//=- X86ScheduleZnver2.td - X86 Znver2 Scheduling -------------*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the machine model for Znver2 to support instruction // scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// def Znver2Model : SchedMachineModel { // Zen can decode 4 instructions per cycle. let IssueWidth = 4; // Based on the reorder buffer we define MicroOpBufferSize let MicroOpBufferSize = 224; let LoadLatency = 4; let MispredictPenalty = 17; let HighLatency = 25; let PostRAScheduler = 1; // FIXME: This variable is required for incomplete model. // We haven't catered all instructions. // So, we reset the value of this variable so as to // say that the model is incomplete. let CompleteModel = 0; } let SchedModel = Znver2Model in { // Zen can issue micro-ops to 10 different units in one cycle. // These are // * Four integer ALU units (ZALU0, ZALU1, ZALU2, ZALU3) // * Three AGU units (ZAGU0, ZAGU1, ZAGU2) // * Four FPU units (ZFPU0, ZFPU1, ZFPU2, ZFPU3) // AGUs feed load store queues @two loads and 1 store per cycle. // Four ALU units are defined below def Zn2ALU0 : ProcResource<1>; def Zn2ALU1 : ProcResource<1>; def Zn2ALU2 : ProcResource<1>; def Zn2ALU3 : ProcResource<1>; // Three AGU units are defined below def Zn2AGU0 : ProcResource<1>; def Zn2AGU1 : ProcResource<1>; def Zn2AGU2 : ProcResource<1>; // Four FPU units are defined below def Zn2FPU0 : ProcResource<1>; def Zn2FPU1 : ProcResource<1>; def Zn2FPU2 : ProcResource<1>; def Zn2FPU3 : ProcResource<1>; // FPU grouping def Zn2FPU013 : ProcResGroup<[Zn2FPU0, Zn2FPU1, Zn2FPU3]>; def Zn2FPU01 : ProcResGroup<[Zn2FPU0, Zn2FPU1]>; def Zn2FPU12 : ProcResGroup<[Zn2FPU1, Zn2FPU2]>; def Zn2FPU13 : ProcResGroup<[Zn2FPU1, Zn2FPU3]>; def Zn2FPU23 : ProcResGroup<[Zn2FPU2, Zn2FPU3]>; def Zn2FPU02 : ProcResGroup<[Zn2FPU0, Zn2FPU2]>; def Zn2FPU03 : ProcResGroup<[Zn2FPU0, Zn2FPU3]>; // Below are the grouping of the units. // Micro-ops to be issued to multiple units are tackled this way. // ALU grouping // Zn2ALU03 - 0,3 grouping def Zn2ALU03: ProcResGroup<[Zn2ALU0, Zn2ALU3]>; // 64 Entry (16x4 entries) Int Scheduler def Zn2ALU : ProcResGroup<[Zn2ALU0, Zn2ALU1, Zn2ALU2, Zn2ALU3]> { let BufferSize=64; } // 28 Entry (14x2) AGU group. AGUs can't be used for all ALU operations // but are relevant for some instructions def Zn2AGU : ProcResGroup<[Zn2AGU0, Zn2AGU1, Zn2AGU2]> { let BufferSize=28; } // Integer Multiplication issued on ALU1. def Zn2Multiplier : ProcResource<1>; // Integer division issued on ALU2. def Zn2Divider : ProcResource<1>; // 4 Cycles load-to use Latency is captured def : ReadAdvance; // 7 Cycles vector load-to use Latency is captured def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; // The Integer PRF for Zen is 168 entries, and it holds the architectural and // speculative version of the 64-bit integer registers. // Reference: "Software Optimization Guide for AMD Family 17h Processors" def Zn2IntegerPRF : RegisterFile<168, [GR64, CCR]>; // 36 Entry (9x4 entries) floating-point Scheduler def Zn2FPU : ProcResGroup<[Zn2FPU0, Zn2FPU1, Zn2FPU2, Zn2FPU3]> { let BufferSize=36; } // The Zen FP Retire Queue renames SIMD and FP uOps onto a pool of 160 128-bit // registers. Operations on 256-bit data types are cracked into two COPs. // Reference: "Software Optimization Guide for AMD Family 17h Processors" def Zn2FpuPRF: RegisterFile<160, [VR64, VR128, VR256], [1, 1, 2]>; // The unit can track up to 192 macro ops in-flight. // The retire unit handles in-order commit of up to 8 macro ops per cycle. // Reference: "Software Optimization Guide for AMD Family 17h Processors" // To be noted, the retire unit is shared between integer and FP ops. // In SMT mode it is 96 entry per thread. But, we do not use the conservative // value here because there is currently no way to fully mode the SMT mode, // so there is no point in trying. def Zn2RCU : RetireControlUnit<192, 