/* Functions to convert descriptors between CFI and gfortran and the CFI function declarations whose prototypes appear in ISO_Fortran_binding.h. Copyright (C) 2018 Free Software Foundation, Inc. Contributed by Daniel Celis Garza and Paul Thomas This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include extern void cfi_desc_to_gfc_desc (gfc_array_void *, CFI_cdesc_t **); export_proto(cfi_desc_to_gfc_desc); void cfi_desc_to_gfc_desc (gfc_array_void *d, CFI_cdesc_t **s_ptr) { int n; index_type kind; CFI_cdesc_t *s = *s_ptr; if (!s) return; GFC_DESCRIPTOR_DATA (d) = s->base_addr; GFC_DESCRIPTOR_TYPE (d) = (signed char)(s->type & CFI_type_mask); kind = (index_type)((s->type - (s->type & CFI_type_mask)) >> CFI_type_kind_shift); /* Correct the unfortunate difference in order with types. */ if (GFC_DESCRIPTOR_TYPE (d) == BT_CHARACTER) GFC_DESCRIPTOR_TYPE (d) = BT_DERIVED; else if (GFC_DESCRIPTOR_TYPE (d) == BT_DERIVED) GFC_DESCRIPTOR_TYPE (d) = BT_CHARACTER; if (!s->rank || s->dim[0].sm == (CFI_index_t)s->elem_len) GFC_DESCRIPTOR_SIZE (d) = s->elem_len; else if (GFC_DESCRIPTOR_TYPE (d) != BT_DERIVED) GFC_DESCRIPTOR_SIZE (d) = kind; else GFC_DESCRIPTOR_SIZE (d) = s->elem_len; d->dtype.version = s->version; GFC_DESCRIPTOR_RANK (d) = (signed char)s->rank; d->dtype.attribute = (signed short)s->attribute; if (s->rank) { if ((size_t)s->dim[0].sm % s->elem_len) d->span = (index_type)s->dim[0].sm; else d->span = (index_type)s->elem_len; } d->offset = 0; for (n = 0; n < GFC_DESCRIPTOR_RANK (d); n++) { GFC_DESCRIPTOR_LBOUND(d, n) = (index_type)s->dim[n].lower_bound; GFC_DESCRIPTOR_UBOUND(d, n) = (index_type)(s->dim[n].extent + s->dim[n].lower_bound - 1); GFC_DESCRIPTOR_STRIDE(d, n) = (index_type)(s->dim[n].sm / s->elem_len); d->offset -= GFC_DESCRIPTOR_STRIDE(d, n) * GFC_DESCRIPTOR_LBOUND(d, n); } } extern void gfc_desc_to_cfi_desc (CFI_cdesc_t **, const gfc_array_void *); export_proto(gfc_desc_to_cfi_desc); void gfc_desc_to_cfi_desc (CFI_cdesc_t **d_ptr, const gfc_array_void *s) { int n; CFI_cdesc_t *d; /* Play it safe with allocation of the flexible array member 'dim' by setting the length to CFI_MAX_RANK. This should not be necessary but valgrind complains accesses after the allocated block. */ if (*d_ptr == NULL) d = malloc (sizeof (CFI_cdesc_t) + (CFI_type_t)(CFI_MAX_RANK * sizeof (CFI_dim_t))); else d = *d_ptr; d->base_addr = GFC_DESCRIPTOR_DATA (s); d->elem_len = GFC_DESCRIPTOR_SIZE (s); d->version = s->dtype.version; d->rank = (CFI_rank_t)GFC_DESCRIPTOR_RANK (s); d->attribute = (CFI_attribute_t)s->dtype.attribute; if (GFC_DESCRIPTOR_TYPE (s) == BT_CHARACTER) d->type = CFI_type_Character; else if (GFC_DESCRIPTOR_TYPE (s) == BT_DERIVED) d->type = CFI_type_struct; else d->type = (CFI_type_t)GFC_DESCRIPTOR_TYPE (s); if (GFC_DESCRIPTOR_TYPE (s) != BT_DERIVED) d->type = (CFI_type_t)(d->type + ((CFI_type_t)d->elem_len << CFI_type_kind_shift)); if (d->base_addr) /* Full pointer or allocatable arrays retain their lower_bounds. */ for (n = 0; n < GFC_DESCRIPTOR_RANK (s); n++) { if (d->attribute != CFI_attribute_other) d->dim[n].lower_bound = (CFI_index_t)GFC_DESCRIPTOR_LBOUND(s, n); else d->dim[n].lower_bound = 0; /* Assumed size arrays have gfc ubound == 0 and CFI extent = -1. */ if (n == GFC_DESCRIPTOR_RANK (s) - 1 && GFC_DESCRIPTOR_LBOUND(s, n) == 1 && GFC_DESCRIPTOR_UBOUND(s, n) == 0) d->dim[n].extent = -1; else d->dim[n].extent = (CFI_index_t)GFC_DESCRIPTOR_UBOUND(s, n) - (CFI_index_t)GFC_DESCRIPTOR_LBOUND(s, n) + 1; d->dim[n].sm = (CFI_index_t)(GFC_DESCRIPTOR_STRIDE(s, n) * s->span); } if (*d_ptr == NULL) *d_ptr = d; } void *CFI_address (const CFI_cdesc_t *dv, const CFI_index_t subscripts[]) { int i; char *base_addr = (char *)dv->base_addr; if (unlikely (compile_options.bounds_check)) { /* C Descriptor must not be NULL. */ if (dv == NULL) { fprintf (stderr, "CFI_address: C Descriptor is NULL.