//===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the IslNodeBuilder, a class to translate an isl AST into // a LLVM-IR AST. // //===----------------------------------------------------------------------===// #include "polly/CodeGen/IslNodeBuilder.h" #include "polly/CodeGen/BlockGenerators.h" #include "polly/CodeGen/CodeGeneration.h" #include "polly/CodeGen/IslAst.h" #include "polly/CodeGen/IslExprBuilder.h" #include "polly/CodeGen/LoopGeneratorsGOMP.h" #include "polly/CodeGen/LoopGeneratorsKMP.h" #include "polly/CodeGen/RuntimeDebugBuilder.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/ISLTools.h" #include "polly/Support/SCEVValidator.h" #include "polly/Support/ScopHelper.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "isl/aff.h" #include "isl/aff_type.h" #include "isl/ast.h" #include "isl/ast_build.h" #include "isl/isl-noexceptions.h" #include "isl/map.h" #include "isl/set.h" #include "isl/union_map.h" #include "isl/union_set.h" #include "isl/val.h" #include #include #include #include #include #include #include using namespace llvm; using namespace polly; #define DEBUG_TYPE "polly-codegen" STATISTIC(VersionedScops, "Number of SCoPs that required versioning."); STATISTIC(SequentialLoops, "Number of generated sequential for-loops"); STATISTIC(ParallelLoops, "Number of generated parallel for-loops"); STATISTIC(VectorLoops, "Number of generated vector for-loops"); STATISTIC(IfConditions, "Number of generated if-conditions"); /// OpenMP backend options enum class OpenMPBackend { GNU, LLVM }; static cl::opt PollyGenerateRTCPrint( "polly-codegen-emit-rtc-print", cl::desc("Emit code that prints the runtime check result dynamically."), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); // If this option is set we always use the isl AST generator to regenerate // memory accesses. Without this option set we regenerate expressions using the // original SCEV expressions and only generate new expressions in case the // access relation has been changed and consequently must be regenerated. static cl::opt PollyGenerateExpressions( "polly-codegen-generate-expressions", cl::desc("Generate AST expressions for unmodified and modified accesses"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt PollyTargetFirstLevelCacheLineSize( "polly-target-first-level-cache-line-size", cl::desc("The size of the first level cache line size specified in bytes."), cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt PollyOmpBackend( "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"), cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"), clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")), cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory)); isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node For, ICmpInst::Predicate &Predicate) { isl::ast_expr Cond = For.for_get_cond(); isl::ast_expr Iterator = For.for_get_iterator(); assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op && "conditional expression is not an atomic upper bound"); isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get()); switch (OpType) { case isl_ast_op_le: Predicate = ICmpInst::ICMP_SLE; break; case isl_ast_op_lt: Predicate = ICmpInst::ICMP_SLT; break; default: llvm_unreachable("Unexpected comparison type in loop condition"); } isl::ast_expr Arg0 = Cond.get_op_arg(0); assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id && "conditional expression is not an atomic upper bound"); isl::id UBID = Arg0.get_id(); assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id && "Could not get the iterator"); isl::id IteratorID = Iterator.get_id(); assert(UBID.get() == IteratorID.get() && "conditional expression is not an atomic upper bound"); return Cond.get_op_arg(1); } /// Return true if a return value of Predicate is true for the value represented /// by passed isl_ast_expr_int. static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr, isl_bool (*Predicate)(__isl_keep isl_val *)) { if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) { isl_ast_expr_free(Expr); return false; } auto ExprVal = isl_ast_expr_get_val(Expr); isl_ast_expr_free(Expr); if (Predicate(ExprVal) != isl_bool_true) { isl_val_free(ExprVal); return false; } isl_val_free(ExprVal); return true; } int IslNodeBuilder::getNumberOfIterations(isl::ast_node For) { assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for); isl::ast_node Body = For.for_get_body(); // First, check if we can actually handle this code. switch (isl_ast_node_get_type(Body.get())) { case isl_ast_node_user: break; case isl_ast_node_block: { isl::ast_node_list List = Body.block_get_children(); for (isl::ast_node Node : List) { isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get()); if (NodeType != isl_ast_node_user) return -1; } break; } default: return -1; } isl::ast_expr Init = For.for_get_init(); if (!checkIslAstExprInt(Init.release(), isl_val_is_zero)) return -1; isl::ast_expr Inc = For.for_get_inc(); if (!checkIslAstExprInt(Inc.release(), isl_val_is_one)) return -1; CmpInst::Predicate Predicate; isl::ast_expr UB = getUpperBound(For, Predicate); if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int) return -1; isl::val UpVal = UB.get_val(); int NumberIterations = UpVal.get_num_si(); if (NumberIterations < 0) return -1; if (Predicate == CmpInst::ICMP_SLT) return NumberIterations; else return NumberIterations + 1; } /// Extract the values and SCEVs needed to generate code for a block. static int findReferencesInBlock(struct SubtreeReferences &References, const ScopStmt *Stmt, BasicBlock *BB) { for (Instruction &Inst : *BB) { // Include invariant loads if (isa(Inst)) if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst)) References.Values.insert(InvariantLoad); for (Value *SrcVal : Inst.operands()) { auto *Scope = References.LI.getLoopFor(BB); if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) { References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope)); continue; } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal)) References.Values.insert(NewVal); } } return 0; } void polly::addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr, bool CreateScalarRefs) { auto &References = *static_cast(UserPtr); if (Stmt->isBlockStmt()) findReferencesInBlock(References, Stmt, Stmt->getBasicBlock()); else if (Stmt->isRegionStmt()) { for (BasicBlock *BB : Stmt->getRegion()->blocks()) findReferencesInBlock(References, Stmt, BB); } else { assert(Stmt->isCopyStmt()); // Copy Stmts have no instructions that we need to consider. } for (auto &Access : *Stmt) { if (References.ParamSpace) { isl::space ParamSpace = Access->getLatestAccessRelation().get_space(); (*References.ParamSpace) = References.ParamSpace->align_params(ParamSpace); } if (Access->isLatestArrayKind()) { auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr(); if (Instruction *OpInst = dyn_cast(BasePtr)) if (Stmt->getParent()->contains(OpInst)) continue; References.Values.insert(BasePtr); continue; } if (CreateScalarRefs) References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access)); } } /// Extract the out-of-scop values and SCEVs referenced from a set describing /// a ScopStmt. /// /// This includes the SCEVUnknowns referenced by the SCEVs used in the /// statement and the base pointers of the memory accesses. For scalar /// statements we force the generation of alloca memory locations and list /// these locations in the set of out-of-scop values as well. /// /// @param Set A set which references the ScopStmt we are interested in. /// @param UserPtr A void pointer that can be casted to a SubtreeReferences /// structure. static void addReferencesFromStmtSet(isl::set Set, struct SubtreeReferences *UserPtr) { isl::id Id = Set.get_tuple_id(); auto *Stmt = static_cast(Id.get_user()); return addReferencesFromStmt(Stmt, UserPtr); } /// Extract the out-of-scop values and SCEVs referenced from a union set /// referencing multiple ScopStmts. /// /// This includes the SCEVUnknowns referenced by the SCEVs used in the /// statement and the base pointers of the memory accesses. For scalar /// statements we force the generation of alloca memory locations and list /// these locations in the set of out-of-scop values as well. /// /// @param USet A union set referencing the ScopStmts we are interested /// in. /// @param References The SubtreeReferences data structure through which /// results are returned and further information is /// provided. static void addReferencesFromStmtUnionSet(isl::union_set USet, struct SubtreeReferences &References) { for (isl::set Set : USet.get_set_list()) addReferencesFromStmtSet(Set, &References); } isl::union_map IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) { return IslAstInfo::getSchedule(Node); } void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For, SetVector &Values, SetVector &Loops) { SetVector SCEVs; struct SubtreeReferences References = { LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr}; for (const auto &I : IDToValue) Values.insert(I.second); // NOTE: this is populated in IslNodeBuilder::addParameters for (const auto &I : OutsideLoopIterations) Values.insert(cast(I.second)->getValue()); isl::union_set Schedule = getScheduleForAstNode(For).domain(); addReferencesFromStmtUnionSet(Schedule, References); for (const SCEV *Expr : SCEVs) { findValues(Expr, SE, Values); findLoops(Expr, Loops); } Values.remove_if([](const Value *V) { return isa(V); }); /// Note: Code generation of induction variables of loops outside Scops /// /// Remove loops that contain the scop or that are part of the scop, as they /// are considered local. This leaves only loops that are before the scop, but /// do not contain the scop itself. /// We ignore loops perfectly contained in the Scop because these are already /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops /// whose induction variables are referred to by the Scop, but the Scop is not /// fully contained in these Loops. Since there can be many of these, /// we choose to codegen these on-demand. /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable. Loops.remove_if([this](const Loop *L) { return S.contains(L) || L->contains(S.getEntry()); }); // Contains Values that may need to be replaced with other values // due to replacements from the ValueMap. We should make sure // that we return correctly remapped values. // NOTE: this code path is tested by: // 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll // 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll SetVector ReplacedValues; for (Value *V : Values) { ReplacedValues.insert(getLatestValue(V)); } Values = ReplacedValues; } void IslNodeBuilder::updateValues(ValueMapT &NewValues) { SmallPtrSet Inserted; for (const auto &I : IDToValue) { IDToValue[I.first] = NewValues[I.second]; Inserted.insert(I.second); } for (const auto &I : NewValues) { if (Inserted.count(I.first)) continue; ValueMap[I.first] = I.second; } } Value *IslNodeBuilder::getLatestValue(Value *Original) const { auto It = ValueMap.find(Original); if (It == ValueMap.end()) return Original; return It->second; } void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User, std::vector &IVS, __isl_take isl_id *IteratorID, __isl_take isl_union_map *Schedule) { isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); isl_id *Id = isl_ast_expr_get_id(StmtExpr); isl_ast_expr_free(StmtExpr); ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id); std::vector VLTS(IVS.size()); isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release()); Schedule = isl_union_map_intersect_domain(Schedule, Domain); isl_map *S = isl_map_from_union_map(Schedule); auto *NewAccesses = createNewAccesses(Stmt, User); createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID); VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses); isl_id_to_ast_expr_free(NewAccesses); isl_map_free(S); isl_id_free(Id); isl_ast_node_free(User); } void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) { auto *Id = isl_ast_node_mark_get_id(Node); auto Child = isl_ast_node_mark_get_node(Node); isl_ast_node_free(Node); // If a child node of a 'SIMD mark' is a loop that has a single iteration, // it will be optimized away and we should skip it. if (strcmp(isl_id_get_name(Id), "SIMD") == 0 && isl_ast_node_get_type(Child) == isl_ast_node_for) { bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; int VectorWidth = getNumberOfIterations(isl::manage_copy(Child)); if (Vector && 1 < VectorWidth && VectorWidth <= 16) createForVector(Child, VectorWidth); else createForSequential(isl::manage(Child), true); isl_id_free(Id); return; } if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) { auto *BasePtr = static_cast(isl_id_get_user(Id)); Annotator.addInterIterationAliasFreeBasePtr(BasePtr); } BandAttr *ChildLoopAttr = getLoopAttr(isl::manage_copy(Id)); BandAttr *AncestorLoopAttr; if (ChildLoopAttr) { // Save current LoopAttr environment to restore again when leaving this // subtree. This means there was no loop between the ancestor LoopAttr and // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This // can happen e.g. if the AST build peeled or unrolled the loop. AncestorLoopAttr = Annotator.getStagingAttrEnv(); Annotator.getStagingAttrEnv() = ChildLoopAttr; } create(Child); if (ChildLoopAttr) { assert(Annotator.getStagingAttrEnv() == ChildLoopAttr && "Nest must not overwrite loop attr environment"); Annotator.getStagingAttrEnv() = AncestorLoopAttr; } isl_id_free(Id); } void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For, int VectorWidth) { isl_ast_node *Body = isl_ast_node_for_get_body(For); isl_ast_expr *Init = isl_ast_node_for_get_init(For); isl_ast_expr *Inc = isl_ast_node_for_get_inc(For); isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For); isl_id *IteratorID = isl_ast_expr_get_id(Iterator); Value *ValueLB = ExprBuilder.create(Init); Value *ValueInc = ExprBuilder.create(Inc); Type *MaxType = ExprBuilder.getType(Iterator); MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); if (MaxType != ValueLB->getType()) ValueLB = Builder.CreateSExt(ValueLB, MaxType); if (MaxType != ValueInc->getType()) ValueInc = Builder.CreateSExt(ValueInc, MaxType); std::vector IVS(VectorWidth); IVS[0] = ValueLB; for (int i = 1; i < VectorWidth; i++) IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv"); isl::union_map Schedule = getScheduleForAstNode(isl::manage_copy(For)); assert(!Schedule.is_null() && "For statement annotation does not contain its schedule"); IDToValue[IteratorID] = ValueLB; switch (isl_ast_node_get_type(Body)) { case isl_ast_node_user: createUserVector(Body, IVS, isl_id_copy(IteratorID), Schedule.copy()); break; case isl_ast_node_block: { isl_ast_node_list *List = isl_ast_node_block_get_children(Body); for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS, isl_id_copy(IteratorID), Schedule.copy()); isl_ast_node_free(Body); isl_ast_node_list_free(List); break; } default: isl_ast_node_dump(Body); llvm_unreachable("Unhandled isl_ast_node in vectorizer"); } IDToValue.erase(IDToValue.find(IteratorID)); isl_id_free(IteratorID); isl_ast_node_free(For); isl_ast_expr_free(Iterator); VectorLoops++; } /// Restore the initial ordering of dimensions of the band node /// /// In case the band node represents all the dimensions of the iteration /// domain, recreate the band node to restore the initial ordering of the /// dimensions. /// /// @param Node The band node to be modified. /// @return The modified schedule node. static bool IsLoopVectorizerDisabled(isl::ast_node Node) { assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for); auto Body = Node.for_get_body(); if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark) return false; auto Id = Body.mark_get_id(); if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0) return true; return false; } void IslNodeBuilder::createForSequential(isl::ast_node For, bool MarkParallel) { Value *ValueLB, *ValueUB, *ValueInc; Type *MaxType; BasicBlock *ExitBlock; Value *IV; CmpInst::Predicate Predicate; bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For); isl::ast_node Body = For.for_get_body(); // isl_ast_node_for_is_degenerate(For) // // TODO: For degenerated loops we could generate a plain assignment. // However, for now we just reuse the logic for normal loops, which will // create a loop with a single iteration. isl::ast_expr Init = For.for_get_init(); isl::ast_expr Inc = For.for_get_inc(); isl::ast_expr Iterator = For.for_get_iterator(); isl::id IteratorID = Iterator.get_id(); isl::ast_expr UB = getUpperBound(For, Predicate); ValueLB = ExprBuilder.create(Init.release()); ValueUB = ExprBuilder.create(UB.release()); ValueInc = ExprBuilder.create(Inc.release()); MaxType = ExprBuilder.getType(Iterator.get()); MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); if (MaxType != ValueLB->getType()) ValueLB = Builder.CreateSExt(ValueLB, MaxType); if (MaxType != ValueUB->getType()) ValueUB = Builder.CreateSExt(ValueUB, MaxType); if (MaxType != ValueInc->getType()) ValueInc = Builder.CreateSExt(ValueInc, MaxType); // If we can show that LB UB holds at least once, we can // omit the GuardBB in front of the loop. bool UseGuardBB = !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB)); IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock, Predicate, &Annotator, MarkParallel, UseGuardBB, LoopVectorizerDisabled); IDToValue[IteratorID.get()] = IV; create(Body.release()); Annotator.popLoop(MarkParallel); IDToValue.erase(IDToValue.find(IteratorID.get())); Builder.SetInsertPoint(&ExitBlock->front()); SequentialLoops++; } /// Remove the BBs contained in a (sub)function from the dominator tree. /// /// This function removes the basic blocks that are part of a subfunction from /// the dominator tree. Specifically, when generating code it may happen that at /// some point the code generation continues in a new sub-function (e.g., when /// generating OpenMP code). The basic blocks that are created in this /// sub-function are then still part of the dominator tree of the original /// function, such that the dominator tree reaches over function boundaries. /// This is not only incorrect, but also causes crashes. This function now /// removes from the dominator tree all basic blocks that are dominated (and /// consequently reachable) from the entry block of this (sub)function. /// /// FIXME: A LLVM (function or region) pass should not touch anything outside of /// the function/region it runs on. Hence, the pure need for this function shows /// that we do not comply to this rule. At the moment, this does not cause any /// issues, but we should be aware that such issues may appear. Unfortunately /// the current LLVM pass infrastructure does not allow to make Polly a module /// or call-graph pass to solve this issue, as such a pass would not have access /// to the per-function analyses passes needed by Polly. A future pass manager /// infrastructure is supposed to enable such kind of access