8>; // (a folded load is an instruction that loads and does some operation) // Ex: ADDPD xmm,[mem]-> This instruction has two micro-ops // Instructions with folded loads are usually micro-fused, so they only appear // as two micro-ops. // a. load and // b. addpd // This multiclass is for folded loads for integer units. multiclass Zn2WriteResPair ExePorts, int Lat, list Res = [], int UOps = 1, int LoadLat = 4, int LoadUOps = 1> { // Register variant takes 1-cycle on Execution Port. def : WriteRes { let Latency = Lat; let ResourceCycles = Res; let NumMicroOps = UOps; } // Memory variant also uses a cycle on Zn2AGU // adds LoadLat cycles to the latency (default = 4). def : WriteRes { let Latency = !add(Lat, LoadLat); let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res)); let NumMicroOps = !add(UOps, LoadUOps); } } // This multiclass is for folded loads for floating point units. multiclass Zn2WriteResFpuPair ExePorts, int Lat, list Res = [], int UOps = 1, int LoadLat = 7, int LoadUOps = 0> { // Register variant takes 1-cycle on Execution Port. def : WriteRes { let Latency = Lat; let ResourceCycles = Res; let NumMicroOps = UOps; } // Memory variant also uses a cycle on Zn2AGU // adds LoadLat cycles to the latency (default = 7). def : WriteRes { let Latency = !add(Lat, LoadLat); let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res)); let NumMicroOps = !add(UOps, LoadUOps); } } // WriteRMW is set for instructions with Memory write // operation in codegen def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes { let Latency = 8; } // Model the effect of clobbering the read-write mask operand of the GATHER operation. // Does not cost anything by itself, only has latency, matching that of the WriteLoad, def : WriteRes { let Latency = 8; let NumMicroOps = 0; } def : WriteRes; def : WriteRes; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : X86WriteRes; defm : X86WriteResUnsupported; defm : X86WriteResUnsupported; defm : X86WriteResUnsupported; defm : Zn2WriteResPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResPair; def : WriteRes; def : WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; // Bit counts. defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; // Treat misc copies as a move. def : InstRW<[WriteMove], (instrs COPY)>; // BMI1 BEXTR, BMI2 BZHI defm : Zn2WriteResPair; defm : Zn2WriteResPair; // IDIV defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; // IMULH def : WriteRes{ let Latency = 4; } // Floating point operations defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; // Vector integer operations which uses FPU units defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : X86WriteRes; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; defm : Zn2WriteResFpuPair; // Vector Shift Operations defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : X86WriteResPairUnsupported; // Vector insert/extract operations. defm : Zn2WriteResFpuPair; def : WriteRes { let Latency = 2; let ResourceCycles = [1, 2]; } def : WriteRes { let Latency = 5; let NumMicroOps = 2; let ResourceCycles = [1, 2, 3]; } // MOVMSK Instructions. def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes { let NumMicroOps = 2; let Latency = 2; let ResourceCycles = [2]; } // AES Instructions. defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; def : WriteRes; def : WriteRes; // Following instructions with latency=100 are microcoded. // We set long latency so as to block the entire pipeline. defm : Zn2WriteResFpuPair; defm : Zn2WriteResFpuPair; // Microcoded Instructions def Zn2WriteMicrocoded : SchedWriteRes<[]> { let Latency = 100; } defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; defm : Zn2WriteResPair; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; //=== Regex based InstRW ===// // Notation: // - r: register. // - m = memory. // - i = immediate // - mm: 64 bit mmx register. // - x = 128 bit xmm register. // - (x)mm = mmx or xmm register. // - y = 256 bit ymm register. // - v = any vector register. //=== Integer Instructions ===// //-- Move instructions --// // MOV. // r16,m. def : InstRW<[WriteALULd, ReadAfterLd], (instregex "MOV16rm")>; // MOVSX, MOVZX. // r,m. def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>; // XCHG. // r,r. def Zn2WriteXCHG : SchedWriteRes<[Zn2ALU]> { let NumMicroOps = 2; } def : InstRW<[Zn2WriteXCHG], (instregex "^XCHG(8|16|32|64)rr", "^XCHG(16|32|64)ar")>; // r,m. def Zn2WriteXCHGrm : SchedWriteRes<[Zn2AGU, Zn2ALU]> { let Latency = 5; let NumMicroOps = 2; } def : InstRW<[Zn2WriteXCHGrm, ReadAfterLd], (instregex "^XCHG(8|16|32|64)rm")>; def : InstRW<[WriteMicrocoded], (instrs XLAT)>; // POP16. // r. def Zn2WritePop16r : SchedWriteRes<[Zn2AGU]>{ let Latency = 5; let NumMicroOps = 2; } def : InstRW<[Zn2WritePop16r], (instregex "POP16rmm")>; def : InstRW<[WriteMicrocoded], (instregex "POPF(16|32)")>; def : InstRW<[WriteMicrocoded], (instregex "POPA(16|32)")>; // PUSH. // r. Has default values. // m. def Zn2WritePUSH : SchedWriteRes<[Zn2AGU]>{ let Latency = 4; } def : InstRW<[Zn2WritePUSH], (instregex "PUSH(16|32)rmm")>; //PUSHF def : InstRW<[WriteMicrocoded], (instregex "PUSHF(16|32)")>; // PUSHA. def Zn2WritePushA : SchedWriteRes<[Zn2AGU]> { let Latency = 8; } def : InstRW<[Zn2WritePushA], (instregex "PUSHA(16|32)")>; //LAHF def : InstRW<[WriteMicrocoded], (instrs LAHF)>; // MOVBE. // r,m. def Zn2WriteMOVBE : SchedWriteRes<[Zn2AGU, Zn2ALU]> { let Latency = 5; } def : InstRW<[Zn2WriteMOVBE, ReadAfterLd], (instregex "MOVBE(16|32|64)rm")>; // m16,r16. def : InstRW<[Zn2WriteMOVBE], (instregex "MOVBE(16|32|64)mr")>; //-- Arithmetic instructions --// // ADD SUB. // m,r/i. def : InstRW<[WriteALULd], (instregex "(ADD|SUB)(8|16|32|64)m(r|i)", "(ADD|SUB)(8|16|32|64)mi8", "(ADD|SUB)64mi32")>; // ADC SBB. // m,r/i. def : InstRW<[WriteALULd], (instregex "(ADC|SBB)(8|16|32|64)m(r|i)", "(ADC|SBB)(16|32|64)mi8", "(ADC|SBB)64mi32")>; // INC DEC NOT NEG. // m. def : InstRW<[WriteALULd], (instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m")>; // MUL IMUL. // r16. def Zn2WriteMul16 : SchedWriteRes<[Zn2ALU1, Zn2Multiplier]> { let Latency = 3; } def Zn2WriteMul16Imm : SchedWriteRes<[Zn2ALU1, Zn2Multiplier]> { let Latency = 4; } def : SchedAlias; def : SchedAlias; def : SchedAlias; // m16. def Zn2WriteMul16Ld : SchedWriteRes<[Zn2AGU, Zn2ALU1, Zn2Multiplier]> { let Latency = 7; } def : SchedAlias; def : SchedAlias; def : SchedAlias; // r32. def Zn2WriteMul32 : SchedWriteRes<[Zn2ALU1, Zn2Multiplier]> { let Latency = 3; } def : SchedAlias; def : SchedAlias; def : SchedAlias; // m32. def Zn2WriteMul32Ld : SchedWriteRes<[Zn2AGU, Zn2ALU1, Zn2Multiplier]> { let Latency = 7; } def : SchedAlias; def : SchedAlias; def : SchedAlias; // r64. def Zn2WriteMul64 : SchedWriteRes<[Zn2ALU1, Zn2Multiplier]> { let Latency = 4; let NumMicroOps = 2; } def : SchedAlias; def : SchedAlias; def : SchedAlias; // m64. def Zn2WriteMul64Ld : SchedWriteRes<[Zn2AGU, Zn2ALU1, Zn2Multiplier]> { let Latency = 8; let NumMicroOps = 2; } def : SchedAlias; def : SchedAlias; def : SchedAlias; // MULX. // r32,r32,r32. def Zn2WriteMulX32 : SchedWriteRes<[Zn2ALU1, Zn2Multiplier]> { let Latency = 3; let ResourceCycles = [1, 2]; } def : InstRW<[Zn2WriteMulX32], (instrs MULX32rr)>; // r32,r32,m32. def Zn2WriteMulX32Ld : SchedWriteRes<[Zn2AGU, Zn2ALU1, Zn2Multiplier]> { let Latency = 7; let ResourceCycles = [1, 2, 2]; } def : InstRW<[Zn2WriteMulX32Ld, ReadAfterLd], (instrs MULX32rm)>; // r64,r64,r64. def Zn2WriteMulX64 : SchedWriteRes<[Zn2ALU1]> { let Latency = 3; } def : InstRW<[Zn2WriteMulX64], (instrs MULX64rr)>; // r64,r64,m64. def Zn2WriteMulX64Ld : SchedWriteRes<[Zn2AGU, Zn2ALU1, Zn2Multiplier]> { let Latency = 7; } def : InstRW<[Zn2WriteMulX64Ld, ReadAfterLd], (instrs MULX64rm)>; //-- Control transfer instructions --// // J(E|R)CXZ. def Zn2WriteJCXZ : SchedWriteRes<[Zn2ALU03]>; def : InstRW<[Zn2WriteJCXZ], (instrs JCXZ, JECXZ, JRCXZ)>; // INTO def : InstRW<[WriteMicrocoded], (instrs INTO)>; // LOOP. def Zn2WriteLOOP : SchedWriteRes<[Zn2ALU03]>; def : InstRW<[Zn2WriteLOOP], (instrs LOOP)>; // LOOP(N)E, LOOP(N)Z def Zn2WriteLOOPE : SchedWriteRes<[Zn2ALU03]>; def : InstRW<[Zn2WriteLOOPE], (instrs LOOPE, LOOPNE)>; // CALL. // r. def Zn2WriteCALLr : SchedWriteRes<[Zn2AGU, Zn2ALU03]>; def : InstRW<[Zn2WriteCALLr], (instregex "CALL(16|32)r")>; def : InstRW<[WriteMicrocoded], (instregex "CALL(16|32)m")>; // RET. def Zn2WriteRET : SchedWriteRes<[Zn2ALU03]> { let NumMicroOps = 2; } def : InstRW<[Zn2WriteRET], (instregex "RET(L|Q|W)", "LRET(L|Q|W)", "IRET(16|32|64)")>; //-- Logic instructions --// // AND OR XOR. // m,r/i. def : InstRW<[WriteALULd], (instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)", "(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>; // Define ALU latency variants def Zn2WriteALULat2 : SchedWriteRes<[Zn2ALU]> { let Latency = 2; } def Zn2WriteALULat2Ld : SchedWriteRes<[Zn2AGU, Zn2ALU]> { let Latency = 6; } // BT. // m,i. def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>; // BTR BTS BTC. // r,r,i. def Zn2WriteBTRSC : SchedWriteRes<[Zn2ALU]> { let Latency = 2; let NumMicroOps = 2; } def : InstRW<[Zn2WriteBTRSC], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>; // m,r,i. def Zn2WriteBTRSCm : SchedWriteRes<[Zn2AGU, Zn2ALU]> { let Latency = 6; let NumMicroOps = 2; } // m,r,i. def : SchedAlias; def : SchedAlias; // BLSI BLSMSK BLSR. // r,r. def : SchedAlias; // r,m. def : SchedAlias; // CLD STD. def : InstRW<[WriteALU], (instrs STD, CLD)>; // PDEP PEXT. // r,r,r. def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>; // r,r,m. def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>; // RCR RCL. // m,i. def : InstRW<[WriteMicrocoded], (instregex "RC(R|L)(8|16|32|64)m(1|i|CL)")>; // SHR SHL SAR. // m,i. def : InstRW<[WriteShiftLd], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>; // SHRD SHLD. // m,r def : InstRW<[WriteShiftLd], (instregex "SH(R|L)D(16|32|64)mri8")>; // r,r,cl. def : InstRW<[WriteMicrocoded], (instregex "SH(R|L)D(16|32|64)rrCL")>; // m,r,cl. def : InstRW<[WriteMicrocoded], (instregex "SH(R|L)D(16|32|64)mrCL")>; //-- Misc instructions --// // CMPXCHG8B. def Zn2WriteCMPXCHG8B : SchedWriteRes<[Zn2AGU, Zn2ALU]> { let NumMicroOps = 18; } def : InstRW<[Zn2WriteCMPXCHG8B], (instrs CMPXCHG8B)>; def : InstRW<[WriteMicrocoded], (instrs CMPXCHG16B)>; // LEAVE def Zn2WriteLEAVE : SchedWriteRes<[Zn2ALU, Zn2AGU]> { let Latency = 8; let NumMicroOps = 2; } def : InstRW<[Zn2WriteLEAVE], (instregex "LEAVE")>; // PAUSE. def : InstRW<[WriteMicrocoded], (instrs PAUSE)>; // RDTSC. def : InstRW<[WriteMicrocoded], (instregex "RDTSC")>; // RDPMC. def : InstRW<[WriteMicrocoded], (instrs RDPMC)>; // RDRAND. def : InstRW<[WriteMicrocoded], (instregex "RDRAND(16|32|64)r")>; // XGETBV. def : InstRW<[WriteMicrocoded], (instregex "XGETBV")>; //-- String instructions --// // CMPS. def : InstRW<[WriteMicrocoded], (instregex "CMPS(B|L|Q|W)")>; // LODSB/W. def : InstRW<[WriteMicrocoded], (instregex "LODS(B|W)")>; // LODSD/Q. def : InstRW<[WriteMicrocoded], (instregex "LODS(L|Q)")>; // MOVS. def : InstRW<[WriteMicrocoded], (instregex "MOVS(B|L|Q|W)")>; // SCAS. def : InstRW<[WriteMicrocoded], (instregex "SCAS(B|W|L|Q)")>; // STOS def : InstRW<[WriteMicrocoded], (instregex "STOS(B|L|Q|W)")>; // XADD. def Zn2XADD : SchedWriteRes<[Zn2ALU]>; def : InstRW<[Zn2XADD], (instregex "XADD(8|16|32|64)rr")>; def : InstRW<[WriteMicrocoded], (instregex "XADD(8|16|32|64)rm")>; //=== Floating Point x87 Instructions ===// //-- Move instructions --// def Zn2WriteFLDr : SchedWriteRes<[Zn2FPU13]> ; def Zn2WriteSTr: SchedWriteRes<[Zn2FPU23]> { let Latency = 5; let NumMicroOps = 2; } // LD_F. // r. def : InstRW<[Zn2WriteFLDr], (instregex "LD_Frr")>; // m. def Zn2WriteLD_F80m : SchedWriteRes<[Zn2AGU, Zn2FPU13]> { let NumMicroOps = 2; } def : InstRW<[Zn2WriteLD_F80m], (instregex "LD_F80m")>; // FBLD. def : InstRW<[WriteMicrocoded], (instregex "FBLDm")>; // FST(P). // r. def : InstRW<[Zn2WriteSTr], (instregex "ST_(F|FP)rr")>; // m80. def Zn2WriteST_FP80m : SchedWriteRes<[Zn2AGU, Zn2FPU23]> { let Latency = 5; } def : InstRW<[Zn2WriteST_FP80m], (instregex "ST_FP80m")>; // FBSTP. // m80. def : InstRW<[WriteMicrocoded], (instregex "FBSTPm")>; def Zn2WriteFXCH : SchedWriteRes<[Zn2FPU]>; // FXCHG. def : InstRW<[Zn2WriteFXCH], (instrs XCH_F)>; // FILD. def Zn2WriteFILD : SchedWriteRes<[Zn2AGU, Zn2FPU3]> { let Latency = 11; let NumMicroOps = 2; } def : InstRW<[Zn2WriteFILD], (instregex "ILD_F(16|32|64)m")>; // FIST(P) FISTTP. def Zn2WriteFIST : SchedWriteRes<[Zn2AGU, Zn2FPU23]> { let Latency = 12; } def : InstRW<[Zn2WriteFIST], (instregex "IS(T|TT)_(F|FP)(16|32|64)m")>; def Zn2WriteFPU13 : SchedWriteRes<[Zn2AGU, Zn2FPU13]> { let Latency = 8; } def Zn2WriteFPU3 : SchedWriteRes<[Zn2AGU, Zn2FPU3]> { let Latency = 11; } // FLDZ. def : SchedAlias; // FLD1. def : SchedAlias; // FLDPI FLDL2E etc. def : SchedAlias; // FNSTSW. // AX. def : InstRW<[WriteMicrocoded], (instrs FNSTSW16r)>; // m16. def : InstRW<[WriteMicrocoded], (instrs FNSTSWm)>; // FLDCW. def : InstRW<[WriteMicrocoded], (instrs FLDCW16m)>; // FNSTCW. def : InstRW<[WriteMicrocoded], (instrs FNSTCW16m)>; // FINCSTP FDECSTP. def : InstRW<[Zn2WriteFPU3], (instrs FINCSTP, FDECSTP)>; // FFREE. def : InstRW<[Zn2WriteFPU3], (instregex "FFREE")>; // FNSAVE. def : InstRW<[WriteMicrocoded], (instregex "FSAVEm")>; // FRSTOR. def : InstRW<[WriteMicrocoded], (instregex "FRSTORm")>; //-- Arithmetic instructions --// def Zn2WriteFPU3Lat1 : SchedWriteRes<[Zn2FPU3]> ; def Zn2WriteFPU0Lat1 : SchedWriteRes<[Zn2FPU0]> ; def Zn2WriteFPU0Lat1Ld : SchedWriteRes<[Zn2AGU, Zn2FPU0]> { let Latency = 8; } // FCHS. def : InstRW<[Zn2WriteFPU3Lat1], (instregex "CHS_F")>; // FCOM(P) FUCOM(P). // r. def : InstRW<[Zn2WriteFPU0Lat1], (instregex "COM(P?)_FST0r", "UCOM_F(P?)r")>; // m. def : InstRW<[Zn2WriteFPU0Lat1Ld], (instregex "FCOM(P?)(32|64)m")>; // FCOMPP FUCOMPP. // r. def : InstRW<[Zn2WriteFPU0Lat1], (instrs FCOMPP, UCOM_FPPr)>; def Zn2WriteFPU02 : SchedWriteRes<[Zn2AGU, Zn2FPU02]> { let Latency = 9; } // FCOMI(P) FUCOMI(P). // m. def : InstRW<[Zn2WriteFPU02], (instrs COM_FIPr, COM_FIr, UCOM_FIPr, UCOM_FIr)>; def Zn2WriteFPU03 : SchedWriteRes<[Zn2AGU, Zn2FPU03]> { let Latency = 12; let NumMicroOps = 2; let ResourceCycles = [1,3]; } // FICOM(P). def : InstRW<[Zn2WriteFPU03], (instregex "FICOM(P?)(16|32)m")>; // FTST. def : InstRW<[Zn2WriteFPU0Lat1], (instregex "TST_F")>; // FXAM. def : InstRW<[Zn2WriteFPU3Lat1], (instrs XAM_F)>; // FPREM. def : InstRW<[WriteMicrocoded], (instrs FPREM)>; // FPREM1. def : InstRW<[WriteMicrocoded], (instrs FPREM1)>; // FRNDINT. def : InstRW<[WriteMicrocoded], (instrs FRNDINT)>; // FSCALE. def : InstRW<[WriteMicrocoded], (instrs FSCALE)>; // FXTRACT. def : InstRW<[WriteMicrocoded], (instrs FXTRACT)>; // FNOP. def : InstRW<[Zn2WriteFPU0Lat1], (instrs FNOP)>; // WAIT. def : InstRW<[Zn2WriteFPU0Lat1], (instrs WAIT)>; // FNCLEX. def : InstRW<[WriteMicrocoded], (instrs FNCLEX)>; // FNINIT. def : InstRW<[WriteMicrocoded], (instrs FNINIT)>; //=== Integer MMX and XMM Instructions ===// // PACKSSWB/DW. // mm <- mm. def Zn2WriteFPU12 : SchedWriteRes<[Zn2FPU12]> ; def Zn2WriteFPU12Y : SchedWriteRes<[Zn2FPU12]> { let Latency = 4; let NumMicroOps = 2; } def Zn2WriteFPU12m : SchedWriteRes<[Zn2AGU, Zn2FPU12]> ; def Zn2WriteFPU12Ym : SchedWriteRes<[Zn2AGU, Zn2FPU12]> { let Latency = 8; let NumMicroOps = 2; } def : InstRW<[Zn2WriteFPU12], (instrs MMX_PACKSSDWirr, MMX_PACKSSWBirr, MMX_PACKUSWBirr)>; def : InstRW<[Zn2WriteFPU12m], (instrs MMX_PACKSSDWirm, MMX_PACKSSWBirm, MMX_PACKUSWBirm)>; def Zn2WriteFPU013 : SchedWriteRes<[Zn2FPU013]> ; def