\n"); return NULL; } /* Base address of C Descriptor must not be NULL. */ if (dv->base_addr == NULL) { fprintf (stderr, "CFI_address: base address of C Descriptor " "must not be NULL.\n"); return NULL; } } /* Return base address if C descriptor is a scalar. */ if (dv->rank == 0) return dv->base_addr; /* Calculate the appropriate base address if dv is not a scalar. */ else { /* Base address is the C address of the element of the object specified by subscripts. */ for (i = 0; i < dv->rank; i++) { CFI_index_t idx = subscripts[i] - dv->dim[i].lower_bound; if (unlikely (compile_options.bounds_check) && ((dv->dim[i].extent != -1 && idx >= dv->dim[i].extent) || idx < 0)) { fprintf (stderr, "CFI_address: subscripts[%d] is out of " "bounds. For dimension = %d, subscripts = %d, " "lower_bound = %d, upper bound = %d, extend = %d\n", i, i, (int)subscripts[i], (int)dv->dim[i].lower_bound, (int)(dv->dim[i].extent - dv->dim[i].lower_bound), (int)dv->dim[i].extent); return NULL; } base_addr = base_addr + (CFI_index_t)(idx * dv->dim[i].sm); } } return (void *)base_addr; } int CFI_allocate (CFI_cdesc_t *dv, const CFI_index_t lower_bounds[], const CFI_index_t upper_bounds[], size_t elem_len) { if (unlikely (compile_options.bounds_check)) { /* C Descriptor must not be NULL. */ if (dv == NULL) { fprintf (stderr, "CFI_allocate: C Descriptor is NULL.\n"); return CFI_INVALID_DESCRIPTOR; } /* The C Descriptor must be for an allocatable or pointer object. */ if (dv->attribute == CFI_attribute_other) { fprintf (stderr, "CFI_allocate: The object of the C descriptor " "must be a pointer or allocatable variable.\n"); return CFI_INVALID_ATTRIBUTE; } /* Base address of C Descriptor must be NULL. */ if (dv->base_addr != NULL) { fprintf (stderr, "CFI_allocate: Base address of C descriptor " "must be NULL.\n"); return CFI_ERROR_BASE_ADDR_NOT_NULL; } } /* If the type is a character, the descriptor's element length is replaced by the elem_len argument. */ if (dv->type == CFI_type_char || dv->type == CFI_type_ucs4_char || dv->type == CFI_type_signed_char) dv->elem_len = elem_len; /* Dimension information and calculating the array length. */ size_t arr_len = 1; /* If rank is greater than 0, lower_bounds and upper_bounds are used. They're ignored otherwise. */ if (dv->rank > 0) { if (unlikely (compile_options.bounds_check) && (lower_bounds == NULL || upper_bounds == NULL)) { fprintf (stderr, "CFI_allocate: If 0 < rank (= %d) upper_bounds[] " "and lower_bounds[], must not be NULL.\n", dv->rank); return CFI_INVALID_EXTENT; } for (int i = 0; i < dv->rank; i++) { dv->dim[i].lower_bound = lower_bounds[i]; dv->dim[i].extent = upper_bounds[i] - dv->dim[i].lower_bound + 1; if (i == 0) dv->dim[i].sm = dv->elem_len; else dv->dim[i].sm = dv->elem_len * dv->dim[i - 1].extent; arr_len *= dv->dim[i].extent; } } dv->base_addr = calloc (arr_len, dv->elem_len); if (dv->base_addr == NULL) { fprintf (stderr, "CFI_allocate: Failure in memory allocation.\n"); return CFI_ERROR_MEM_ALLOCATION; } return CFI_SUCCESS; } int CFI_deallocate (CFI_cdesc_t *dv) { if (unlikely (compile_options.bounds_check)) { /* C Descriptor must not be NULL */ if (dv == NULL) { fprintf (stderr, "CFI_deallocate: C Descriptor is NULL.\n"); return CFI_INVALID_DESCRIPTOR; } /* Base address must not be NULL. */ if (dv->base_addr == NULL) { fprintf (stderr, "CFI_deallocate: Base address is already NULL.\n"); return CFI_ERROR_BASE_ADDR_NULL; } /* C Descriptor must be for an allocatable or pointer variable. */ if (dv->attribute == CFI_attribute_other) { fprintf (stderr, "CFI_deallocate: C Descriptor must describe a " "pointer or allocatable object.