possibly allowing /// us to create a cleaner solution here. /// /// FIXME: Instead of adding the dominance information and then dropping it /// later on, we should try to just not add it in the first place. This requires /// some careful testing to make sure this does not break in interaction with /// the SCEVBuilder and SplitBlock which may rely on the dominator tree or /// which may try to update it. /// /// @param F The function which contains the BBs to removed. /// @param DT The dominator tree from which to remove the BBs. static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) { DomTreeNode *N = DT.getNode(&F->getEntryBlock()); std::vector Nodes; // We can only remove an element from the dominator tree, if all its children // have been removed. To ensure this we obtain the list of nodes to remove // using a post-order tree traversal. for (po_iterator I = po_begin(N), E = po_end(N); I != E; ++I) Nodes.push_back(I->getBlock()); for (BasicBlock *BB : Nodes) DT.eraseNode(BB); } void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) { isl_ast_node *Body; isl_ast_expr *Init, *Inc, *Iterator, *UB; isl_id *IteratorID; Value *ValueLB, *ValueUB, *ValueInc; Type *MaxType; Value *IV; CmpInst::Predicate Predicate; // The preamble of parallel code interacts different than normal code with // e.g., scalar initialization. Therefore, we ensure the parallel code is // separated from the last basic block. BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); ParBB->setName("polly.parallel.for"); Builder.SetInsertPoint(&ParBB->front()); Body = isl_ast_node_for_get_body(For); Init = isl_ast_node_for_get_init(For); Inc = isl_ast_node_for_get_inc(For); Iterator = isl_ast_node_for_get_iterator(For); IteratorID = isl_ast_expr_get_id(Iterator); UB = getUpperBound(isl::manage_copy(For), Predicate).release(); ValueLB = ExprBuilder.create(Init); ValueUB = ExprBuilder.create(UB); ValueInc = ExprBuilder.create(Inc); // OpenMP always uses SLE. In case the isl generated AST uses a SLT // expression, we need to adjust the loop bound by one. if (Predicate == CmpInst::ICMP_SLT) ValueUB = Builder.CreateAdd( ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType())); MaxType = ExprBuilder.getType(Iterator); MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType()); MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType()); MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType()); if (MaxType != ValueLB->getType()) ValueLB = Builder.CreateSExt(ValueLB, MaxType); if (MaxType != ValueUB->getType()) ValueUB = Builder.CreateSExt(ValueUB, MaxType); if (MaxType != ValueInc->getType()) ValueInc = Builder.CreateSExt(ValueInc, MaxType); BasicBlock::iterator LoopBody; SetVector SubtreeValues; SetVector Loops; getReferencesInSubtree(isl::manage_copy(For), SubtreeValues, Loops); // Create for all loops we depend on values that contain the current loop // iteration. These values are necessary to generate code for SCEVs that // depend on such loops. As a result we need to pass them to the subfunction. // See [Code generation of induction variables of loops outside Scops] for (const Loop *L : Loops) { Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L); SubtreeValues.insert(LoopInductionVar); } ValueMapT NewValues; std::unique_ptr ParallelLoopGenPtr; switch (PollyOmpBackend) { case OpenMPBackend::GNU: ParallelLoopGenPtr.reset( new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL)); break; case OpenMPBackend::LLVM: ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL)); break; } IV = ParallelLoopGenPtr->createParallelLoop( ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody); BasicBlock::iterator AfterLoop = Builder.GetInsertPoint(); Builder.SetInsertPoint(&*LoopBody); // Remember the parallel subfunction ParallelSubfunctions.push_back(LoopBody->getFunction()); // Save the current values. auto ValueMapCopy = ValueMap; IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue; updateValues(NewValues); IDToValue[IteratorID] = IV; ValueMapT NewValuesReverse; for (auto P : NewValues) NewValuesReverse[P.second] = P.first; Annotator.addAlternativeAliasBases(NewValuesReverse); create(Body); Annotator.resetAlternativeAliasBases(); // Restore the original values. ValueMap = ValueMapCopy; IDToValue = IDToValueCopy; Builder.SetInsertPoint(&*AfterLoop); removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT); for (const Loop *L : Loops) OutsideLoopIterations.erase(L); isl_ast_node_free(For); isl_ast_expr_free(Iterator); isl_id_free(IteratorID); ParallelLoops++; } /// Return whether any of @p Node's statements contain partial accesses. /// /// Partial accesses are not supported by Polly's vector code generator. static bool hasPartialAccesses(__isl_take isl_ast_node *Node) { return isl_ast_node_foreach_descendant_top_down( Node, [](isl_ast_node *Node, void *User) -> isl_bool { if (isl_ast_node_get_type(Node) != isl_ast_node_user) return isl_bool_true; isl::ast_expr Expr = isl::manage(isl_ast_node_user_get_expr(Node)); isl::ast_expr StmtExpr = Expr.get_op_arg(0); isl::id Id = StmtExpr.get_id(); ScopStmt *Stmt = static_cast(isl_id_get_user(Id.get())); isl::set StmtDom = Stmt->getDomain(); for (auto *MA : *Stmt) { if (MA->isLatestPartialAccess()) return isl_bool_error; } return isl_bool_true; }, nullptr) == isl_stat_error; } void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) { bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY; if (Vector && IslAstInfo::isInnermostParallel(isl::manage_copy(For)) && !IslAstInfo::isReductionParallel(isl::manage_copy(For))) { int VectorWidth = getNumberOfIterations(isl::manage_copy(For)); if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) { createForVector(For, VectorWidth); return; } } if (IslAstInfo::isExecutedInParallel(isl::manage_copy(For))) { createForParallel(For); return; } bool Parallel = (IslAstInfo::isParallel(isl::manage_copy(For)) && !IslAstInfo::isReductionParallel(isl::manage_copy(For))); createForSequential(isl::manage(For), Parallel); } void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) { isl_ast_expr *Cond = isl_ast_node_if_get_cond(If); Function *F = Builder.GetInsertBlock()->getParent(); LLVMContext &Context = F->getContext(); BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); CondBB->setName("polly.cond"); BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); MergeBB->setName("polly.merge"); BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F); DT.addNewBlock(ThenBB, CondBB); DT.addNewBlock(ElseBB, CondBB); DT.changeImmediateDominator(MergeBB, CondBB); Loop *L = LI.getLoopFor(CondBB); if (L) { L->addBasicBlockToLoop(ThenBB, LI); L->addBasicBlockToLoop(ElseBB, LI); } CondBB->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(CondBB); Value *Predicate = ExprBuilder.create(Cond); Builder.CreateCondBr(Predicate, ThenBB, ElseBB); Builder.SetInsertPoint(ThenBB); Builder.CreateBr(MergeBB); Builder.SetInsertPoint(ElseBB); Builder.CreateBr(MergeBB); Builder.SetInsertPoint(&ThenBB->front()); create(isl_ast_node_if_get_then(If)); Builder.SetInsertPoint(&ElseBB->front()); if (isl_ast_node_if_has_else(If)) create(isl_ast_node_if_get_else(If)); Builder.SetInsertPoint(&MergeBB->front()); isl_ast_node_free(If); IfConditions++; } __isl_give isl_id_to_ast_expr * IslNodeBuilder::createNewAccesses(ScopStmt *Stmt, __isl_keep isl_ast_node *Node) { isl::id_to_ast_expr NewAccesses = isl::id_to_ast_expr::alloc(Stmt->getParent()->getIslCtx(), 0); isl::ast_build Build = IslAstInfo::getBuild(isl::manage_copy(Node)); assert(!Build.is_null() && "Could not obtain isl_ast_build from user node"); Stmt->setAstBuild(Build); for (auto *MA : *Stmt) { if (!MA->hasNewAccessRelation()) { if (PollyGenerateExpressions) { if (!MA->isAffine()) continue; if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI()) continue; auto *BasePtr = dyn_cast(MA->getLatestScopArrayInfo()->getBasePtr()); if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr)) continue; } else { continue; } } assert(MA->isAffine() && "Only affine memory accesses can be code generated"); isl::union_map Schedule = Build.get_schedule(); #ifndef NDEBUG if (MA->isRead()) { auto Dom = Stmt->getDomain().release(); auto SchedDom = isl_set_from_union_set(Schedule.domain().release()); auto AccDom = isl_map_domain(MA->getAccessRelation().release()); Dom = isl_set_intersect_params(Dom, Stmt->getParent()->getContext().release()); SchedDom = isl_set_intersect_params( SchedDom, Stmt->getParent()->getContext().release()); assert(isl_set_is_subset(SchedDom, AccDom) && "Access relation not defined on full schedule domain"); assert(isl_set_is_subset(Dom, AccDom) && "Access relation not defined on full domain"); isl_set_free(AccDom); isl_set_free(SchedDom); isl_set_free(Dom); } #endif isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule); // isl cannot generate an index expression for access-nothing accesses. isl::set AccDomain = PWAccRel.domain(); isl::set Context = S.getContext(); AccDomain = AccDomain.intersect_params(Context); if (AccDomain.is_empty()) continue; isl::ast_expr AccessExpr = Build.access_from(PWAccRel); NewAccesses = NewAccesses.set(MA->getId(), AccessExpr); } return NewAccesses.release(); } void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr, ScopStmt *Stmt, LoopToScevMapT <S) { assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op && "Expression of type 'op' expected"); assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call && "Operation of type 'call' expected"); for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) { isl_ast_expr *SubExpr; Value *V; SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1); V = ExprBuilder.create(SubExpr); ScalarEvolution *SE = Stmt->getParent()->getSE(); LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V); } isl_ast_expr_free(Expr); } void IslNodeBuilder::createSubstitutionsVector( __isl_take isl_ast_expr *Expr, ScopStmt *Stmt, std::vector &VLTS, std::vector &IVS, __isl_take isl_id *IteratorID) { int i = 0; Value *OldValue = IDToValue[IteratorID]; for (Value *IV : IVS) { IDToValue[IteratorID] = IV; createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]); i++; } IDToValue[IteratorID] = OldValue; isl_id_free(IteratorID); isl_ast_expr_free(Expr); } void IslNodeBuilder::generateCopyStmt( ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) { assert(Stmt->size() == 2); auto ReadAccess = Stmt->begin(); auto WriteAccess = ReadAccess++; assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite()); assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() && "Accesses use the same data type"); assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind()); auto *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release()); auto *LoadValue = ExprBuilder.create(AccessExpr); AccessExpr = isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release()); auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr).first; Builder.CreateStore(LoadValue, StoreAddr); } Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) { assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() && "trying to materialize loop induction variable twice"); const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)), SE.getUnknown(Builder.getInt64(1)), L, SCEV::FlagAnyWrap); Value *V = generateSCEV(OuterLIV); OutsideLoopIterations[L] = SE.getUnknown(V); return V; } void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) { LoopToScevMapT LTS; isl_id *Id; ScopStmt *Stmt; isl_ast_expr *Expr = isl_ast_node_user_get_expr(User); isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0); Id = isl_ast_expr_get_id(StmtExpr); isl_ast_expr_free(StmtExpr); LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end()); Stmt = (ScopStmt *)isl_id_get_user(Id); auto *NewAccesses = createNewAccesses(Stmt, User); if (Stmt->isCopyStmt()) { generateCopyStmt(Stmt, NewAccesses); isl_ast_expr_free(Expr); } else { createSubstitutions(Expr, Stmt, LTS); if (Stmt->isBlockStmt()) BlockGen.copyStmt(*Stmt, LTS, NewAccesses); else RegionGen.copyStmt(*Stmt, LTS, NewAccesses); } isl_id_to_ast_expr_free(NewAccesses); isl_ast_node_free(User); isl_id_free(Id); } void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) { isl_ast_node_list *List = isl_ast_node_block_get_children(Block); for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i) create(isl_ast_node_list_get_ast_node(List, i)); isl_ast_node_free(Block); isl_ast_node_list_free(List); } void IslNodeBuilder::create(__isl_take isl_ast_node *Node) { switch (isl_ast_node_get_type(Node)) { case isl_ast_node_error: llvm_unreachable("code generation error"); case isl_ast_node_mark: createMark(Node); return; case