; vim:filetype=nasm ts=8 ; libFLAC - Free Lossless Audio Codec library ; Copyright (C) 2001-2009 Josh Coalson ; Copyright (C) 2011-2013 Xiph.Org Foundation ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions ; are met: ; ; - Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; ; - Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in the ; documentation and/or other materials provided with the distribution. ; ; - Neither the name of the Xiph.org Foundation nor the names of its ; contributors may be used to endorse or promote products derived from ; this software without specific prior written permission. ; ; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ; ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR ; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. %include "nasm.h" data_section cglobal FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov code_section ; ********************************************************************** ; ; unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 *data, unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) ; { ; FLAC__int32 last_error_0 = data[-1]; ; FLAC__int32 last_error_1 = data[-1] - data[-2]; ; FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]); ; FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]); ; FLAC__int32 error, save; ; FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0; ; unsigned i, order; ; ; for(i = 0; i < data_len; i++) { ; error = data[i] ; total_error_0 += local_abs(error); save = error; ; error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error; ; error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error; ; error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error; ; error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save; ; } ; ; if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4)) ; order = 0; ; else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4)) ; order = 1; ; else if(total_error_2 < min(total_error_3, total_error_4)) ; order = 2; ; else if(total_error_3 < total_error_4) ; order = 3; ; else ; order = 4; ; ; residual_bits_per_sample[0] = (FLAC__float)((data_len > 0 && total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); ; residual_bits_per_sample[1] = (FLAC__float)((data_len > 0 && total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); ; residual_bits_per_sample[2] = (FLAC__float)((data_len > 0 && total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); ; residual_bits_per_sample[3] = (FLAC__float)((data_len > 0 && total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); ; residual_bits_per_sample[4] = (FLAC__float)((data_len > 0 && total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); ; ; return order; ; } ALIGN 16 cident FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov ; esp + 36 == data[] ; esp + 40 == data_len ; esp + 44 == residual_bits_per_sample[] push ebp push ebx push esi push edi sub esp, byte 16 ; qword [esp] == temp space for loading FLAC__uint64s to FPU regs ; ebx == &data[i] ; ecx == loop counter (i) ; ebp == order ; mm0 == total_error_1:total_error_0 ; mm1 == total_error_2:total_error_3 ; mm2 == :total_error_4 ; mm3 == last_error_1:last_error_0 ; mm4 == last_error_2:last_error_3 mov ecx, [esp + 40] ; ecx = data_len test ecx, ecx jz near .data_len_is_0 mov ebx, [esp + 36] ; ebx = data[] movd mm3, [ebx - 4] ; mm3 = 0:last_error_0 movd mm2, [ebx - 8] ; mm2 = 0:data[-2] movd mm1, [ebx - 12] ; mm1 = 0:data[-3] movd