// // Copyright (c) 2010 Athanasios Iliopoulos // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // #ifndef ASSIGNMENT_HPP #define ASSIGNMENT_HPP #include #include /*! \file assignment.hpp \brief uBlas assignment operator <<=. */ namespace boost { namespace numeric { namespace ublas { /** \brief A CRTP and Barton-Nackman trick index manipulator wrapper class. * * This class is not meant to be used directly. */ template class index_manipulator { public: typedef TV type; BOOST_UBLAS_INLINE const type &operator () () const { return *static_cast (this); } BOOST_UBLAS_INLINE type &operator () () { return *static_cast (this); } }; /** \brief A move_to vector index manipulator. * * When member function \c manip is called the referenced * index will be set to the manipulators' index. * * \sa move_to(T i) */ template class vector_move_to_manip: public index_manipulator > { public: BOOST_UBLAS_INLINE vector_move_to_manip(const T &k): i(k) { } template BOOST_UBLAS_INLINE void manip(V &k) const { k=i; } private: T i; }; /** \brief An object generator that returns a move_to vector index manipulator * * \param i The element number the manipulator will move to when \c manip member function is called * \return A move_to vector manipulator * * Example usage: * \code * vector a(6, 0); * a <<= 1, 2, move_to(5), 3; * \endcode * will result in: * \code * 1 2 0 0 0 3 * \endcode * * \tparam T Size type * \sa move_to() */ template BOOST_UBLAS_INLINE vector_move_to_manip move_to(T i) { return vector_move_to_manip(i); } /** \brief A static move to vector manipulator. * * When member function \c manip is called the referenced * index will be set to the manipulators' index * * \sa move_to(T i) and move_to() */ template class static_vector_move_to_manip: public index_manipulator > { public: template BOOST_UBLAS_INLINE void manip(V &k) const { k=I; } }; /** \brief An object generator that returns a static move_to vector index manipulator. * * Typically faster than the dynamic version, but can be used only when the * values are known at compile time. * * \return A static move_to vector manipulator * * Example usage: * \code * vector a(6, 0); * a <<= 1, 2, move_to<5>(), 3; * \endcode * will result in: * \code * 1 2 0 0 0 3 * \endcode * * \tparam I The number of elements the manipulator will traverse the index when \c manip function is called */ template BOOST_UBLAS_INLINE static_vector_move_to_manip move_to() { return static_vector_move_to_manip(); } /** \brief A move vector index manipulator. * * When member function traverse is called the manipulators' * index will be added to the referenced index. * * \see move(T i) */ template class vector_move_manip: public index_manipulator > { public: BOOST_UBLAS_INLINE vector_move_manip(const T &k): i(k) { } template BOOST_UBLAS_INLINE void manip(V &k) const { k+=i; } private: T i; }; /** * \brief An object generator that returns a move vector index manipulator * * \tparam T Size type * \param i The number of elements the manipulator will traverse the index when \c manip * member function is called. Negative values can be used. * \return A move vector manipulator * * Example usage: * \code * vector a(6, 0); * a <<= 1, 2, move(3), 3; * \endcode * will result in: * \code * 1 2 0 0 0 3 * \endcode * */ template BOOST_UBLAS_INLINE vector_move_manip move(T i) { return vector_move_manip(i); } /** * \brief A static move vector manipulator * * When member function \c manip is called the manipulators * index will be added to the referenced index * * \sa move() * * \todo Doxygen has some problems with similar template functions. Correct that. */ template class static_vector_move_manip: public index_manipulator > { public: template BOOST_UBLAS_INLINE void manip(V &k) const { k+=I; } }; /** * \brief An object generator that returns a static move vector index manipulator. * * Typically faster than the dynamic version, but can be used only when the * values are known at compile