isl_ast_node_for: createFor(Node); return; case isl_ast_node_if: createIf(Node); return; case isl_ast_node_user: createUser(Node); return; case isl_ast_node_block: createBlock(Node); return; } llvm_unreachable("Unknown isl_ast_node type"); } bool IslNodeBuilder::materializeValue(isl_id *Id) { // If the Id is already mapped, skip it. if (!IDToValue.count(Id)) { auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id); Value *V = nullptr; // Parameters could refer to invariant loads that need to be // preloaded before we can generate code for the parameter. Thus, // check if any value referred to in ParamSCEV is an invariant load // and if so make sure its equivalence class is preloaded. SetVector Values; findValues(ParamSCEV, SE, Values); for (auto *Val : Values) { // Check if the value is an instruction in a dead block within the SCoP // and if so do not code generate it. if (auto *Inst = dyn_cast(Val)) { if (S.contains(Inst)) { bool IsDead = true; // Check for "undef" loads first, then if there is a statement for // the parent of Inst and lastly if the parent of Inst has an empty // domain. In the first and last case the instruction is dead but if // there is a statement or the domain is not empty Inst is not dead. auto MemInst = MemAccInst::dyn_cast(Inst); auto Address = MemInst ? MemInst.getPointerOperand() : nullptr; if (Address && SE.getUnknown(UndefValue::get(Address->getType())) == SE.getPointerBase(SE.getSCEV(Address))) { } else if (S.getStmtFor(Inst)) { IsDead = false; } else { auto *Domain = S.getDomainConditions(Inst->getParent()).release(); IsDead = isl_set_is_empty(Domain); isl_set_free(Domain); } if (IsDead) { V = UndefValue::get(ParamSCEV->getType()); break; } } } if (auto *IAClass = S.lookupInvariantEquivClass(Val)) { // Check if this invariant access class is empty, hence if we never // actually added a loads instruction to it. In that case it has no // (meaningful) users and we should not try to code generate it. if (IAClass->InvariantAccesses.empty()) V = UndefValue::get(ParamSCEV->getType()); if (!preloadInvariantEquivClass(*IAClass)) { isl_id_free(Id); return false; } } } V = V ? V : generateSCEV(ParamSCEV); IDToValue[Id] = V; } isl_id_free(Id); return true; } bool IslNodeBuilder::materializeParameters(isl_set *Set) { for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) { if (!isl_set_involves_dims(Set, isl_dim_param, i, 1)) continue; isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i); if (!materializeValue(Id)) return false; } return true; } bool IslNodeBuilder::materializeParameters() { for (const SCEV *Param : S.parameters()) { isl_id *Id = S.getIdForParam(Param).release(); if (!materializeValue(Id)) return false; } return true; } /// Generate the computation of the size of the outermost dimension from the /// Fortran array descriptor (in this case, `@g_arr`). The final `%size` /// contains the size of the array. /// /// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] } /// %desc.dimensionty = type { i64, i64, i64 } /// @g_arr = global %arrty zeroinitializer, align 32 /// ... /// %0 = load i64, i64* getelementptr inbounds /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2) /// %1 = load i64, i64* getelementptr inbounds /// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1) /// %2 = sub nsw i64 %0, %1 /// %size = add nsw i64 %2, 1 static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor, PollyIRBuilder &Builder, std::string ArrayName) { assert(GlobalDescriptor && "invalid global descriptor given"); Type *Ty = GlobalDescriptor->getType()->getPointerElementType(); Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), Builder.getInt64(0), Builder.getInt32(2)}; Value *endPtr = Builder.CreateInBoundsGEP(Ty, GlobalDescriptor, endIdx, ArrayName + "_end_ptr"); Type *type = cast(endPtr)->getResultElementType(); assert(isa(type) && "expected type of end to be integral"); Value *end = Builder.CreateLoad(type, endPtr, ArrayName + "_end"); Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3), Builder.getInt64(0), Builder.getInt32(1)}; Value *beginPtr = Builder.CreateInBoundsGEP(Ty, GlobalDescriptor, beginIdx, ArrayName + "_begin_ptr"); Value *begin = Builder.CreateLoad(type, beginPtr, ArrayName + "_begin"); Value *size = Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta"); size = Builder.CreateNSWAdd( end, ConstantInt::get(type, 1, /* signed = */ true), ArrayName + "_size"); return size; } bool IslNodeBuilder::materializeFortranArrayOutermostDimension() { for (ScopArrayInfo *Array : S.arrays()) { if (Array->getNumberOfDimensions() == 0) continue; Value *FAD = Array->getFortranArrayDescriptor(); if (!FAD) continue; isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release(); assert(ParametricPwAff && "parametric pw_aff corresponding " "to outermost dimension does not " "exist"); isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0); isl_pw_aff_free(ParametricPwAff); assert(Id && "pw_aff is not parametric"); if (IDToValue.count(Id)) { isl_id_free(Id); continue; } Value *FinalValue = buildFADOutermostDimensionLoad(FAD, Builder, Array->getName()); assert(FinalValue && "unable to build Fortran array " "descriptor load of outermost dimension"); IDToValue[Id] = FinalValue; isl_id_free(Id); } return true; } Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange, isl_ast_build *Build, Instruction *AccInst) { isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange); isl_ast_expr *Access = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel); auto *Address = isl_ast_expr_address_of(Access); auto *AddressValue = ExprBuilder.create(Address); Value *PreloadVal; // Correct the type as the SAI might have a different type than the user // expects, especially if the base pointer is a struct. Type *Ty = AccInst->getType(); auto *Ptr = AddressValue; auto Name = Ptr->getName(); auto AS = Ptr->getType()->getPointerAddressSpace(); Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast"); PreloadVal = Builder.CreateLoad(Ty, Ptr, Name + ".load"); if (LoadInst *PreloadInst = dyn_cast(PreloadVal)) PreloadInst->setAlignment(cast(AccInst)->getAlign()); // TODO: This is only a hot fix for SCoP sequences that use the same load // instruction contained and hoisted by one of the SCoPs. if (SE.isSCEVable(Ty)) SE.forgetValue(AccInst); return