//===- CodeGeneration.cpp - Code generate the Scops using ISL. ---------======// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The CodeGeneration pass takes a Scop created by ScopInfo and translates it // back to LLVM-IR using the ISL code generator. // // The Scop describes the high level memory behavior of a control flow region. // Transformation passes can update the schedule (execution order) of statements // in the Scop. ISL is used to generate an abstract syntax tree that reflects // the updated execution order. This clast is used to create new LLVM-IR that is // computationally equivalent to the original control flow region, but executes // its code in the new execution order defined by the changed schedule. // //===----------------------------------------------------------------------===// #include "polly/CodeGen/CodeGeneration.h" #include "polly/CodeGen/IRBuilder.h" #include "polly/CodeGen/IslAst.h" #include "polly/CodeGen/IslNodeBuilder.h" #include "polly/CodeGen/PerfMonitor.h" #include "polly/CodeGen/Utils.h" #include "polly/DependenceInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/ScopHelper.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Verifier.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "isl/ast.h" #include using namespace llvm; using namespace polly; #define DEBUG_TYPE "polly-codegen" static cl::opt Verify("polly-codegen-verify", cl::desc("Verify the function generated by Polly"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); bool polly::PerfMonitoring; static cl::opt XPerfMonitoring("polly-codegen-perf-monitoring", cl::desc("Add run-time performance monitoring"), cl::Hidden, cl::location(polly::PerfMonitoring), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); STATISTIC(ScopsProcessed, "Number of SCoP processed"); STATISTIC(CodegenedScops, "Number of successfully generated SCoPs"); STATISTIC(CodegenedAffineLoops, "Number of original affine loops in SCoPs that have been generated"); STATISTIC(CodegenedBoxedLoops, "Number of original boxed loops in SCoPs that have been generated"); namespace polly { /// Mark a basic block unreachable. /// /// Marks the basic block @p Block unreachable by equipping it with an /// UnreachableInst. void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) { auto *OrigTerminator = Block.getTerminator(); Builder.SetInsertPoint(OrigTerminator); Builder.CreateUnreachable(); OrigTerminator->eraseFromParent(); } } // namespace polly static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) { if (!Verify || !verifyFunction(F, &errs())) return; LLVM_DEBUG({ errs() << "== ISL Codegen created an invalid function ==\n\n== The " "SCoP ==\n"; errs() << S; errs() << "\n== The isl AST ==\n"; AI.print(errs()); errs() << "\n== The invalid function ==\n"; F.print(errs()); }); llvm_unreachable("Polly generated function could not be verified. Add " "-polly-codegen-verify=false to disable this assertion."); } // CodeGeneration adds a lot of BBs without updating the RegionInfo // We make all created BBs belong to the scop's parent region without any // nested structure to keep the RegionInfo verifier happy. static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) { for (BasicBlock &BB : F) { if (RI.getRegionFor(&BB)) continue; RI.setRegionFor(&BB, &ParentRegion); } } /// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from /// @R. /// /// CodeGeneration does not copy lifetime markers into the optimized SCoP, /// which would leave the them only in the original path. This can transform /// code such as /// /// llvm.lifetime.start(%p) /// llvm.lifetime.end(%p) /// /// into /// /// if (RTC) { /// // generated code /// } else { /// // original code /// llvm.lifetime.start(%p) /// } /// llvm.lifetime.end(%p) /// /// The current StackColoring algorithm cannot handle if some, but not all, /// paths from the end marker to the entry block cross the start marker. Same /// for start markers that do not always cross the end markers. We avoid any /// issues by removing all lifetime markers, even from the original code. /// /// A better solution could be to hoist all llvm.lifetime.start to the split /// node and all llvm.lifetime.end to the merge node, which should be /// conservatively correct. static void removeLifetimeMarkers(Region *R) { for (auto *BB : R->blocks()) { auto InstIt = BB->begin(); auto InstEnd = BB->end(); while (InstIt != InstEnd) { auto NextIt = InstIt; ++NextIt; if (auto *IT = dyn_cast(&*InstIt)) { switch (IT->getIntrinsicID()) { case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: BB->getInstList().erase(InstIt); break; default: break; } } InstIt = NextIt; } } } static bool CodeGen(Scop &S, IslAstInfo &AI, LoopInfo &LI, DominatorTree &DT, ScalarEvolution &SE, RegionInfo &RI) { // Check whether IslAstInfo uses the same isl_ctx. Since -polly-codegen // reports itself to preserve DependenceInfo and IslAstInfo, we might get // those analysis that were computed by a different ScopInfo for a different // Scop structure. When the ScopInfo/Scop object is freed, there is a high // probability that the new ScopInfo/Scop object will be created at the same // heap position with the same address. Comparing whether the Scop or ScopInfo // address is the expected therefore is unreliable. // Instead, we compare the address of the isl_ctx object. Both, DependenceInfo // and IslAstInfo must hold a reference to the isl_ctx object to ensure it is // not freed before the destruction of those analyses which might happen after // the destruction of the Scop/ScopInfo they refer to. Hence, the isl_ctx // will not be freed and its space not reused as long there is a // DependenceInfo or IslAstInfo around. IslAst &Ast = AI.getIslAst(); if (Ast.getSharedIslCtx() != S.getSharedIslCtx()) { LLVM_DEBUG(dbgs() << "Got an IstAst for a different Scop/isl_ctx\n"); return false; } // Check if we created an isl_ast root node, otherwise exit. isl::ast_node