time. * \tparam I The Number of elements the manipulator will traverse the index when \c manip * function is called.Negative values can be used. * \return A static move vector manipulator * * Example usage: * \code * vector a(6, 0); * a <<= 1, 2, move<3>(), 3; * \endcode * will result in: * \code * 1 2 0 0 0 3 * \endcode * * \todo Doxygen has some problems with similar template functions. Correct that. */ template BOOST_UBLAS_INLINE static_vector_move_manip move() { return static_vector_move_manip(); } /** * \brief A move_to matrix manipulator * * When member function \c manip is called the referenced * index will be set to the manipulators' index * * \sa move_to(T i, T j) * * \todo Doxygen has some problems with similar template functions. Correct that. */ template class matrix_move_to_manip: public index_manipulator > { public: BOOST_UBLAS_INLINE matrix_move_to_manip(T k, T l): i(k), j(l) { } template BOOST_UBLAS_INLINE void manip(V1 &k, V2 &l) const { k=i; l=j; } private: T i, j; }; /** * \brief An object generator that returns a "move_to" matrix index manipulator * * \tparam size type * \param i The row number the manipulator will move to when \c manip * member function is called * \param j The column number the manipulator will move to when \c manip * member function is called * \return A move matrix manipulator * * Example usage: * \code: * matrix A(3, 3, 0); * A <<= 1, 2, move_to(A.size1()-1, A.size1()-1), 3; * \endcode * will result in: * \code * 1 2 0 * 0 0 0 * 0 0 3 * \endcode * \sa move_to(T i, T j) and static_matrix_move_to_manip * * \todo Doxygen has some problems with similar template functions. Correct that. */ template BOOST_UBLAS_INLINE matrix_move_to_manip move_to(T i, T j) { return matrix_move_to_manip(i, j); } /** * \brief A static move_to matrix manipulator * When member function traverse is called the referenced * index will be set to the manipulators' index * * \sa move_to() * * \todo Doxygen has some problems with similar template functions. Correct that. */ template class static_matrix_move_to_manip: public index_manipulator > { public: template BOOST_UBLAS_INLINE void manip(V &k, K &l) const { k=I; l=J; } }; /** * \brief An object generator that returns a static move_to matrix index manipulator. * * Typically faster than the dynamic version, but can be used only when the * values are known at compile time. * \tparam I The row number the manipulator will set the matrix assigner index to. * \tparam J The column number the manipulator will set the matrix assigner index to. * \return A static move_to matrix manipulator * * Example usage: * \code: * matrix A(3, 3, 0); * A <<= 1, 2, move_to<2,2>, 3; * \endcode * will result in: * \code * 1 2 0 * 0 0 0 * 0 0 3 * \endcode * \sa move_to(T i, T j) and static_matrix_move_to_manip */ template BOOST_UBLAS_INLINE static_matrix_move_to_manip move_to() { return static_matrix_move_to_manip(); } /** * \brief A move matrix index manipulator. * * When member function \c manip is called the manipulator's * index will be added to the referenced' index. * * \sa move(T i, T j) */ template class matrix_move_manip: public index_manipulator > { public: BOOST_UBLAS_INLINE matrix_move_manip(T k, T l): i(k), j(l) { } template BOOST_UBLAS_INLINE void manip(V &k, K &l) const { k+=i; l+=j; } private: T i, j; }; /** * \brief An object generator that returns a move matrix index manipulator * * \tparam size type * \param i The number of rows the manipulator will traverse the index when "manip" * member function is called * \param j The number of columns the manipulator will traverse the index when "manip" * member function is called * \return A move matrix manipulator * * Example: * \code: * matrix A(3, 3, 0); * A <<= 1, 2, move(1,0), * 3,; * \endcode * will result in: * \code * 1 2 0 * 0 0 3 * 0 0 0 * \endcode */ template BOOST_UBLAS_INLINE matrix_move_manip move(T i, T j) { return matrix_move_manip(i, j); } /** * \brief A static move matrix