\n"); return CFI_INVALID_ATTRIBUTE; } } /* Free and nullify memory. */ free (dv->base_addr); dv->base_addr = NULL; return CFI_SUCCESS; } int CFI_establish (CFI_cdesc_t *dv, void *base_addr, CFI_attribute_t attribute, CFI_type_t type, size_t elem_len, CFI_rank_t rank, const CFI_index_t extents[]) { if (unlikely (compile_options.bounds_check)) { /* C descriptor must not be NULL. */ if (dv == NULL) { fprintf (stderr, "CFI_establish: C descriptor is NULL.\n"); return CFI_INVALID_DESCRIPTOR; } /* Rank must be between 0 and CFI_MAX_RANK. */ if (rank < 0 || rank > CFI_MAX_RANK) { fprintf (stderr, "CFI_establish: Rank must be between 0 and %d, " "0 < rank (0 !< %d).\n", CFI_MAX_RANK, (int)rank); return CFI_INVALID_RANK; } /* If base address is not NULL, the established C Descriptor is for a nonallocatable entity. */ if (attribute == CFI_attribute_allocatable && base_addr != NULL) { fprintf (stderr, "CFI_establish: If base address is not NULL " "(base_addr != NULL), the established C descriptor is " "for a nonallocatable entity (attribute != %d).\n", CFI_attribute_allocatable); return CFI_INVALID_ATTRIBUTE; } } dv->base_addr = base_addr; if (type == CFI_type_char || type == CFI_type_ucs4_char || type == CFI_type_signed_char || type == CFI_type_struct || type == CFI_type_other) dv->elem_len = elem_len; else { /* base_type describes the intrinsic type with kind parameter. */ size_t base_type = type & CFI_type_mask; /* base_type_size is the size in bytes of the variable as given by its * kind parameter. */ size_t base_type_size = (type - base_type) >> CFI_type_kind_shift; /* Kind types 10 have a size of 64 bytes. */ if (base_type_size == 10) { base_type_size = 64; } /* Complex numbers are twice the size of their real counterparts. */ if (base_type == CFI_type_Complex) { base_type_size *= 2; } dv->elem_len = base_type_size; } dv->version = CFI_VERSION; dv->rank = rank; dv->attribute = attribute; dv->type = type; /* Extents must not be NULL if rank is greater than zero and base_addr is not NULL */ if (rank > 0 && base_addr != NULL) { if (unlikely (compile_options.bounds_check) && extents == NULL) { fprintf (stderr, "CFI_establish: Extents must not be NULL " "(extents != NULL) if rank (= %d) > 0 and base address " "is not NULL (base_addr != NULL).\n", (int)rank); return CFI_INVALID_EXTENT; } for (int i = 0; i < rank; i++) { dv->dim[i].lower_bound = 0; dv->dim[i].extent = extents[i]; if (i == 0) dv->dim[i].sm = dv->elem_len; else dv->dim[i].sm = (CFI_index_t)(dv->elem_len * extents[i - 1]); } } return CFI_SUCCESS; } int CFI_is_contiguous (const CFI_cdesc_t *dv) { if (unlikely (compile_options.bounds_check)) { /* C descriptor must not be NULL. */ if (dv == NULL) { fprintf (stderr, "CFI_is_contiguous: C descriptor is NULL.\n"); return 0; } /* Base address must not be NULL. */ if (dv->base_addr == NULL) { fprintf (stderr, "CFI_is_contiguous: Base address of C Descriptor " "is already NULL.\n"); return 0; } /* Must be an array. */ if (dv->rank == 0) { fprintf (stderr, "CFI_is_contiguous: C Descriptor must describe an " "array (0 < dv->rank = %d).\n", dv->rank); return 0; } } /* Assumed size arrays are always contiguous. */ if (dv->rank > 0 && dv->dim[dv->rank - 1].extent == -1) return 1; /* If an array is not contiguous the memory stride is different to the element * length. */ for (int i = 0; i < dv->rank; i++) { if (i == 0 && dv->dim[i].sm == (CFI_index_t)dv->elem_len) continue; else if (i > 0 && dv->dim[i].sm == (CFI_index_t)(dv->dim[i - 1].sm * dv->dim[i - 1].extent)) continue; return 0; } /* Array sections are guaranteed to be contiguous by the previous test. */ return 1; } int CFI_section (CFI_cdesc_t *result, const CFI_cdesc_t *source, const CFI_index_t lower_bounds[], const CFI_index_t upper_bounds[], const CFI_index_t strides[]) { /* Dimension information. */ CFI_index_t lower[CFI_MAX_RANK]; CFI_index_t upper[CFI_MAX_RANK]; CFI_index_t stride[CFI_MAX_RANK]; int zero_count = 0; bool assumed_size; if (unlikely (compile_options.bounds_check)) { /* C Descriptors must not be NULL. */ if (source == NULL) { fprintf (stderr, "CFI_section: Source must not be NULL.