Zn2WriteFPU013Y : SchedWriteRes<[Zn2FPU013]> ; def Zn2WriteFPU013m : SchedWriteRes<[Zn2AGU, Zn2FPU013]> { let Latency = 8; let NumMicroOps = 2; } def Zn2WriteFPU013Ld : SchedWriteRes<[Zn2AGU, Zn2FPU013]> { let Latency = 8; let NumMicroOps = 2; } def Zn2WriteFPU013LdY : SchedWriteRes<[Zn2AGU, Zn2FPU013]> { let Latency = 8; let NumMicroOps = 2; } // PBLENDW. // x,x,i / v,v,v,i def : InstRW<[Zn2WriteFPU013], (instregex "(V?)PBLENDWrri")>; // ymm def : InstRW<[Zn2WriteFPU013Y], (instrs VPBLENDWYrri)>; // x,m,i / v,v,m,i def : InstRW<[Zn2WriteFPU013Ld], (instregex "(V?)PBLENDWrmi")>; // y,m,i def : InstRW<[Zn2WriteFPU013LdY], (instrs VPBLENDWYrmi)>; def Zn2WriteFPU01 : SchedWriteRes<[Zn2FPU01]> ; def Zn2WriteFPU01Y : SchedWriteRes<[Zn2FPU01]> { let NumMicroOps = 2; } // VPBLENDD. // v,v,v,i. def : InstRW<[Zn2WriteFPU01], (instrs VPBLENDDrri)>; // ymm def : InstRW<[Zn2WriteFPU01Y], (instrs VPBLENDDYrri)>; // v,v,m,i def Zn2WriteFPU01Op2 : SchedWriteRes<[Zn2AGU, Zn2FPU01]> { let NumMicroOps = 2; let Latency = 8; let ResourceCycles = [1, 2]; } def Zn2WriteFPU01Op2Y : SchedWriteRes<[Zn2AGU, Zn2FPU01]> { let NumMicroOps = 2; let Latency = 9; let ResourceCycles = [1, 3]; } def : InstRW<[Zn2WriteFPU01Op2], (instrs VPBLENDDrmi)>; def : InstRW<[Zn2WriteFPU01Op2Y], (instrs VPBLENDDYrmi)>; // MASKMOVQ. def : InstRW<[WriteMicrocoded], (instregex "MMX_MASKMOVQ(64)?")>; // MASKMOVDQU. def : InstRW<[WriteMicrocoded], (instregex "(V?)MASKMOVDQU(64)?")>; // VPMASKMOVD. // ymm def : InstRW<[WriteMicrocoded], (instregex "VPMASKMOVD(Y?)rm")>; // m, v,v. def : InstRW<[WriteMicrocoded], (instregex "VPMASKMOV(D|Q)(Y?)mr")>; // VPBROADCAST B/W. // x, m8/16. def Zn2WriteVPBROADCAST128Ld : SchedWriteRes<[Zn2AGU, Zn2FPU12]> { let Latency = 8; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[Zn2WriteVPBROADCAST128Ld], (instregex "VPBROADCAST(B|W)rm")>; // y, m8/16 def Zn2WriteVPBROADCAST256Ld : SchedWriteRes<[Zn2AGU, Zn2FPU1]> { let Latency = 8; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : InstRW<[Zn2WriteVPBROADCAST256Ld], (instregex "VPBROADCAST(B|W)Yrm")>; // VPGATHER. def : InstRW<[WriteMicrocoded], (instregex "VPGATHER(Q|D)(Q|D)(Y?)rm")>; //-- Arithmetic instructions --// // PCMPGTQ. def Zn2WritePCMPGTQr : SchedWriteRes<[Zn2FPU03]>; def : InstRW<[Zn2WritePCMPGTQr], (instregex "(V?)PCMPGTQ(Y?)rr")>; // x <- x,m. def Zn2WritePCMPGTQm : SchedWriteRes<[Zn2AGU, Zn2FPU03]> { let Latency = 8; } // ymm. def Zn2WritePCMPGTQYm : SchedWriteRes<[Zn2AGU, Zn2FPU03]> { let Latency = 8; } def : InstRW<[Zn2WritePCMPGTQm], (instregex "(V?)PCMPGTQrm")>; def : InstRW<[Zn2WritePCMPGTQYm], (instrs VPCMPGTQYrm)>; //-- Logic instructions --// // PSLL,PSRL,PSRA W/D/Q. // x,x / v,v,x. def Zn2WritePShift : SchedWriteRes<[Zn2FPU2]> { let Latency = 3; } def Zn2WritePShiftY : SchedWriteRes<[Zn2FPU2]> { let Latency = 3; } // PSLL,PSRL DQ. def : InstRW<[Zn2WritePShift], (instregex "(V?)PS(R|L)LDQri")>; def : InstRW<[Zn2WritePShiftY], (instregex "(V?)PS(R|L)LDQYri")>; //=== Floating Point XMM and YMM Instructions ===// //-- Move instructions --// // VPERM2F128. def : InstRW<[WriteMicrocoded], (instrs VPERM2F128rr)>; def : InstRW<[WriteMicrocoded], (instrs VPERM2F128rm)>; def Zn2WriteBROADCAST : SchedWriteRes<[Zn2AGU, Zn2FPU13]> { let NumMicroOps = 2; let Latency = 8; } // VBROADCASTF128. def : InstRW<[Zn2WriteBROADCAST], (instrs VBROADCASTF128)>; // EXTRACTPS. // r32,x,i. def Zn2WriteEXTRACTPSr : SchedWriteRes<[Zn2FPU12, Zn2FPU2]> { let Latency = 2; let ResourceCycles = [1, 2]; } def : InstRW<[Zn2WriteEXTRACTPSr], (instregex "(V?)EXTRACTPSrr")>; def Zn2WriteEXTRACTPSm : SchedWriteRes<[Zn2AGU,Zn2FPU12, Zn2FPU2]> { let Latency = 5; let NumMicroOps = 2; let ResourceCycles = [5, 1, 2]; } // m32,x,i. def : InstRW<[Zn2WriteEXTRACTPSm], (instregex "(V?)EXTRACTPSmr")>; // VEXTRACTF128. // x,y,i. def : InstRW<[Zn2WriteFPU013], (instrs VEXTRACTF128rr)>; // m128,y,i. def : InstRW<[Zn2WriteFPU013m], (instrs VEXTRACTF128mr)>; def Zn2WriteVINSERT128r: SchedWriteRes<[Zn2FPU013]> { let Latency = 2; // let ResourceCycles = [2]; } def Zn2WriteVINSERT128Ld: SchedWriteRes<[Zn2AGU,Zn2FPU013]> { let Latency = 9; let NumMicroOps = 2; } // VINSERTF128. // y,y,x,i. def : InstRW<[Zn2WriteVINSERT128r], (instrs VINSERTF128rr)>; def : InstRW<[Zn2WriteVINSERT128Ld], (instrs VINSERTF128rm)>; // VGATHER. def : InstRW<[WriteMicrocoded], (instregex "VGATHER(Q|D)(PD|PS)(Y?)rm")>; //-- Conversion instructions --// def Zn2WriteCVTPD2PSr: SchedWriteRes<[Zn2FPU3]> { let Latency = 3; } def Zn2WriteCVTPD2PSYr: SchedWriteRes<[Zn2FPU3]> { let Latency = 3; } // CVTPD2PS. // x,x. def : SchedAlias; // y,y. def : SchedAlias; // z,z. defm : X86WriteResUnsupported; def Zn2WriteCVTPD2PSLd: SchedWriteRes<[Zn2AGU,Zn2FPU03]> { let Latency = 10; let NumMicroOps = 2; } // x,m128. def : SchedAlias; // x,m256. def Zn2WriteCVTPD2PSYLd : SchedWriteRes<[Zn2AGU, Zn2FPU3]> { let Latency = 10; } def : SchedAlias; // z,m512 defm : X86WriteResUnsupported; // CVTSD2SS. // x,x. // Same as WriteCVTPD2PSr def : SchedAlias; // x,m64. def : SchedAlias; // CVTPS2PD. // x,x. def Zn2WriteCVTPS2PDr : SchedWriteRes<[Zn2FPU3]> { let Latency = 3; } def : SchedAlias; // x,m64. // y,m128. def Zn2WriteCVTPS2PDLd : SchedWriteRes<[Zn2AGU, Zn2FPU3]> { let Latency = 10; let NumMicroOps = 2; } def : SchedAlias; def : SchedAlias; defm : X86WriteResUnsupported; // y,x. def Zn2WriteVCVTPS2PDY : SchedWriteRes<[Zn2FPU3]> { let Latency = 3; } def : SchedAlias; defm : X86WriteResUnsupported; // CVTSS2SD. // x,x. def Zn2WriteCVTSS2SDr : SchedWriteRes<[Zn2FPU3]> { let Latency = 3; } def : SchedAlias; // x,m32. def Zn2WriteCVTSS2SDLd : SchedWriteRes<[Zn2AGU, Zn2FPU3]> { let Latency = 10; let NumMicroOps = 2; let ResourceCycles = [1, 2]; } def : SchedAlias; def Zn2WriteCVTDQ2PDr: SchedWriteRes<[Zn2FPU12,Zn2FPU3]> { let Latency = 3; } // CVTDQ2PD. // x,x. def : InstRW<[Zn2WriteCVTDQ2PDr], (instregex "(V)?CVTDQ2P(D|S)rr")>; // Same as xmm // y,x. def : InstRW<[Zn2WriteCVTDQ2PDr], (instrs VCVTDQ2PDYrr)>; def : InstRW<[Zn2WriteCVTDQ2PDr], (instrs VCVTDQ2PSYrr)>; def Zn2WriteCVTPD2DQr: SchedWriteRes<[Zn2FPU12, Zn2FPU3]> { let Latency = 3; } // CVT(T)P(D|S)2DQ. // x,x. def : InstRW<[Zn2WriteCVTPD2DQr], (instregex "(V?)CVT(T?)P(D|S)2DQrr")>; def Zn2WriteCVTPD2DQLd: SchedWriteRes<[Zn2AGU,Zn2FPU12,Zn2FPU3]> { let Latency = 10; let NumMicroOps = 2; } // x,m128. def : InstRW<[Zn2WriteCVTPD2DQLd], (instregex "(V?)CVT(T?)PD2DQrm")>; // same as xmm handling // x,y. def : InstRW<[Zn2WriteCVTPD2DQr], (instregex "VCVT(T?)PD2DQYrr")>; // x,m256. def : InstRW<[Zn2WriteCVTPD2DQLd], (instregex "VCVT(T?)PD2DQYrm")>; def Zn2WriteCVTPS2PIr: SchedWriteRes<[Zn2FPU3]> { let Latency = 4; } // CVT(T)PS2PI. // mm,x. def : InstRW<[Zn2WriteCVTPS2PIr], (instregex "MMX_CVT(T?)PS2PIirr")>; // CVTPI2PD. // x,mm. def : InstRW<[Zn2WriteCVTPS2PDr], (instrs MMX_CVTPI2PDirr)>; // CVT(T)PD2PI. // mm,x. def : InstRW<[Zn2WriteCVTPS2PIr], (instregex "MMX_CVT(T?)PD2PIirr")>; def Zn2WriteCVSTSI2SSr: SchedWriteRes<[Zn2FPU3]> { let Latency = 3; } // same as CVTPD2DQr // CVT(T)SS2SI. // r32,x. def : InstRW<[Zn2WriteCVTPD2DQr], (instregex "(V?)CVT(T?)SS2SI(64)?rr")>; // same as CVTPD2DQm // r32,m32. def : InstRW<[Zn2WriteCVTPD2DQLd], (instregex "(V?)CVT(T?)SS2SI(64)?rm")>; def Zn2WriteCVSTSI2SDr: SchedWriteRes<[Zn2FPU013, Zn2FPU3]> { let Latency = 3; } // CVTSI2SD. // x,r32/64. def : InstRW<[Zn2WriteCVSTSI2SDr], (instregex "(V?)CVTSI(64)?2SDrr")>; def Zn2WriteCVSTSI2SIr: SchedWriteRes<[Zn2FPU3, Zn2FPU2]> { let Latency = 4; } def Zn2WriteCVSTSI2SILd: SchedWriteRes<[Zn2AGU, Zn2FPU3, Zn2FPU2]> { let Latency = 11; } // CVTSD2SI. // r32/64 def : InstRW<[Zn2WriteCVSTSI2SIr], (instregex "(V?)CVT(T?)SD2SI(64)?rr")>; // r32,m32. def : InstRW<[Zn2WriteCVSTSI2SILd], (instregex "(V?)CVT(T?)SD2SI(64)?rm")>; // VCVTPS2PH. // x,v,i. def : SchedAlias; def : SchedAlias; defm : X86WriteResUnsupported; // m,v,i. def : SchedAlias; def : SchedAlias; defm : X86WriteResUnsupported; // VCVTPH2PS. // v,x. def : SchedAlias; def : SchedAlias; defm : X86WriteResUnsupported; // v,m. def : SchedAlias; def : SchedAlias; defm : X86WriteResUnsupported; //-- SSE4A instructions --// // EXTRQ def Zn2WriteEXTRQ: SchedWriteRes<[Zn2FPU12, Zn2FPU2]> { let Latency = 3; } def : InstRW<[Zn2WriteEXTRQ], (instregex "EXTRQ")>; // INSERTQ def Zn2WriteINSERTQ: SchedWriteRes<[Zn2FPU03,Zn2FPU1]> { let Latency = 4; } def : InstRW<[Zn2WriteINSERTQ], (instregex "INSERTQ")>; //-- SHA instructions --// // SHA256MSG2 def : InstRW<[WriteMicrocoded], (instregex "SHA256MSG2(Y?)r(r|m)")>; // SHA1MSG1, SHA256MSG1 // x,x. def Zn2WriteSHA1MSG1r : SchedWriteRes<[Zn2FPU12]> { let Latency = 2; } def : InstRW<[Zn2WriteSHA1MSG1r], (instregex "SHA(1|256)MSG1rr")>; // x,m. def Zn2WriteSHA1MSG1Ld : SchedWriteRes<[Zn2AGU, Zn2FPU12]> { let Latency = 9; } def : InstRW<[Zn2WriteSHA1MSG1Ld], (instregex "SHA(1|256)MSG1rm")>; // SHA1MSG2 // x,x. def Zn2WriteSHA1MSG2r : SchedWriteRes<[Zn2FPU12]> ; def : InstRW<[Zn2WriteSHA1MSG2r], (instregex "SHA1MSG2rr")>; // x,m. def Zn2WriteSHA1MSG2Ld : SchedWriteRes<[Zn2AGU, Zn2FPU12]> { let Latency = 8; } def : InstRW<[Zn2WriteSHA1MSG2Ld], (instregex "SHA1MSG2rm")>; // SHA1NEXTE // x,x. def Zn2WriteSHA1NEXTEr : SchedWriteRes<[Zn2FPU1]> ; def : InstRW<[Zn2WriteSHA1NEXTEr], (instregex "SHA1NEXTErr")>; // x,m. def Zn2WriteSHA1NEXTELd : SchedWriteRes<[Zn2AGU, Zn2FPU1]> { let Latency = 8; } def : InstRW<[Zn2WriteSHA1NEXTELd], (instregex "SHA1NEXTErm")>; // SHA1RNDS4 // x,x. def Zn2WriteSHA1RNDS4r : SchedWriteRes<[Zn2FPU1]> { let Latency = 6; } def : InstRW<[Zn2WriteSHA1RNDS4r], (instregex "SHA1RNDS4rr")>; // x,m. def Zn2WriteSHA1RNDS4Ld : SchedWriteRes<[Zn2AGU, Zn2FPU1]> { let Latency = 13; } def : InstRW<[Zn2WriteSHA1RNDS4Ld], (instregex "SHA1RNDS4rm")>; // SHA256RNDS2 // x,x. def Zn2WriteSHA256RNDS2r : SchedWriteRes<[Zn2FPU1]> { let Latency = 4; } def : InstRW<[Zn2WriteSHA256RNDS2r], (instregex "SHA256RNDS2rr")>; // x,m. def Zn2WriteSHA256RNDS2Ld : SchedWriteRes<[Zn2AGU, Zn2FPU1]> { let Latency = 11; } def : InstRW<[Zn2WriteSHA256RNDS2Ld], (instregex "SHA256RNDS2rm")>; //-- Arithmetic instructions --// // VDIVPS. // TODO - convert to Zn2WriteResFpuPair // y,y,y. def Zn2WriteVDIVPSYr : SchedWriteRes<[Zn2FPU3]> { let Latency = 10; let ResourceCycles = [10]; } def : SchedAlias; // y,y,m256. def Zn2WriteVDIVPSYLd : SchedWriteRes<[Zn2AGU, Zn2FPU3]> { let Latency = 17; let NumMicroOps = 2; let ResourceCycles = [1, 17]; } def : SchedAlias; // VDIVPD. // TODO - convert to Zn2WriteResFpuPair // y,y,y. def Zn2WriteVDIVPDY : SchedWriteRes<[Zn2FPU3]> { let Latency = 13; let ResourceCycles = [13]; } def : SchedAlias; // y,y,m256. def Zn2WriteVDIVPDYLd : SchedWriteRes<[Zn2AGU, Zn2FPU3]> { let Latency = 20; let NumMicroOps = 2; let ResourceCycles = [1,20]; } def : SchedAlias; // DPPS. // x,x,i / v,v,v,i. def : SchedAlias; // x,m,i / v,v,m,i. def : SchedAlias; // DPPD. // x,x,i. def : SchedAlias; // x,m,i. def : SchedAlias; // RSQRTSS // TODO - convert to Zn2WriteResFpuPair // x,x. def Zn2WriteRSQRTSSr : SchedWriteRes<[Zn2FPU02]> { let Latency = 5; } def : SchedAlias; // x,m128. def Zn2WriteRSQRTSSLd: SchedWriteRes<[Zn2AGU, Zn2FPU02]> { let Latency = 12; let NumMicroOps = 2; let ResourceCycles = [1,2]; } def : SchedAlias; // RSQRTPS // TODO - convert to Zn2WriteResFpuPair // y,y. def Zn2WriteRSQRTPSYr : SchedWriteRes<[Zn2FPU01]> { let Latency = 5; let NumMicroOps = 2; let ResourceCycles = [2]; } def : SchedAlias; // y,m256. def Zn2WriteRSQRTPSYLd : SchedWriteRes<[Zn2AGU, Zn2FPU01]> { let Latency = 12; let NumMicroOps = 2; } def : SchedAlias; //-- Other instructions --// // VZEROUPPER. def : InstRW<[WriteALU], (instrs VZEROUPPER)>; // VZEROALL. def : InstRW<[WriteMicrocoded], (instrs VZEROALL)>; } // SchedModel