index manipulator. * * When member function traverse is called the manipulator's * index will be added to the referenced' index. * * \sa move() * * \todo Doxygen has some problems with similar template functions. Correct that. */ template class static_matrix_move_manip: public index_manipulator > { public: template BOOST_UBLAS_INLINE void manip(V &k, K &l) const { k+=I; l+=J; } }; /** * \brief An object generator that returns a static "move" matrix index manipulator. * * Typically faster than the dynamic version, but can be used only when the * values are known at compile time. Negative values can be used. * \tparam I The number of rows the manipulator will trasverse the matrix assigner index. * \tparam J The number of columns the manipulator will trasverse the matrix assigner index. * \tparam size type * \return A static move matrix manipulator * * Example: * \code: * matrix A(3, 3, 0); * A <<= 1, 2, move<1,0>(), * 3,; * \endcode * will result in: * \code * 1 2 0 * 0 0 3 * 0 0 0 * \endcode * * \sa move_to() * * \todo Doxygen has some problems with similar template functions. Correct that. */ template BOOST_UBLAS_INLINE static_matrix_move_manip move() { return static_matrix_move_manip(); } /** * \brief A begining of row manipulator * * When member function \c manip is called the referenced * index will be be set to the begining of the row (i.e. column = 0) * * \sa begin1() */ class begin1_manip: public index_manipulator { public: template BOOST_UBLAS_INLINE void manip(V & k, K &/*l*/) const { k=0; } }; /** * \brief An object generator that returns a begin1 manipulator. * * The resulted manipulator will traverse the index to the begining * of the current column when its' \c manip member function is called. * * \return A begin1 matrix index manipulator * * Example usage: * \code: * matrix A(3, 3, 0); * A <<= 1, 2, next_row(), * 3, 4, begin1(), 1; * \endcode * will result in: * \code * 1 2 1 * 3 4 0 * 0 0 0 * \endcode * \sa begin2() */ BOOST_UBLAS_INLINE begin1_manip begin1() { return begin1_manip(); } /** * \brief A begining of column manipulator * * When member function \c manip is called the referenced * index will be be set to the begining of the column (i.e. row = 0). * * * \sa begin2() */ class begin2_manip: public index_manipulator { public: template BOOST_UBLAS_INLINE void manip(V &/*k*/, K &l) const { l=0; } }; /** * \brief An object generator that returns a begin2 manipulator to be used to traverse a matrix. * * The resulted manipulator will traverse the index to the begining * of the current row when its' \c manip member function is called. * * \return A begin2 matrix manipulator * * Example: * \code: * matrix A(3, 3, 0); * A <<= 1, 2, move<1,0>(), * 3, begin2(), 1; * \endcode * will result in: * \code * 1 2 0 * 1 0 3 * 0 0 0 * \endcode * \sa begin1() begin2_manip */ BOOST_UBLAS_INLINE begin2_manip begin2() { return begin2_manip(); } /** * \brief A next row matrix manipulator. * * When member function traverse is called the referenced * index will be traveresed to the begining of next row. * * \sa next_row() */ class next_row_manip: public index_manipulator { public: template BOOST_UBLAS_INLINE void manip(V &k, K &l) const { k++; l=0; } }; /** * \brief An object generator that returns a next_row manipulator. * * The resulted manipulator will traverse the index to the begining * of the next row when it's manip member function is called. * * \return A next_row matrix manipulator. * * Example: * \code: * matrix A(3, 3, 0); * A <<= 1, 2, next_row(), * 3, 4; * \endcode * will result in: * \code * 1 2 0 * 3 4 0 * 0 0 0 * \endcode * \sa next_column() */ BOOST_UBLAS_INLINE next_row_manip next_row() { return next_row_manip(); } /** * \brief A next column matrix manipulator. * * When member function traverse is called the referenced * index will be traveresed to the begining of next column. * * \sa next_column() */ class next_column_manip: public index_manipulator { public: template