\n"); return CFI_INVALID_DESCRIPTOR; } if (result == NULL) { fprintf (stderr, "CFI_section: Result must not be NULL.\n"); return CFI_INVALID_DESCRIPTOR; } /* Base address of source must not be NULL. */ if (source->base_addr == NULL) { fprintf (stderr, "CFI_section: Base address of source must " "not be NULL.\n"); return CFI_ERROR_BASE_ADDR_NULL; } /* Result must not be an allocatable array. */ if (result->attribute == CFI_attribute_allocatable) { fprintf (stderr, "CFI_section: Result must not describe an " "allocatable array.\n"); return CFI_INVALID_ATTRIBUTE; } /* Source must be some form of array (nonallocatable nonpointer array, allocated allocatable array or an associated pointer array). */ if (source->rank <= 0) { fprintf (stderr, "CFI_section: Source must describe an array " "(0 < source->rank, 0 !< %d).\n", source->rank); return CFI_INVALID_RANK; } /* Element lengths of source and result must be equal. */ if (result->elem_len != source->elem_len) { fprintf (stderr, "CFI_section: The element lengths of " "source (source->elem_len = %d) and result " "(result->elem_len = %d) must be equal.\n", (int)source->elem_len, (int)result->elem_len); return CFI_INVALID_ELEM_LEN; } /* Types must be equal. */ if (result->type != source->type) { fprintf (stderr, "CFI_section: Types of source " "(source->type = %d) and result (result->type = %d) " "must be equal.\n", source->type, result->type); return CFI_INVALID_TYPE; } } /* Stride of zero in the i'th dimension means rank reduction in that dimension. */ for (int i = 0; i < source->rank; i++) { if (strides[i] == 0) zero_count++; } /* Rank of result must be equal the the rank of source minus the number of * zeros in strides. */ if (unlikely (compile_options.bounds_check) && result->rank != source->rank - zero_count) { fprintf (stderr, "CFI_section: Rank of result must be equal to the " "rank of source minus the number of zeros in strides " "(result->rank = source->rank - zero_count, %d != %d " "- %d).\n", result->rank, source->rank, zero_count); return CFI_INVALID_RANK; } /* Lower bounds. */ if (lower_bounds == NULL) { for (int i = 0; i < source->rank; i++) lower[i] = source->dim[i].lower_bound; } else { for (int i = 0; i < source->rank; i++) lower[i] = lower_bounds[i]; } /* Upper bounds. */ if (upper_bounds == NULL) { if (unlikely (compile_options.bounds_check) && source->dim[source->rank - 1].extent == -1) { fprintf (stderr, "CFI_section: Source must not be an assumed size " "array if upper_bounds is NULL.\n"); return CFI_INVALID_EXTENT; } for (int i = 0; i < source->rank; i++) upper[i] = source->dim[i].lower_bound + source->dim[i].extent - 1; } else { for (int i = 0; i < source->rank; i++) upper[i] = upper_bounds[i]; } /* Stride */ if (strides == NULL) { for (int i = 0; i < source->rank; i++) stride[i] = 1; } else { for (int i = 0; i < source->rank; i++) { stride[i] = strides[i]; /* If stride[i] == 0 then lower[i] and upper[i] must be equal. */ if (unlikely (compile_options.bounds_check) && stride[i] == 0 && lower[i] != upper[i]) { fprintf (stderr, "CFI_section: If strides[%d] = 0, then the " "lower bounds, lower_bounds[%d] = %d, and " "upper_bounds[%d] = %d, must be equal.