PreloadVal; } Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA, isl_set *Domain) { isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release()); AccessRange = isl_set_gist_params(AccessRange, S.getContext().release()); if (!materializeParameters(AccessRange)) { isl_set_free(AccessRange); isl_set_free(Domain); return nullptr; } auto *Build = isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release())); isl_set *Universe = isl_set_universe(isl_set_get_space(Domain)); bool AlwaysExecuted = isl_set_is_equal(Domain, Universe); isl_set_free(Universe); Instruction *AccInst = MA.getAccessInstruction(); Type *AccInstTy = AccInst->getType(); Value *PreloadVal = nullptr; if (AlwaysExecuted) { PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst); isl_ast_build_free(Build); isl_set_free(Domain); return PreloadVal; } if (!materializeParameters(Domain)) { isl_ast_build_free(Build); isl_set_free(AccessRange); isl_set_free(Domain); return nullptr; } isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain); Domain = nullptr; ExprBuilder.setTrackOverflow(true); Value *Cond = ExprBuilder.create(DomainCond); Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.preload.cond.overflown"); Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result"); ExprBuilder.setTrackOverflow(false); if (!Cond->getType()->isIntegerTy(1)) Cond = Builder.CreateIsNotNull(Cond); BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); CondBB->setName("polly.preload.cond"); BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI); MergeBB->setName("polly.preload.merge"); Function *F = Builder.GetInsertBlock()->getParent(); LLVMContext &Context = F->getContext(); BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F); DT.addNewBlock(ExecBB, CondBB); if (Loop *L = LI.getLoopFor(CondBB)) L->addBasicBlockToLoop(ExecBB, LI); auto *CondBBTerminator = CondBB->getTerminator(); Builder.SetInsertPoint(CondBBTerminator); Builder.CreateCondBr(Cond, ExecBB, MergeBB); CondBBTerminator->eraseFromParent(); Builder.SetInsertPoint(ExecBB); Builder.CreateBr(MergeBB); Builder.SetInsertPoint(ExecBB->getTerminator()); Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst); Builder.SetInsertPoint(MergeBB->getTerminator()); auto *MergePHI = Builder.CreatePHI( AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge"); PreloadVal = MergePHI; if (!PreAccInst) { PreloadVal = nullptr; PreAccInst = UndefValue::get(AccInstTy); } MergePHI->addIncoming(PreAccInst, ExecBB); MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB); isl_ast_build_free(Build); return PreloadVal; } bool IslNodeBuilder::preloadInvariantEquivClass( InvariantEquivClassTy &IAClass) { // For an equivalence class of invariant loads we pre-load the representing // element with the unified execution context. However, we have to map all // elements of the class to the one preloaded load as they are referenced // during the code generation and therefor need to be mapped. const MemoryAccessList &MAs = IAClass.InvariantAccesses; if (MAs.empty()) return true; MemoryAccess *MA = MAs.front(); assert(MA->isArrayKind() && MA->isRead()); // If the access function was already mapped, the preload of this equivalence // class was triggered earlier already and doesn't need to be done again. if (ValueMap.count(MA->getAccessInstruction())) return true; // Check for recursion which can be caused by additional constraints, e.g., // non-finite loop constraints. In such a case we have to bail out and insert // a "false" runtime check that will cause the original code to be executed. auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType); if (!PreloadedPtrs.insert(PtrId).second) return false; // The execution context of the IAClass. isl::set &ExecutionCtx = IAClass.ExecutionContext; // If the base pointer of this class is dependent on another one we have to // make sure it was preloaded already. auto *SAI = MA->getScopArrayInfo(); if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) { if (!preloadInvariantEquivClass(*BaseIAClass)) return false; // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and // we need to refine the ExecutionCtx. isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); } // If the size of a dimension is dependent on another class, make sure it is // preloaded. for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) { const SCEV *Dim = SAI->getDimensionSize(i); SetVector Values; findValues(Dim, SE, Values); for (auto *Val : Values) { if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) { if (!preloadInvariantEquivClass(*BaseIAClass)) return false; // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx // and we need to refine the ExecutionCtx. isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext; ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx); } } } Instruction *AccInst = MA->getAccessInstruction(); Type *AccInstTy = AccInst->getType(); Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy()); if (!PreloadVal) return false; for (const MemoryAccess *MA : MAs) { Instruction *MAAccInst = MA->getAccessInstruction(); assert(PreloadVal->getType() == MAAccInst->getType()); ValueMap[MAAccInst] = PreloadVal; } if (SE.isSCEVable(AccInstTy)) { isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release(); if (ParamId) IDToValue[ParamId] = PreloadVal; isl_id_free(ParamId); } BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock(); auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(), AccInst->getName() + ".preload.s2a", &*EntryBB->getFirstInsertionPt()); Builder.CreateStore(PreloadVal, Alloca); ValueMapT PreloadedPointer; PreloadedPointer[PreloadVal] = AccInst; Annotator.addAlternativeAliasBases(PreloadedPointer); for (auto *DerivedSAI : SAI->getDerivedSAIs()) { Value *BasePtr = DerivedSAI->getBasePtr(); for (const MemoryAccess *MA : MAs) { // As the derived SAI information is quite coarse, any load from the // current SAI could be the base pointer of the derived SAI, however we // should only change the base pointer of the derived SAI if we actually // preloaded it. if (BasePtr == MA->getOriginalBaseAddr()) { assert(BasePtr->getType() == PreloadVal->getType()); DerivedSAI->setBasePtr(PreloadVal); } // For scalar derived SAIs we remap the alloca used for the derived value. if (BasePtr == MA->getAccessInstruction()) ScalarMap[DerivedSAI] = Alloca; } } for (const MemoryAccess *MA : MAs) { Instruction *MAAccInst = MA->getAccessInstruction(); // Use the escape system to get the correct value to users outside the SCoP. BlockGenerator::EscapeUserVectorTy EscapeUsers; for (auto *U : MAAccInst->users()) if (Instruction *UI = dyn_cast(U)) if (!S.contains(UI)) EscapeUsers.push_back(UI); if (EscapeUsers.empty()) continue; EscapeMap[MA->getAccessInstruction()] = std::make_pair(Alloca, std::move(EscapeUsers)); } return true; } void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) { for (auto &SAI : S.arrays()) { if (SAI->getBasePtr()) continue; assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) && "The size of the outermost dimension is used to declare newly " "created arrays that require memory allocation."); Type *NewArrayType = nullptr; // Get the size of the array = size(dim_1)*...