AstRoot = Ast.getAst(); if (AstRoot.is_null()) return false; // Collect statistics. Do it before we modify the IR to avoid having it any // influence on the result. auto ScopStats = S.getStatistics(); ScopsProcessed++; auto &DL = S.getFunction().getParent()->getDataLayout(); Region *R = &S.getRegion(); assert(!R->isTopLevelRegion() && "Top level regions are not supported"); ScopAnnotator Annotator; simplifyRegion(R, &DT, &LI, &RI); assert(R->isSimple()); BasicBlock *EnteringBB = S.getEnteringBlock(); assert(EnteringBB); PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), IRInserter(Annotator)); Builder.SetInsertPoint(EnteringBB->getTerminator()); // Only build the run-time condition and parameters _after_ having // introduced the conditional branch. This is important as the conditional // branch will guard the original scop from new induction variables that // the SCEVExpander may introduce while code generating the parameters and // which may introduce scalar dependences that prevent us from correctly // code generating this scop. BBPair StartExitBlocks = std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI)); BasicBlock *StartBlock = std::get<0>(StartExitBlocks); BasicBlock *ExitBlock = std::get<1>(StartExitBlocks); removeLifetimeMarkers(R); auto *SplitBlock = StartBlock->getSinglePredecessor(); IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock); // All arrays must have their base pointers known before // ScopAnnotator::buildAliasScopes. NodeBuilder.allocateNewArrays(StartExitBlocks); Annotator.buildAliasScopes(S); if (PerfMonitoring) { PerfMonitor P(S, EnteringBB->getParent()->getParent()); P.initialize(); P.insertRegionStart(SplitBlock->getTerminator()); BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor(); P.insertRegionEnd(MergeBlock->getTerminator()); } // First generate code for the hoisted invariant loads and transitively the // parameters they reference. Afterwards, for the remaining parameters that // might reference the hoisted loads. Finally, build the runtime check // that might reference both hoisted loads as well as parameters. // If the hoisting fails we have to bail and execute the original code. Builder.SetInsertPoint(SplitBlock->getTerminator()); if (!NodeBuilder.preloadInvariantLoads()) { // Patch the introduced branch condition to ensure that we always execute // the original SCoP. auto *FalseI1 = Builder.getFalse(); auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); SplitBBTerm->setOperand(0, FalseI1); // Since the other branch is hence ignored we mark it as unreachable and // adjust the dominator tree accordingly. auto *ExitingBlock = StartBlock->getUniqueSuccessor(); assert(ExitingBlock); auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); assert(MergeBlock); markBlockUnreachable(*StartBlock, Builder); markBlockUnreachable(*ExitingBlock, Builder); auto *ExitingBB = S.getExitingBlock(); assert(ExitingBB); DT.changeImmediateDominator(MergeBlock, ExitingBB); DT.eraseNode(ExitingBlock); } else { NodeBuilder.addParameters(S.getContext().release()); Value *RTC = NodeBuilder.createRTC(AI.getRunCondition().release()); Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); // Explicitly set the insert point to the end of the block to avoid that a // split at the builder's current // insert position would move the malloc calls to the wrong BasicBlock. // Ideally we would just split the block during allocation of the new // arrays, but this would break the assumption that there are no blocks // between polly.start and polly.exiting (at this point). Builder.SetInsertPoint(StartBlock->getTerminator()); NodeBuilder.create(AstRoot.release()); NodeBuilder.finalize(); fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI); CodegenedScops++; CodegenedAffineLoops += ScopStats.NumAffineLoops; CodegenedBoxedLoops += ScopStats.NumBoxedLoops; } Function *F = EnteringBB->getParent(); verifyGeneratedFunction(S, *F, AI); for (auto *SubF : NodeBuilder.getParallelSubfunctions()) verifyGeneratedFunction(S, *SubF, AI); // Mark the function such that we run additional cleanup passes on this // function (e.g. mem2reg to rediscover phi nodes). F->addFnAttr("polly-optimized"); return true; } namespace { class CodeGeneration : public ScopPass { public: static char ID; /// The data layout used. const DataLayout *DL; /// @name The analysis passes we need to generate code. /// ///{ LoopInfo *LI; IslAstInfo *AI; DominatorTree *DT; ScalarEvolution *SE; RegionInfo *RI; ///} CodeGeneration() : ScopPass(ID) {} /// Generate LLVM-IR for the SCoP @p S. bool runOnScop(Scop &S) override { // Skip SCoPs in case they're already code-generated by PPCGCodeGeneration. if (S.isToBeSkipped()) return false; AI = &getAnalysis().getAI(); LI = &getAnalysis().getLoopInfo(); DT = &getAnalysis().getDomTree(); SE = &getAnalysis().getSE(); DL = &S.getFunction().getParent()->getDataLayout(); RI = &getAnalysis().getRegionInfo(); return CodeGen(S, *AI, *LI, *DT, *SE, *RI); } /// Register all analyses and transformation required. void getAnalysisUsage(AnalysisUsage &AU) const override { ScopPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); // FIXME: We do not yet add regions for the newly generated code to the // region tree. } }; } // namespace PreservedAnalyses CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM, ScopStandardAnalysisResults &AR, SPMUpdater &U) { auto &AI = SAM.getResult(S, AR); if (CodeGen(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) { U.invalidateScop(S); return PreservedAnalyses::none(); } return PreservedAnalyses::all(); } char CodeGeneration::ID = 1; Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); } INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", "Polly - Create LLVM-IR from SCoPs", false, false); INITIALIZE_PASS_DEPENDENCY(DependenceInfo); INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", "Polly - Create LLVM-IR from SCoPs", false, false)