\n", i, i, (int)lower_bounds[i], i, (int)upper_bounds[i]); return CFI_ERROR_OUT_OF_BOUNDS; } } } /* Check that section upper and lower bounds are within the array bounds. */ for (int i = 0; i < source->rank; i++) { assumed_size = (i == source->rank - 1) && (source->dim[i].extent == -1); if (unlikely (compile_options.bounds_check) && lower_bounds != NULL && (lower[i] < source->dim[i].lower_bound || (!assumed_size && lower[i] > source->dim[i].lower_bound + source->dim[i].extent - 1))) { fprintf (stderr, "CFI_section: Lower bounds must be within the " "bounds of the fortran array (source->dim[%d].lower_bound " "<= lower_bounds[%d] <= source->dim[%d].lower_bound " "+ source->dim[%d].extent - 1, %d <= %d <= %d).\n", i, i, i, i, (int)source->dim[i].lower_bound, (int)lower[i], (int)(source->dim[i].lower_bound + source->dim[i].extent - 1)); return CFI_ERROR_OUT_OF_BOUNDS; } if (unlikely (compile_options.bounds_check) && upper_bounds != NULL && (upper[i] < source->dim[i].lower_bound || (!assumed_size && upper[i] > source->dim[i].lower_bound + source->dim[i].extent - 1))) { fprintf (stderr, "CFI_section: Upper bounds must be within the " "bounds of the fortran array (source->dim[%d].lower_bound " "<= upper_bounds[%d] <= source->dim[%d].lower_bound + " "source->dim[%d].extent - 1, %d !<= %d !<= %d).\n", i, i, i, i, (int)source->dim[i].lower_bound, (int)upper[i], (int)(source->dim[i].lower_bound + source->dim[i].extent - 1)); return CFI_ERROR_OUT_OF_BOUNDS; } if (unlikely (compile_options.bounds_check) && upper[i] < lower[i] && stride[i] >= 0) { fprintf (stderr, "CFI_section: If the upper bound is smaller than " "the lower bound for a given dimension (upper[%d] < " "lower[%d], %d < %d), then he stride for said dimension" "t must be negative (stride[%d] < 0, %d < 0).\n", i, i, (int)upper[i], (int)lower[i], i, (int)stride[i]); return CFI_INVALID_STRIDE; } } /* Set the appropriate dimension information that gives us access to the * data. */ int aux = 0; for (int i = 0; i < source->rank; i++) { if (stride[i] == 0) { aux++; /* Adjust 'lower' for the base address offset. */ lower[i] = lower[i] - source->dim[i].lower_bound; continue; } int idx = i - aux; result->dim[idx].lower_bound = lower[i]; result->dim[idx].extent = 1 + (upper[i] - lower[i])/stride[i]; result->dim[idx].sm = stride[i] * source->dim[i].sm; /* Adjust 'lower' for the base address offset. */ lower[idx] = lower[idx] - source->dim[i].lower_bound; } /* Set the base address. */ result->base_addr = CFI_address (source, lower); return CFI_SUCCESS; } int CFI_select_part (CFI_cdesc_t *result, const CFI_cdesc_t *source, size_t displacement, size_t elem_len) { if (unlikely (compile_options.bounds_check)) { /* C Descriptors must not be NULL. */ if (source == NULL) { fprintf (stderr, "CFI_select_part: Source must not be NULL.\n"); return CFI_INVALID_DESCRIPTOR; } if (result == NULL) { fprintf (stderr, "CFI_select_part: Result must not be NULL.\n"); return CFI_INVALID_DESCRIPTOR; } /* Attribute of result will be CFI_attribute_other or CFI_attribute_pointer. */ if (result->attribute == CFI_attribute_allocatable) { fprintf (stderr, "CFI_select_part: Result must not describe an " "allocatable object (result->attribute != %d).\n", CFI_attribute_allocatable); return CFI_INVALID_ATTRIBUTE; } /* Base address of source must not be NULL. */ if (source->base_addr == NULL) { fprintf (stderr, "CFI_select_part: Base address of source must " "not be NULL.\n"); return CFI_ERROR_BASE_ADDR_NULL; } /* Source and result must have the same rank. */ if (source->rank != result->rank) { fprintf (stderr, "CFI_select_part: Source and result must have " "the same rank (source->rank = %d, result->rank = %d).