mm0, [ebx - 16] ; mm0 = 0:data[-4] movq mm5, mm3 ; mm5 = 0:last_error_0 psubd mm5, mm2 ; mm5 = 0:last_error_1 punpckldq mm3, mm5 ; mm3 = last_error_1:last_error_0 psubd mm2, mm1 ; mm2 = 0:data[-2] - data[-3] psubd mm5, mm2 ; mm5 = 0:last_error_2 movq mm4, mm5 ; mm4 = 0:last_error_2 psubd mm4, mm2 ; mm4 = 0:last_error_2 - (data[-2] - data[-3]) paddd mm4, mm1 ; mm4 = 0:last_error_2 - (data[-2] - 2 * data[-3]) psubd mm4, mm0 ; mm4 = 0:last_error_3 punpckldq mm4, mm5 ; mm4 = last_error_2:last_error_3 pxor mm0, mm0 ; mm0 = total_error_1:total_error_0 pxor mm1, mm1 ; mm1 = total_error_2:total_error_3 pxor mm2, mm2 ; mm2 = 0:total_error_4 ALIGN 16 .loop: movd mm7, [ebx] ; mm7 = 0:error_0 add ebx, byte 4 movq mm6, mm7 ; mm6 = 0:error_0 psubd mm7, mm3 ; mm7 = :error_1 punpckldq mm6, mm7 ; mm6 = error_1:error_0 movq mm5, mm6 ; mm5 = error_1:error_0 movq mm7, mm6 ; mm7 = error_1:error_0 psubd mm5, mm3 ; mm5 = error_2: movq mm3, mm6 ; mm3 = error_1:error_0 psrad mm6, 31 pxor mm7, mm6 psubd mm7, mm6 ; mm7 = abs(error_1):abs(error_0) paddd mm0, mm7 ; mm0 = total_error_1:total_error_0 movq mm6, mm5 ; mm6 = error_2: psubd mm5, mm4 ; mm5 = error_3: punpckhdq mm5, mm6 ; mm5 = error_2:error_3 movq mm7, mm5 ; mm7 = error_2:error_3 movq mm6, mm5 ; mm6 = error_2:error_3 psubd mm5, mm4 ; mm5 = :error_4 movq mm4, mm6 ; mm4 = error_2:error_3 psrad mm6, 31 pxor mm7, mm6 psubd mm7, mm6 ; mm7 = abs(error_2):abs(error_3) paddd mm1, mm7 ; mm1 = total_error_2:total_error_3 movq mm6, mm5 ; mm6 = :error_4 psrad mm5, 31 pxor mm6, mm5 psubd mm6, mm5 ; mm6 = :abs(error_4) paddd mm2, mm6 ; mm2 = :total_error_4 dec ecx jnz short .loop ; if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4)) ; order = 0; ; else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4)) ; order = 1; ; else if(total_error_2 < min(total_error_3, total_error_4)) ; order = 2; ; else if(total_error_3 < total_error_4) ; order = 3; ; else ; order = 4; movq mm3, mm0 ; mm3 = total_error_1:total_error_0 movd edi, mm2 ; edi = total_error_4 movd esi, mm1 ; esi = total_error_3 movd eax, mm0 ; eax = total_error_0 punpckhdq mm1, mm1 ; mm1 = total_error_2:total_error_2 punpckhdq mm3, mm3 ; mm3 = total_error_1:total_error_1 movd edx, mm1 ; edx = total_error_2 movd ecx, mm3 ; ecx = total_error_1 xor ebx, ebx xor ebp, ebp inc ebx cmp ecx, eax cmovb eax, ecx ; eax = min(total_error_0, total_error_1) cmovbe ebp, ebx inc ebx cmp edx, eax cmovb eax, edx ; eax = min(total_error_0, total_error_1, total_error_2) cmovbe ebp, ebx inc ebx cmp esi, eax cmovb eax, esi ; eax = min(total_error_0, total_error_1, total_error_2, total_error_3) cmovbe ebp, ebx inc ebx cmp edi, eax cmovb eax, edi ; eax = min(total_error_0, total_error_1, total_error_2, total_error_3, total_error_4) cmovbe ebp, ebx movd ebx, mm0 ; ebx = total_error_0 emms ; residual_bits_per_sample[0] = (FLAC__float)((data_len > 0 && total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); ; residual_bits_per_sample[1] = (FLAC__float)((data_len > 0 && total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); ; residual_bits_per_sample[2] = (FLAC__float)((data_len > 0 && total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); ; residual_bits_per_sample[3] = (FLAC__float)((data_len > 0 && total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); ; residual_bits_per_sample[4] = (FLAC__float)((data_len > 0 && total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); xor eax, eax fild dword [esp + 40] ; ST = data_len (NOTE: assumes data_len is <2gigs) .rbps_0: test ebx, ebx jz .total_error_0_is_0 fld1 ; ST = 1.0 data_len mov [esp], ebx mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_0 mov ebx, [esp + 44] fild qword [esp] ; ST = total_error_0 1.0 data_len fdiv st2 ; ST = total_error_0/data_len 1.0 data_len fldln2 ; ST = ln2 total_error_0/data_len 1.0 data_len fmulp st1 ; ST = ln2*total_error_0/data_len 1.0 data_len fyl2x ; ST = log2(ln2*total_error_0/data_len) data_len fstp dword [ebx] ; residual_bits_per_sample[0] = log2(ln2*total_error_0/data_len) ST = data_len jmp short .rbps_1 .total_error_0_is_0: mov ebx, [esp + 44] mov [ebx], eax ; residual_bits_per_sample[0] = 0.0 .rbps_1: test ecx, ecx jz .total_error_1_is_0 fld1 ; ST = 1.0 data_len mov [esp], ecx mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_1 fild qword [esp] ; ST = total_error_1 1.0 data_len fdiv st2 ; ST = total_error_1/data_len 1.0 data_len fldln2 ; ST = ln2 total_error_1/data_len 1.0 data_len fmulp st1 ; ST = ln2*total_error_1/data_len 1.0 data_len fyl2x ; ST = log2(ln2*total_error_1/data_len) data_len fstp dword [ebx + 4] ; residual_bits_per_sample[1] = log2(ln2*total_error_1/data_len) ST = data_len jmp short .rbps_2 .total_error_1_is_0: mov [ebx + 4], eax ; residual_bits_per_sample[1] = 0.0 .rbps_2: test edx, edx jz .total_error_2_is_0 fld1 ; ST = 1.0 data_len mov [esp], edx mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_2 fild qword [esp] ; ST = total_error_2 1.0 data_len fdiv st2 ; ST = total_error_2/data_len 1.0 data_len fldln2 ; ST = ln2 total_error_2/data_len 1.0 data_len fmulp st1 ; ST = ln2*total_error_2/data_len 1.0 data_len fyl2x ; ST = log2(ln2*total_error_2/data_len) data_len fstp dword [ebx + 8] ; residual_bits_per_sample[2] = log2(ln2*total_error_2/data_len) ST = data_len jmp short .rbps_3 .total_error_2_is_0: mov [ebx + 8], eax ; residual_bits_per_sample[2] = 0.0 .rbps_3: test esi, esi jz .total_error_3_is_0 fld1 ; ST = 1.0 data_len mov [esp], esi mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_3 fild qword [esp] ; ST = total_error_3 1.0 data_len fdiv st2 ; ST = total_error_3/data_len 1.0 data_len fldln2 ; ST = ln2 total_error_3/data_len 1.0 data_len fmulp st1 ; ST = ln2*total_error_3/data_len 1.0 data_len fyl2x ; ST = log2(ln2*total_error_3/data_len) data_len fstp dword [ebx + 12] ; residual_bits_per_sample[3] = log2(ln2*total_error_3/data_len) ST = data_len jmp short .rbps_4 .total_error_3_is_0: mov [ebx + 12], eax ; residual_bits_per_sample[3] = 0.0 .rbps_4: test edi, edi jz .total_error_4_is_0 fld1 ; ST = 1.0 data_len mov [esp], edi mov [esp + 4], eax ; [esp] = (FLAC__uint64)total_error_4 fild qword [esp] ; ST = total_error_4 1.0 data_len fdiv st2 ; ST = total_error_4/data_len 1.0 data_len fldln2 ; ST = ln2 total_error_4/data_len 1.0 data_len fmulp st1 ; ST = ln2*total_error_4/data_len 1.0 data_len fyl2x ; ST = log2(ln2*total_error_4/data_len) data_len fstp dword [ebx + 16] ; residual_bits_per_sample[4] = log2(ln2*total_error_4/data_len) ST = data_len jmp short .rbps_end .total_error_4_is_0: mov [ebx + 16], eax ; residual_bits_per_sample[4] = 0.0 .rbps_end: fstp st0 ; ST = [empty] jmp short .end .data_len_is_0: ; data_len == 0, so residual_bits_per_sample[*] = 0.0 xor ebp, ebp mov edi, [esp + 44] mov [edi], ebp mov [edi + 4], ebp mov [edi + 8], ebp mov [edi + 12], ebp mov [edi + 16], ebp add ebp, byte 4 ; order = 4 .end: mov eax, ebp ; return order add esp, byte 16 pop edi pop esi pop ebx pop ebp ret ; end