BOOST_UBLAS_INLINE void manip(V &k, K &l) const { k=0; l++; } }; /** * \brief An object generator that returns a next_row manipulator. * * The resulted manipulator will traverse the index to the begining * of the next column when it's manip member function is called. * * \return A next_column matrix manipulator. * * Example: * \code: * matrix A(3, 3, 0); * A <<= 1, 2, 0, * 3, next_column(), 4; * \endcode * will result in: * \code * 1 2 4 * 3 0 0 * 0 0 0 * \endcode * */ BOOST_UBLAS_INLINE next_column_manip next_column() { return next_column_manip(); } /** * \brief A wrapper for fill policy classes * */ template class fill_policy_wrapper { public: typedef T type; }; // Collection of the fill policies namespace fill_policy { /** * \brief An index assign policy * * This policy is used to for the simplified ublas assign through * normal indexing. * * */ class index_assign :public fill_policy_wrapper { public: template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const V &v) { e()(i) = v; } template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const S &j, const V &v) { e()(i, j) = v; } }; /** * \brief An index plus assign policy * * This policy is used when the assignment is desired to be followed * by an addition. * * */ class index_plus_assign :public fill_policy_wrapper { public: template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const V &v) { e()(i) += v; } template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const S &j, const V &v) { e()(i, j) += v; } }; /** * \brief An index minus assign policy * * This policy is used when the assignment is desired to be followed * by a substraction. * * */ class index_minus_assign :public fill_policy_wrapper { public: template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const V &v) { e()(i) -= v; } template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const S &j, const V &v) { e()(i, j) -= v; } }; /** * \brief The sparse push_back fill policy. * * This policy is adequate for sparse types, when fast filling is required, where indexing * assign is pretty slow. * It is important to note that push_back assign cannot be used to add elements before elements * already existing in a sparse container. To achieve that please use the sparse_insert fill policy. */ class sparse_push_back :public fill_policy_wrapper { public: template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const V &v) { e().push_back(i, v); } template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const S &j, const V &v) { e().push_back(i,j, v); } }; /** * \brief The sparse insert fill policy. * * This policy is adequate for sparse types, when fast filling is required, where indexing * assign is pretty slow. It is slower than sparse_push_back fill policy, but it can be used to * insert elements anywhere inside the container. */ class sparse_insert :public fill_policy_wrapper { public: template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const V &v) { e().insert_element(i, v); } template BOOST_UBLAS_INLINE static void apply(T &e, const S &i, const S &j, const V &v) { e().insert_element(i,j, v); } }; } /** \brief A wrapper for traverse policy classes * */ template class traverse_policy_wrapper { public: typedef T type; }; // Collection of the traverse policies namespace traverse_policy { /** * \brief The no wrap policy. * * The no wrap policy does not allow wrapping when assigning to a matrix */ struct no_wrap { /** * \brief Element wrap method */ template BOOST_UBLAS_INLINE static void apply1(const S1 &/*s*/, S2 &/*i*/, S3 &/*j*/) { } /** * \brief Matrix block wrap method */ template BOOST_UBLAS_INLINE static void apply2(const S1 &/*s1*/, const S1 &/*s2*/, S2 &/*i1*/, S3 &/*i2*/) { } }; /** * \brief The wrap policy. * * The wrap policy enables element wrapping when assigning to a matrix */ struct wrap { /** * \brief Element wrap method */ template BOOST_UBLAS_INLINE static void apply1(const S1 &s, S2 &i1, S3 &i2) { if (i2>=s) { i1++; i2=0; } } /** * \brief Matrix block wrap method */ template BOOST_UBLAS_INLINE static void apply2(const S1 &s1, const S1 &s2, S2 &i1, S3 &i2) { if (i2>=s2) i2=0; // Wrap to the next block else i1-=s1; // Move up (or right) one block } }; /** * \brief The row_by_row traverse policy * * This policy is used when the assignment is desired to happen * row_major wise for performance or other reasons. * * This is the default behaviour. To change it globally please define BOOST_UBLAS_DEFAULT_ASSIGN_BY_COLUMN * in the compilation options or in an adequate header file. * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template class by_row_policy :public traverse_policy_wrapper > { public: template BOOST_UBLAS_INLINE static void advance(S1 &/*i*/, S2 &j) { j++;} template BOOST_UBLAS_INLINE static bool next(const E1 &e, const E2 &me, S1 &i, S2 &j, const S3 &/*i0*/, const S3 &j0, S4 &k, S5 &l) { l++; j++; if (l>=e().size2()) { l=0; k++; j=j0; i++; // It is assumed that the iteration starts from 0 and happens only using this function from within // an assigner object. // Otherwise (i.e. if it is called outside the assigner object) apply2 should have been // outside the if statement. if (k>=e().size1()) { j=j0+e().size2(); Wrap::apply2(e().size1(), me().size2(), i, j); return false; } } return true; } template BOOST_UBLAS_INLINE static void apply_wrap(const E& e, S1 &i, S2 &j) { Wrap::apply1(e().size2(), i, j); } }; /** * \brief The column_by_column traverse policy * * This policy is used when the assignment is desired to happen * column_major wise, for performance or other reasons. * * This is the NOT the default behaviour. To set this as the default define BOOST_UBLAS_DEFAULT_ASSIGN_BY_COLUMN * in the compilation options or in an adequate header file. * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template class by_column_policy :public traverse_policy_wrapper > { public: template BOOST_UBLAS_INLINE static void advance(S1 &i, S2 &/*j*/) { i++;} template BOOST_UBLAS_INLINE static bool next(const E1 &e, const E2 &me, S1 &i, S2 &j, const S3 &i0, const S3 &/*j0*/, S4 &k, S5 &l) { k++; i++; if (k>=e().size1()) { k=0; l++; i=i0; j++; // It is assumed that the iteration starts from 0 and happens only using this function from within // an assigner object. // Otherwise (i.e. if it is called outside the assigner object) apply2 should have been // outside the if statement. if (l>=e().size2()) { i=i0+e().size1(); Wrap::apply2(e().size2(), me().size1(), j, i); return false; } } return true; } template BOOST_UBLAS_INLINE static void apply_wrap(const E& e, S1 &i, S2 &j) { Wrap::apply1(e().size1(), j, i); } }; } #ifndef BOOST_UBLAS_DEFAULT_NO_WRAP_POLICY typedef traverse_policy::wrap DEFAULT_WRAP_POLICY; #else typedef traverse_policy::no_wrap DEFAULT_WRAP_POLICY; #endif #ifndef BOOST_UBLAS_DEFAULT_ASSIGN_BY_COLUMN typedef traverse_policy::by_row_policy DEFAULT_TRAVERSE_POLICY; #else typedef traverse_policy::by_column DEFAULT_TRAVERSE_POLICY; #endif // Traverse policy namespace namespace traverse_policy { by_row_policy by_row() { return by_row_policy(); } by_row_policy by_row_wrap() { return by_row_policy(); } by_row_policy by_row_no_wrap() { return by_row_policy(); } by_column_policy by_column() { return by_column_policy(); } by_column_policy by_column_wrap() { return by_column_policy(); } by_column_policy by_column_no_wrap() { return by_column_policy(); } } /** * \brief An assigner object used to fill a vector using operator <<= and operator, (comma) * * This object is meant to be created by appropriate object generators. * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template class vector_expression_assigner { public: typedef typename E::expression_type::value_type value_type; typedef typename E::expression_type::size_type size_type; BOOST_UBLAS_INLINE vector_expression_assigner(E &e):ve(e), i(0) { } BOOST_UBLAS_INLINE vector_expression_assigner(size_type k, E &e):ve(e), i(k) { // Overloaded