\n", (int)source->rank, (int)result->rank); return CFI_INVALID_RANK; } /* Nonallocatable nonpointer must not be an assumed size array. */ if (source->rank > 0 && source->dim[source->rank - 1].extent == -1) { fprintf (stderr, "CFI_select_part: Source must not describe an " "assumed size array (source->dim[%d].extent != -1).\n", source->rank - 1); return CFI_INVALID_DESCRIPTOR; } } /* Element length. */ if (result->type == CFI_type_char || result->type == CFI_type_ucs4_char || result->type == CFI_type_signed_char) result->elem_len = elem_len; if (unlikely (compile_options.bounds_check)) { /* Ensure displacement is within the bounds of the element length of source.*/ if (displacement > source->elem_len - 1) { fprintf (stderr, "CFI_select_part: Displacement must be within the " "bounds of source (0 <= displacement <= source->elem_len " "- 1, 0 <= %d <= %d).\n", (int)displacement, (int)(source->elem_len - 1)); return CFI_ERROR_OUT_OF_BOUNDS; } /* Ensure displacement and element length of result are less than or equal to the element length of source. */ if (displacement + result->elem_len > source->elem_len) { fprintf (stderr, "CFI_select_part: Displacement plus the element " "length of result must be less than or equal to the " "element length of source (displacement + result->elem_len " "<= source->elem_len, %d + %d = %d <= %d).\n", (int)displacement, (int)result->elem_len, (int)(displacement + result->elem_len), (int)source->elem_len); return CFI_ERROR_OUT_OF_BOUNDS; } } if (result->rank > 0) { for (int i = 0; i < result->rank; i++) { result->dim[i].lower_bound = source->dim[i].lower_bound; result->dim[i].extent = source->dim[i].extent; result->dim[i].sm = source->dim[i].sm; } } result->base_addr = (char *) source->base_addr + displacement; return CFI_SUCCESS; } int CFI_setpointer (CFI_cdesc_t *result, CFI_cdesc_t *source, const CFI_index_t lower_bounds[]) { /* Result must not be NULL. */ if (unlikely (compile_options.bounds_check) && result == NULL) { fprintf (stderr, "CFI_setpointer: Result is NULL.\n"); return CFI_INVALID_DESCRIPTOR; } /* If source is NULL, the result is a C Descriptor that describes a * disassociated pointer. */ if (source == NULL) { result->base_addr = NULL; result->version = CFI_VERSION; result->attribute = CFI_attribute_pointer; } else { /* Check that element lengths, ranks and types of source and result are * the same. */ if (unlikely (compile_options.bounds_check)) { if (result->elem_len != source->elem_len) { fprintf (stderr, "CFI_setpointer: Element lengths of result " "(result->elem_len = %d) and source (source->elem_len " "= %d) must be the same.\n", (int)result->elem_len, (int)source->elem_len); return CFI_INVALID_ELEM_LEN; } if (result->rank != source->rank) { fprintf (stderr, "CFI_setpointer: Ranks of result (result->rank " "= %d) and source (source->rank = %d) must be the same." "\n", result->rank, source->rank); return CFI_INVALID_RANK; } if (result->type != source->type) { fprintf (stderr, "CFI_setpointer: Types of result (result->type" "= %d) and source (source->type = %d) must be the same." "\n", result->type, source->type); return CFI_INVALID_TYPE; } } /* If the source is a disassociated pointer, the result must also describe * a disassociated pointer. */ if (source->base_addr == NULL && source->attribute == CFI_attribute_pointer) result->base_addr = NULL; else result->base_addr = source->base_addr; /* Assign components to result. */ result->version = source->version; result->attribute = source->attribute; /* Dimension information. */ for (int i = 0; i < source->rank; i++) { if (lower_bounds != NULL) result->dim[i].lower_bound = lower_bounds[i]; else result->dim[i].lower_bound = source->dim[i].lower_bound; result->dim[i].extent = source->dim[i].extent; result->dim[i].sm = source->dim[i].sm; } } return CFI_SUCCESS; }