// Test sequences that can use RISBG with a normal first operand. /* Tests ported from the Llvm testsuite. */ /* { dg-do compile { target s390x-*-* } } */ /* { dg-options "-O3 -march=z10 -mzarch -fno-asynchronous-unwind-tables" } */ #define i64 signed long long #define ui64 unsigned long long #define i32 signed int #define ui32 unsigned int // Test a case with two ANDs. i32 f1 (i32 v_a, i32 v_b) { /* { dg-final { scan-assembler "f1:\n\trisbg\t%r2,%r3,60,62,0" } } */ i32 v_anda = v_a & -15; i32 v_andb = v_b & 14; i32 v_or = v_anda | v_andb; return v_or; } // ...and again with i64. i64 f2 (i64 v_a, i64 v_b) { /* { dg-final { scan-assembler "f2:\n\trisbg\t%r2,%r3,60,62,0" { target { lp64 } } } } */ /* { dg-final { scan-assembler "f2:\n\trisbg\t%r3,%r2,0,0\\\+32-1,64-0-32\n\(\t.*\n\)*\trisbg\t%r\[23\],%r5,60,62,0" { target { ! lp64 } } } } */ i64 v_anda = v_a & -15; i64 v_andb = v_b & 14; i64 v_or = v_anda | v_andb; return v_or; } // Test a case with two ANDs and a shift. i32 f3 (i32 v_a, i32 v_b) { /* { dg-final { scan-assembler "f3:\n\trisbg\t%r2,%r3,64-4,63,\\(64-32\\)\\+4\\+20\n\tlgfr\t%r2,%r2" } } */ i32 v_anda = v_a & -16; i32 v_shr = ((ui32)v_b) >> 8; i32 v_andb = v_shr & 15; i32 v_or = v_anda | v_andb; return v_or; } // ...and again with i64. i64 f4 (i64 v_a, i64 v_b) { /* { dg-final { scan-assembler "f4:\n\trisbg\t%r2,%r3,64-4,63,\\(64-64\\)\\+4\\+52" { target { lp64 } } } } */ /* { dg-final { scan-assembler "f4:\n\(\t.*\n\)*\trisbg\t%r5,%r5,64-4,128\\+63,\\(64-64\\)\\+52\\+4" { target { ! lp64 } } } } */ i64 v_anda = v_a & -16; i64 v_shr = ((ui64)v_b) >> 8; i64 v_andb = v_shr & 15; i64 v_or = v_anda | v_andb; return v_or; } // Test a case with a single AND and a left shift. i32 f5 (i32 v_a, i32 v_b) { /* { dg-final { scan-assembler "f5:\n\trisbg\t%r2,%r3,32,64-10-1,10" } } */ i32 v_anda = v_a & 1023; i32 v_shlb = v_b << 10; i32 v_or = v_anda | v_shlb; return v_or; } // ...and again with i64. i64 f6 (i64 v_a, i64 v_b) { /* { dg-final { scan-assembler "f6:\n\trisbg\t%r2,%r3,0,64-10-1,10" { target { lp64 } } } } */ /* { dg-final { scan-assembler "f6:\n\trisbg\t%r5,%r4,0,0\\\+32-1,64-0-32\n\(\t.*\n\)*\trisbg\t%r\[23\],%r5,0,64-10-1,10" { target { ! lp64 } } } } */ i64 v_anda = v_a & 1023; i64 v_shlb = v_b << 10; i64 v_or = v_anda | v_shlb; return v_or; } // Test a case with a single AND and a right shift. i32 f7 (i32 v_a, i32 v_b) { /* { dg-final { scan-assembler "f7:\n\trisbg\t%r2,%r3,32\\\+8,63,64-8" } } */ i32 v_anda = v_a & -16777216; i32 v_shrb = ((ui32)v_b) >> 8; i32 v_or = v_anda | v_shrb; return v_or; } // ...and again with i64. i64 f8 (i64 v_a, i64 v_b) { /* { dg-final { scan-assembler "f8:\n\trisbg\t%r2,%r3,8,63,64-8" { target { lp64 } } } } */ /* With -m31 risbg is not really useful here, so do not test for it. */ i64 v_anda = v_a & -72057594037927936; i64 v_shrb = ((ui64)v_b) >> 8; i64 v_or = v_anda | v_shrb; return v_or; } // Check that we can get the case where a 64-bit shift feeds a 32-bit or of // ands with complement masks. i32 f9 (i64 v_x, i32 v_y) { /* { dg-final { scan-assembler "f9:\n\trisbg\t%r3,%r2,48,63,64-48" { target { lp64 } }} } */ /* { dg-final { scan-assembler "f9:\n\trisbg\t%r4,%r2,32\\+16,63,64-16" { target { ! lp64 } }} } */ i64 v_shr6 = ((ui64)v_x) >> 48; i32 v_conv = (ui32)v_shr6; i32 v_and1 = v_y & -65536; i32 v_or = v_conv | v_and1; return v_or; } // Check that we don't get the case where a 64-bit shift feeds a 32-bit or of // ands with incompatible masks. i32 f10 (i64 v_x, i32 v_y) { /* { dg-final { scan-assembler "f10:\n\tsrlg\t%r2,%r2,48\n\trosbg\t%r2,%r3,32,39,0" { target { lp64 } } } } */ /* { dg-final { scan-assembler "f10:\n\tnilf\t%r4,4278190080\n\trosbg\t%r4,%r2,48,63,48" { target { ! lp64 } } } } */ i64 v_shr6 = ((ui64)v_x) >> 48; i32 v_conv = (ui32)v_shr6; i32 v_and1 = v_y & -16777216; i32 v_or = v_conv | v_and1; return v_or; }