like that so it can be differentiated from (E, val). // Otherwise there would be an ambiquity when value_type == size_type. } BOOST_UBLAS_INLINE vector_expression_assigner(E &e, value_type val):ve(e), i(0) { operator,(val); } template BOOST_UBLAS_INLINE vector_expression_assigner(E &e, const vector_expression &nve):ve(e), i(0) { operator,(nve); } template BOOST_UBLAS_INLINE vector_expression_assigner(E &e, const index_manipulator &ta):ve(e), i(0) { operator,(ta); } BOOST_UBLAS_INLINE vector_expression_assigner &operator, (const value_type& val) { apply(val); return *this; } template BOOST_UBLAS_INLINE vector_expression_assigner &operator, (const vector_expression &nve) { for (typename AE::size_type k = 0; k!= nve().size(); k++) operator,(nve()(k)); return *this; } template BOOST_UBLAS_INLINE vector_expression_assigner &operator, (const index_manipulator &ta) { ta().manip(i); return *this; } template BOOST_UBLAS_INLINE vector_expression_assigner operator, (fill_policy_wrapper) const { return vector_expression_assigner(i, ve); } private: BOOST_UBLAS_INLINE vector_expression_assigner &apply(const typename E::expression_type::value_type& val) { Fill_Policy::apply(ve, i++, val); return *this; } private: E &ve; size_type i; }; /* // The following static assigner is about 30% slower than the dynamic one, probably due to the recursive creation of assigner objects. // It remains commented here for future reference. template class static_vector_expression_assigner { public: typedef typename E::expression_type::value_type value_type; typedef typename E::expression_type::size_type size_type; BOOST_UBLAS_INLINE static_vector_expression_assigner(E &e):ve(e) { } BOOST_UBLAS_INLINE static_vector_expression_assigner(E &e, value_type val):ve(e) { operator,(val); } BOOST_UBLAS_INLINE static_vector_expression_assigner operator, (const value_type& val) { return apply(val); } private: BOOST_UBLAS_INLINE static_vector_expression_assigner apply(const typename E::expression_type::value_type& val) { ve()(I)=val; return static_vector_expression_assigner(ve); } private: E &ve; }; template BOOST_UBLAS_INLINE static_vector_expression_assigner, 1 > test_static(vector_expression &v, const typename E::value_type &val) { v()(0)=val; return static_vector_expression_assigner, 1 >(v); } */ /** * \brief A vector_expression_assigner generator used with operator<<= for simple types * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE vector_expression_assigner > operator<<=(vector_expression &v, const typename E::value_type &val) { return vector_expression_assigner >(v,val); } /** * \brief ! A vector_expression_assigner generator used with operator<<= for vector expressions * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE vector_expression_assigner > operator<<=(vector_expression &v, const vector_expression &ve) { return vector_expression_assigner >(v,ve); } /** * \brief A vector_expression_assigner generator used with operator<<= for traverse manipulators * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE vector_expression_assigner > operator<<=(vector_expression &v, const index_manipulator &nv) { return vector_expression_assigner >(v,nv); } /** * \brief A vector_expression_assigner generator used with operator<<= for choice of fill policy * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE vector_expression_assigner, T> operator<<=(vector_expression &v, fill_policy_wrapper) { return vector_expression_assigner, T>(v); } /** * \brief An assigner object used to fill a vector using operator <<= and operator, (comma) * * This object is meant to be created by appropriate object generators. * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template class matrix_expression_assigner { public: typedef typename E::expression_type::size_type size_type; BOOST_UBLAS_INLINE matrix_expression_assigner(E &e): me(e), i(0), j(0) { } BOOST_UBLAS_INLINE matrix_expression_assigner(E &e, size_type k, size_type