*size(dim_n) uint64_t ArraySizeInt = 1; for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) { auto *DimSize = SAI->getDimensionSize(i); unsigned UnsignedDimSize = static_cast(DimSize) ->getAPInt() .getLimitedValue(); if (!NewArrayType) NewArrayType = SAI->getElementType(); NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize); ArraySizeInt *= UnsignedDimSize; } if (SAI->isOnHeap()) { LLVMContext &Ctx = NewArrayType->getContext(); // Get the IntPtrTy from the Datalayout auto IntPtrTy = DL.getIntPtrType(Ctx); // Get the size of the element type in bits unsigned Size = SAI->getElemSizeInBytes(); // Insert the malloc call at polly.start auto InstIt = std::get<0>(StartExitBlocks)->getTerminator(); auto *CreatedArray = CallInst::CreateMalloc( &*InstIt, IntPtrTy, SAI->getElementType(), ConstantInt::get(Type::getInt64Ty(Ctx), Size), ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr, SAI->getName()); SAI->setBasePtr(CreatedArray); // Insert the free call at polly.exiting CallInst::CreateFree(CreatedArray, std::get<1>(StartExitBlocks)->getTerminator()); } else { auto InstIt = Builder.GetInsertBlock() ->getParent() ->getEntryBlock() .getTerminator(); auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(), SAI->getName(), &*InstIt); if (PollyTargetFirstLevelCacheLineSize) CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize)); SAI->setBasePtr(CreatedArray); } } } bool IslNodeBuilder::preloadInvariantLoads() { auto &InvariantEquivClasses = S.getInvariantAccesses(); if (InvariantEquivClasses.empty()) return true; BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), &DT, &LI); PreLoadBB->setName("polly.preload.begin"); Builder.SetInsertPoint(&PreLoadBB->front()); for (auto &IAClass : InvariantEquivClasses) if (!preloadInvariantEquivClass(IAClass)) return false; return true; } void IslNodeBuilder::addParameters(__isl_take isl_set *Context) { // Materialize values for the parameters of the SCoP. materializeParameters(); // materialize the outermost dimension parameters for a Fortran array. // NOTE: materializeParameters() does not work since it looks through // the SCEVs. We don't have a corresponding SCEV for the array size // parameter materializeFortranArrayOutermostDimension(); // Generate values for the current loop iteration for all surrounding loops. // // We may also reference loops outside of the scop which do not contain the // scop itself, but as the number of such scops may be arbitrarily large we do // not generate code for them here, but only at the point of code generation // where these values are needed. Loop *L = LI.getLoopFor(S.getEntry()); while (L != nullptr && S.contains(L)) L = L->getParentLoop(); while (L != nullptr) { materializeNonScopLoopInductionVariable(L); L = L->getParentLoop(); } isl_set_free(Context); } Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) { /// We pass the insert location of our Builder, as Polly ensures during IR /// generation that there is always a valid CFG into which instructions are /// inserted. As a result, the insertpoint is known to be always followed by a /// terminator instruction. This means the insert point may be specified by a /// terminator instruction, but it can never point to an ->end() iterator /// which does not have a corresponding instruction. Hence, dereferencing /// the insertpoint to obtain an instruction is known to be save. /// /// We also do not need to update the Builder here, as new instructions are /// always inserted _before_ the given InsertLocation. As a result, the /// insert location remains valid. assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() && "Insert location points after last valid instruction"); Instruction *InsertLocation = &*Builder.GetInsertPoint(); return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(), InsertLocation, &ValueMap, StartBlock->getSinglePredecessor()); } /// The AST expression we generate to perform the run-time check assumes /// computations on integer types of infinite size. As we only use 64-bit /// arithmetic we check for overflows, in case of which we set the result /// of this run-time check to false to be conservatively correct, Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) { auto ExprBuilder = getExprBuilder(); // In case the AST expression has integers larger than 64 bit, bail out. The // resulting LLVM-IR will contain operations on types that use more than 64 // bits. These are -- in case wrapping intrinsics are used -- translated to // runtime library calls that are not available on all systems (e.g., Android) // and consequently will result in linker errors. if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) { isl_ast_expr_free(Condition); return Builder.getFalse(); } ExprBuilder.setTrackOverflow(true); Value *RTC = ExprBuilder.create(Condition); if (!RTC->getType()->isIntegerTy(1)) RTC = Builder.CreateIsNotNull(RTC); Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown"); if (PollyGenerateRTCPrint) { auto *F = Builder.GetInsertBlock()->getParent(); RuntimeDebugBuilder::createCPUPrinter( Builder, "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() + "RTC: ", RTC, " Overflow: ", OverflowHappened, "\n" " (0 failed, -1 succeeded)\n" " (if one or both are 0 falling back to original code, if both are -1 " "executing Polly code)\n"); } RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result"); ExprBuilder.setTrackOverflow(false); if (!isa(RTC)) VersionedScops++; return RTC; }