/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN #if defined(__BRANCHED_PATH__) || defined(__SUBSURFACE__) || defined(__SHADOW_TRICKS__) || \ defined(__BAKING__) /* branched path tracing: connect path directly to position on one or more lights and add it to L */ ccl_device_noinline_cpu void kernel_branched_path_surface_connect_light( KernelGlobals *kg, ShaderData *sd, ShaderData *emission_sd, ccl_addr_space PathState *state, float3 throughput, float num_samples_adjust, PathRadiance *L, int sample_all_lights) { # ifdef __EMISSION__ /* sample illumination from lights to find path contribution */ BsdfEval L_light ccl_optional_struct_init; int num_lights = 0; if (kernel_data.integrator.use_direct_light) { if (sample_all_lights) { num_lights = kernel_data.integrator.num_all_lights; if (kernel_data.integrator.pdf_triangles != 0.0f) { num_lights += 1; } } else { num_lights = 1; } } for (int i = 0; i < num_lights; i++) { /* sample one light at random */ int num_samples = 1; int num_all_lights = 1; uint lamp_rng_hash = state->rng_hash; bool double_pdf = false; bool is_mesh_light = false; bool is_lamp = false; if (sample_all_lights) { /* lamp sampling */ is_lamp = i < kernel_data.integrator.num_all_lights; if (is_lamp) { if (UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce))) { continue; } num_samples = ceil_to_int(num_samples_adjust * light_select_num_samples(kg, i)); num_all_lights = kernel_data.integrator.num_all_lights; lamp_rng_hash = cmj_hash(state->rng_hash, i); double_pdf = kernel_data.integrator.pdf_triangles != 0.0f; } /* mesh light sampling */ else { num_samples = ceil_to_int(num_samples_adjust * kernel_data.integrator.mesh_light_samples); double_pdf = kernel_data.integrator.num_all_lights != 0; is_mesh_light = true; } } float num_samples_inv = num_samples_adjust / (num_samples * num_all_lights); for (int j = 0; j < num_samples; j++) { Ray light_ray ccl_optional_struct_init; light_ray.t = 0.0f; /* reset ray */ # ifdef __OBJECT_MOTION__ light_ray.time = sd->time; # endif bool has_emission = false; if (kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)) { float light_u, light_v; path_branched_rng_2D( kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v); float terminate = path_branched_rng_light_termination( kg, lamp_rng_hash, state, j, num_samples); /* only sample triangle lights */ if (is_mesh_light && double_pdf) { light_u = 0.5f * light_u; } LightSample ls ccl_optional_struct_init; const int lamp = is_lamp ? i : -1; if (light_sample(kg, lamp, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) { /* The sampling probability returned by lamp_light_sample assumes that all lights were * sampled. However, this code only samples lamps, so if the scene also had mesh lights, * the real probability is twice as high. */ if (double_pdf) { ls.pdf *= 2.0f; } has_emission = direct_emission( kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate); } } /* trace shadow ray */ float3 shadow; const bool blocked = shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow); if (has_emission) { if (!blocked) { /* accumulate */ path_radiance_accum_light(kg, L, state, throughput * num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp); } else { path_radiance_accum_total_light(L, state, throughput * num_samples_inv, &L_light); } } } } # endif } /* branched path tracing: bounce off or through surface to with new direction stored in ray */ ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg, ShaderData *sd, const ShaderClosure *sc, int sample, int num_samples, ccl_addr_space float3 *throughput, ccl_addr_space PathState *state, PathRadianceState *L_state, ccl_addr_space Ray *ray, float sum_sample_weight) { /* sample BSDF */ float bsdf_pdf; BsdfEval bsdf_eval ccl_optional_struct_init; float3 bsdf_omega_in ccl_optional_struct_init; differential3 bsdf_domega_in ccl_optional_struct_init; float bsdf_u, bsdf_v; path_branched_rng_2D( kg, state->rng_hash, state, sample, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v); int label; label = shader_bsdf_sample_closure( kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf); if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval)) return false; /* modify throughput */ path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label); # ifdef __DENOISING_FEATURES__ state->denoising_feature_weight *= sc->sample_weight / (sum_sample_weight * num_samples); # endif /* modify path state */ path_state_next(kg, state, label); /* setup ray */ ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT) ? -sd->Ng : sd->Ng); ray->D = normalize(bsdf_omega_in); ray->t = FLT_MAX; # ifdef __RAY_DIFFERENTIALS__ ray->dP = sd->dP; ray->dD = bsdf_domega_in; # endif # ifdef __OBJECT_MOTION__ ray->time = sd->time; # endif # ifdef __VOLUME__ /* enter/exit volume */ if (label & LABEL_TRANSMIT) kernel_volume_stack_enter_exit(kg, sd, state->volume_stack); # endif /* branch RNG state */ path_state_branch(state, sample, num_samples); /* set MIS state */ state->min_ray_pdf = fminf(bsdf_pdf, FLT_MAX); state->ray_pdf = bsdf_pdf; # ifdef __LAMP_MIS__ state->ray_t = 0.0f; # endif return true; } #endif /* path tracing: connect path directly to position on a light and add it to L */ ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg, ShaderData *sd, ShaderData *emission_sd, float3 throughput, ccl_addr_space PathState *state, PathRadiance *L) { PROFILING_INIT(kg, PROFILING_CONNECT_LIGHT); #ifdef __EMISSION__ # ifdef __SHADOW_TRICKS__ int all = (state->flag & PATH_RAY_SHADOW_CATCHER); kernel_branched_path_surface_connect_light(kg, sd, emission_sd, state, throughput, 1.0f, L, all); # else /* sample illumination from lights to find path contribution */ Ray light_ray ccl_optional_struct_init; BsdfEval L_light ccl_optional_struct_init; bool is_lamp = false; bool has_emission = false; light_ray.t = 0.0f; # ifdef __OBJECT_MOTION__ light_ray.time = sd->time; # endif if (kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)) { float light_u, light_v; path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v); LightSample ls ccl_optional_struct_init; if (light_sample(kg, -1, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) { float terminate = path_state_rng_light_termination(kg, state); has_emission = direct_emission( kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate); } } /* trace shadow ray */ float3 shadow; const bool blocked = shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow); if (has_emission) { if (!blocked) { /* accumulate */ path_radiance_accum_light(kg, L, state, throughput, &L_light, shadow, 1.0f, is_lamp); } else { path_radiance_accum_total_light(L, state, throughput, &L_light); } } # endif #endif } /* path tracing: bounce off or through surface to with new direction stored in ray */ ccl_device bool kernel_path_surface_bounce(KernelGlobals *kg, ShaderData *sd, ccl_addr_space float3 *throughput, ccl_addr_space PathState *state, PathRadianceState *L_state, ccl_addr_space Ray *ray) { PROFILING_INIT(kg, PROFILING_SURFACE_BOUNCE); /* no BSDF? we can stop here */ if (sd->flag & SD_BSDF) { /* sample BSDF */ float bsdf_pdf; BsdfEval bsdf_eval ccl_optional_struct_init; float3 bsdf_omega_in ccl_optional_struct_init; differential3 bsdf_domega_in ccl_optional_struct_init; float bsdf_u, bsdf_v; path_state_rng_2D(kg, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v); int label; label = shader_bsdf_sample( kg, sd, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf); if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval)) return false; /* modify throughput */ path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label); /* set labels */ if (!(label & LABEL_TRANSPARENT)) { state->ray_pdf = bsdf_pdf; #ifdef __LAMP_MIS__ state->ray_t = 0.0f; #endif state->min_ray_pdf = fminf(bsdf_pdf, state->min_ray_pdf); } /* update path state */ path_state_next(kg, state, label); /* setup ray */ ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT) ? -sd->Ng : sd->Ng); ray->D = normalize(bsdf_omega_in); if (state->bounce == 0) ray->t -= sd->ray_length; /* clipping works through transparent */ else ray->t = FLT_MAX; #ifdef __RAY_DIFFERENTIALS__ ray->dP = sd->dP; ray->dD = bsdf_domega_in; #endif #ifdef __VOLUME__ /* enter/exit volume */ if (label & LABEL_TRANSMIT) kernel_volume_stack_enter_exit(kg, sd, state->volume_stack); #endif return true; } #ifdef __VOLUME__ else if (sd->flag & SD_HAS_ONLY_VOLUME) { if (!path_state_volume_next(kg, state)) { return false; } if (state->bounce == 0) ray->t -= sd->ray_length; /* clipping works through transparent */ else ray->t = FLT_MAX; /* setup ray position, direction stays unchanged */ ray->P = ray_offset(sd->P, -sd->Ng); # ifdef __RAY_DIFFERENTIALS__ ray->dP = sd->dP; # endif /* enter/exit volume */ kernel_volume_stack_enter_exit(kg, sd, state->volume_stack); return true; } #endif else { /* no bsdf or volume? */ return false; } } CCL_NAMESPACE_END