l): me(e), i(k), j(l) { } BOOST_UBLAS_INLINE matrix_expression_assigner(E &e, typename E::expression_type::value_type val): me(e), i(0), j(0) { operator,(val); } template BOOST_UBLAS_INLINE matrix_expression_assigner(E &e, const vector_expression &nve):me(e), i(0), j(0) { operator,(nve); } template BOOST_UBLAS_INLINE matrix_expression_assigner(E &e, const matrix_expression &nme):me(e), i(0), j(0) { operator,(nme); } template BOOST_UBLAS_INLINE matrix_expression_assigner(E &e, const index_manipulator &ta):me(e), i(0), j(0) { operator,(ta); } BOOST_UBLAS_INLINE matrix_expression_assigner &operator, (const typename E::expression_type::value_type& val) { Traverse_Policy::apply_wrap(me, i ,j); return apply(val); } template BOOST_UBLAS_INLINE matrix_expression_assigner &operator, (const vector_expression &nve) { for (typename AE::size_type k = 0; k!= nve().size(); k++) { operator,(nve()(k)); } return *this; } template BOOST_UBLAS_INLINE matrix_expression_assigner &operator, (const matrix_expression &nme) { return apply(nme); } template BOOST_UBLAS_INLINE matrix_expression_assigner &operator, (const index_manipulator &ta) { ta().manip(i, j); return *this; } template BOOST_UBLAS_INLINE matrix_expression_assigner operator, (fill_policy_wrapper) const { return matrix_expression_assigner(me, i, j); } template BOOST_UBLAS_INLINE matrix_expression_assigner operator, (traverse_policy_wrapper) { Traverse_Policy::apply_wrap(me, i ,j); return matrix_expression_assigner(me, i, j); } private: BOOST_UBLAS_INLINE matrix_expression_assigner &apply(const typename E::expression_type::value_type& val) { Fill_Policy::apply(me, i, j, val); Traverse_Policy::advance(i,j); return *this; } template BOOST_UBLAS_INLINE matrix_expression_assigner &apply(const matrix_expression &nme) { size_type bi = i; size_type bj = j; typename AE::size_type k=0, l=0; Fill_Policy::apply(me, i, j, nme()(k, l)); while (Traverse_Policy::next(nme, me, i, j, bi, bj, k, l)) Fill_Policy::apply(me, i, j, nme()(k, l)); return *this; } private: E &me; size_type i, j; }; /** * \brief A matrix_expression_assigner generator used with operator<<= for simple types * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE matrix_expression_assigner > operator<<=(matrix_expression &me, const typename E::value_type &val) { return matrix_expression_assigner >(me,val); } /** * \brief A matrix_expression_assigner generator used with operator<<= for choice of fill policy * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE matrix_expression_assigner, T> operator<<=(matrix_expression &me, fill_policy_wrapper) { return matrix_expression_assigner, T>(me); } /** * \brief A matrix_expression_assigner generator used with operator<<= for traverse manipulators * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE matrix_expression_assigner > operator<<=(matrix_expression &me, const index_manipulator &ta) { return matrix_expression_assigner >(me,ta); } /** * \brief A matrix_expression_assigner generator used with operator<<= for traverse manipulators * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE matrix_expression_assigner, fill_policy::index_assign, T> operator<<=(matrix_expression &me, traverse_policy_wrapper) { return matrix_expression_assigner, fill_policy::index_assign, T>(me); } /** * \brief A matrix_expression_assigner generator used with operator<<= for vector expressions * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE matrix_expression_assigner > operator<<=(matrix_expression &me, const vector_expression &ve) { return matrix_expression_assigner >(me,ve); } /** * \brief A matrix_expression_assigner generator used with operator<<= for matrix expressions * * Please see EXAMPLES_LINK for usage information. * * \todo Add examples link */ template BOOST_UBLAS_INLINE matrix_expression_assigner > operator<<=(matrix_expression &me1, const matrix_expression &me2) { return matrix_expression_assigner >(me1,me2); } } } } #endif // ASSIGNMENT_HPP