if (MI.getOpcode() == AMDGPU::SI_INIT_EXEC) { // This should be before all vector instructions. BuildMI(*MBB, MBB->begin(), MI.getDebugLoc(), TII->get(IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), Exec) .addImm(MI.getOperand(0).getImm()); if (LIS) LIS->RemoveMachineInstrFromMaps(MI); MI.eraseFromParent(); return; } // Extract the thread count from an SGPR input and set EXEC accordingly. // Since BFM can't shift by 64, handle that case with CMP + CMOV. // // S_BFE_U32 count, input, {shift, 7} // S_BFM_B64 exec, count, 0 // S_CMP_EQ_U32 count, 64 // S_CMOV_B64 exec, -1 Register InputReg = MI.getOperand(0).getReg(); MachineInstr *FirstMI = &*MBB->begin(); if (InputReg.isVirtual()) { MachineInstr *DefInstr = MRI->getVRegDef(InputReg); assert(DefInstr && DefInstr->isCopy()); if (DefInstr->getParent() == MBB) { if (DefInstr != FirstMI) { // If the `InputReg` is defined in current block, we also need to // move that instruction to the beginning of the block. DefInstr->removeFromParent(); MBB->insert(FirstMI, DefInstr); if (LIS) LIS->handleMove(*DefInstr); } else { // If first instruction is definition then move pointer after it. FirstMI = &*std::next(FirstMI->getIterator()); } } } // Insert instruction sequence at block beginning (before vector operations). const DebugLoc DL = MI.getDebugLoc(); const unsigned WavefrontSize = ST.getWavefrontSize(); const unsigned Mask = (WavefrontSize << 1) - 1; Register CountReg = MRI->createVirtualRegister(&AMDGPU::SGPR_32RegClass); auto BfeMI = BuildMI(*MBB, FirstMI, DL, TII->get(AMDGPU::S_BFE_U32), CountReg) .addReg(InputReg) .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); auto BfmMI = BuildMI(*MBB, FirstMI, DL, TII->get(IsWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), Exec) .addReg(CountReg) .addImm(0); auto CmpMI = BuildMI(*MBB, FirstMI, DL, TII->get(AMDGPU::S_CMP_EQ_U32)) .addReg(CountReg, RegState::Kill) .addImm(WavefrontSize); auto CmovMI = BuildMI(*MBB, FirstMI, DL, TII->get(IsWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), Exec) .addImm(-1); if (!LIS) { MI.eraseFromParent(); return; } LIS->RemoveMachineInstrFromMaps(MI); MI.eraseFromParent(); LIS->InsertMachineInstrInMaps(*BfeMI); LIS->InsertMachineInstrInMaps(*BfmMI); LIS->InsertMachineInstrInMaps(*CmpMI); LIS->InsertMachineInstrInMaps(*CmovMI); LIS->removeInterval(InputReg); LIS->createAndComputeVirtRegInterval(InputReg); LIS->createAndComputeVirtRegInterval(CountReg); } bool SILowerControlFlow::removeMBBifRedundant(MachineBasicBlock &MBB) { auto GetFallThroughSucc = [=](MachineBasicBlock *B) -> MachineBasicBlock * { auto *S = B->getNextNode(); if (!S) return nullptr; if (B->isSuccessor(S)) { // The only fallthrough candidate MachineBasicBlock::iterator I(B->getFirstInstrTerminator()); MachineBasicBlock::iterator E = B->end(); for (; I != E; I++) { if (I->isBranch() && TII->getBranchDestBlock(*I) == S) // We have unoptimized branch to layout successor return nullptr; } } return S; }; for (auto &I : MBB.instrs()) { if (!I.isDebugInstr() && !I.isUnconditionalBranch()) return false; } assert(MBB.succ_size() == 1 && "MBB has more than one successor"); MachineBasicBlock *Succ = *MBB.succ_begin(); MachineBasicBlock *FallThrough = nullptr; while (!MBB.predecessors().empty()) { MachineBasicBlock *P = *MBB.pred_begin(); if (GetFallThroughSucc(P) == &MBB) FallThrough = P; P->ReplaceUsesOfBlockWith(&MBB, Succ); } MBB.removeSuccessor(Succ); if (LIS) { for (auto &I : MBB.instrs()) LIS->RemoveMachineInstrFromMaps(I); } MBB.clear(); MBB.eraseFromParent(); if (FallThrough && !FallThrough->isLayoutSuccessor(Succ)) { if (!GetFallThroughSucc(Succ)) { MachineFunction *MF = FallThrough->getParent(); MachineFunction::iterator FallThroughPos(FallThrough); MF->splice(std::next(FallThroughPos), Succ); } else BuildMI(*FallThrough, FallThrough->end(), FallThrough->findBranchDebugLoc(), TII->get(AMDGPU::S_BRANCH)) .addMBB(Succ); } return true; } bool SILowerControlFlow::runOnMachineFunction(MachineFunction &MF) { const GCNSubtarget &ST = MF.getSubtarget(); TII = ST.getInstrInfo(); TRI = &TII->getRegisterInfo(); // This doesn't actually need LiveIntervals, but we can preserve them. LIS = getAnalysisIfAvailable(); MRI = &MF.getRegInfo(); BoolRC = TRI->getBoolRC(); if (ST.isWave32()) { AndOpc = AMDGPU::S_AND_B32; OrOpc = AMDGPU::S_OR_B32; XorOpc = AMDGPU::S_XOR_B32; MovTermOpc = AMDGPU::S_MOV_B32_term; Andn2TermOpc = AMDGPU::S_ANDN2_B32_term; XorTermrOpc = AMDGPU::S_XOR_B32_term; OrTermrOpc = AMDGPU::S_OR_B32_term; OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B32; Exec = AMDGPU::EXEC_LO; } else { AndOpc = AMDGPU::S_AND_B64; OrOpc = AMDGPU::S_OR_B64; XorOpc = AMDGPU::S_XOR_B64; MovTermOpc = AMDGPU::S_MOV_B64_term; Andn2TermOpc = AMDGPU::S_ANDN2_B64_term; XorTermrOpc = AMDGPU::S_XOR_B64_term; OrTermrOpc = AMDGPU::S_OR_B64_term; OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B64; Exec = AMDGPU::EXEC; } // Compute set of blocks with kills const bool CanDemote = MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS; for (auto &MBB : MF) { bool IsKillBlock = false; for (auto &Term : MBB.terminators()) { if (TII->isKillTerminator(Term.getOpcode())) { KillBlocks.insert(&MBB); IsKillBlock = true; break; } } if (CanDemote && !IsKillBlock) { for (auto &MI : MBB) { if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) { KillBlocks.insert(&MBB); break; } } } } MachineFunction::iterator NextBB; for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); BI = NextBB) { NextBB = std::next(BI); MachineBasicBlock *MBB = &*BI; MachineBasicBlock::iterator I, E, Next; E = MBB->end(); for (I = MBB->begin(); I != E; I = Next) { Next = std::next(I); MachineInstr &MI = *I; MachineBasicBlock *SplitMBB = MBB; switch (MI.getOpcode()) { case AMDGPU::SI_IF: case AMDGPU::SI_ELSE: case AMDGPU::SI_IF_BREAK: case AMDGPU::SI_WATERFALL_LOOP: case AMDGPU::SI_LOOP: case AMDGPU::SI_END_CF: SplitMBB = process(MI); break; // FIXME: find a better place for this case AMDGPU::SI_INIT_EXEC: case AMDGPU::SI_INIT_EXEC_FROM_INPUT: lowerInitExec(MBB, MI); if (LIS) LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC); break; default: break; } if (SplitMBB != MBB) { MBB = Next->getParent(); E = MBB->end(); } } } optimizeEndCf(); LoweredEndCf.clear(); LoweredIf.clear(); KillBlocks.clear(); return true; }